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bstract

Increased motile activity, increased rate of cell proliferation and removal of growth inhibiting cell–cell contacts are hallmarks of tumorigenesis.
ctivation of cell motility and migration is caused by activation of receptors, turning on the growth cycle. Increased expression of metalloproteinases,
reaking cell:cell contacts and organ confines, allows the spread of malignant cancer cells to other sites in the organism. It has become increasingly
lear that most transmembrane proteins (growth factor receptors, adhesion proteins and ion channels) are either permanently or transiently associated
ith the sub-membraneous system of actin microfilaments (MF), whose force generating capacity they control. Although there has been great

rogress in our understanding of the physiological importance of the MF-system, as will be exemplified in this issue of SCB, many aspects of
ctin microfilament formation and its regulation are still unclear. Redox control of the actin (MF)-system in cell motility and migration and its
erturbations in pathophysiology, including cancer, is an emerging field of research.
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. The microfilament system

.1. Organization of the actin cortex

Actins are highly conserved eukaryotic proteins, which
ccur both in monomeric and polymerized (filamentous) form.

ctin filaments with associated proteins are central elements

n the microfilament (MF)-system, which drives cellular com-
unication processes, including cell motility and migration,

hagocytosis, vesicular movement, cytokinesis, and molecular

mailto:uno.lindberg@ki.se
dx.doi.org/10.1016/j.semcancer.2007.10.002
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Fig. 1. Glial cells in different stages of spreading. The scanning micrographs show their surface morphology, which depends on the organization of the sub-membranous
actin microfilaments. Motile activity depends heavily on force-generation in the actin microfilament system.

Fig. 2. The sub-membraneous layer of actin microfilaments in a lamellipodium visualized after removal of the lipid bilayer. Panel A: The actin organization is
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haracterized by a high concentration of ordered filaments in a continuous fo
ignaling [2]. Panel B: VASP (green) is concentrated along the outer edge of the
f Staffan Grenklo).

ransports between the plasma membrane and the nucleus. A
ighly dynamic, concentrated, and well organized cortical weave
f actin microfilaments capable of extensive force-generation is
uxtaposed to the inside of the plasma membrane, shaping cells

nd governing their integrity (Figs. 1–3) [1–3].

Transmembrane proteins, linked to the sub-membranous
ctin force generator, are responsible for the first level of con-
rol of the cell motility (CM)-cycle, whose four basic steps are:

a
r
A
f

ig. 3. The juxtapositioning of the lipid bilayer and the cortical weave of actin filame
lose apposition to the sub-membraneous actin organization. Panel B illustrates a sim
f the filopodium contains a large number of proteins, among which is the VASP pro
een captured, likely representing membrane-associated proteins, connecting the acti
enerating arrangement, whose dynamics is under control by transmembrane
arrangements (red) in the lamellipodium, and at tips of filopodia (by courtesy

1) polymerization of actin into filaments, (2) organization of
laments into ensembles by cross-linking proteins and by adhe-
ions to extracellular structures, (3) force-generation for large
cale movements through interaction between actin filaments

nd different myosins, and (4) depolymerization of filaments to
eform unpolymerized actin for new rounds of polymerization.

multitude of factors are involved in the control of the dif-
erent steps of the cycle, through which reorganization of the

nts. Panel A: The white zone along the cell edge represents the lipid bilayer in
ilar edge protrusion after removal of the lipid bilayer [111]. The tip complex
tein as illustrated in Fig. 2B. Along the edge, detergent-resistant material has

n microfilament weave.
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F-system is executed in response to interactions between the
ell and the surrounding world, i.e. growth factors, cytokines,
ther cells, or extracellular matrices; for reviews see [4,5].

