Granular Comparative Advantage

Cecile Gaubert
cecile.gaubert@berkeley.edu

Oleg Itskhoki
itskhoki@econ.ucla.edu

UC Davis
September 2019
Exports are Granular

 Across 32 developing countries, the largest exporting firm accounts on average for 17% of total manufacturing exports

- Our focus: French manufacturing

<table>
<thead>
<tr>
<th>Average export share of the largest firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing 1 industry 7%</td>
</tr>
<tr>
<td>— 2-digit 23 sectors 18%</td>
</tr>
<tr>
<td>— 3-digit 117 sectors 26%</td>
</tr>
<tr>
<td>— 4-digit 316 sectors 37%</td>
</tr>
</tbody>
</table>
Granularity

- Firm-size distribution is:
 1. fat-tailed (Zipf’s law)
 2. discrete

\[\implies \text{Granularity} \]

- Canonical example: power law (Pareto) with shape \(\theta < 2 \)

- Intuitions from Gaussian world fail, even for very large \(N \):
 - a single draw can shape \(\sum_{i=1}^{N} X_i \)
 - average can differ from expectation (failure of LLN)
Granularity

- Firm-size distribution is:
 1. fat-tailed (Zipf’s law)
 2. discrete \implies \text{Granularity}

- Canonical example: power law (Pareto) with shape $\theta < 2$

- Intuitions from Gaussian world fail, even for very large N
 - a single draw can shape $\sum_{i=1}^{N} X_i$
 - average can differ from expectation (failure of LLN)

- Most common application: aggregate fluctuations

- The role of granularity for \textit{comparative advantage} of countries is a natural question, yet has not been explored
 - Can a few firms shape country-sector specialization?
Trade Models

- Trade models acknowledge fat-tailed-ness but not discreteness
 - emphasis on firms, but each firm is infinitesimal (LLN applies)
 - hence, no role of individual firms in shaping sectoral aggregates

- Exceptions with discrete number of firms
 1. One-sector model of Eaton, Kortum and Sotelo (EKS, 2012)
 2. Literature on competition/markups
 (e.g., AB 2008, EMX 2014, AIK 2014, 2019, Neary 2015)

- Our focus: can granularity explain sectoral trade patterns?
 1. Sector-level comparative advantage (like DFS)
 2. Firm heterogeneity within sectors (like Melitz)
 3. Granularity within sectors (like EKS)

\[\rightarrow \] relax the LLN assumption in a multi-sector Melitz model

In a typical French sector, there are 350 firms, with the largest firm commanding a 20% market share.
Trade Models

- Trade models acknowledge fat-tailed-ness but not discreteness
 - emphasis on firms, but each firm is infinitesimal (LLN applies)
 - hence, no role of individual firms in shaping sectoral aggregates

- Exceptions with discrete number of firms
 1. One-sector model of Eaton, Kortum and Sotelo (EKS, 2012)
 2. Literature on competition/markups
 (e.g., AB 2008, EMX 2014, AIK 2014, 2019, Neary 2015)

- Our focus: can granularity explain sectoral trade patterns?
 1. sector-level comparative advantage (like DFS)
 2. firm heterogeneity within sectors (like Melitz)
 3. granularity within sectors (like EKS)

→ relax the LLN assumption in a multi-sector Melitz model
 take seriously that a typical French sector has 350 firms
 with the largest firm commanding a 20% market share
Granularity

Our approach

Productivity draws, φ

- Fundamental vs Granular: Why do we care?
Granularity
Our approach

- Fundamental vs Granular

Productivity draws, φ

T(z)

percentiles
draws
Granularity

Our approach

- **Fundamental** vs **Granular**: Why do we care?
This paper

- Roadmap:
 1. Basic framework with granular comparative advantage
 2. GE Estimation Procedure
 - SMM using French firm-level data
 3. Explore implications of the estimated granular model
 - many continuous-world intuitions fail
 - dynamic and policy counterfactuals

