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Abstract

In this paper, we establish three new facts about price-setting by multi-product
firms and contribute a model that can match our findings. On the empirical side, using
micro-data on U.S. producer prices, we first show that firms selling more goods adjust
their prices more frequently but on average by smaller amounts. Moreover, the higher
the number of goods, the lower is the fraction of positive price changes and the more
dispersed the distribution of price changes. Second, we document substantial synchro-
nization of price changes within firms across products and show that synchronization
plays a dominant role in explaining pricing dynamics. Third, we find that within-firm
synchronization of price changes increases as the number of goods increases. On the
theoretical side, we present a state-dependent pricing model where multi-product firms
face both aggregate and idiosyncratic shocks. When we allow for firm-specific menu
costs and trend inflation, the model matches the empirical findings.
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1 Introduction

In this paper, we analyze price-setting behavior from a new angle, using the firm as the unit

of analysis. We examine the micro-data underlying the U.S. Producer Price Index (PPI)

and establish three new empirical facts, showing that the number of goods produced by a

firm, synchronization of price changes within firms, and the interaction of these two are key

variables for explaining price adjustment decisions. On the theoretical side, we find that

in order to match our empirical findings, we need to include firm-specific menu costs and

trend inflation into a state-dependent model of multi-product firms.

Our results highlight that heterogeneity among firms, here captured by the number

of goods produced by them, plays a critical role in explaining pricing dynamics. Our

findings directly suggest that it is necessary to model multi-product firms as distinct from an

aggregate of many single-product firms. Moreover, we know from recent work by Midrigan

(2008) that allowing for the features which we document empirically has large aggregate

implications in terms of monetary policy.1 Finally, given that approximately 98.55% of all

prices in the PPI are set by firms with more than one good,2 analyzing how the number of

goods in a firm relates to pricing decisions appears to be of independent interest since it

contrasts with the standard macro-economic assumption of price-setting by single-product

firms.

We analyze the PPI micro data and establish the following: first, pricing behavior is

systematically related to the number of goods produced by firms.3 We find that as the

number of goods increases, the frequency of price adjustment increases. At the same time,

the average size of price changes, conditional on adjustment, decreases. This result holds for

both upwards and downwards price changes. In addition, we find that small price changes
1In particular, when there are complementarities in the cost of adjusting the prices of goods, price changes

will always be dispersed with some very large and some very small price changes. Therefore, monetary shocks
will have large real effects similar to models of time-dependent adjustment.

2We define a good as a particular brand of product which is moreover identified according to certain
characteristics that do not change over time, such as having the same buyer over time. The data section
contains further details on the good definition.

3The number of goods is a new dimension for the analysis of price-setting behavior relative to previous
studies. We can analyze this dimension because there is substantial variation in the number of goods across
the more than 20,000 firms in the PPI. Previous studies closest to our analysis such as Lach and Tsiddon
(1996), Lach and Tsiddon (2007) or Midrigan (2008) have focused on price-setting not across but within
single large retailers such as Dominick’s Supermarket.
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are highly prevalent in the data and become more prevalent when the number of goods

increases. Finally, there is substantial dispersion in the size of price changes and it increases

with the number of goods. For example, the distribution of price changes conditional on

adjustment is highly leptokurtic, and becomes more leptokurtic as the number of goods per

firm increases. Moreover, both the first and the 99th percentiles of price changes take more

extreme values.

Second, we find evidence for substantial within-firm synchronization of individual price

adjustment decisions: when the price of one good in a firm changes, the probability increases

that the price of another good in the firm changes in the same direction. We estimate a

multinomial logit model to relate individual, good-level price adjustment decisions to the

fraction of price changes of the same sign within a firm or within the same industry, while

controlling for economic fundamentals such as inflation. We find that price changes of

individual goods are synchronized within firms. This result holds for both upwards and

downwards adjustment decisions. Moreover, our results show that such synchronization

within the firm is stronger than within the industry. In fact, the fraction of price changes

of the same sign within a firm is economically more important for individual adjustment

decisions than the fraction of price changes within the same industry or economic funda-

mentals such as inflation. The within-firm synchronization is also stronger for positive than

for negative price adjustment.

Third, we document that the number of goods and the degree of within-firm synchro-

nization strongly interact in determining individual price adjustment decisions. When we

group firms by the number of goods and estimate the same multinomial logit model for each

category, we find that the strength of within-firm synchronization increases monotonically

as we move to groups with more goods. Again, this result holds both for upwards and down-

wards adjustment decisions. At the same time, we find that the strength of synchronization

within the same industry decreases monotonically as the number of goods increases.

These findings thus contribute to the literature a first account of price-setting dynamics

from the perspective of the firm, using the micro data underlying the U.S. PPI. Moreover,

our findings are significantly wider and more general compared to typical studies that

use retail or grocery store data. Importantly, given the variation in the number of goods
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produced by firms in our dataset, an important source of firm heterogeneity, we are able to

systematically uncover patterns across firms as we vary this dimension.

Next, on the theoretical side, we develop a state-dependent pricing model which is

consistent with these empirical findings. In particular, we show how these trends are critical

in validating different features of the model. In our model, the firm is subject to both

idiosyncratic productivity shocks and aggregate inflation shock. In addition, there is a

menu cost of changing prices which is firm-specific. We understand this menu cost very

broadly as a cost of price adjustment as Blinder et al. (1998) or Zbaracki et al. (2004)

argue. In our setup, firm-specific menu costs imply that when a firm produces more than

one good, the menu cost is shared among the goods. Moreover, we assume that there are

economies of scope in the cost of adjusting prices.

To build intuition for the predictions of the model under these assumptions, consider a

1-good and a 2-good firm. Given economies of scope, the per-good menu cost is lower for

a 2-good firm compared to the menu cost of a 1-good firm. Therefore, this implies that a

2-good firm essentially gets to change the price of a second good for free when it decides to

change a particular price. This leads, on average, to a higher frequency of price changes.

At the same time, since a lot of price changes occur even when a desired price is not very

different from the current price of the item, the mean absolute, positive, and negative size

of price changes for the 2-good firm is lower. This also implies that the fraction of small

price changes is higher for the 2-good firm. This mechanism of the model is reinforced when

going from two to three goods.

How can the model explain the increase in the fraction of negative price changes as the

number of goods increases? With trend inflation, firms adjust downwards only when they

receive substantial negative productivity shocks. With firm-specific menu costs, since the

firm adjusts both prices when the desired price of one item is very far from its current price,

a higher fraction of downward price changes becomes sustainable. The model also predicts

that kurtosis increases as the number of goods goes up because of a higher fraction of price

changes in the middle of the distribution. Moreover, both positive and negative adjustment

decisions become more synchronized within the firm. At the same time, as we find in

the data, positive adjustment decisions are more synchronized than negative adjustment

4



decisions. This is due to common positive shocks from upward trend inflation.

Our model is related to work by Sheshinski and Weiss (1992) and Midrigan (2008). We

make two theoretical contributions to the literature as we solve our state-dependent model

of price-setting. First, we vary the number of goods produced by a firm from 1 to 3 goods.

This allows us to investigate what features of such a state-dependent model are necessary to

match the empirical trends we observe as the number of goods per firm increases. Second,

we check whether theoretical synchronization results when comparing the pricing behavior

of a 2-good and a 3-good firm are consistent with our empirical findings. Such an analysis

cannot be done by comparing a 1-good with a 2-good firm since there is no synchronization

metric for a single product firm. We find that our model qualitatively matches the stylized

facts on pricing behavior and synchronization of adjustment decisions which we establish.

Most importantly, we only need to adjust the menu cost parameter in order to match these

multiple moments, allowing for economies of scope in the cost of price adjustment as the

number of goods produced by a firm increases.

Our paper is also related to two strands of the literature on multi-product firms. Our

focus on the effect of variations in the number of goods connects our analysis to the recent

literature in industrial organization and international trade on multiproduct firms. This

literature examines how firms adjust both their product mix and the number of goods

produced in response to changes in the economic environment. For example, Bernard et al.

(2009, 2010) analyze the key role of such adjustment for patterns of international trade,

aggregate productivity dynamics and product turnover for U.S. firms while Goldberg et al.

(2008) do so for Indian firms. These papers do not consider price-setting behavior of firms,

however, which is the focus of our paper.

Our analysis is also closely related to work in monetary economics that explores both

theoretically and empirically price-setting behavior of multi-product firms. In a seminal

paper, Sheshinski and Weiss (1992) show the conditions under which price-setting by multi-

product firms is likely to be synchronized or staggered. Lach and Tsiddon (1996) use retail

store data and Fisher and Konieczny (2000) use data from a newspaper chain to show that

price changes are synchronized within an firm while staggered across firms. Moreover, Lach

and Tsiddon (2007) show how small price changes are prevalent in retail store data and argue
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that this feature can be consistent with a model of multi-product firms where part of the

cost of price adjustment is firm-specific, an idea we connect to in our modeling part. Finally,

Midrigan (2008) extends the insights in these papers substantially. On the theoretical side,

he presents a general equilibrium model where two-product firms face economies of scope

in the technology of adjusting prices. The striking quantitative result of his paper is that

aggregate fluctuations from monetary shocks are substantially larger than in traditional

state-dependent models and almost as large as time-dependent models. On the empirical

side, he uses grocery store data to show that a large fraction of price changes are small in

absolute values and that the distribution of price changes, conditional on adjustment, is

leptokurtic. Both his theoretical and empirical results however, do not contain an analysis

of price setting behavior as the number of goods produced varies.

2 Empirics

2.1 Data

We use monthly producer price micro-data from the Bureau of Labor Statistics (BLS).

We draw producer prices from the dataset that is normally used to compute the Producer

Price Index (PPI). Using producer prices makes our results comparable to other studies of

price-setting behavior as well as consistent with a model where firms, and not retailers, set

prices. In the discrete choice regressions, we supplement the PPI data with the monthly

inflation rate which we gather data from the OECD “Main Economic Indicators (MEI).”