Cell surface protrusions, lamellipodia and filopodia, are built
f actin microfilaments, whose assembly takes place primar-
ly at advancing edges of cells, and it is the polymerization of
ctin that provides the force for their protrusion [4,5]. Myosin-
ependent processes translocate molecules and particles along
amellipodial and filopodial MF-arrangements. For instance,
ASP and integrins are transported towards the tip of filopodia
y myosin X, where they become involved in filament growth
nd establishment of adhesion sites, specialized multiprotein
tructures, connecting filopodial actin filament bundles to extra-
ellular matrices (see Figs. 2B and 3) [6,7]. Force generating
nsembles of microfilaments and myosin II, in so called stress
bers are used to move the whole cell [8], and the details of

he formation and functionality of these contractile fibers are
ow being explored [9]. In tissues, cell:cell adhesions engage
ifferent transmembrane proteins, e.g. cadherins [10,11], which
ynamically link actin microfilament arrangements in neigh-
oring cells by mechanisms currently under special scrutiny
12,13]. Many of the proteins involved in the control of the MF-
ystem are products derived from proto-oncogens. This issue of
CB reviews aspects of the MF-system, which are of special

nterest in relation to the development of malignant cancer cells.

.2. Actin polymerizing machineries

The actin filament is a twisted ribbon with a barbed and a
ointed end [14,15]. In vitro, the barbed end is the fast poly-
erizing (+)-end. In vivo, this end is located at the advancing

dge of lamellipodia and filopodia together with actin poly-
erizing multiprotein complexes operating within a 0.1–0.2 �m
ide zone at the tip of the cell edge [4,5]. Actin filaments are
enerated either by de novo actin nucleation/elongation or by
longation of pre-existing filaments. Four basically different
echanisms are involved in formation of actin polymers: (1)

he Arp2/3-dependent nucleation/elongation system operating
ogether with either WASP/N-WASP (Wiskott Aldrich syndrome
roteins) or WAVE (WASP-verprolin homology proteins). These
roteins are components of high molecular weight, multiprotein
ssemblies [16,17], executing spatio-temporal actin polymer-
zation under the control of the small GTPases, Cdc42 and Rac,
eviewed by [18–21], and their activities give rise to branched fil-
ment arrangements in vitro [4]. Electron microscopy images of
amellipodia have been interpreted to demonstrate that filament
ranching is a prominent feature also in vivo [22], although this
s an issue of debate [23]. Arp2/3-WASP/N-WASP actin poly-

erizations are involved primarily in endo- and exocytosis, but
lso in the formation of podosomes, invadosomes, and filopodia;
ee contributions by Vignjevic and Montagnac and Gimona in
his issue, while the Arp2/3-WAVE dependent polymerization
s involved in lamellipodia formation; (2) the formins polymer-

ze actin in association with filament (+)-ends at advancing cell
dges, and are also under the control of small GTPases [24];
3) the Spir and cordon-bleu (cobl) proteins are newly discov-
red actin filament nucleating proteins [25,26]. They are widely

m
m
d
o

ncer Biology 18 (2008) 2–11

xpressed in embryonic tissues, but seem to be limited primarily
o the central nervous system of adults. Their activity in filament
ormation in vivo is yet unclear; (4) Ena/VASP family of proteins
nally are also linked to polymerization of actin [27–31]. VASP

s recruited to the distal parts of lamellipodia, in amounts that
re directly proportional to the rate of protrusion [32], and it is
equired for the proper formation of the actin filament tail of Lis-
eria monocytogenes and for optimal movement of the bacterium
33].

The major part of the unpolymerized actin in the cell is
omplexed to profilin, and there is convincing evidence that
rofilin:actin is used as the precursor by all the polymeriz-
ng systems, bringing ATP-actin to the polymerization site
21] (Figs. 2B, 4 and 5). VASP has binding sites for pro-
lin, profilin:actin, G-actin and F-actin, but the exact molecular
echanisms, by which the protein operates during actin poly-
erization has been difficult to assess. Recent investigations,

owever, have led to new insights concerning the energetics
nd structural basis for the interactions of profilin:actin and
ASP [34,35]. The results have led to an intriguing, yet plau-
ible model, for VASP-dependent recruitment of profilin:actin,
nd its processing through a series of binding sites on VASP
rior to incorporation of the actin into the growing filament.
ikely, VASP binds to filament (+)-ends set free by uncapping,
r resulting from the action of actin filament-fragmenting (sever-
ng) proteins, or by de novo nucleation. The polarity of the actin
laments, the high degree of order in their organization, and rel-
tive synchrony of the polymerization at sites along advancing
amellipodial edges provides directionality to the motile activity
riving the cell forward [21,36,37].

