
Conflict Driven Learning in a Quantified Boolean
Satisfiability Solver

Lintao Zhang
Department of Electrical Engineering

Princeton University
lintaoz@ee.princeton.edu

Sharad Malik
Department of Electrical Engineering

Princeton University
malik@princeton.edu

ABSTRACT
Within the verification community, there has been a recent
increase in interest in Quantified Boolean Formula evaluation
(QBF) as many interesting sequential circuit verification
problems can be formulated as QBF instances. A closely related
research area to QBF is Boolean Satisfiability (SAT). Recent
advances in SAT research have resulted in some very efficient
SAT solvers. One of the critical techniques employed in these
solvers is Conflict Driven Learning. In this paper, we adapt
conflict driven learning for application in a QBF setting. We
show that conflict driven learning can be regarded as a
resolution process on the clauses. We prove that under certain
conditions, tautology clauses obtained from resolution in QBF
also obey the rules for implication and conflicts of regular (non-
tautology) clauses; and therefore they can be treated as regular
clauses and used in future search. We have implemented this
idea in a new QBF solver called Quaffle and our initial
experiments show that conflict driven learning can greatly
speed up the solution process for most of the benchmarks we
tested.

1. Introduction
Given a Quantified Boolean Formula, the question whether it is
satisfiable (i.e. evaluates to 1) is called a Quantified Boolean
Satisfiability (QBF) problem. Many practical problems ranging
from AI planning [1] to sequential circuit verification [2] can be
transformed to QBF instances. Recently, because of the wide
industrial adoption of search based (in contrast to BDD based)
sequential verification techniques, researchers in the EDA
community are very interested in finding efficient QBF
evaluation algorithms to make current search based sequential
verification methods (e.g. bounded model checking [3])
complete.

Research on QBF solvers has been going on for some time. In
[4], the authors present a resolution-based algorithm and prove
that it is complete and sound. In [5], the authors present a
decision procedure for QBF, which is similar to a resolution
process. Both of these algorithms have the potential memory
blow up problem encountered by most resolution based
decision methods. Algorithms based on variations of the Davis
Logemann Loveland (sometimes referred to as DPLL)
procedure [6] such as [7] [8] [9] [10] [11] have also made a lot
of progress. These methods use the classic DPLL algorithm

without learning. Though methods based on traditional DPLL
algorithm do not have the memory blow up problem, they
require significant CPU cycles and are unable to handle
practical sized problems as of now.

A closely related problem to QBF is the well-known Boolean
Satisfiability problem (SAT). SAT can be regarded as a
restricted form of QBF. In a SAT problem, only existential
quantifiers are allowed. As SAT is very important both in
theory as well as in practice, it has attracted significant research
attention. Recent years have seen significant advancements in
SAT research, resulting in some very efficient complete SAT
solvers (e.g. GRASP [12], rel_sat [13], SATO [14], Chaff [15]).
These solvers are also based on the DPLL algorithm. Most of
these SAT solvers employ conflict driven learning and non-
chronological backtracking techniques. Conflict driven learning
utilize the knowledge learned from failures in certain search
space to help prune search in future spaces. Experiments shows
that conflict driven learning is very effective in pruning the
search space for structured (in contrast to random) SAT
instances. Because of the inherent similarity of search in QBF
and SAT, the same idea of conflict driven learning should also
help with structured QBF instances.

In this paper we present our work of incorporating conflict
driven learning in a QBF solver. We assume that readers have
some familiarity with state of the art SAT solvers, though every
attempt will be made to explain the concepts used from that
domain.