We describe the PPI dataset, the OECD data, and our method of categorizing firms by the

number of goods produced in the following sections.

2.1.1 Producer Price Data

The PPI contains a large number of monthly price quotes for individual “items”, that

is, particular brands of products with certain time-persistent characteristics. These items

which we henceforth refer to as goods are selected to represent the entire set of goods
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produced in the US and are sampled according to a multi-stage design.4 This sampling

procedure takes three main steps: in a first step, the BLS compiles a sampling universe of

all firms producing in the US using lists from the Unemployment Insurance System. Most

firms are required to participate in this system and the BLS verifies and completes the

sampling frame using additional publicly available lists, for example in the service sector.

In a second step, “price-forming units” which are usually defined to be “production entities

in a single location” are selected for the sample according to the total value of shipment

of these units or according to their total employment. In a final series of steps called

“disaggregation,” a BLS agent conducts a field visit and selects the actual goods to be

selected into the sample. Again, total values of shipment are used for selection.

In this last step, the BLS takes great care to obtain actual transaction prices. This em-

phasis on transaction prices goes back to a critique by Stigler and Kindahl (1970) when the

data was based on list and not transaction prices. In addition, the BLS also uniquely iden-

tifies a good according to its “price-determining” characteristics such as the type of buyer,

the type of market transaction, the method of shipment, the size and units of shipment,

the freight type, and the day of the month of the transaction. Moreover, the BLS col-

lects information on price discounts and special surcharges. Once a good has been sampled

and uniquely identified according to its price-determining characteristics, the BLS collects

monthly prices for that very same good and the same customer through a re-pricing form.

Moreover, neither order prices nor futures prices are included in the dataset.5

Despite this emphasis on transaction prices, there might be some concern about the

quality of the price data: respondents have the option to report on the re-pricing form that

a price has not changed. This might induce a bias in the price data towards higher price

stickiness if respondents are lazy. Using the episode of the 2001 anthrax scare when the

BLS exclusively collected prices by phone, Nakamura and Steinsson (2008)6 show however,

that the frequency of price changes, controlling for inflation and seasonality, was the same
4For a detailed description of the sampling procedures, see Chapter 14 of the BLS Handbook of Methods

(US Department of Labor, 2008).
5The PPI price then is defined as “the net revenue accruing to a specified producing establishment from

a specified kind of buyer for a specified product shipped, or service provided, under specified transaction
terms on a specified day of the month” (BLS, 2008).

6See footnote 12 in Nakamura and Steinsson (2008). This idea was first used in Gopinath and Rigobon
(2008) where it is applied to export and import prices.
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in months when data were collected using the standard mail form as when the collection

was done through personal phone calls.

Moreover, since the same product is priced every month, the BLS accounts for instances

of product change and quality adjustments. When there is a physical change in a product,

one of several quality adjustment methods are used. These include the direct adjustment

method for minor physical specification changes, and either the explicit quality adjustment

method or the overlap method for major changes. Hedonic regressions have also now been

introduced by the BLS into these adjustment processes.

Using these data, we choose our sample for analysis after undertaking the following

steps. First, we focus on prices for market transactions, eliminating all intra-firm trade

prices. This eliminates 2.83% of the data. Second, we choose the years from 1998 through

2005 as a time-frame. This has the advantage that consistent sampling methods were applied

during that time period. Third, we drop all time series where the buyer type is classified as

“foreign buyer” during the entire time series. This removes 1.06% of the remaining prices.

Fourth, we follow Neiman (2010) and Gopinath and Rigobon (2008) by dropping time series

with fewer than six data points. This affects only 0.37% of the data in the previous step.

Fifth, we drop prices where the associated price changes are larger in magnitude than two

log points. This applies to 0.006% of the data from the previous step. Finally, we concord

four-digit SIC industry coding of the data to six-digit NAICS coding.

2.1.2 Macro-Economic Data

We supplement the BLS PPI data with data on CPI inflation. We obtain the series at

monthly frequency from the OECD “Main Economic Indicators (MEI).” We use both CPI

inflation including food and energy prices as well as excluding food and energy prices. Since

we find no qualitative difference in our results, we only report results from the inclusive CPI

measure in the paper.

2.1.3 Identifying and Grouping Firms

The PPI data allow us to identify firms according to the number of goods produced by

them. This distinction uses the firm identifiers and then counts the number of goods in the
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data for each firm and at any point in time. We define firms at the establishment level (for

example, “Company XYZ”).7 We then group the firms into the following four good bins:

a) Bin 1: firms with 1 to 3 goods, on average.

b) Bin 2: firms with 3 to 5 goods, on average.

c) Bin 3: firms with 5 to 7 goods, on average.

d) Bin 4: firms with 7 goods, on average.

Thus, firms in higher bins sell a greater number of goods than firms in lower bins.

Importantly, this way of grouping the sampled data ensures, beyond the sampling

scheme, that the sampled data monotonically map the number of actual goods per firm.8

On the one hand, the BLS sampling design in the “disaggregation” stage is such that all the

economically important products tend to be sampled, with probability proportional to their

sales.9 In addition, the BLS pays special attention to cover all distinct product categories if

they exist in a firm and allows some discretion in sampling when there are many products

in a firm. Thus, if a firm has more products, more products will be sampled on average.

Importantly, on the other hand, our strategy of binning goods into the ranges given above

leaves some room for potential errors in the sampling and allows us to average out these

potential errors when we calculate our statistics of interest. Finally, as the results show,

our choice of binning leads to results that our model in all cases predicts would be indeed

identified with an increasing number of goods per firm.

We present in Table 1 some descriptive statistics on firms according to the groups that

we construct. The average number of goods per firm across these bins is 2.2, 4.0, 6.1, and

10.3 respectively. The table shows that while the majority of firms, around 80%, fall in bins

1 and 2, there are a substantial number of firms in bins 3 and 4 as well. In fact, since firms

in bins 3 and 4 produce more goods, they account for a much larger share of prices than of

firms. Firms in bins 3 and 4 set around 40% of all prices in our data.

Regarding firm size, the table reports two statistics which we compute as follows. First,
7Therefore, we will use the terms “firms” and “establishments” interchangeably in this paper. In the PPI

dataset, they correspond to, as we have described above, what are called “price forming units.”
8We thank Alan Blinder and Chris Sims for pointing us to this potential sampling issue.
9We know from Bernard et al. (2010) and Goldberg et al. (2008)’s Table 4 that large firms are multi-

product firms with substantial value of sales concentrated in a few goods. We present an analogous table
for our dataset in the appendix. Results suggest that sampling is likely to monotonically capture the actual
number of economically important goods. Please see the appendix for details.
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after placing firms in different bins, we compute mean employment at the firm level, which

is defined as employment per average number of goods per firm. Then, we take the me-

dian across different industries (NAICS 3 digit). Finally, we report in Table 1 as mean

employment, the average of these medians across all industries in a bin, and as median

employment, the median of these medians. The table shows that there is no clear trend in

terms of employment per good across these different bins.

Tables 2 and 3 present the distribution of firms across bins and industries (NAICS 2

digit). Table 2 shows that no particular industry substantially dominates a particular good

bin and that in fact, NAICS 31, 32, and 33 (durable and non-durable manufacturing) are

the dominant industries for all bins, accounting for around 45-70% of all firms. Table 3

shows that for a particular industry, typically good bins 1 and 2 contain the vast majority

of firms. Notable exceptions are NAICS 22 (utilities) which contains a very high proportion

of firms that fall in bin 4, and NAICS 62 (health care and social assistance) where almost

half the firms are in bins 3 and 4.

2.2 Results

We report the results from our empirical analysis in two parts below. First, we document

important aggregate statistics on price changes by firms according to the good bins. Second,

we show the role played by economic fundamentals in pricing decisions at the good level.

In relation to recent studies of price adjustment using micro data from the BLS and retail

stores, it is worth noting at the outset the following aspects of the PPI data. As documented

by Nakamura and Steinsson (2008), while sale prices are important in the CPI data, they are

not prevalent in the PPI data. Therefore, we do not distinguish between sale and non-sale

prices, for example, by using a sales filter. Nakamura and Steinsson (2008) also show that

for aggregate statistics on price changes, accounting for product substitutions can make

a difference, especially in the CPI. All the baseline results we report below are excluding

product substitutions.10 The results nevertheless remain the same while including product

substitutions. Finally, using grocery store data, Eichenbaum et al. (2009) have documented
10We identify product replacement by changes in the so-called “base price” which contains the price at

each resampling of a good in the PPI. When this base price changes within a price time series, but the data
show no change in the actual price series, we set our product substitution dummy to one.
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“reference pricing” and non-permanent price changes. In the PPI, in contrast, these features

are not prevalent.

2.2.1 Basic Statistics

We present below aggregate statistics on the frequency, size, direction, and distribution of

price changes according to the four good bins that we construct.11

Frequency of price changes We compute the frequency as the mean fraction of price

changes during the life of a good. We do not count the first observation as a price change

and assume that a price has not changed if a value is missing. Also, we do not explicitly

take into account issues of left-censoring of price-spells. However, we verify that taking into

account left-censoring leaves the resulting distribution of frequencies in the PPI essentially

unchanged. For our purpose, it is most relevant that we apply our method consistently

across all firms. After computing the frequency of price changes at the good level, we

calculate the median frequency for all goods within the firm. Then, we report the mean,

median, and standard error of frequencies across firms in a given good bin. We use the

standard error to compute 95% confidence intervals through out the paper.

Figures 6 and 6 show that the monthly mean and median frequency of price changes

increase with the number of goods produced by firms. The mean frequency increases from

20% in bin 1 to 29% in bin 4 while the median frequency increases from 15% to 23%. The

relationship is monotonic across bins except for the mean frequency of price changes for bins

1 and 2. Inverting these frequency values, this implies that the mean duration of a price

spell decreases from 5 months in bin 1 to 3.4 months in bin 4 while the median duration

decreases from 6.7 months to 4.3 months. Therefore, in general, firms that produce a greater

number of goods change prices more frequently.12

11While we control for a large set of potential explanators of price adjustment in the next section, we
have also separately estimated “aggregate” statistics specifically controlling for size only. This is done by
regressing firm-level statistics on bin dummies and measures of firm size. “Aggregate” results as discussed
in this section remain essentially unchanged and are available on request. This finding is consistent with
the insight in Goldberg and Hellerstein (2009) that large firms change prices more frequently and by smaller
amounts if one takes into account that firms which sell a higher number of goods have bigger total sales.