Recent observations indicate that tropomyosins (TM) may
e critically involved in the regulation of actin filament forma-
ion and function, as reflected in the alterations in TM isoform
xpression seen as a result of the development of the malignant
tate of cancers [38–40]. TMs are dimeric, coiled coil structures,
hich can associate in a head-to-tail fashion, forming copoly-
ers with actin filaments; one strand of TMs on each side of the

ctin ribbon. TM is encoded by four genes, and through multiple
romoters and alternative splicing a large number of isoforms
an be produced [41].

It is possible that the TM family of proteins play a dras-
ically different role in the organization and activity of actin
n non-muscle cells than previously recognized. Binding of
ropomyosin to gelsolin-capped actin oligomers eliminates the
apping activity of gelsolin, resulting in annealing of the
ligomers into long filaments. This suggests that TM might be
nvolved in controlling the accessibility of the (+)-end of actin
laments in vivo [42]. TM protects actin filaments from being
evered by gelsolin and cofilin, a protection which is further
trengthened by binding of caldesmon to the actin-TM copoly-
er [43]. TM is required for the formin-dependent formation

f the actin filament cable essential for bud growth in Saccha-
omyces cerevisiae [44]; if missing, only a fuzzy filamentous

aterial is seen at the expected site of actin polymerization. In
ammalian cells, TMs are found at the distal parts of lamellipo-

ia and filopodia [45], and the binding of TM to the C-terminus
f formins results in their activation [46]. Furthermore, the TM-
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ig. 4. Distribution of profilin:actin (red) and the p34 subunit of the Arp2/3 co
n the magnified areas (by courtesy of Yu Li).

isoform is phosphorylated in an ERK-dependent pathway, a
odification shown to be required for stress fiber formation

n endothelial cells [47,48]. Inhibition of the phosphorylation
brogates stress fiber formation and causes extensive, actin
olymerization-dependent blebbing of the cells.

While the major part of the cellular tropomyosin recides in
he cytomatrix, periodically distributed along actin filaments in
tress fibers and thinner actin ensembles, the soluble part of the
ytoplasm (cytosol) contains TM in isoform-specific particles

f high molecular weight (MWapp 600,000–800,000) (Lindberg
nd collaborators, unpublished). More than 90% of the solu-
le TM appears in particle form, with small amounts of TM

T
T
p

ig. 5. The PI-/CM-cycle relationship. This simplified scheme illustrates the close inte
CM)-cycle at the plasma membrane. Activation of cells with growth factors stimulate
afts enriched in PI4,5P2/PI3,4,5P3, which in turn organizes actin polymerizing ma
ctivation of the kinase and its release to the cytosol for stimulation of proliferation, m
s also denoted in the scheme. The rendition of the actin filaments is from Lepault et
(green). Note the fine rim of both components seen along the advancing edge

imers. The lamellpodial TM is seen as a diffuse staining and
s abundant, more intensively stained dots out to the edge of the
rotrusions [45]. The dots are identified as the TM particles.

Growth factor-stimulated cells rapidly change their levels
f TM isoforms in the cytosol, changes, which coincide with
ctin polymerization, leading to formation of lamellipodia and
lopodia. Thus, the particles might constitute a storage form of
M, from which TM can be recruited to sites of actin polymer-

zation, possibly by activated actin polymerizing machineries.