- Highlights of the results from the estimated model:
 1. A parsimonious granular model fits many empirical patterns.
 2. Moments of firm-size distribution explain trade patterns
 3. Granularity accounts for 20% of variation in export shares
 - most export-intensive sectors tend to be granular
 4. Granularity can explain much of the mean reversion in CA
 - more granular sectors are more volatile
 - death of a single firm can alter considerably the CA
 5. Policy in a granular economy: mergers and tariffs
 - the role of markups
This paper

• Roadmap:
 1. Basic framework with granular comparative advantage
 2. GE Estimation Procedure
 — SMM using French firm-level data
 3. Explore implications of the estimated granular model
 — many continuous-world intuitions fail
 — dynamic and policy counterfactuals

• Highlights of the results from the estimated model:
 1. A parsimonious granular model fits many empirical patterns. Moments of firm-size distribution explain trade patterns
 2. Granularity accounts for 20% of variation in export shares
 — most export-intensive sectors tend to be granular
 3. Granularity can explain much of the mean reversion in CA
 — more granular sectors are more volatile
 — death of a single firm can alter considerably the CA
 4. Policy in a granular economy: mergers and tariffs
 — the role of markups
Modeling Framework
Model Structure

1. Two countries: Home and Foreign
 — inelastically-supplied labor L and L^*

2. Continuum of sectors $z \in [0, 1]$:
 $$Q = \exp \left\{ \int_0^1 \alpha_z \log Q_z \, dz \right\}$$

3. Sectors vary in comparative advantage: $\log \frac{T_z}{T^*_z} \sim \mathcal{N}(\mu_T, \sigma_T)$
Model Structure

1. Two countries: Home and Foreign
 — inelastically-supplied labor L and L^*

2. Continuum of sectors $z \in [0, 1]$:
 \[
 Q = \exp \left\{ \int_0^1 \alpha_z \log Q_z \, dz \right\}
 \]

3. Sectors vary in comparative advantage:
 $\log \frac{T_z}{T^*_z} \sim \mathcal{N}(\mu_T, \sigma_T)$

4. Within a sector, a finite number of firms (varieties) K_z:
 \[
 Q_z = \left[\sum_{i=1}^{K_z} \frac{q_{z,i}}{\sigma} \right]^{\frac{\sigma}{\sigma-1}}
 \]

5. Each sector has an EKS market structure
• Productivity draws in a given sector z:
 — Number of (shadow) entrants: $\text{Poisson}(M_z)$
 — Entrants' productivity draws: $\text{Pareto} (\theta; \varphi_z)$

• Denote N_φ number of firms with productivity $\geq \varphi$

$$N_\varphi \sim \text{Poisson}(T_z \cdot \varphi^{-\theta}), \quad T_z \equiv M_z \varphi_z^\theta$$

with T_z/T_z^* shaping sector-level CA
EKS Sectors

- Productivity draws in a given sector z:
 - Number of (shadow) entrants: $\text{Poisson}(M_z)$
 - Entrants’ productivity draws: $\text{Pareto}(\theta; \varphi_z)$

- Denote N_φ number of firms with productivity $\geq \varphi$

 \[N_\varphi \sim \text{Poisson}(T_z \cdot \varphi^{-\theta}), \quad T_z \equiv M_z \varphi^\theta \]

 with T_z/T_z^* shaping sector-level CA

- Marginal cost: $c = w/\varphi$ at home and $\tau w/\varphi$ abroad

- Fixed cost of production and exports: F in local labor
EKS Sectors

• Productivity draws in a given sector z:
 — Number of (shadow) entrants: $\text{Poisson}(M_z)$
 — Entrants’ productivity draws: $\text{Pareto}(\theta; \varphi_z)$

• Denote N_φ number of firms with productivity $\geq \varphi$
 $$N_\varphi \sim \text{Poisson}(T_z \cdot \varphi^{-\theta}), \quad T_z \equiv M_z \varphi^\theta$$

 with T_z/T_z^* shaping sector-level CA

• Marginal cost: $c = w/\varphi$ at home and $\tau w/\varphi$ abroad

• Fixed cost of production and exports: F in local labor

• Oligopolistic (Bertrand) competition and variable markups
 — Atkeson-Burstein (2008): $\{c_i\} \mapsto \{s_i, \mu_i, p_i\}_{i=1}^{K_z}$
Market Entry and GE