12Using our dataset to compute an aggregate measure of frequency and duration of price changes in the
PPI, we get estimates of 0.21 and 0.16 for the mean and median frequency and 6.91 and 5.74 months for the
mean and median duration. This is calculated by first computing the frequency at the good level, second
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Direction and size of price changes We define the fraction of positive price changes

as the number of strictly positive price changes over all zero and non-zero price changes.

We compute this at the firm level and then report the mean across firms in a given good

bin.13 Figure 6 shows that the mean fraction of positive price changes decreases with the

number of goods produced by firms as it goes down from 0.64 in bin 1 to 0.61 in bin 4.

Firms with many goods therefore adjust prices upwards less frequently.

We next compute the size of price changes as the percentage change to last observed

price. Again, we compute this at the good level, take the median across goods in an firm,

and then report the mean across firms in a good bin. Figure 6 shows that the mean absolute

size of price changes decreases with the number of goods produced by firms as it goes down

from 8.5% in bin 1 to 6.6% in bin 4.14

Moreover, this relationship holds even when we separate out the price changes into

positive and negative price changes. Figure 6 shows that the mean size of positive price

changes decreases with the number of goods while the mean size of negative price changes

increases with the number of goods. Thus, in general, firms that produce a greater number

of goods adjust their prices by a smaller amount, both upwards and downwards.

An interesting statistic in this context is the fraction of small price changes where we

define a small price change as:

|∆pi,t| ≤ κ|∆pi,t| (1)

where i is a firm and κ = 0.5. That is, a price change is small if it is less in absolute

terms than a specified fraction (here 0.5) of the mean absolute price change in a firm. After

computing this at the firm level, we then report the mean in a good bin. Figure 6 shows

that the mean fraction of small price changes increases from 0.38 in bin 1 to 0.55 in bin 4.

by taking the median across goods in a classification group, third, by taking the median across classification
groups within six-digit categories and fourth, by taking means and medians across six-digit categories.

13While we report only the mean across firms in a given bin for all statistics other than frequency, all our
results are completely robust to whether we compute the mean or the median across firms.

14Using our dataset to compute an aggregate measure of the absolute size of price changes in the PPI, we
find estimates of 6.96% and 5.34% for the mean and median size. This is calculated by first computing the
mean absolute price change at the good level, second by taking the median across goods in a classification
group, third, by taking the median across classification groups within six-digit categories and fourth, by
taking means and medians across six-digit categories.
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Therefore, small price changes are more prevalent when firms produce many goods and in

fact, for bin 4, more than half the price changes are small.

Dispersion of price changes We define the kurtosis of price changes as the ratio of the

fourth moment about the mean and the variance squared:

K =
µ4

σ4
(2)

where

µ4 =
1

T − 1

n∑
i

Ti∑
t=1

(∆pi,t −∆p)4 (3)

and where in a given firm with n goods, ∆pi,t denotes the price change of good i, ∆p the

mean price change and σ4 is the square of the usual variance estimate.

Figure 6 shows that the mean kurtosis of price changes increases with the number of

goods produced by firms as it goes up from 5.3 in bin 1 to 16.8 in bin 4. Thus, even for bin

1, the distribution is leptokurtic. We also document in Figure 6 that both the 1st and the

99th percentiles of price change take more extreme values as the number of goods increases.

Thus, the dispersion in price changes increases with the number of goods produced by firms.

2.2.2 Regression Analysis

Here, we go beyond providing aggregate statistics and estimate a discrete choice model

to analyze what economic fundamentals determine pricing dynamics at the good level. In

particular, we estimate a multinomial logit model for the decision to change prices. This

allows us to separately examine the relationship of upwards and downwards adjustment

decisions with the explanators.15

We impose a multinomial logit link function with 3 categories: m = 0 for no price
15Instead of the multinomial logit model, we could also estimate an ordered probit model. This would

assume that there is a “ranking” of outcomes in terms of how the latent underlying variable cutoffs relate
to the right-hand side variables. The latent variable in our case could be interpreted as deviation from the
desired optimal price. This might indeed result in some ordering - for example, high inflation means one
is likely below the desired optimal price and hence, 1 is the adjustment decision preferred to 0 and -1. For
other right-hand side variables, however, this relationship is unclear, for example for the fraction of price
changes within the firm or even month dummies. Hence, we estimate conservatively using the multinomial
logit model.
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change, m = 1 for a price increase, and m = −1 for a price decrease. The multinomial

logit model is described in detail for example, by Agresti (2007). Denoting by Πi,m the

probability that decision m is taken for good i, the probability under the multinomial logit

link is given by:

Πi,m,t =
eXi,tαm∑
m e

Xi,tαm
. (4)

Since
∑

m Πm,t = 1, the three sets of parameters are not unique. Therefore, we follow

standard practice and choose category m = 0 as a baseline category:

Πi,0,t =
1

1 +
∑

m∈(−1,1) e
Xi,tαm

. (5)

We estimate the two remaining logit equations simultaneously. The logit model has the

convenient property that the estimated coefficients take on the natural interpretation of the

effect of the explanators on the probability of adjusting prices up or down over taking no

action.

We include as controls in X the fraction of price changes at the same firm and the same

six-digit NAICS sector, excluding the price change of the good we are trying to explain.

These variables are meant to capture the extent of synchronization in price setting at

the firm and the sectoral level. These variables are in the spirit of the probit analysis of

Midrigan (2008). Moreover, to control for a measure of marginal costs, we also include in

X the average price change of goods in the same firm and six-digit NAICS sector. We also

include a dummy for product replacement where we can identify it: so-called “base prices”

in the PPI contain the first price at each resampling. When this base price changes within a

price time series but the data show no change in the actual price series, we set the product

replacement dummy to one. As an important fundamental factor, we include energy and

food CPIs in X. Finally, we control for the total number of employees in the firm, industry

fixed effects, month fixed effects, and time trends in the data.

We are not aware of any other similar broad-based analysis of U.S. producer micro

prices. Since the results for the PPI as a whole are likely to be of independent interest, we

first estimate the model on pooled data across all good bins. Then, we focus on estimation
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separately by good bins.16

Pooled Data Table 4 shows the results from this multinomial logit model for the pooled

data across all good bins. We report what are called the relative risk ratios, equivalently the

odds ratios, for the different independent variables. Therefore, a coefficient value greater

than 1 indicates that a change in the independent variable increases the odds of the de-

pendent category compared with the base category. We also report the marginal effect at

the mean and the effect when the dependent variable changes from mean − 1/2 standard

deviation to mean + 1/2 standard deviation. Our main findings are as follows:

Synchronization of price changes We find robust evidence for synchronization of

price setting both within the industry and the firm.

First, we find that adjustment decisions are synchronized within the industry: The

probability of adjusting the price of a good in a firm is higher when the fraction of price

changes of the same sign in the industry, excluding that good, increases. This holds for

both negative and positive price changes. The effects are both statistically and economically

significant. When evaluated at the mean, a 1% increase in the fraction of negative price

changes of other goods in the industry leads to a 0.06% increase in probability of a negative

price change of a good. Similarly, a 1% increase in the fraction of positive price changes

of other goods in the industry leads to a 0.1% increase in probability of a positive price

change of a good. The economic significance can also be discerned from the effects when at

the mean the fraction of price changes of the same sign changes by one standard deviation:

for negative price changes, the probability of a downward price change of a good increases

by 1.32%, while for positive price changes, the probability of an upward price change of a

good increases by 2.27%.

Second, the results also show that there is substantial synchronization of adjustment

decisions within the firm. When the fraction of price changes of the same sign of other goods

within the firm increases, then the likelihood of a price change of a given good increases.
16As a robustness test, we also control for statistical importance using weights, non-linear effects of size

and potential clustering at the six-digit industry level in both our aggregate and bin-by-bin specifications.
Since this leaves results essentially unchanged, we skip their discussion in the following. Results are available
upon request.
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Again, this holds for both negative and positive price changes. When evaluated at the

mean, a 1% increase in the fraction of negative price changes of other goods in the industry

leads to a 0.3% increase in probability of a negative price change of a good. Similarly, a 1%

increase in the fraction of positive price changes of other goods in the industry leads to a

0.5% increase in probability of a positive price change of a good. These effects are therefore

not only statistically, but also highly economically, significant. The economic significance

can also be discerned from the effects when at the mean, the fraction of price changes of the

same sign changes by one standard deviation: for negative price changes, the probability of

a downward price change of a good increases by 8.81%, while for positive price changes, the

probability of an upward price change of a good increases by 14.7%. Finally, the coefficient

on the fraction of same-signed price changes is larger for positive adjustment decisions than

for negative adjustment decisions as results in Table 4 show. In fact, the marginal effect

is about twice as large for positive price adjustment decisions. Table 5 summarizes this

finding.

State-dependent response to inflation The results also show evidence for the

fundamental role played by inflation, an important aggregate shock, in pricing decisions.

In particular, the likelihood of a price decrease decreases with higher CPI inflation while

the likelihood of a price increase increases. This is as one would expect from a model

where firms adjust prices in a state-dependent fashion. The effects are both statistically

and economically significant. When evaluated at the mean, a 1% increase in CPI inflation

decreases the probability of a negative price change of a good by 0.6%, while increasing the

probability of a positive price change by 0.5%. Similarly, when at the mean, CPI inflation

changes by one standard deviation, the probability of a negative price change of a good

decreases by 0.21%, while the probability of a positive price change increases by 0.17%.

Seasonality in price changes We uncover strong seasonality in price changes in the

data. In particular, there are strong month effects for both negative and positive price

changes. These effects we report are relative to December, which is the excluded month.