he activity of the TM in particles must be under tight control.
hey coexist in the cytosol with high concentrations of non-
olymerized �- and �-actin, which in turn are controlled by the

gration of the turnovers in the phosphoinositides (PI)-cycle and actin dynamics
s the PI-cycle and the activity of PI3 kinase, resulting in lipoprotein membrane
chineries and Akt/PKB. Arrows from Akt in the scheme denote subsequent
etabolism, and inhibition of apoptosis. The involvement of hydrogen peroxide

al. [15].
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ctin monomer-binding proteins profilin, cofilin and thymosin.
f unleashed in an uncontrolled fashion, the actin and TM in the
ytosol would give rise to an immediate formation of a caotic
eshwork of actin filaments incompatible with further life of

he cell.
Malignant cells have drastically altered levels of TMs in the

ytosol and cytomatrix. The so called high molecular weight
nd low molecular weight isoforms, appear to influence dif-
erent aspects of the functioning of the MF-system; one class
rimarily being involved in controlling the motile activity of
amellipodia and filopodia, and the other controlling the for-

ation of cell adhesions and stress fibers. The occurrence of
ifferential and specific changes in the expression of TM iso-
orms during development of malignant tumor cells makes them
nteresting targets for chemotherapy [49]. For a review of TM
hysiology, see Gunning and collaborators in this issue of SCB.

.3. Depolymerization of actin filaments

Relatively little is known about depolymerization of actin
laments, an important process closing the CM-cycle. The
rime actors in this process are the actin depolymerising fac-
ors, belonging to the ADF/cofilin family of proteins (here
eferred to as cofilin) [50]. In vitro, the dephosphorylated form of
ofilin has the capacity both to fragment (sever) actin polymers
nd to accelerate depolymerization from their pointed (−)-end,
nd there is evidence that depolymerization takes place in the
roximal parts of lamellipodia and filopodia, away from the
dvancing cell edge. Likely, depolymerization occurs also at
ther sites in the microfilament organizations, and severing,
ot only by cofilin, but also by other actin filament severing
roteins like gelsolin, contributes to accelerated reorganization
f actin microfilaments. Depolymerization of filaments yields
DP-carrying monomers, which can be recycled, with the ulti-
ate reformation of profilin:actin, which again can provide
TP-actin to polymerizing machines [21].

Cofilin, is also thought to exist in a PI4,5P2 bound state
n the membrane [51], from which it could be released in an
ctive, non-phosphorylated state by receptor-activated lipases,
.g. PLC�. Released cofilin might sever unprotected filaments
nd thereby produce increased numbers of filament (+)-ends,
hich could be used as starting points for new filament growth

52]. Polymerization would be further supported by concomi-
ant depolymerization at the (−)-ends of formed actin oligomers,
roducing actin monomers to be recycled to polymerization
achineries via profilin:actin [21].
Accelerated turnover in the CM-cycle is a signature of

alignancy, and cofilin controls crucial aspects of motility and
igration of cells. The expression of the activity of different

omponents of the proposed “cofilin pathway” [53] are signifi-
antly altered in connection to cancerogenesis, again illustrating
he importance of cell motility in the development of cancer

alignancy. The binding of cofilin to actin is controlled by the

im kinase/slingshot phosphatase pair [54,55]. Lim kinase is
ctivated by phosphorylation by PAK under the control of small
TPases, and phosphorylation of cofilin inhibits its interaction
ith actin. Thus, phosphorylation of cofilin, subsequent to cell

t
p
t
a

ncer Biology 18 (2008) 2–11

timulation, must occur after its severing action not to violate the
roposed model. Recently, it has been demonstrated that cofilin
irectly interacts with PLD1 and upon phosphorylation stimu-
ates its lipase activity, pointing to additional functions of cofilin
56].

Cell variations and redundancies of individual components
ake it difficult to assess how the complexity of the PI-/CM-

ycle relationship is used by different cells in time and space
see below). Notably, altered expression of proteins belonging
o the MF-system, e.g. profilin, cofilin, tropomyosin, gelsolin,
-actinin, and vinculin, is frequently associated with malignant

ransformation [53,57–61].