- Assumption: sequential entry in increasing order of unit cost

\[c_1 < c_2 < \ldots < c_K < \ldots, \quad \text{where} \quad c_i = \begin{cases} \frac{w}{\varphi_i}, & \text{if Home,} \\ \frac{\tau w^*}{\varphi_i^*}, & \text{if Foreign} \end{cases} \]

\[\rightarrow \] unique equilibrium

- Profits: \(\Pi_i = \frac{s_i}{\varepsilon(s_i)} \alpha_z Y - wF \)
Market Entry and GE

• Assumption: sequential entry in increasing order of unit cost

\[c_1 < c_2 < \ldots < c_K < \ldots, \text{ where } c_i = \begin{cases} \frac{w}{\varphi_i}, & \text{if Home,} \\ \frac{\tau w^*/\varphi^*_i}{i}, & \text{if Foreign} \end{cases} \]

→ unique equilibrium

• Profits: \(\Pi_i = \frac{s_i}{\varepsilon(s_i)} \alpha z Y - wF\)

• Entry: \(\Pi^K_K \geq 0 \text{ and } \Pi^K_{K+1} < 0 \iff \text{determines } K_z\)
Market Entry and GE

- Assumption: sequential entry in increasing order of unit cost

\[c_1 < c_2 < \ldots < c_K < \ldots, \quad \text{where} \quad c_i = \begin{cases} \frac{w}{\varphi_i}, & \text{if Home,} \\ \tau \frac{w^*}{\varphi_i^*}, & \text{if Foreign} \end{cases} \]

→ unique equilibrium

- Profits: \(\Pi_i = \frac{s_i}{\varepsilon(s_i)} \alpha z Y - wF \)

- Entry: \(\Pi^K_K \geq 0 \) and \(\Pi^K_{K+1} < 0 \) determines \(K_z \)

- General equilibrium:
 - GE vector \(X = (Y, Y^*, w, w^*) \)
 - Within-sector allocations \(Z = \{ K_z, \{ s_z, i \}_{i=1}^{K_z} \}_{z \in [0,1]} \)
 - Labor market clearing and trade balance (linear in \(X \))
 - Fast iterative algorithm
Estimation and Model Fit
Estimation procedure

- Data: French firm-level data (BRN) and Trade data
 - Firm-level domestic sales and export sales
 - Aggregate import data (Comtrade)
 - 119 4-digit manufacturing sectors

- Parametrize sector-level comparative advantage:
 - $T(z)/T^*(z) \sim \log \mathcal{N}(\mu_T, \sigma_T)$ (and robustness with Laplace)
 - Based on empirical distribution shown in Hanson et al. (2015)

- Stage 1: calibrate Cobb-Douglas shares \{α_z\} and \(w/w^*$
 - CD shares read from domestic sales + imports, by sector
 - \(w/w^* = 1.13\), trade-weighted wage of France’s trade partners
 - Normalizations: \(w = 1\) and \(L = 100\)

- Stage 2: SMM procedure to estimate \{\(\sigma, \theta, \tau, F, \mu_T, \sigma_T\}\},
 while \((Y, Y^*, L^*/L)\) are pinned down by GE
Estimated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. error</th>
<th>Auxiliary variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>5</td>
<td>—</td>
<td>$\kappa = \frac{\theta}{\sigma-1}$ 1.077</td>
</tr>
<tr>
<td>θ</td>
<td>4.307</td>
<td>0.246</td>
<td>w/w^* 1.130</td>
</tr>
<tr>
<td>τ</td>
<td>1.341</td>
<td>0.061</td>
<td>L^*/L 1.724</td>
</tr>
<tr>
<td>$F \times 10^5$</td>
<td>0.946</td>
<td>0.252</td>
<td>Y^*/Y 1.526</td>
</tr>
<tr>
<td>μ_T</td>
<td>0.137</td>
<td>0.193</td>
<td>Π/Y 0.211</td>
</tr>
<tr>
<td>σ_T</td>
<td>1.422</td>
<td>0.232</td>
<td></td>
</tr>
</tbody>
</table>
Moment Fit