2. Problem Formulation
A QBF has the form

 Q1x1……Qnxn ϕ (1)

Where ϕ is a propositional formula involving propositional
variables xi (i=1…n). Each Qi is either an existential quantifier
∃ or a universal quantifier ∀. It is not a restriction to require ϕ
being in Conjunctive Normal Form (CNF), because there exist
methods to translate any propositional logic formula into
equivalent CNF (e.g. [17]). In the rest of the paper, we require
that ϕ be in CNF, i.e. it is constituted of a conjunction of
clauses. Each clause is a disjunction of literals. A literal is the
occurrence of a variable in either positive or negative phase.
Because ∃x∃y ϕ = ∃y∃x ϕ and ∀x∀y ϕ = ∀y∀x ϕ, we can

always group the quantified variables into disjoint sets where
each set consists of adjacent variables with the same type of
quantifier. In the rest of the paper, we will assume QBFs of the
form:

Q1X1……QnXn C1….Cm (2)
Here Cj’s are clauses, Xi’s are mutually disjoint sets of
variables. Each variable in the formula must belong to one of
these sets. We will call the variables existential or universal
according to the quantifier of their respective quantifier sets.
Also, each variable has a quantification level associated with it.
The variables belonging to the outermost quantification set have
quantification level 1, and so on. In the following, we will call
the formula in form (2) a QBF in CNF.

Our framework is based on the DPLL procedure, which is a
branch and search procedure on the variables. Therefore, in the
rest of the paper, many of the statements will have the implicit
“with regard to the current assignment of variable values” as a
suffix. For example, when we say “the clause is conflicting”,
we mean that “the clause is conflicting with regard to current
variable assignments”. We will omit this suffix for concise
presentation when no confusion can result. The value
assignment to the variables may be a partial assignment. Some
variables may not be assigned a value yet. We will call
variables (and their corresponding literals) that have not been
assigned free. Moreover, the DPLL algorithm is a branch
procedure. Each branch has a decision level associated with it.
The first branch variable has decision level 1, and so on. All of
the variables implied by a decision variable will assume the
same decision level as the decision variable. In the rest of the
paper, we may use terms like “in the current branch”. This has
the same meaning as “in the partial variable assignment
resulting from the implications of the current branching
variables’ assignments”. All current QBF algorithms based on
DPLL require that the branch order obeys the quantification
order. A variable can be chosen as a branch variable if and only
if all variables that has smaller quantification levels have
already been assigned a value. In this paper, we assume that the
quantification order is obeyed.

A tautology clause contains both a literal and its complement.
We can assume that the initial input to the QBF solver has no

tautology clauses. If it has, we can simply delete the tautology
clauses without changing the propositional formula. A clause is
conflicting if all of its existential literals evaluate to 0, and none
of its universal literals evaluates to 1. A clause is satisfied if at
least one of its literals evaluates to 1. A clause that is not
satisfied is unsatisfied. If an unsatisfied clause has only one
existential variable free, and all the free universal literals have
quantification levels higher than the level of this free variable,
then the clause is called a unit clause, and the free existential
literal is called the unit literal.

If a clause is not a tautology, then it satisfies the following
properties (assuming the quantification order is obeyed during
branching). If it is a conflicting clause, then the current branch
is unsatisfiable [7]. We will call this property the Conflict Rule
for Non-Tautology Clauses. If it is a unit clause, the unit literal
of the clause must evaluate to 1 in order to make the formula
satisfiable in the current branch [7]. We will call this property
the Implication Rule for Non-Tautology Clauses. The process of
assigning all unit literals with value 1 is called unit
propagation. When a variable is forced to assume a value by
unit propagation, this variable is said to be implied. The clause
that implies it is called the antecedent of the variable. Notice
that only existential variables can be implied.

The basic framework of our algorithm for QBF solving is
described in Figure 1. It differs from a SAT solving process
(e.g. [12]) in some aspects. First, the branch procedure needs to
obey the quantification order. Second, the deduction procedure
uses the implication rule described earlier instead of the unit
literal rule for SAT. Another difference of the procedure from
DPLL for SAT is the case when deduction finds that the current
branch is satisfiable. In SAT, it will immediately return with the
solution found. In a QBF solver, we need to make sure both
branches of a universal variable lead to a satisfiable solution.
Therefore, the solver needs to backtrack and continue search.