The results show that the odds of a negative price changes are extremely high in March
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and relatively high in August, September, October, and November, while extremely low in

February and July. The odds of a positive price changes are extremely high in February

and July and relatively high in January, April, September, October, and November, while

extremely low in March. The results thus show strong seasonal effects in the first quarter and

also imply that price changes, both positive and negative, are likely in September, October,

and November. There is also evidence that price changes, both positive and negative, are

less likely in May and June. Our results on seasonality in price changes are consistent with

similar findings in Nakamura and Steinsson (2008), in particular, the strong effects in the

first quarter.

Critical role of within-firm variables The inclusion of within-firm variables, which

is unique to our analysis, plays a critical role in explaining price setting behavior. Notice

from above that the within-firm effects are much stronger than the within industry effects.

To isolate the key role of the within-firm variables more clearly, we run the same regressions

as above but exclude from X the fraction of price changes in the same firm and the average

price change of goods in the same firm. Table 6 shows that while the evidence on synchro-

nization of price changes within the industry, the fundamental role of inflation, and strong

month effects remain intact, the explanatory power of the model drops significantly. The

R2 goes down from 48% to 30%.17 Finally, we also find that among within-firm variables,

product substitution is highly significantly associated with a price change. This again holds

for both upwards and downwards adjustments.

By Bins Next, we run the mulitnominal logit regression for the four good bins separately

to investigate differences due to the number of goods produced by firms. Tables 7, 8, and 9

show the results for the relative risk ratios, the marginal effect at the mean, and the effect

when the dependent variable changes from mean − 1/2 standard deviation to mean + 1/2

standard deviation. To avoid cluttering, we do not report the p-values, but all the results

we report below are statistically significant. Our main results, as we move from bin 1 to

bin 4, are as follows:
17The R2 measure we report denotes the usual pseudo-R2. This statistic is based on the likelihood and

measures improvements of the model fit.
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Decreasing within-industry synchronization It is clear that the coefficient on

the fraction of price changes in the industry decreases as the number of goods produced by

firms increases. When evaluated at the mean, the effect of a 1% increase in the fraction of

negative price changes of other goods in the industry on the probability of a negative price

change of the good goes down from 0.11% in bin 1 to −0.06% in bin 4. Similarly, the effect

of a 1% increase in the fraction of positive price changes of other goods in the industry on

the probability of a positive price change of the good goes down from 0.16% in bin 1 to

0% in bin 4. Finally, the effect when at the mean, the fraction of price changes of the same

sign changes by one standard deviation goes down from 2.1% to −1.51% for negative price

changes and from 3.1% to 0.2% for positive price changes.

Increasing within-firm synchronization The tables also show that the coefficients

on the fraction of price changes on goods within the same firm increases as the number of

goods produced by firms increases. When evaluated at the mean, the effect of a 1% increase

in the fraction of negative price changes of other goods in the firm on the probability of a

negative price change of the good goes up substantially from 0.25% in bin 1 to 0.51% in

bin 4. Similarly, the effect of a 1% increase in the fraction of positive price changes of other

goods in the firm on the probability of a positive price change of the good goes up from

0.44% in bin 1 to 0.78% in bin 4. Finally, the effect when at the mean, the fraction of

price changes of the same sign changes by one standard deviation, increases from 5.38%

to 15.8% for negative price changes and from 9.61% to 24.24% for positive price changes.

Importantly, the marginal effects of a change in the fraction of price adjustment within the

firm on individual adjustment decisions is systematically larger across all bins for positive

adjustment decisions compared to negative adjustment decisions. Thus, we find that there

is evidence for greater synchronization of price changes within the firm as the number of

goods produced by the firm increases. Moreover, synchronization is always stronger for

positive than for negative price changes.

Lower probability of downwards changes with inflation Finally, while the re-

lationship between number of goods and the coefficient on inflation for upward changes do
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not show a clear trend, there is a clear decrease in odds of a downward change in prices in

response to inflation when the number of goods increases. When evaluated at the mean,

the effect of a 1% increase in CPI inflation on the probability of a negative price change

decreases from −0.24% in bin 1 to −1.55% in bin 4.

2.2.3 Implications for Theory

Our empirical results have potentially important implications for the way we model price

setting by firms. This includes the way we think of the role of nominal rigidities in mone-

tary models since we have shown that the number of goods plays a key role in explaining

why firms change price. In the international context, the results should equally have con-

sequences for modeling pass through and real exchange rate and trade dynamics. In fact

in ongoing work, Bhattarai and Schoenle (2009), we find that in the micro-data underlying

the U.S. import and export price indices, frequency of price adjustment, and exchange rate

pass-through are systematically related to the number of goods. In the following, we outline

some implications for the way we model price-setting and how they relate to other recent

empirical findings.

First, in terms of aggregate stylized facts, our results complement several arguments

that have been made in the literature. The significant fraction of negative price changes

that we document imply, as also argued by Golosov and Lucas Jr. (2007) and Nakamura

and Steinsson (2008), that models that rely on only aggregate shocks, and hence predict

predominantly positive price changes with modest inflation, are inconsistent with micro

data. We have also shown that the absolute size of price changes are large, which again

suggests the need for idiosyncratic firm level shocks, as emphasized by Golosov and Lucas Jr.

(2007) and Klenow and Kryvtsov (2008). At the same time however, there is a substantial

fraction of small price changes in the data and the distribution of price changes is highly

leptokurtic. This observation, as argued by Klenow and Kryvtsov (2008) and Midrigan

(2008), implies that simple menu cost models are inconsistent with micro data since they

do not predict enough small price changes.

Second, using a discrete choice model for changes of producer prices, we have uncovered

additional relationships that have implications for theory. We have shown broad based
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evidence for synchronization of producer price changes within industries and firms. This

suggests a model with industry and firm level strategic complementaries. In particular,

firm level synchronization is quantitatively important, as it explains a significant part of

the variation in the probability of price changes. We also show that inflation plays a

fundamental role in pricing decisions by increasing the likelihood of a price increase while

decreasing the likelihood of a price decrease. This suggests a model where pricing decisions

are state-dependent.

Third, the central empirical focus of this paper, the analysis of price dynamics according

to the number of goods produced by firms, has additional implications for theory. We have

shown that price setting dynamics change substantially with the number of goods produced

by firms. The increasing frequency, decreasing size, and a higher fraction of small price

changes with an increasing number of goods suggest a model where part of the menu cost

of adjusting prices is shared among goods produced by a firm.

Compared to the literature, our main challenge here is to explain the trends we observe

in price setting as we vary the number of goods produced by firms, an analysis that has not

been undertaken before. We turn to this task next.

3 Theory

3.1 Model

We use a partial equilibrium setting of a firm that decides each period whether to update

the prices of its n goods indexed by i ∈ (1, 2, 3), and what prices to charge if it updates. The

firm’s decision problem arises for three reasons: First, the firm is subject to an aggregate

inflationary shock. Second, each good is subject to an idiosyncratic productivity shock.

Third, changing the price costs a total fixed “menu cost” each time when the firm decides

to adjust prices. The menu cost is thus firm-specific and not good-specific,18 and firms
18This assumption is motivated by the observed synchronization patterns in the data. Conditional on

observing at least one adjustment, the median monthly fraction of price changes in a firm is 75% as Table 13
in the appendix shows. Thus, assuming full joint adjustment should be a good first approximation. Moreover,
it is important to note that the high fraction of joint price adjustment decisions is not “mechanical” due
to the way prices are reported: one could presume that each firm reports prices on only one reply form
and whenever there is one price change, the reporter indicates price changes for all goods. However, prices
are reported on separate reply forms and frequently by separate agents, especially as the number of goods
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trade off this cost with changes in the expected stream of profit.

Our model is similar to the ones in Sheshinski and Weiss (1992) and Midrigan (2008).

The main difference is that compared to Sheshinski and Weiss (1992) we allow for a stochas-

tic aggregate shock while compared to Midrigan (2008) we solve for equilibrium as we vary

n, the number of goods produced by firms. In particular, the latter variation allows us to

make two contributions. First, we can solve for trends in price-setting behavior with respect

to how many goods firms produce. Second, we can compute trends in synchronization of

price-setting by comparing 2-good and 3-good firms. Since no measures of synchroniza-

tion can be computed in the one-good case, the comparison of 2-good and 3-good firms is

necessary to model trends in synchronization of adjustment decisions.

In our model, the firm produces output of good i using a technology that is linear in

labor:

ci,t = Ai,t li,t

where Ai,t is a good-specific for good i productivity shock that follows an exogenous process:

lnAi,t = ρiA lnAi,t−1 + εiA,t

where E[εiA,t] = 0 and var(Ai,t) = (σiA)2. We assume that there is no correlation between

good-specific shocks. We do this in order to isolate the effect of multi-product firms on

the decision to synchronize price adjustment when the underlying idiosyncratic shocks are

uncorrelated, while controlling for the common inflationary shock.

The firm’s product i is subject to the following demand:

ci,t =
(
pi,t
Pt

)−θ
Ct i = 1, 2, ..., n

where Ct is aggregate consumption, Pt is the aggregate price level, pi,t is the price of good

i, and θ is the elasticity of substitution across goods.

In this partial equilibrium setting, we normalize Ct = C̄. We also assume that the price

level Pt exogenously follows a random walk with a drift:

increases for which a firm reports prices.
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lnPt = µP + lnPt−1 + εP,t

where E[εP,t] = 0 and var(εP,t) = (σP )2. Given our assumption about technology, the real

marginal cost of the firm for good i, MCi,t, is therefore given by:

MCi,t =
Wt

Ai,tPt

where Wt is the nominal wage. We normalize Wt
Pt

= w̄.