<table>
<thead>
<tr>
<th>Moments</th>
<th>Data, \hat{m}</th>
<th>Model, $\hat{M}(\hat{\Theta})$</th>
<th>Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Log number of firms, mean log \tilde{M}_z</td>
<td>5.631</td>
<td>5.624</td>
<td>0.1</td>
</tr>
<tr>
<td>2. — st. dev. log \tilde{M}_z</td>
<td>1.451</td>
<td>1.222</td>
<td>7.9</td>
</tr>
<tr>
<td>3. Top-firm market share, mean $\tilde{s}_{z,1}$</td>
<td>0.197</td>
<td>0.206</td>
<td>3.5</td>
</tr>
<tr>
<td>4. — st. dev. $\tilde{s}_{z,1}$</td>
<td>0.178</td>
<td>0.149</td>
<td>3.8</td>
</tr>
<tr>
<td>5. Top-3 market share, mean $\sum_{j=1}^{3} \tilde{s}_{z,j}$</td>
<td>0.356</td>
<td>0.343</td>
<td>2.0</td>
</tr>
<tr>
<td>6. — st. dev. $\sum_{j=1}^{3} \tilde{s}_{z,j}$</td>
<td>0.241</td>
<td>0.175</td>
<td>11.5</td>
</tr>
<tr>
<td>7. Imports/dom. sales, mean $\tilde{\Lambda}_z$</td>
<td>0.365</td>
<td>0.351</td>
<td>2.2</td>
</tr>
<tr>
<td>8. — st. dev. $\tilde{\Lambda}_z$</td>
<td>0.204</td>
<td>0.268</td>
<td>14.8</td>
</tr>
<tr>
<td>9. Exports/dom. sales, mean $\tilde{\Lambda}_z^{*f}$</td>
<td>0.328</td>
<td>0.350</td>
<td>6.0</td>
</tr>
<tr>
<td>10. — st. dev. $\tilde{\Lambda}_z^{*f}$</td>
<td>0.286</td>
<td>0.346</td>
<td>6.5</td>
</tr>
<tr>
<td>11. Fraction of sectors with exports>dom. sales $\mathbb{P}{\tilde{X}_z > \tilde{Y}_z - \tilde{X}_z}$</td>
<td>0.185</td>
<td>0.092</td>
<td>37.9</td>
</tr>
</tbody>
</table>

Regression coefficients†

<table>
<thead>
<tr>
<th></th>
<th>\hat{b}_1</th>
<th>\hat{b}_3</th>
<th>\hat{b}_4^*</th>
<th>\hat{b}_5^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. export share on top-firm share</td>
<td>0.215</td>
<td>0.254</td>
<td>-0.016</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.156)</td>
<td>(0.108)</td>
<td>(0.097)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>13. export share on top-3 share</td>
<td>0.243</td>
<td>0.232</td>
<td>-0.020</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.090)</td>
<td>(0.079)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>14. import share on top-firm share</td>
<td>-0.016</td>
<td>-0.020</td>
<td>0.002</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.079)</td>
<td>(0.074)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>15. export share on top-3 share</td>
<td>0.002</td>
<td>-0.005</td>
<td>0.002</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.069)</td>
<td>(0.074)</td>
<td>(0.069)</td>
</tr>
</tbody>
</table>
Non-targeted Moments

- Correlation between top market share and number of firms:

\[\tilde{s}_{z,1} = const + \gamma_M \cdot \log \tilde{M}_z + \gamma_Y \cdot \log \tilde{Y}_z + \epsilon_s \]

<table>
<thead>
<tr>
<th>Data:</th>
<th>-0.094</th>
<th>0.018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Model:</td>
<td>-0.064</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
</tr>
</tbody>
</table>

- Extensive margin of sales:

\[\log \tilde{M}_z = c_d + \chi_d \cdot \log(\tilde{Y}_z - \tilde{X}_z^*) + \epsilon_d \]