The naïve DPLL algorithm will backtrack chronologically.
Each decision variable will have a flag associated with it. The
flag’s value is either flipped or unflipped. When a decision is
made, the flag will assume the initial value of unflipped.
Function analyze_conflict() will find the unflipped
existential decision variable with the highest decision level, flip

 Fig. 1. The top level DPLL algorithm for QBF evaluation.

while (true) {
 decide_next_branch() //choose a branch variable
 while(true) {
 status = deduce(); //unit propagation
 if (status == CONFLICT) {
 blevel = analyze_conflict(); //find out the reason for conflict
 if (blevel < 0) //even without branch, problem still unsat
 return UNSATISFIABLE;
 else backtrack(blevel);
 }
 else if (status == SATISFIABLE) {
 blevel = analyze_SAT() //find out the reason for satisfactory
 if (blevel < 0) //even without branch, problem still sat
 return SATISFIABLE;
 else backtrack(blevel);
 }
 else break;
 }
}

it (i.e. make it assume the opposite phase, and mark it flipped),
and return that decision level. Similarly, analyze_SAT()
will find the unflipped universal decision variable with the
highest decision level, flip it, and return the decision level. If no
such decision variable exists, both will return -1.

The main topic of this paper is to improve the
analyze_conflict() routine to make it smarter by
determining the reasons for a conflict, and recording the reasons
as clauses. These clauses can be used to prune the search space
by avoiding making the same mistakes in the future. Recording
reasons from conflicts is called conflict driven learning.

3. Conflict Driven Learning by Resolution
Conflict Driven Learning in Boolean SAT was proposed in the
1990’s by Silva and Sakallah [12] and Bayardo and Schrag
[13]. Conflict driven learning is the primary reason for the
practical success of contemporary SAT solvers. Practical
implementation of conflict-driven learning has been presented
in the form of bi-partitioning of the implication graph in prior
research (e.g. [12] 16]).

3.1 Conflict Driven Learning in Boolean SAT

In this section, we present an alternate equivalent formulation
of the learning process in a Boolean SAT solver using
resolution. Resolution is a process to generate a clause from
two clauses analogous to the process of consensus in the logic
optimization domain (e.g. [19]).
We now define the process of resolution of two clauses C1 and
C2 with respect to a variable a. Suppose clause C1 contains
literals {l1,l2,…lm, a}, clause C2 contains literals {lm+1,lm+2,…ln,
a’}, here li (1≤i≤n) are literals, and a and a’ are two literals
corresponding to the same variable but have different phases.
The resolvent of clause C1 and C2 with respect to a is a clause
containing literals {l1,l2,…lm,lm+1…ln}. Similar to the well-
known consensus law (e.g.[19]), the resulting clause of
resolution between two clauses is redundant with respect to the
original clauses. Therefore, we can always generate clauses
from original clause database by resolution and add the
generated clause back to the clause database without changing
the satisfiability of the original formula.

For a SAT solver, the procedure of analyze_conflict()
is shown in Figure 2. At the beginning, the function checks

whether the current decision level is already 0. If that is the
case, the function will return -1, essentially saying that there is
no way to resolve the conflict and the formula is unsatisfiable.
Otherwise, the solver determines the cause of the conflict.
Iteratively, the procedure resolves the conflicting clause with
the antecedent clause of a variable that appears in the
conflicting clause. Function choose_literal() will
always choose an implied literal (instead of the decision
variable) from the input clause. Function
resolve(cl1,cl2,var) returns a clause that has all the
literals appearing in cl1 and cl2 except for the literals
corresponding to var. If the generated clause meets some
predefined stopping criterion, the iteration will stop; otherwise
the resolution process is carried on iteratively. The actual
learning is performed by add_clause_to_database().
In current state-of-the-art SAT solvers, choose_literal()
always chooses the literals in reverse chronological order, i.e.
the literal implied last in the clause will be chosen first. The
stopping criterion is that the resulting clause be an asserting
clause. An asserting clause is a clause with all value 0 literals,
and among them, only one literal is at the current decision level.
After backtrack, the clause will be a unit clause and this literal
will be forced to flip, thus bringing the search to a new space.
For more details about learning in a Boolean SAT solver,
readers are referred to [16]. We want to point out that the
formulation we provide here is equivalent to the usual
implication graph partition formulation. For example, if the stop
criterion is to stop at the first asserting clause, then it is exactly
the same as the FirstUIP scheme described in [16].