. The PI-cycle drives the CM-cycle

Transmembrane signaling caused by binding of growth fac-
ors to their cognate receptors results in immediate increases in
he turn-over of the phosphatidylinositol (PI)-cycle [62,63], acti-
ation of the RhoGTPases (e.g. Cdc42, Rac, and Rho) [18,64],
nd stimulation of actin polymerization and motile activity
2,65–67]. The discovery of the profilin:actin complex [68] and
he specific effect of PI4,5P2 on the stability of the complex 5
69] led to the proposition that the PI-cycle is coupled to the CM-
ycle [70]. It is now known that virtually all cells respond to a
ariety of extracellular agonists with an increased turnover in the
I-cycle [71], and that the PI- and the CM-cycles, are interlinked

hrough many factors and feed back loops (see Fig. 5). Stimu-
ation of cells with growth factors and other agonists leads to
apid phosphorylation of phosphatidyl inositol (PI) by activated
inases giving rise to increased levels of PI4,5P2 in the mem-
rane [72], and PI3 kinase in turn converts PI4,5P2 to PI3,4,5P3,
hich is a key molecule turning on the CM-cycle [73].
The PI3 kinase is the pivot in the control of the PI- and CM-

ycle relationship. Its activation by tyrosine-phosphorylated
rowth factor receptors initiates the formation of complex
ultiprotein assemblies at the membrane, producing the

olyphospho-inositides, whose importance can be ascribed to
heir capacity to recruit and activate proteins at the plasma

embrane, among which are Arp2/3-dependent actin polymer-
zing machineries including the WASP/WAVE family of proteins
16,17,74–77]. The PI3,4,5P3 product of PI3 kinase also recruits
kt/PKB to the membrane for activation with subsequent phos-
horylation of a large number of target proteins involved in the
egulation of metabolism, cell growth and proliferation, and sur-
ival as the result. Significantly, alterations of the activity of the
I3 kinase and Akt/PKB are often coupled to tumorigenesis
78–80].

The polyphospho-inositide-response depends on GEF-
ctivated small GTPases, operating on the phosphatidyl inositol
inases. The Vav family of proteins constitute one such group
f GEFs, controlling the relationship between the PI- and the
M-cycles. The nucleotide exchange activity of the Vav pro-

eins is stimulated by phosphorylation as well as by binding of

he product of the PI3 kinase, PI3,4,5P3, leading to accelerated
roduction of PI4,5P2 and ultimately to PI3,4,5P3 [81]. Through
his positive feed-back loop, the activity in the CM-cycle can be
ccelerated. The function of the Vav feed-back loop is even more
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ophisticated, since PI4,5P2 by direct interaction with Vav inter-
eres with its GEF activity and thereby indirectly dampens the
I3,4,5P3 production by reducing the formation of the substrate
or the PI3 kinase. The importance of mechanisms balancing
he concentration of PI3,4,5P3 is emphasized by the existence
f PTEN (phosphatase homologous to tensin), which can remove
he phosphate in the 3-position of the polyphospho-inositide, and
he fact that perturbations of the PI3 kinase Akt/PKB signaling
athways are frequent in human cancers [80].

The intimate relationship between the PI- and CM-cycles is
urther illustrated by the fact that many other actin-binding pro-
eins interact with polyphospho-inositides [82]. For instance,
I4,5P2 binds to proteins like capping protein (CP) and gelsolin,
hich control growth of actin filaments at their (+)-end, leading

o uncapping of the (+)-end, allowing filament elongation [83].
s mentioned above, profilin as well as profilin:actin both bind
I4,5P2 and PI3,4,5P3 [69,84,85], suggesting that profilin and
rofilin:actin also might accumulate in polyphospho-inositide-
ich regions in the membrane, proximal to actin polymerizing
rotein complexes. A series of observations show that pro-
lin:actin is not only required for maximal rate of actin

ncorporation in in vitro systems, but also in vivo mutations
n either profilin or VASP, or the introduction of cross-linked
rofilin:actin into live cells, strongly interferes with filament for-
ation, indicating profilin:actin as the provider of actin to the

ctin polymerizing machineries [29,31,33,86,87]. Cells treated
ith siRNA to reduce the level of profilin leads to loss of per-

istent directionality of migration of endothelial cells [88], and
elanoma cells when similarly treated, also show a reduced

rowth rate (Li and Karlsson, unpublished). Over-expression of
rofilin in breast cancer cells reduces their tumorigenic poten-
ial, and elimination of the actin-binding capacity of profilin
brogates this effect [60,61]. The reason for this is unclear. In
itro, the binding to polyphospho-inositides labilizes the pro-
lin:actin complex, causing its dissociation, but if this occurs in
ivo is unclear. It is noteworthy that binding of actin and PI4,5P2
o profilin does not necessarily have to be mutually exclusive
69,89].

