Atomic number

related topics
{acid, form, water}
{math, number, function}
{math, energy, light}
{group, member, jewish}
{island, water, area}

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element. In an atom of neutral charge, the atomic number is also equal to the number of electrons.

The atomic number, Z, should not be confused with the mass number, A, which is the total number of protons and neutrons in the nucleus of an atom. The number of neutrons, N, is known as the neutron number of the atom; thus, A = Z + N. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes), the atomic mass of an atom is roughly equal to A.

Atoms having the same atomic number Z but different neutron number N, and hence different atomic mass, are known as isotopes. Most naturally occurring elements exist as a mixture of isotopes, and the average atomic mass of this mixture determines the element's atomic weight.



Loosely speaking, the existence of a periodic table creates an ordering for the elements. Such an ordering is not necessarily a numbering, but can be used to construct a numbering by fiat. Dmitri Mendeleev claimed he arranged his tables in order of atomic weight ("Atomgewicht")[1] However, in deference to the observed chemical properties, he violated his own rule and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9).[1][2] This placement is consistent with the modern practice of ordering the elements by proton number, Z, but this number was not known or suspected at the time.

A simple numbering based on periodic table position was never entirely satisfactory. Besides iodine and tellurium, several other pairs of elements (such as cobalt and nickel) were known to have nearly identical or reversed atomic weights, leaving their placement in the periodic table by chemical properties to be in violation of known physical properties. Another problem was that the gradual identification of more and more chemically similar and indistinguishable lanthanides, which were of an uncertain number, led to inconsistency and uncertainty in the numbering of all elements at least from lutetium (element 71) onwards (hafnium was not known at this time).

In 1911, Ernest Rutherford gave a model of the atom in which a central core held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% off the figure for the atomic number in gold (Z = 79, A = 197), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element Z = 79 on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case.

Full article ▸

related documents
Base pair
Salt (chemistry)
Ozone layer
Photosynthetic pigment
Cytochrome c
Methyl group
Peptide bond
Plasma ashing
Amyl nitrite