3.2 Long Distance Resolution
In this section, we will discuss resolution as we use it in the
context of QBFs. To clarify, we want to point out that we are
interested in resolution here only because the learning process
needs to use resolution to generate valid learned clauses. We do
not imply that our solver framework is resolution based like the
algorithms in [4] [5]. Our framework is based on the DPLL
procedure; therefore, it does not have the same memory blow-
up problem encountered by most resolution-based algorithms.
In our framework learned clauses can always be deleted without
affecting the correctness of the algorithm.

To apply the same procedure of Figure 2 to QBF solvers, we
need to introduce a concept called long distance resolution.
Similar to the concept of distance between two cubes in logic
optimization (e.g. [19]), the distance between two clauses is the
number of times a literal appears in positive phase in one of the
clauses and in negative phase in the other clause. Note that in
the SAT case, because one of the input clauses to resolve()
is a conflicting clause (i.e. all literals evaluate to 0), and the
other is an antecedent of the input variable (i.e. all but one
literal evaluate to 0), the distance between these two clauses is
always 1.

In QBF, the situation is different. Consider two clauses of a
formula (there are other clauses in the QBF, but we only show
two of them that we are most interested in):

(a(1) + b(3) + x(4) +c(5)) (a(1) + b’(3) + x(4)’ +d(5))

 Fig. 2 Conflict Analysis by Resolution

analyze conflict(){
 if (current_decision_level()==0)
 return -1;
 cl = find_conflicting_clause();
 while (!stop_criterion_met(cl)) {
 lit = choose_literal(cl);
 var = variable_of_literal(lit);
 ante = antecedent(var);
 cl = resolve(cl, ante, var);
 }
 add_clause_to_database(cl);
 back_dl = clause_asserting_level(cl);
 return back_dl;
}

a, b, c, and d are existential variables, x is a universal variable.
The numbers in the subscript are the quantification levels for
the corresponding variables. Suppose initially, c and d are both
implied to be 0 at decision level 5, and all the other literals are
free. At decision level 6, suppose we make a branch a=0. By
the implication rule, the first clause is unit because x has a
higher quantification level than b, and c is already 0. Therefore,
b is implied to be 1. This implication results in the second
clause to become conflicting (because a, b’, and d are all 0).
The function analyze_conflict() calls resolve() in
Figure 2. The result of the resolution of clause 2 with the
antecedent of b (i.e. the first clause) gives

(a(1) + x(4) + x(4)’+ c(5) + d(5)).
This clause is a tautology clause because we have both x and x’
as literals in it. This is not a surprise because the consensus of
two cubes with distance larger than 1 is an empty cube, and
correspondingly the resolution of two clauses with distance
greater than 1 is a tautological clause. However, in the
following we will prove that we can regard such a resolvent
clause between two clauses with distances greater than 1 as a
regular (i.e. non-tautology) clause, and this clause will obey the
same unit implication rule and conflict rule as regular clauses.
In the previous example, because a has a lower quantification
level than x; and c and d are assigned 0 at decision level 5, this
last clause is a unit clause at decision level 5. Therefore, a
should be implied at decision level 5 with value 1. Note that
this does not follow immediately, as this clause is a tautology
clause. The proof for the implication rule for non-tautology
clauses in [7] will not apply here.

We will briefly outline our proof strategy in plain language
first, and a more rigorous proof will follow. Clauses in a QBF
solver have two functions. The first function is to provide non-
conflicting implications, and thus lead the search to a new
space, the second is to show conflicts, and thus declare that a
certain search space has no solution. Therefore, to prove that
clauses (regardless of tautology or not) generated from
resolution can be regarded as regular clauses, we only need to
prove that they also can be used to generate implications and
conflicts by the same implication rule and conflict rule.
Therefore, our main effort is to prove that if both of the two
input clauses to the function resolve() in Figure 2 obey
these two rules, then the output clause will also obey them
(even if the output clause is a tautology clause). As we know,
initially the entire clause database consists of non-tautology
clauses, and they obey both rules. Therefore, we can use
induction to prove that any clauses generated from the routine
analyze_conflict() will obey these two rules, and can
be regarded as regular clauses for implication and conflict
generation in future search.