<table>
<thead>
<tr>
<th>Data:</th>
<th>0.563</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.082)</td>
</tr>
<tr>
<td>Model:</td>
<td>0.861</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
</tr>
</tbody>
</table>
Equilibrium markups

- Oligopolistic (Bertrand) markups: averages (blue bars) and 10–90% range (red intervals) across industry
- Monopolistic competition markup: $\frac{\sigma}{\sigma - 1} = 1.25$ is lower bound for all oligopolistic markups
Quantifying Granular Trade
Properties of the Granular Model

- **Foreign share:**
 \[\Lambda_z \equiv \frac{X^*_z}{\alpha_z Y} = \sum_{i=1}^{K_z} (1 - \iota_{z,i}) s_{z,i} \]

- **Expected foreign share:**
 \[\Phi_z = \mathbb{E}\{\Lambda_z \mid \frac{T_z}{T^*_z}\} = \frac{1}{1 + (\tau \omega)^\theta \cdot \frac{T_z}{T^*_z}} \]

- **Granular residual:**
 \[\Gamma_z \equiv \Lambda_z - \Phi_z : \quad \mathbb{E}_T\{\Gamma_z\} = \mathbb{E}_T\{\Lambda_z - \Phi_z\} = 0 \]

- **Aggregate exports:**
 \[X^* = Y \int_0^1 \alpha_z \Lambda_z dz = \Phi Y, \quad \Phi \equiv \int_0^1 \alpha_z \Phi_z dz \]
Decomposition of Trade Flows

- Variance decomposition of \(X_z = \Lambda^*_z \alpha_z Y^* \) with \(\Lambda^*_z = \Phi^*_z + \Gamma^*_z \):
 \[
 \text{var}(\Lambda^*_z) = \text{var}(\Phi^*_z) + \text{var}(\Gamma^*_z), \\
 \text{var}(\log X_z) \approx \text{var}(\log \alpha_z) + \text{var}(\log \Lambda^*_z)
 \]

Table: Variance decomposition of trade flows

<table>
<thead>
<tr>
<th></th>
<th>Common (\theta)</th>
<th>Sector-specific (\theta_z)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Granular contribution</td>
<td>[\frac{\text{var}(\Gamma^_z)}{\text{var}(\Lambda^_z)}]</td>
<td>17.0%</td>
<td>22.3%</td>
<td>26.0%</td>
<td>28.4%</td>
</tr>
<tr>
<td>Export share contribution</td>
<td>[\frac{\text{var}(\log \Lambda^*_z)}{\text{var}(\log X_z)}]</td>
<td>57.2%</td>
<td>59.2%</td>
<td>62.5%</td>
<td>63.9%</td>
</tr>
<tr>
<td>Pareto shape parameter</td>
<td>(\kappa_z = \frac{\theta_z}{\sigma - 1})</td>
<td>1.08</td>
<td>1.00</td>
<td>1.02</td>
<td>0.96</td>
</tr>
<tr>
<td>Estimated Pareto shape</td>
<td>(\hat{\kappa}_z)</td>
<td>1.10</td>
<td>1.02</td>
<td>1.07</td>
<td>1.02</td>
</tr>
<tr>
<td>Top-firm market share</td>
<td>(s_{z,1})</td>
<td>0.21</td>
<td>0.25</td>
<td>0.26</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Decomposition of Trade Flows

- Variance decomposition of $X_z = \Lambda^*_z \alpha_z Y^*$ with $\Lambda^*_z = \Phi^*_z + \Gamma^*_z$:

 $\text{var}(\Lambda^*_z) = \text{var}(\Phi^*_z) + \text{var}(\Gamma^*_z),$

 $\text{var}(\log X_z) \approx \text{var}(\log \alpha_z) + \text{var}(\log \Lambda^*_z)$