Whenever the firm adjusts one or more than one of its prices, it has to pay a constant

total “menu cost”, K(n), whenever it chooses to adjust prices. We understand this “menu

cost” very broadly as a general cost of price adjustment, not the literal cost of relabeling the

price tags of goods. Blinder et al. (1998) and Zbaracki et al. (2004) provide some evidence

for such a broader interpretation of “menu costs.” Moreover, this cost in our model is not

a good-specific cost, but firm-specific:

K(n) > 0. (6)

The cost of changing prices may depend on the number of goods produced by the firm and

in particular, we assume that:

∂K(n)
∂n

> 0 (7)

and that:

K(n+ 1)
K(n)

<
n+ 1
n

. (8)

These assumptions mean that the cost of changing prices increases monotonically with the

number of goods produced, and that there are increasing cost savings as more and more

goods are subject to price adjustment. Therefore, there are economies of scope in the cost

of changing prices. While we do not model this adjustment process in detail, one can for

example think about the adjustment technology as a fixed cost of hiring a manager to
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change prices: it is costly to hire him in the first place, but much less costly to have him

adjust the price of each additional good.

Given this setup, the firm maximizes the expected discounted sum of profits from selling

all of its goods. Total period gross profits, before paying the menu costs, are given by:

πt =
n∑
i

(
pi,t
Pt
− w

Ai,t

)(
pi,t
Pt

)−θ
C̄.

The problem of the firm is to choose whether to update all prices in a given period, and if

so, by how much. Whenever it updates prices, it has to pay the menu cost K.

The problem of the firm can most easily be described and solved recursively: the

state variables in this problem are last period’s real prices, pi,t−1

Pt
, and the current produc-

tivity shocks, that is, p−1=
(
p1,t−1

Pt
,
p2,t−1

Pt
, ...,

pn,t−1

Pt

)
and A = (A1,t, A2,t, ..., An,t) . Let

V a(A) denote the firm’s value of adjusting all prices:

V a(A) = max
p

[
π (p; A)−K + β

∫ ∫
V
(
p
′
−1,A

′
)
dF
(
ε1A, ε

2
A, ..., ε

n
A

)
dF (εP )

]

where we have omitted time subscripts and ′ denotes the subsequent period.

Let V n(p−1,A) denote the firm’s value of not adjusting prices:

V n(p−1,A) = π (p−1; A) + β

∫ ∫
V
(
p
′
−1,A

′
)
dF
(
ε1A, ε

2
A, ..., ε

n
A

)
dF (εP )

where

V = max (V a, V n) .

3.2 Computation

We solve this problem for a firm that produces n = 1, n = 2 and n = 3 goods. First,

we employ collocation methods to find the policy functions of the firm. Second, given the

policy functions, we simulate time series of shocks and corresponding adjustment decisions

for many periods. Finally, we compute statistics of interest for each simulation and good,

and across simulations. We also estimate a multi-nomial logit model of adjustment decisions
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using the simulated data to compare our theoretical results with the empirical findings. The

appendix provides further details about computation and analysis.

We present our choice of parameters in Table 10. Since our model is monthly, we choose

a discount rate β of (0.96)
1
12 . We use a value of K such that menu costs are a 0.35% of

steady-state revenues for the 1-good firm, 0.65% for a 2-good firm, and 0.75% for a 3-good

firm. We choose θ to be 4, which implies a markup of 33%.

To parametrize the exogenous processes, we set the trend in aggregate inflation to be

a monthly increase of 0.21%. We use persistent idiosyncratic productivity shocks, where

the AR(1) parameter is 0.96. We choose 0.37% and 2% respectively for the standard

deviations of the aggregate inflation and the idiosyncratic productivity shock. For the firms

with 2 and 3 goods, we use the same values for the persistence and variance of the all

idiosyncratic productivity shocks.19 All of our parameters are standard in the literature.

3.3 Results

We present the main results from the simulations in Table 11 and illustrate them graphically

in Figures 9-15. As we increase the number of goods from 1 to 3, the model predicts clear

and systematic trends in the key price-setting statistics which align with our empirical

findings.

First, we find that the frequency of price changes goes up from 15.22% to 19.72% while

the mean absolute size of price changes goes down from 5.21% to 3.96% as we increase the

number of goods. Table 11 summarizes these trends. Second, the decrease in the absolute

size of price changes also holds for both positive and negative prices changes: they go down

from 5.34% to 4.23% and from −5.02% to −3.57% respectively. Third, the fraction of

small price changes increases from 1.33%, barely none, to 23.59%. Thus, while firms with

more goods change prices more frequently, they does so by smaller amounts on average.

Fourth, we also see that the fraction of positive price changes decreases from 61.68% to

59.38%. Thus, as in the data, firms with more goods adjust downwards more frequently.

Finally, the model predicts that kurtosis increases from 1.38 to 1.97, again consistent with
19As emphasized before, we assume that there is no correlation among the idiosyncratic productivity

shocks within the firm.

24



our empirical findings.

What is the mechanism behind our results? For simplicity, compare a 1-good firm with

a 2-good firm. For the case of a 2-good firm, when the firm decides to pay the firm-specific

menu cost to adjust one of the prices, it also changes the price of the other good because

it gets to change it basically for free. This leads, on average, to a higher frequency of price

changes. At the same time, for the 2-good firm, since a lot of price changes happen even

when the desired price is not very different from the current price of the good, the mean

absolute size of price changes is lower. This smaller mean also implies that the fraction of

“small” price changes is much higher for the 2-good firm. In fact, for the 1-good firm, which

is the standard menu cost model, the fraction of small price changes is negligible because

in that case, the firm adjusts prices only when the desired price is very different from the

current price.

What causes the decrease in the fraction of positive price changes? With trend inflation,

firms adjust downwards only when they receive very big negative productivity shocks. With

firm-specific menu costs, since the firm adjusts both prices when the desired price of one

good is very far from its current price, it is now more sustainable to have a higher fraction

of downward price changes. Finally, kurtosis increases as we go from one good to two goods

because of a higher fraction of price changes in the middle of the distribution.

Next, we address trend in synchronization of individual good-level price changes. Using

simulated data, we run the same multinominal logit regression as in the empirical section

to investigate if price changes become more synchronized as the number of goods produced

by firms increases. We thus estimate the following equation, with no price changes as the

base category:

{∆pt 6= 0}−1,0,+1 = β0 + β1ft + β2Πt + εt (9)

where ft is the fraction of same-signed adjustment decisions at time t within the firm and

Πt is the inflation rate at time t.

It is important to emphasize here the need to go beyond a 2-good case and consider a

3-good case, because we otherwise cannot check if the model predicts trends in synchroniza-

tion of price changes that are consistent with the empirical findings. Table 11 shows that
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the strength of synchronization, that is the coefficient estimate in the multinominal logit

regressions for the fraction of other goods of the firm changing in the same direction, in-

creases as we go from a 2-good firm to a 3-good firm. Importantly, as is the case empirically,

this is the case with both upwards and downwards price changes.

In addition, Table 11 also makes clear that the simulations predict that positive price

adjustment decisions are more synchronized than negative adjustment decisions. That is,

the synchronization coefficient for upwards price adjustment decisions is always higher than

the coefficient for downwards adjustment decisions. This difference in synchronization prob-

abilities is due to positive trend inflation. Without positive trend inflation, the difference

disappears. The model thus matches our findings on synchronization established in the

empirical section.

3.4 Robustness

In this section, we discuss several extensions of our baseline model and investigate alter-

native ways to generate the trends which we find in the data. Appendix 3 contains the

tables summarizing results from these simulations. First, we investigate the possibility that

perhaps our empirical results are driven by the fact that firms that produce more goods

also produce more substitutable goods. We simulate a specification of 2 and 3 good firms

with no economies of scope in the cost of adjusting prices but with an elasticity of substi-

tution among goods that is higher than that compared to the 1 good firm. As Table 14

shows, while matching the trends in frequency, size, and fraction of positive price changes,

this specification fails to match trends in the fraction of small price changes, kurtosis, and

synchronization as we increase the number of goods.

Second, we allow for correlation among the productivity shocks. In our main setup, we

had not allowed for correlation of productivity shocks at the firm-level in order to isolate the

predictions of the model arising solely due to firm-specific menu costs. Table 15 shows that

allowing for such correlation does yield a higher synchronization of price changes within the

firm, but at the same time, fails to match trends in frequency and size of price changes.

Third, there might be concern that our synchronization results could be due to purely

mechanical, statistical reasons. To investigate this possibility, we perform two tests. In the
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first, we run a Monte-Carlo exercise based on a simple statistical model of price changes.

We model price changes as i.i.d. Bernoulli trials with a fixed probability of success. Using

simulated time series for an arbitrary number of goods, we estimate our synchronization

equation. We find no mechanical trend in synchronization as the number of goods increases.

In the second test, we use the same parametrized model of a single-good firm from our

simulation exercise and model a multi-product firm as a collection of multiple, independent

single-product firms. That is, a 2-good firm now is simply a collection of two single-good

firms, with no economies of scope in cost of adjusting prices. Similarly, a 3-good firm is a

collection of three single-good firms, with no economies of scope in cost of adjusting prices.

When we run our synchronization test with simulated data from these specifications, we

find that the model cannot produce synchronization results that are consistent with the

empirical findings. For example, the synchronization coefficient estimated using simulated

data on negative price changes is negative, as opposed to positive in the data. Incidentally,

this specification of multiproduct firms as multiple single-good firms fails to match any of

our aggregate trends in price-setting as shown in Table 16. These results therefore highlight

the need to model a multi-product firm as distinctly different from an aggregate of multiple

single-product firms.

Fourth, we allow for a menu of menu costs instead of the firm-specific menu cost structure

that we use. For example, in the 2-good case, the firm now has a choice of adjusting 0, 1, or

2 goods. There are different menu costs for adjusting the price of 1 good and 2 goods, but

some savings in the cost when adjusting the prices of both goods. Our results are robust to

this possible extension. In fact, as shown in Table 17, this specification cannot account for

the extent of synchronization in price changes observed in the data.