. H2O2 in the control of the MF-system

In addition to polyphospho-inositides and small GTPases,
ransient generation of H2O2 seems to play important roles
n regulating formation and activity of cell edge protrusions,
ntegrin-mediated adhesion, and migration [90,91]. Apparently,

2O2 acts as a rapidly produced and effective second messen-
er, whose spatio-temporal appearance in cells correlates with
hanges in the microfilament system [91,92]. Its involvement
n the activation of the MF-system is demonstrated by the fact
hat quenching ROS production eliminates the effects of growth
actors on the motile activity of cells [92]. Furthermore, there is
vidence that �-actin, and the actin-regulating proteins profilin
nd tropomyosin are oxidized and glutathionylated in vivo [93].

on-muscle �-actin has six cysteines, two of which are particu-

arly sensitive to oxidation. Oxidation of the penultimate C374
ffects the stability of the actin filament, while the role played
y the most sensitive, cysteine 272 is unknown ([94] and Lass-

t

p
c
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ng, unpublished). The tumor suppressor PTEN is of decisive
mportance in the control of cell motility. Its oxidation by H2O2
95] upsets the control of cell motility. Altered PTEN activity is
frequent characteristic of malignant cancer cells.

The major sources of ROS in both phagocytotic and non-
hagocytotic cells appears to be NAD(P)H oxidase-like protein
omplexes (NOX) and lipoxygenases (LOX). Both function
ownstream cytokine receptors [96,97], in direct interaction
ith actin [98,99]. These enzyme complexes are membrane

ssociated and activated by association with the GTPase Rac
100], the overexpression of which leads to increased ROS lev-
ls in endothelial cells [101]. Consistently, overexpression of a
ominant negative form of Rac1 inhibits ROS generation [102].
s described in connection to the PI-cycle above, association
ith GEFs targets Rac1 and causes its concomitant, spatially

estricted activation at the membrane [103], where, in migrating
ells, actin reorganization is maximal. Thus, amplification of a
2O2 signal in vivo would seem to occur through the integration
f the CM- and PI-cycles [104], where activation of Rac1 [105]
s central. Increased lipid phosphorylation through the activity of
I3 kinase, resulting from oxidative inhibition of phosphatases is
signature of H2O2 signalling [106,107]. The conclusion would
e that the activation of LOX and NOX is integrated with actin
ia Rac. It is noteworthy that 5′OH-lipoxygenase, which metab-
lizes lipase-released arachidonic acid to yield H2O2 as one of
he products, can bind to actin filaments in competition with
he actin filament-binding protein coactosin [108]. This gives
urther credence to the view that lipoxygenases operate in asso-
iation with the MF-system, and points to the possibility that
lso lipohydroxyperoxides produced by 5′OH-lipoxyenase are
nvolved in the control of the MF-system. As pointed out above,
ofilin stimulates phopholipase D activity and may therefore be
nvolved in release of arachidonic acid for further metabolism
enerating reactive oxygen species [109]. Interestingly, atten-
ion was recently drawn to the fact that alterations in the activity
f both cyclooxygenases and lipoxygenases appear to be linked
o carcinogenesis [110].