Table: Variance decomposition of trade flows

<table>
<thead>
<tr>
<th></th>
<th>Common θ</th>
<th>Sector-specific θ_z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Granular contribution</td>
<td>$\frac{\text{var}(\Gamma^_z)}{\text{var}(\Lambda^_z)}$</td>
<td>17.0%</td>
</tr>
<tr>
<td>Export share contribution</td>
<td>$\frac{\text{var}(\log \Lambda^*_z)}{\text{var}(\log X_z)}$</td>
<td>57.2%</td>
</tr>
<tr>
<td>Pareto shape parameter</td>
<td>$\kappa_z = \frac{\theta_z}{\sigma - 1}$</td>
<td>1.08</td>
</tr>
<tr>
<td>Estimated Pareto shape</td>
<td>$\hat{\kappa}_z$</td>
<td>1.10</td>
</tr>
<tr>
<td>Top-firm market share</td>
<td>$s_{z,1}$</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Extensions: (i) $T_z / T_z^* \sim \text{Laplace}$ (two-sided Pareto)
(ii) $\log \varphi_{z,i} \sim \mathcal{N}(\mu, \theta)$
Export Intensity and Granularity

- Granularity does not create additional trade on average
- Yet, granularity creates skewness across sectors in exports
 - most export-intensive sectors are likely of granular origin

(a) Fraction of granular sectors

(b) Granular contribution to trade
Export Intensity and Granularity

- Granularity does not create additional trade on average
- Yet, granularity creates skewness across sectors in exports
 - most export-intensive sectors are likely of granular origin

(a) Distribution of $\Lambda_z^* \mid \Phi_z^*$

(b) Distribution of $\Phi_z^* \mid \Lambda_z^*$
Properties of Granular Exports

- $\Gamma^*_z = \Lambda^*_z - \Phi^*_z$ are orthogonal with Φ^*_z, $\log(\alpha^*_z Y^*)$ and $\log \tilde{M}_z$
- Best predictor of Γ^*_z is $\tilde{s}_{z,1}$, the relative size of the largest firm

<table>
<thead>
<tr>
<th>Table: Projections of granular exports Γ^*_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>$\tilde{s}_{z,1}$</td>
</tr>
<tr>
<td>\tilde{s}^*_z</td>
</tr>
<tr>
<td>$\log \tilde{M}_z$</td>
</tr>
<tr>
<td>$\log(\alpha^*_z Y)$</td>
</tr>
<tr>
<td>Φ^*_z</td>
</tr>
<tr>
<td>R^2</td>
</tr>
</tbody>
</table>
Identifying Granular Sectors

- Which sectors are granular? Neither Φ^*_z, nor Γ^*_z are observable

$$\mathbb{P}\{\Gamma^*_z \geq \vartheta \Lambda^*_z \mid \Lambda^*_z, r_z\} = \frac{\int_{\Lambda^*_z - \Phi^*_z \geq \vartheta \Lambda^*_z} g(\Phi^*_z, \Lambda^*_z, r_z) d\Phi^*_z}{\int_0^1 g(\Phi^*_z, \Lambda^*_z, r_z) d\Phi^*_z},$$
Dynamics of Comparative Advantage
Dynamic Model

- Use the granular model with firm dynamics to study the implied time-series properties of aggregate trade
 - Shadow pull of firms in each sector with productivities \(\{ \varphi_{it} \} \)
 - Productivity of the firms follows a random growth process:
 \[
 \log \varphi_{it} = \mu + \log \varphi_{i,t-1} + \nu \varepsilon_{it}, \quad \varepsilon_{it} \sim iid \mathcal{N}(0, 1)
 \]
 with reflection from the lower bound \(\varphi \) and \(\mu = -\theta \nu^2 / 2 \)
 - Each period: static entry game and price setting equilibrium

- Calibrate idiosyncratic firm dynamics (volatility of shocks \(\nu \)) using the dynamic properties of market shares
Dynamic Model

- Use the granular model with firm dynamics to study the implied time-series properties of aggregate trade
 - Shadow pull of firms in each sector with productivities \(\{\varphi_{it}\} \)
 - Productivity of the firms follows a random growth process:
 \[
 \log \varphi_{it} = \mu + \log \varphi_{i,t-1} + \nu \varepsilon_{it}, \quad \varepsilon_{it} \sim iid \mathcal{N}(0, 1)
 \]
 with reflection from the lower bound \(\varphi \) and \(\mu = -\theta \nu^2 / 2 \)
 - Each period: static entry game and price setting equilibrium