A note on the language used: In the following, we will not
define all the terminology used due to space limitations.
Sometimes we may use language informally if it does not cause
confusion to improve readability. For example, we may say a
rule holds for a clause, or a clause follows a rule, or a clause
satisfies a rule etc. They all mean the same thing.

To prove that long distance resolution is feasible, we need to
redefine some terms and formalize some assumptions.

Definition 1. Similar to the notion of distance between cubes or
clauses, the distance between two sets of literals S1 and S2 is
the number of literals l such that l ∈ S1, l’∈ S2, We use D(S1,
S2) to denote the distance between S1 and S2.

For a clause C in a QBF in the form of (2), we use notation
E(C) for the set of existential literals, and U(C) for the set of
universal literals. We use a, b, c… (letters at the start of the
alphabet) to denote existential literals, x, y, z… (letters at the
end of the alphabet) to denote universal literals, and V(a),
V(b)… to denote the value of the literals. If literal a is free, V(a)
= X. We use L(a), L(b)… to denote the quantification levels of
the variables corresponding to the literals.

Definition 2. Implication Rule: For a QBF F, if under a certain
variable assignment, a clause C has literal a s.t.

1. a ∈ E(C), V(a) = X. If b ∈ E(C) and b ≠ a, then
V(b)=0.

2. ∀x ∈U(C), V(x) ≠ 1. If V(x) = X, then L(x) > L(a)
Then the formula F can be satisfied in the branch only if we
assign V(a)=1.

Definition 3. Conflict Rule: For a QBF F, if under a certain
variable assignment, there exists a clause C, s.t.∀a ∈ E(C), V(a)
= 0, and ∀x ∈ U(C), V(x) ≠ 1, then F cannot be satisfied in the
branch.

Note that in these two rules, we do not require the clause to be
non-tautology. Therefore, these two rules are definitions instead
of lemmas because they are not shown to be valid yet. In the
following, we will prove that they actually hold for all the
clauses that can appear in the database if we follow the
procedure depicted in Figure 2.

Lemma 1. If for clause C, ∀x∈U(C), x’∉U(C), then the clause
C follows both the Implication Rule and the Conflict Rule.

Proof: If ∀a∈E(C), a’∉E(C), then the clause C is not a
tautology clause. This is essentially Lemma 2.6 of [7].
Otherwise, it is impossible for this clause to satisfy the
conditions of the Implication Rule and Conflict rule, so they
obviously hold.

Lemma 2. If clause C1 and C2 both follow the Conflict and
Implication Rule, and they satisfy:

1. D(E(C1), E(C2)) = 1. Let the distance 1 literal be a.
i.e. a ∈ E(C1), a’∈E(C2),

2. For any x, if x∈U(Ci) and x’∈U(Cj), i,j ∈{1,2} then
L(x)> L(a)

Then, the resolvent clause C with E(C) = (E(C1)\a) ∪
(E(C2)\a’) and U(C) = U(C1) ∪ U(C2) also obeys these two
rules.

Proof: To simplify the notation, define E’(C1) = E(C1)\a,
E’(C2) = E(C2)\a’. We will prove each rule separately.

 a) Clause C obeys the Conflict Rule.