. From lamellipodia to focal complexes and focal
dhesions

Cell migration is executed by repeated cycles of protru-
ion (actin polymerization), matrix adhesions (formation of
ocal complexes/focal adhesions in association with actin fil-
ments) and retraction (actomyosin force-generation). Cell
urface protrusions explore the immediate surroundings for pos-
ible adhesion sites. The electron micrograph in Fig. 6 visualizes
iscrete structures (tip complexes) at the outer edge of lamel-
ipodia [1,2,111–113], which might harbor actin polymerizing

achines, together with accessory proteins. Actin microfila-
ents, emanating from foci in the cell edge, diverge towards the

nterior part of lamellipodia. Such foci can be seen also alongside
he base of filopodia, whereas large tip complexes are present at

heir distal end (Fig. 3).

Integrins appear at the outer edge of cell protrusions, and
resumably as a result of integrins interacting with the extra-
ellular matrix, focal complexes (FX) appear at a distance of
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Fig. 6. Visualization of the detailed organization of actin filaments in the outer
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mechanics. Proc Natl Acad Sci USA 2005;102(33):11594–9.
art of the lamellipodium. The foci with filaments diverging into the lamel-
ipodium might represent actin polymerizing machines in the initial stages of
ocal complex formation [1,3].

bout 1 �m from the advancing edge [114,115], a subject also
reated by Strömblad and collaborators in this issue. Detailed
ight microscopic analysis revealed a sequential addition of spe-
ific proteins, transforming focal complexes to focal adhesions
FA). The initial FXs are enriched in tyrosine-phosphorylated
omponents, and integrin, talin, paxillin, low levels of vinculin
nd FAK, but appear to lack zyxin and tensin [116–118] The lat-
er proteins are added to the structure during maturation of FX to
A – now referred to as the adhesome [119,120]. Recently, it has
een discovered that stress forces from outside or actomyosin-
ependent forces positively influence actin polymerization at
he focal adhesions, which also increase in size under these
onditions [121]. This signaling involves the RhoGTPase Rac
122], suggesting a linkage to the generation of ROS [123], and
hosphorylated TM-1 [47,48]. In this issue, the contributions
y Gimona and Tilghman and Parsons, respectively, deal with
echanosensing and focal adhesions.
Integrins execute cell–matrix as well as cell–cell interac-

ions, whereas adhesion via the cadherin family of adhesion
roteins is preferentially intercellular. Cadherin–cadherin inter-
ctions link the MF-systems of adjacent cells. For example,
-cadherin, the prototypic member of the cadherin family, regu-

ates cell adhesion in epithelial cells [10,11]. During embryonic
evelopment, down-regulation of E-cadherin function initiates
complex program wherein epithelial cells adopt a fibroblast-

ike phenotype and display tissue invasive activity, a process
alled epithelial-mesenchymal transition (EMT). Repression of
-cadherin appears to play a major role in EMT of epithelial-
erived cancer types. E-cadherin repression frequently occurs
n tandem with activation of the Wnt signaling cascade [124].
or a detailed account of cadherins in cell–cell interactions see

he article by Nelson this issue.

. Cell motility and malignancy—a concluding remark

Hanahan and Weinberg [125] defined six major charac-

eristics of malignant cancer cells: self-sufficiency in growth
ignals, insensitivity to anti-growth signals, tissue invasion and
etastasis, limitless replicative potential, sustained angiogen-

sis, evading apoptosis. The contributions in this issue of SCB
ncer Biology 18 (2008) 2–11

raw attention to the fact that cancerogenesis and transformation
o the malignant state are highly correlated with changes in the
rganization and activity of the MF-system, and that the molec-
lar alterations in signaling behind the acquired capabilities of
ancer cells in most, if not all, cases change the regulation of the
I/CM-cycle relationship. Growth factors, their receptors, and
ignaling intermediates are products of protooncogenes, which
hen expressed pathologically, activate both the MF-system and
ene expression, resulting in increased motile activity and cell
roliferation. Alterations in the expression or activity of PI3
inase and Akt/PKB are frequent in malignancy [79]. The same
s true for the tumor suppressor PTEN, linked to actin filaments
n lamellipodia and focal adhesions [126–128]. Mutations inac-
ivating PTEN lead to accumulation of PI3,4,5P3 [129], making
ells run amuck.
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