- Calibrate idiosyncratic firm dynamics (volatility of shocks \(\nu \)) using the dynamic properties of market shares

- Extension with aggregate shocks: \(\varepsilon_{it} = \sqrt{\rho} \cdot \nu_t + \sqrt{1 - \rho} \cdot u_{it} \)
Firm Dynamics and CA

- Empirical evidence in Hanson, Lind and Muendler (2015):
 1. Hyperspecialization of exports
 2. High Turnover of export-intensive sectors

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HLM</td>
<td>France</td>
</tr>
<tr>
<td>SR persistence std(Δ̇(\tilde{s}_{z,i,t+1}))</td>
<td>—</td>
<td>0.0018</td>
</tr>
<tr>
<td>LR persistence corr((\tilde{s}{z,i,t+10}, \tilde{s}{z,i,t}))</td>
<td>—</td>
<td>0.86</td>
</tr>
<tr>
<td>Top-1% sectors export share</td>
<td>21%</td>
<td>17%</td>
</tr>
<tr>
<td>Top-3% sectors export share</td>
<td>43%</td>
<td>30%</td>
</tr>
<tr>
<td>Turnover I: remain in top-5% after 20 years</td>
<td>52%</td>
<td>—</td>
</tr>
<tr>
<td>Turnover II: remain in top-5% after 10 years</td>
<td>—</td>
<td>80%</td>
</tr>
</tbody>
</table>

- Idiosyncratic firm productivity dynamics explains the majority of turnover of top exporting sectors over time
Mean Reversion in CA

- Idiosyncratic firm dynamics in a granular model predicts mean reversion in comparative advantage
- In addition, granular sectors are more volatile

(a) Mean reversion in Λ^*_z

(b) Volatility of $\Delta \Lambda^*_z$
Death of a Large Firm

- Death (sequence of negative productivity shocks) of a single firm can substantially affect sectoral comparative advantage.
- In the most granular sectors, death of a single firm can push the sector from top-5% of CA into comparative disadvantage.
Granularity and reallocation

- Sectoral labor allocation:
 \[
 \frac{L_z}{L} \approx \alpha_z + \frac{\theta}{\sigma \kappa - 1} \frac{NX_z}{Y}
 \]

- Interaction between trade openness and granularity results in sectoral reallocation and aggregate volatility

Figure: Total and Sectoral Labor Reallocation (fraction of total \(L\))
Empirical Analysis
Granularity and Exports

Cross section and Dynamic panel

Table: Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Cross-section, 2005</th>
<th>Panel, 1997–2008</th>
<th>Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum_{i=1}^{3} \tilde{s}_z,i)</td>
<td>(1) 0.802*** (0.290)</td>
<td>(2) 0.833** (0.293)</td>
<td>(3) 0.846*** (0.302)</td>
</tr>
<tr>
<td>(\log D_z)</td>
<td>(1) 0.895*** (0.050)</td>
<td>(2) 0.933*** (0.051)</td>
<td>(3) 0.909*** (0.051)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.512</td>
<td>0.652</td>
<td>0.520</td>
</tr>
<tr>
<td>(R^2_{adj})</td>
<td>0.509</td>
<td>0.623</td>
<td>0.518</td>
</tr>
<tr>
<td>(N)</td>
<td>316</td>
<td>316</td>
<td>3,409</td>
</tr>
<tr>
<td>(N) clusters</td>
<td>316</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Fixed effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-digit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes
- Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05
- Standard errors in parentheses.
Predictive Regressions

Mean reversion in exports

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_{10} \log X_z$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log X_z$</td>
<td>-0.116^{***}</td>
<td>-0.092^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>$\sum_{i=1}^{3} \tilde{s}_{z,i}$</td>
<td>-0.660^{***}</td>
<td>-0.559^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.199)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>$\log D_z$</td>
<td>0.101^{**}</td>
<td>-0.057</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.146</td>
<td>0.153</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.075</td>
<td>0.083</td>
</tr>
<tr>
<td>N</td>
<td>316</td>
<td>316</td>
</tr>
<tr>
<td>2-digit FE</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Policy Counterfactuals
Policy counterfactuals

1. Misallocation and trade policy
 — policies that hinder growth of granular firms
 — why trade barriers often target individual foreign firms?