Because of condition 1, D(E’(C1), E’(C2)) = 0. Therefore,
there may have some variable assignments that satisfy both of

the conditions to the Conflict Rule. i.e. the assignment can
make∀ b ∈E(C), V(b) = 0, ∀ x ∈ U(C), V(x) ≠ 1. We will prove
that if that is the case, the QBF is unsatisfiable in this branch.
There are three cases:

1. If V(a) = 0, C1 becomes the conflicting clause.
2. If V(a) = 1, C2 becomes the conflicting clause.
3. If V(a)=X, we will demonstrate an assignment of

universal variables that leads to a conflict. For any
x∈U(C), L(x) < L(a), we assign the variable
corresponding to x s.t. V(x) = 0. This can be done
because condition 2 guarantees that if L(x) < L(a), and
x∈U(C) then x’∉U(C). Then, both clause C1 and C2
satisfy the condition of Implication Rule. Clause C1
requires V(a) = 1, while clause C2 requires V(a’) = 1.
This leads to conflict.

Therefore, the Conflict Rule holds.

b) Clause C obeys the Implication Rule.

Suppose there exists l∈ E(C), ∀b ∈ E(C), b ≠ l, V(b)=0 and ∀x
∈U(C), V(x) ≠ 1. If V(x) = X, then L(x) > L(l). We want to
prove that such a situation implies that the branch can be
satisfiable only if V(l)=1.

Because l has the smaller quantification level than that of any of
the free universal literals appearing in C, it must be assigned a
value before any of them. Therefore, if the assignment makes
V(l) = 0, then the clause C satisfies the condition of the Conflict
Rule, thus by the first part of the proof, it is a conflict.
Therefore, F can be satisfied in the branch only if V(l)=1.

Therefore, the Implication Rule also holds.

Theorem. The clause generated by the procedure depicted in
Figure 2 obeys both Implication Rule and Conflict Rule.

Proof: We will prove this by induction on the resolution depth
of the resulting clause. We define resolution depth recursively.
The resolution depth of the clause generated from the
resolve() function is the maximum resolution depth of the
two input clauses plus 1. Initially, all of the original clauses
have resolution depth 0.

Induction Basis: We require that no input clause be a tautology.
Therefore, if a clause has resolution depth 0, it satisfies both
rules by Lemma 1.

Induction Hypothesis: The theorem holds for resolution depth
smaller or equal than n.

Induction Step: Clause C with resolution depth of n+1 is
obtained by calling resolve() on two clauses C1 and C2.
Both C1 and C2 have resolution depth less than or equal to n.
Therefore, both C1 and C2 follow the Implication Rule and the
Conflict Rule. We will prove that these two clauses satisfy both
condition 1 and 2 of Lemma 2, and thus the theorem holds.

Suppose C2 is the antecedent of the resolution variable var, the
corresponding literal for var is a. Then obviously, V(a)=1,
∀l∈E(C2), l ≠ a, V(l)=0. C1 is obtained from a conflicting
clause by some resolution steps. All the other clauses involved
in these resolution steps are unit clauses, and the unit literals are

removed during the resolution process. Therefore, ∀l∈E(C1),
V(l)=0. Therefore, D(E(C1), E(C2))=1. Thus condition 1 of the
lemma is satisfied.

Suppose there is a literal x∈ U(C2), Then if x’∈ U(C2), L(x) >
L(a) because otherwise a will not be implied by this clause. If
x’∈ U(C1), we also have L(x) > L(a) because otherwise, for a
to be implied in C2, we need V(x)=0. But then V(x’)=1,
therefore the clause that has x’ in it will neither be a unit clause
nor a conflicting clause, so this literal should not appear in C1.
Thus condition 2 of the lemma is satisfied. ■

Notice in our proof, we only require that D(E(C1), E(C2)) = 1.
We do not have any requirements for the distance between the
universal literals. Therefore, the distance between these two
clauses may be larger than 1. That is the reason why we call this
long distance resolution. Our theorem proves that we can just
regard the results from the resolution process as regular non-
tautology clauses for purposes of the Implication and Conflict
Rules, even though some of these resolvents may contain
universal literals in both phases.

In [4], the authors proposed a concept called Q-resolution. Q-
resolution omits each universal variable in a resulting clause if
no existential variable in the clause has higher quantification
level than the universal variable. Therefore, in Q-resolution, the
resulting clause may contain fewer variables than an ordinary
resolvent from the same two clauses. The authors prove that Q-
resolution is valid in QBF, i.e. the result from a Q-resolution is
redundant and can be added to the original clause database. Our
proof for the main theorem is valid even if “Q-resolution” is
used instead of regular resolution.