Fifth, we consider two alternative demand specifications. In the first specification, we

allow for non-zero cross-elasticities of demand among the goods produced by the firm, which

is precluded in our baseline model with CES demand. As Table 18 shows, while this case

generates a higher fraction of small price changes and greater kurtosis, it cannot account for

the trend in the size of price changes. In the second specification, we allow for idiosyncratic

demand shocks as an alternative to productivity shocks. We present the results in Table 19.

We find that demand shocks are unable to generate the fraction of negative price changes
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that we observe in the data.

4 Conclusion

In this paper, we have established three new facts regarding multi-product price-setting

in the U.S. Producer Price Index. First, we show that as the number of goods produced

increases, price changes are more frequent, the size price changes is lower, the fraction

of positive price changes decreases, and price changes become more dispersed. Second,

we find evidence for substantial synchronization of price adjustment decisions within the

firm. Third, we find that the number of goods and the degree of synchronization within

firms strongly interact in determining price adjustment decisions: as the number of goods

increases, synchronization within firms increases.

Motivated by these findings, we present a model with firm-specific menu costs where

firms are subject to both idiosyncratic and aggregate shocks. We show that as we change

the number of goods produced by the firms, the patterns predicted by the model regarding

frequency, size, direction, dispersion, and synchronization of price changes are consistent

with the empirical findings.

In future work, it will be fruitful to explore the generality of our empirical results. In fact,

in ongoing work, Bhattarai and Schoenle (2009), we find that in the micro-data underlying

the U.S. import and export price indices, frequency of price adjustment, and exchange

rate pass-through are indeed systematically related to the number of goods produced. We

also hope to investigate the implications of our findings for business cycle dynamics, real

exchange rate behavior, and monetary policy.
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5 Tables

Table 1: Summary Statistics by Bin

1 2 3 4
Mean Employment 2996 1427 1132 1016
Median Employment 427 155 195 296
% of Prices 17.15 43.53 18.16 21.16
Mean # of Items 2.21 4.05 6.06 10.26
No. of Firms 9111 13577 3532 2160

We group firms in the Producer Price Index (PPI) by the number
of goods. Bin 1 groups firms with 1 to 3 goods, bin 2 firms with
3 to 5 goods, bin 3 firms with 5 to 7 goods and bin 4 firms with
more than 7 goods. We calculate mean and median employment
by taking means and medians of the number of employees across
firms in a category. % Prices denotes the fraction of prices in the
PPI set by firms in each bin.
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Table 2: Distribution of Firms across Sectors, by Bin
Sector Bin 1 Bin 2 Bin 3 Bin 4
11 1.21 0.53 0.39 0.55
21 6.98 1.27 0.84 0.86
22 0.79 0.28 1.12 10.55
23 3.01 2.17 0.00 0.00
31 11.61 14.01 16.29 12.60
32 18.18 17.20 18.82 11.10
33 27.62 34.74 33.93 21.78
42 1.64 2.64 1.12 1.00
44 3.50 3.35 2.30 4.46
45 0.91 1.22 0.76 1.96
48 2.55 2.36 1.12 2.73
49 0.84 0.48 0.39 0.64
51 3.43 3.80 2.75 5.96
52 3.78 3.01 7.54 11.82
53 4.08 1.57 0.48 1.23
54 1.88 1.93 1.21 0.18
56 1.29 1.08 3.42 1.27
61 4.24 4.83 3.25 2.50
62 1.73 2.18 3.62 8.64
71 0.19 0.31 0.20 0.00
72 0.56 1.00 0.45 0.18
Total 100 100 100 100

The table shows the percentage of firms in the
PPI that belong to a two-digit NAICS category
in a given bin. Bin 1 groups firms with 1 to 3
goods, bin 2 firms with 3 to 5 goods, bin 3 firms
with 5 to 7 goods and bin 4 firms with more than
7 goods.
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Table 3: Distribution of Firms across Bins, by Sector
Sector Bin 1 Bin 2 Bin 3 Bin 4 Total
11 52.86 34.76 6.67 5.71 100
21 74.13 20.19 3.48 2.20 100
22 18.85 9.95 10.47 60.73 100
23 48.25 51.75 0.00 0.00 100
31 27.73 49.90 15.15 7.22 100
32 33.79 47.65 13.62 4.95 100
33 28.23 52.92 13.50 5.34 100
42 26.18 63.00 6.98 3.84 100
44 33.51 47.70 8.56 10.23 100
45 25.94 52.19 8.44 13.44 100
48 35.67 49.09 6.10 9.15 100
49 45.03 38.60 8.19 8.19 100
51 29.57 48.87 9.23 12.34 100
52 26.91 31.96 20.92 20.22 100
53 59.08 33.97 2.69 4.27 100
54 35.68 54.56 8.92 0.83 100
56 28.37 35.58 29.33 6.73 100
61 31.83 54.14 9.52 4.51 100
62 20.41 38.37 16.67 24.55 100
71 25.37 64.18 10.45 0.00 100
72 24.52 65.87 7.69 1.92 100

The table shows the percentage of firms in the PPI that
belong to a bin in a given two-digit NAICS category. Bin
1 groups firms with 1 to 3 goods, bin 2 firms with 3 to 5
goods, bin 3 firms with 5 to 7 goods and bin 4 firms with
more than 7 goods.
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Table 5: Marginal Effects, Multinomial Logit

Marginal Effects ± 1/2 Std. Dev.
- + - +

Fraction Industry 0.06% 0.10% 1.32% 2.27%
Fraction Firm 0.32% 0.53% 8.82% 14.73%
∆p Industry -7.16E-8% 4.30E-07% -0.02% 0.15%
∆p Firm -7.58E-8% 1.39E-07% -0.06% 0.11%
πCPI -0.61% 0.48% -0.21% 0.17%
Employees 1.93E-05% 2.52E-05% 0.26% 0.33%

Based on the regression results in Table 4, the table shows two marginal effects associated with
changes in the key explanatory variables, both for upwards (+) and downwards (-) adjustment
decisions. The first marginal effect is the change in the probability of adjusting upwards or
downwards given a unit change in the explanatory variable, at the mean. The second marginal
effect (± 1/2 Std. Dev.) denotes the change in probability associated with a change from half
a standard deviation below to half a standard deviation above the mean of the explanatory
variable. All reported effects are statistically significant from zero.
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Table 7: Log Odds by Bin

Bin 1 Bin 2 Bin 3 Bin 4
Negative Change

Fraction Industry 1.0284 1.0184 1.0082 0.9928
Fraction Firm 1.0679 1.0712 1.0730 1.0760
πCPI 0.9483 0.9120 0.9180 0.8352

Positive Change

Fraction Industry 1.0257 1.0171 1.0094 1.0000
Fraction Firm 1.0728 1.0756 1.0769 1.0778
πCPI 1.0740 1.0400 1.0470 1.0720
R2 42.85% 47.93% 48.33% 49.10%

We repeat the multinomial logit estimation as described in Table 4
separately for each bin of goods. Bin 1 groups firms with 1 to 3 goods,
bin 2 firms with 3 to 5 goods, bin 3 firms with 5 to 7 goods and bin
4 firms with more than 7 goods. The table shows estimated log odds
ratios of the key variables, where values bigger (smaller) than 1 mean
that the probability of a negative or positive price change is more
(less) likely due to a change in the explanator and relative to the base
category. All reported coefficients are statistically significant from 1.

Table 8: Marginal Effects by Bin

Bin 1 Bin 2 Bin 3 Bin 4
Negative Change

Fraction Industry 0.11% 0.07% 0.04% -0.06%
Fraction Firm 0.25% 0.26% 0.35% 0.51%
πCPI -0.24% -0.39% -0.50% -1.55%

Positive Change

Fraction Industry 0.16% 0.10% 0.07% 0.01%
Fraction Firm 0.45% 0.45% 0.56% 0.78%
πCPI 0.49% 0.28% 0.41% 1.02%
R2 42.85% 47.93% 48.33% 49.10%

The table shows the bin-specific marginal effects of a unit change in
the explanators around the mean on the probability of adjusting prices
upwards or downwards. Marginal effects are calculated for the model
estimated in Table 7. All reported effects are statistically significant
from zero.

37



Table 9: Marginal Effects by Bin, ± 1/2 Std. Dev.

Bin 1 Bin 2 Bin 3 Bin 4
Negative Change

Fraction Industry 2.10% 1.41% 0.89% -1.51%
Fraction Firm 5.38% 6.52% 9.92% 15.78%
πCPI -0.08% -0.14% -0.17% -0.54%

Positive Change

Fraction Industry 3.07% 2.12% 1.55% 0.21%
Fraction Firm 9.61% 11.46% 15.94% 24.24%
πCPI 0.17% 0.10% 0.14% 0.35%
R2 42.85% 47.93% 48.33% 49.10%

The table shows the bin-specific marginal effects of a one-standard
deviation change in the explanators around the mean on the proba-
bility of adjusting prices upwards or downwards. Marginal effects are
calculated for the model estimated in Table 7. All reported effects are
statistically significant from zero.