2. Merger analysis
Policy counterfactuals

1. Misallocation and trade policy
 — policies that hinder growth of granular firms
 — why trade barriers often target individual foreign firms?

2. Merger analysis

 • Welfare analysis of a policy:

 \[\hat{W} \equiv d \log \frac{Y}{P} \]
 \[= \frac{wL}{Y} d \log w + \frac{dTR}{Y} + \int_{0}^{1} \alpha_z \frac{d\Pi_z}{\alpha_z Y} dz - \int_{0}^{1} \alpha_z d \log P_z dz \]

 and across sectors \[\hat{W} = \int_{0}^{1} \alpha_z \hat{W}_z dz \]

 — In partial equilibrium: \[\hat{W}_z = \frac{dTR_z + d\Pi_z}{\alpha_z Y} - d \log P_z \]
 — In general equilibrium: spillovers to other sectors via \((w, Y)\)
Merger

- Merger is more beneficial:
 1. The larger is the productivity spillover $\varrho \uparrow$
 \[\varphi'_{z,2} = \varrho \varphi_{z,1} + (1 - \varrho) \varphi_{z,2}. \] Baseline $\varrho = 0.5$. For low $\varrho = 0.1$
 2. The more open is the economy $\tau \downarrow$
 3. The more granular is the sector $\Gamma^*_z \uparrow$

(a) Welfare effect of a merger, \hat{W}_Z

(b) Decomposition of \hat{W}_Z, $\tau = 1.34$

Quintiles of sectors by granular Γ^*_z
Import Tariff

- Tariff on the top importer $\varsigma_{z,1}$ vs a uniform import tariff $\bar{\varsigma}_z$
 - yielding the same tariff revenue
 - $\varsigma_{z,1} \succ \bar{\varsigma}_z$, particularly in the foreign granular industries ($\Gamma_z \uparrow$)

(a) Uniform tariff

(b) Granular tariff
Conclusion
Conclusion

• The world is granular! \textit{(at least, at the sectoral level)}
 We better develop tools and intuitions to deal with it

• Applications:
 1. Innovation, growth and development
 2. Misallocation
 3. Industrial policy
 4. Cities and agglomeration
APPENDIX
Granularity

Illustration

- The role of top draw, as the number of draws N increases

\[
\text{corr} \left(\max_i X_i, \sum_i X_i \right)
\]

\[
\frac{\max_i X_i}{\sum_i X_i}
\]
Sectoral equilibrium

- Sectoral equilibrium system:

\[p_i = \mu_i c_i, \]

\[\mu_i = \frac{\varepsilon_i}{\varepsilon_i - 1}, \]

where \(\varepsilon_i = \sigma (1 - s_i) + s_i, \)

\[s_i = \left(\frac{p_i}{P} \right)^{1-\sigma}, \]

where \(P = \left(\sum_{i=1}^{K} p_i^{1-\sigma} \right)^{1/(1-\sigma)}. \)
(a) Pareto shape, $\kappa_z = \frac{\theta_z}{\sigma - 1}$

(b) Estimated Pareto, $\hat{\kappa}_z$

(c) Top-firm sales share, $\tilde{s}_{z,1}$

(d) Number of firms, \tilde{M}_z
Probability a sector remains among top-5% of export-intensive sectors
Trade effects of individual firm exit

(a) All sectors, deciles of Γ_z^*

(b) All sectors, deciles of Λ_z^*
Merger

Low spillover $\varrho = 0.1$

Welfare effect of a merger, \hat{W}_Z

Decomposition of \hat{W}_Z, $\tau = 1.34$