Table 10: Parameters in Simulation

β (0.96)
1
12

µP 0.21%
θ 4
ρ 0.96
σA 2%
σP .37%

The table shows our choice of pa-

rameter values used in the simula-

tion exercise.
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Table 11: Results of Simulation
1 Good 2 Goods 3 Goods

Frequency of price changes 15.22% 18.05% 19.72%
Absolute size of price changes 5.21% 4.29% 3.96%
Size of positive price changes 5.34% 4.46% 4.23%
Size of negative price changes -5.02% -4.04% -3.57%
Fraction of positive price changes 61.68% 61.28% 59.38%
Fraction of small price changes 1.33% 20.97% 23.59%
Kurtosis 1.38 1.76 1.97
First Percentile -6.84% -7.60% -8.06%
99th Percentile 7.09% 8.07% 8.63%

Synchronization measures:
Fraction, Upwards Adjustments - 30.25 38.11
Fraction, Downwards Adjustments - 29.39 37.19
Correlation coefficient - 0 0
Menu costs 0.35% 0.65% 0.75%

We perform stochastic simulation of our model in the 1-good, 2-good and 3-good
cases and record price adjustment decisions in each case. Then, we calculate
statistics for each case as described in the text. In the 2-good and the 3-good
cases, we report the mean of the good-specific statistics. We obtain the synchro-
nization measure from a multinomial logit regression analogous to the empirical
multinomial logit regression. We control for inflation. Menu costs are given as a
percentage of steady state revenues.
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Figure 1: Mean Frequency of Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean frequency of

price changes in these groups in the following way. First, we compute the frequency of price change at the good

level. Then, we compute the median frequency of price changes across goods at the firm level. Finally, we report

the mean across firms in a given group.
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Figure 2: Median Frequency of Price Changes

Based on the PPI data we group firms by the number of goods they produce. We compute the median frequency

of price changes in these groups in the following way. First, we compute the frequency of price change at the good

level. Then, we compute the median frequency of price changes across goods at the firm level. Finally, we report

the median across firms in a given group.
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Figure 3: Mean Fraction of Positive Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean fraction

of positive price changes in these groups in the following way. First, we compute the number of strictly positive

good level price changes over all zero and non-zero price changes for a given firm. Then, we report the mean

across firms in a given group.
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Figure 4: Mean Absolute Size of Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean absolute size

of price changes in these groups in the following way. First, we compute the percentage change to last observed

price at the good level. Then, we compute the median size of price changes across goods at the firm level. Then,

we report the mean across firms in a given group.
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Figure 5: Mean Size of Positive and Negative Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean size of

positive price changes in these groups in the following way. First, we compute the percentage change to last

observed price at the good level. Then, we compute the median size of price changes across goods at the firm

level. Then, we report the mean across firms in a given group.
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Figure 6: Mean Fraction of Small Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean fraction of

small price changes in these groups in the following way. First, we compute the fraction of price changes that are

smaller than 0.5 times the mean absolute percentage size of price changes across all goods in a firm. Then, we

report the mean across firms in a given group.

45



4 

6 

8 

10 

12 

14 

16 

18 

20 

1-3 3-5 5-7 >7 

K
u

rt
o

si
s 

o
f 

p
ri

ce
 c

h
an

g
es

 

Number of goods 

Mean Kurtosis of Price Changes with 95% Bands 

Figure 7: Mean Kurtosis of Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean kurtosis of

price changes in these groups in the following way. First, we compute the kurtosis of price changes at the firm

level, defined as the ratio of the fourth moment about the mean and the variance squared of percentage price

changes. Then, we report the mean across firms in a given group.

46



Figure 8: Mean First and 99th Percentile of Price Changes with 95% Bands

Based on the PPI data we group firms by the number of goods they produce. We compute the mean size of

positive price changes in these groups in the following way. First, we compute the percentage change to last

observed price at the good level. Then, we compute the median size of price changes across goods at the firm

level. Then, we report the mean across firms in a given group.
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Figure 9: Fraction of Small Price Changes and Number of Goods
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Figure 10: Kurtosis of Price Changes and Number of Goods
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Figure 11: Mean Size of Positive and Negative Price Changes and Number of Goods
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Figure 12: First and 99th Percentile of Price Changes and Number of Goods
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Figure 13: Fraction of Small Price Changes and Number of Goods
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Figure 14: Kurtosis of Price Changes and Number of Goods
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Figure 15: Strength of Synchronization and Number of Goods
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APPENDIX 1

Here we describe in detail the computational algorithm used to solve the recursive problem of

the firm. The state variables of the problem are last period’s real prices, pi,t−1

Pt
, and the cur-

rent productivity shocks, that is, p−1=
(
p1,t−1

Pt
,
p2,t−1

Pt
, ...,

pn,t−1

Pt

)
and A = (A1,t, A2,t, ..., An,t) . The

value functions are given by:

V a(A) = max
p

[
π (p; A)−K + β

∫ ∫
V
(
p
′
−1,A

′
)
dF
(
ε1A, ε

2
A, ..., ε

n
A

)
dF (εP )

]
(A-1)

V n(p−1,A) = π (p−1; A) + β

∫ ∫
V
(
p
′
−1,A

′
)
dF
(
ε1A, ε

2
A, ..., ε

n
A

)
dF (εP ) (A-2)

where V a(A) is the firm’s value of adjusting all prices, V n(p−1,A) is the firm’s value of

not adjusting prices, ′ denotes the subsequent period, and

V = max (V a, V n) .

Our numerical strategy to solve for the value functions consists of two major steps.

First, as described in Miranda and Fackler (2002), we approximate the value functions by

projecting them onto a polynominal space. Second, we compute the coefficients of the

polynomials that are a solution to the non-linear system of equations given by the value

functions.

In particular, we approximate each value function, V a(A) and V n(p−1,A)), by a set

of higher order Chebychev polynomials and require (A-1) and (A-2) to hold exactly at

a set of points given by the tensor product of a fixed set of collocation nodes of the state

variables. This implies the following system of non-linear equations, the so-called collocation
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equations:

Φaca = va(ca) (A-3)

Φnacna = vna(cna) (A-4)

where ca and cna are basis function coefficients in the adjustment and non-adjustment cases

and Φa and Φna are the collocation matrices. These matrices are given by the value of the

basis functions evaluated at the set of nodes. The right-hand side contains the collocation

functions evaluated at the set of the collocation nodes. Note that this is the same as the

value of the right-hand side of the value functions evaluated at the collocation nodes, but

where the value functions are replaced by their approximations.

We use the same number of collocation nodes as the order of the polynomial approxi-

mation. Therefore, we choose between 7-11 nodes for the productivity state variable and

15-20 nodes for the real prices. Moreover, we pick the approximation range to be ± 2.5

times the standard deviation from the mean of the underlying processes. We use Gaussian

quadrature to calculate the expectations on the right-hand side, with 11-15 points for the

real price transitions due to inflation while calculating the expectations due to productivity

shocks exactly. For the adjustment case, we use a Nelder-Mead simplex method to find the

maximum with an accuracy of the maximizer of 10−10.

Next, we solve for the unknown basis function coefficients ca and cna. We express the

collocation equations as two fixed-point problems:

ca = Φa−1va(ca) (A-5)

cna = Φna−1vna(cna) (A-6)

and iteratively update the coefficients until the collocation equations are satisfied exactly.

We conduct two sensitivity analyses. First, given that zero menu costs imply flex-

pricing, we verify that the approximate solution is “good” given the known analytical so-

lution. Figure 16 shows that optimal price policies and the price policies obtained by the

approximation line up a 45-degree line. The norm of the error is of order 10−9 and errors are
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equi-oscillatory, as is a usual property of approximations based on Chebychev polynomials.

Second, we conduct the stochastic simulations in the maximum likelihood exercise and find

that the errors between the left- and right-hand sides of (A-1) and (A-2) at points other

than the collocation nodes are on average of the order of 10−5 or less.

Figure 16: Analytical and Numerical Optimal Flex Price

We compute the numerical solution for optimal adjustment prices given productivity shocks and

zero menu costs. We compare to the analytical solution known in the flex price case. Errors are of

the order of 10−9.
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APPENDIX 2

In this appendix, we describe in further detail the sampling procedure of the BLS which

implies a monotonic relationship between the actual and sampled number of goods produced

by multi-product firms. First, we document that firms with more goods have larger total

sales. More goods will therefore be sampled in total from large firms. Second, we show that

sales shift to goods with lower sales rank in firms with more goods. Therefore, standard

survey design implies that not only more, but different goods will be sampled from larger

firms. Finally, we also summarize the fraction of joint price changes in firms.

Sales Values

First, we document that firms with more goods have larger total sales in the data.

Because total sales value determines the sampling probabilities of firms in the sampling

selection procedure,20 this implies that on average more goods will therefore be sampled

from large firms.

We compute our measure of total sales value for each n-good-type firm in the following

way. First, we compute the total dollar-value sales in a given month, year, and firm by

aggregating up the item dollar-value of sales from the last time the item was re-sampled.

Second, we count the number of goods for each firm in a given month and year. Third, we

compute the unweighted and weighted median total sales value across all firms for a given

n-good type of firm and month and year. Fourth, we calculate the mean and median sales

value for an n-good type of firm

We find that firms with more goods have larger total sales: there is a strong empirical,

monotonic relationship between the number of goods and the natural logarithm of the

total sales. Figure 17 summarizes this relationship. Because total sales value determines

the sampling probabilities of firms in the BLS sampling selection procedure, on average a

higher number of goods will be collected from large firms.

Within-Firm Sales Shares
20Employment is another measure of firm size. The exact same results hold for employment: firms with

more goods have a larger number of employees.
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Second, we show that sales shift to goods with lower sales rank in firms with more goods.

Therefore, standard survey design such as sampling proportional to size implies that not

only more, but different goods will likely be sampled from larger firms.

We compute within-firm sales shares and sales ranks in the following way. First, we

compute the total dollar-value sales for a given month, year, and firm by aggregating up

the dollar-value of sales of the good from the last time the item was re-sampled. Second, we

calculate the good-specific sales shares for each firm in a given month and year. Third, we

rank the goods in each firm according to these sales shares. Fourth, we count the number

of goods for each firm in a given month and year. Fifth, we compute the mean sales shares

for an r-ranked good in an n-good firm in a given month and year, across all firms. Sixth,

we compute the sales-weighted mean for an r-ranked good in an n-good firm over time.

These calculations give us the sales share representative of an r-ranked good in a firm with

n goods.21

We find that sales shift to goods with lower sales rank in firms with more goods. For

example, the representative sales share of the best-selling good in a two-good firm is 63%

while it is 45% for the second good. For a three-good firm, the sales shares are 45%, 35%,

and 30%. Table 12 summarizes sales shares by the number of goods and rank of the goods.

The table covers firms with up to 11 goods which account for more than 98% of all prices in

the data. Under standard survey designs such as sampling proportional to size and a fixed

survey budget not only more, but different goods are more likely to be sampled when firms

produce more goods.

21Note that these shares do not have to sum up to 100% in an n-good firm by way of computation.
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Fractions of Joint Price Adjustment

We compute the representative monthly fraction of goods in a firm which change prices.

We find that 71.36% to 75% of all prices change jointly in each month. This suggests

that our assumption of complementarities in the price adjustment is a good first order

approximation.

First, we compute the fraction of goods which change prices in a given firm, year, and

month, conditional on observing at least one price change. Second, we compute the median

of this fraction over time, for each firm. Third, we compute means and medians across all

firms in the data.

Table 13: Fractions of Joint Price Adjustment

fjoint f+
joint f−joint

Mean 71.36% 64.83% 61.26%
Median 75.00% 66.67% 52.90%
Std. Error 0.17% 0.17% 0.19%
Std. Dev. 27.24% 27.49% 28.85%

The table summarizes monthly fractions of price
changes in a firm, computed conditional on at least
one price adjustment. We denote by fjoint the
fraction irrespective of sign of price change, by
f+
joint upwards joint fractions and by f−joint down-

wards joint fractions.
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APPENDIX 3

In this section, we present the simulation results derived from alternative modeling assump-

tions. In each case, we replace or supplement the assumption of economies of scope in price

adjustment by one of the alternative assumptions. We compute statistics and trends as in

the main model.

Table 14: Results of Simulation: Substitution

1 Good 2 Goods 3 Goods
Frequency of price changes 15.22% 21.72% 30.75%
Absolute size of price changes 5.21% 4.31% 3.58%
Size of positive price changes 5.34% 4.45% 3.61%
Size of negative price changes -5.02% -4.11% -3.53%
Fraction of positive price changes 61.68% 59.55% 59.20%
Fraction of small price changes 1.33% 2.86% 1.92%
Kurtosis 1.38 1.53 1.45
First Percentile -6.84% -6.19% -5.58%
99th Percentile 7.09% 6.46% 5.64%

Synchronization measures:
Fraction, Upwards Adjustments - 0.48 10.39
Fraction, Downwards Adjustments - -0.62 10.06
Correlation coefficient - 0 0
Menu Cost 0.35% 0.7% 1.05%
Elasticity of substitution 4 6 9

We perform stochastic simulation of our model in the 1-good, 2-good and 3-good
cases and record price adjustment decisions in each case. Then, we calculate statis-
tics for each case as described in the text. In the 2-good and the 3-good cases,
we report the mean of the good-specific statistics. As we increase the number
of goods, we increase the elasticity of substitution θ. We obtain the synchro-
nization measure from a multinomial logit regression analogous to the empirical
multinomial logit regression. We control for inflation. Menu costs are given as a
percentage of steady state revenues.
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Table 15: Results of Simulation: Correlation

1 Good 2 Goods 3 Goods
Frequency of price changes 15.22% 17.09% 14.25%
Absolute size of price changes 5.21% 4.52% 4.75%
Size of positive price changes 5.34% 4.61% 4.91%
Size of negative price changes -5.02% -4.36% -4.49%
Fraction of positive price changes 61.68% 62.35% 63.72%
Fraction of small price changes 1.33% 16.77% 18.69%
Kurtosis 1.38 1.77 2.05
First Percentile -6.84% -7.83% -9.38%
99th Percentile 7.09% 8.28% 9.89%

Synchronization measures:
Fraction, Upwards Adjustments - 31.06 38.73
Fraction, Downwards Adjustments - 30.41 37.88
Correlation coefficient - 0.6 0.6
Menu Cost 0.35% 0.70% 1.05%

We perform stochastic simulation of our model in the 1-good, 2-good and 3-good
cases and record price adjustment decisions in each case, allowing for correlation of
the productivity shocks Ai,t in the multi-good cases. Then, we calculate statistics
for each case as described in the text. In the 2-good and the 3-good cases, we report
the mean of the good-specific statistics. We obtain the synchronization measure
from a multinomial logit regression analogous to the empirical multinomial logit
regression. We control for inflation. Menu costs are given as a percentage of steady
state revenues.
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Table 16: Benchmark Case

2 Goods 3 Goods
MP Firm 2 Firms MP Firm 3 Firms

Frequency of price changes 18.05% 15.30% 19.72% 15.30%
Size of absolute price changes 4.29% 5.24% 3.96% 5.23%
Size of positive price changes 4.46% 5.35% 4.23% 5.35%
Size of negative price changes -4.04% -5.08% -3.57% -5.08%
Fraction of positive price changes 61.28% 62.14% 59.38% 62.14%
Fraction of small price changes 20.97% 3.01% 23.59% 3.01%
Kurtosis 1.76 1.55 1.97 1.52
1st Percentile -7.60% -7.47% -8.06% -7.47%
99th Percentile 8.07% 8.02% 8.63% 8.02%

Synchronization measures:
Fraction, Upwards Adjustments 30.25 0.33 38.11 14.46
Fraction, Downwards Adjustments 29.39 -0.63 37.19 13.87
Correlation coefficient 0 0 0 0
Menu cost 0.65% 0.35% 0.75% 0.35%

We perform stochastic simulation of our model for the 2-good and 3-good multi-product firms as
in Table 11. Results from these simulations are summarized under the columns “MP Firms.” In
addition, we simulate two, and respectively three 1-good firms subject to common inflationary
shocks but completely independent productivity draws. We record price adjustment decisions
and calculate statistics for each case as described in the text. In the 2-good and the 3-good cases,
we report the mean of the good-specific statistics. We obtain the synchronization measure from a
multinomial logit regression analogous to the empirical multinomial logit regression. We control
for inflation. Menu costs are given as a percentage of steady state revenues.
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Table 17: Results of Simulation: Menu of Menu Costs

1 Good 2 Goods
Frequency of price changes 15.22% 18.05% 26.98%
Size of absolute price changes 5.21% 4.29% 3.16%
Size of positive price changes 5.34% 4.46% 3.56%
Size of negative price changes -5.02% -4.04% -2.67%
Fraction of positive price changes 61.68% 61.28% 55.34%
Fraction of small price changes 1.33% 20.97% 24.95%
Kurtosis 1.38 1.76 3.95
1st Percentile -6.84% -7.60% -7.87%
99th Percentile 7.09% 8.07% 11.41%

Synchronization measures:
Fraction, Upwards Adjustments - 30.25 -0.20
Fraction, Downwards Adjustments - 29.39 -0.48
Menu costs (K1, K2, K12) (-,-,0.35)% (-,-,0.65)% (0.35,0.35,0.65)%
Correlation coefficient - 0 0

We perform stochastic simulation of our model in the 1-good, and 2-good cases, allowing 2-good
firms to adjust 0, 1, or 2 goods simultaneously. The cost of adjusting one good only is K1 or K2,
and joint adjustment costs K12. We record price adjustment decisions and calculate statistics for
each case as described in the text. In the 2-good case, we report the mean of the good-specific
statistics. We obtain the synchronization measure from a multinomial logit regression analogous
to the empirical multinomial logit regression. We control for inflation. Menu costs are given as a
percentage of steady state revenues.
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Table 18: Results of Simulation: Demand Interactions

1 Good 2 Goods 3 Goods 2 Goods 3 Goods
γ = −0.1 γ = 0.1

Frequency of price changes 15.22% 18.76% 19.36% 21.66% 20.76%
Size of absolute price changes 5.21% 4.143% 4.142% 3.90% 3.71%
Size of positive price changes 5.34% 4.34% 4.41% 4.20% 3.93%
Size of negative price changes -5.02% -3.85% -3.77% -3.50% -3.39%
Fraction of positive price changes 61.68% 61.27% 59.14% 58.15% 59.92%
Fraction of small price changes 0.98% 22.05% 24.56% 21.81% 23.61%
Kurtosis 1.38 1.88 2.01 2.03 2.02
1st Percentile -6.84% -7.88% -8.61% -7.84% -7.77%
99th Percentile 7.09% 8.35% 9.10% 8.53% 8.11%

Synchronization measures:
Fraction, Upwards Adjustments - 30.28 38.13 30.04 38.02
Fraction, Downwards Adjustments - 29.45 37.13 29.38 36.98
Correlation coefficient - 0 0 0 0
Menu Cost 0.35% 0.65% 0.75% 0.65% 0.75%

We perform stochastic simulation of our model in the 1-good, 2-good and 3-good cases, allowing for inter-

actions in demand through a profit function πt =
Pn=3
i

“
pi,t

Pt
− w̄

Ai,t

”“
pi,t

Pt

”−θ “ p−i,t

Pt

”−γ
and record price

adjustment decisions in each case. Then, we calculate statistics for each case as described in the text. In the
2-good and the 3-good cases, we report the mean of the good-specific statistics. We obtain the synchroniza-
tion measure from a multinomial logit regression analogous to the empirical multinomial logit regression.
We control for inflation. Menu costs are given as a percentage of steady state revenues.

Table 19: Results of Simulation: Demand Shocks

1 Good 2 Goods 3 Goods
Frequency of price changes 15.22% 5.14% 5.52%
Size of absolute price changes 5.21% 4.09% 3.94%
Size of positive price changes 5.34% 4.09% 3.94%
Size of negative price changes -5.02% 0% 0%
Fraction of positive price changes 61.68% 100.00% 100.00%
Fraction of small price changes 1.33% 0.00% 0.00%
Kurtosis 1.38 3.71 3.90
1st Percentile -6.84% 3.73% 3.49%
99th Percentile 7.09% 4.75% 4.71%
Correlation coefficient - 0 0
Menu costs 0.35% 0.65% 0.75%

We perform stochastic simulation of our model in the 1-good, 2-good and 3-good
cases, allowing for demand shocks Zi,t instead of productivity shocks. This im-

plies a period profit function πt =
Pn=3
i

“
pi,t

Pt
− w̄

”
Zi,t

“
pi,t

Pt

”−θ
. We record

price adjustment decisions and calculate statistics for each case as described in
the text. In the 2-good and the 3-good cases, we report the mean of the good-
specific statistics. We obtain the synchronization measure from a multinomial
logit regression analogous to the empirical multinomial logit regression. We con-
trol for inflation. Menu costs are given as a percentage of steady state revenues.
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