In our proof for the Implication Rule, we used the assumption
that a universal variable can be assigned a value only if all
variables that have quantification level less that it have already
been assigned. The Monotone Literal Rule [7] (sometimes
called pure literal rule, which states that a variable can be
assigned a value if all of its occurrences in the unsatisfied
clauses are in the same phase. Please refer to [7] for details
about this rule) actually invalidates this assumption. However,
the Monotone Literal Rule will not invalidate our conclusion
because if applied, it will only make the universal literals
evaluate to 0. Therefore, the Implication Rule still holds even
when the Monotone Literal Rule is applied. Because the proof
for the Conflict Rule does not depend on the above mentioned
assumption, the rule obviously holds.

3.3 Stop Criterion for QBF
The stop criterion will make sure that the resulting clause from
the resolution will generate a clause that can really resolve the
current conflict, and bring the search to a new space.

In a QBF solver, the function choose_literal() will still
only choose an implied literal because decision variables do not
have an antecedent. Therefore, it automatically makes sure that
all the chosen resolved variables will be existential.

The stop criterion for QBF is different from SAT. The
resolution process should stop if the generated clause satisfies
the following conditions:

1. Among all its existential variables, one and only one of
them has the highest decision level (which may not be
the current decision level). Suppose this variable is V.

2. V is in a decision level with an existential variable as
the decision variable.

3. All universal literals with quantification level smaller
than V’s are assigned 0 before decision level of V’s.

The first and third conditions make sure that this clause is
indeed an asserting clause (i.e. unit after backtracking). The
second condition makes sure that we will undo at least one
existential decision because undoing universal decisions only
can never really resolve a conflict. An exception to this stop
criterion is that if all existential literals in the resulting clause
are at decision level 0, or if there are no existential literals in the
resulting clause, then the solver should stop and immediately
state that the problem is unsatisfiable.

3.4 Implementing the QBF solver Quaffle
We have implemented the above-mentioned idea in a new QBF
solver called Quaffle. Quaffle is a loose acronym for Quantified
Formulae Evaluator with Learning. Quaffle is implemented in
C++. We have implemented both the naïve chronological
backtracking scheme as well as the new conflict driven learning
scheme in the place of analyze_conflict(), as shown in
Figure 2. In the learning case, we use the decision strategy
VSIDS ([15]), which has been shown to be quite successful for
Boolean SAT solvers. In the naïve case, we still used VSIDS,
but disabled the decaying mechanism, which makes sense only
with learned clauses, thus just choosing the unassigned literal
that occurs the most. In all the experiments in this paper,
Quaffle uses the naïve chronological backtracking scheme in
place of analyze_SAT().Section 5 provides some additional
information on further developments on this.

The learned clauses from conflicts can be deleted in the same
manner as in Boolean SAT solvers. It is easy to implement
either relevance based or clause length based clause deletion. In
the current implementation, because the benchmarks are not
very big and the solver is largely runtime limited, we did not
turn the clause deletion on in all the experimental runs. For
larger benchmarks, certain clause deletion strategies are
obviously needed. It is also possible to implement other
techniques commonly used in SAT solvers such as random
restart in our framework. However, a detailed discussion and
experimentation for that is beyond the scope of this paper.

4. Experimental Results
In this section, we compare the performance of three versions
of Quaffle. The first version has the learning turned on, which
is denoted as Quaffle-CDL in the result table shown in Figure
3. The second version uses the same procedure as Quaffle-
CDL, except that the learned clauses are deleted immediately.
The result is that we essentially disabled learning but enabled
the solver to perform non-chronological backtracking. This is
equivalent to the concept of backjumping in [11], and we

denote it Quaffle-BJ in the table. The third version, denoted
Quaffle-naïve in the table, is using the naïve version of
analyze_conflict(). We also compare our solver’s
performance with some of the existing state-of-the-art QBF
solvers. We chose two of the most efficient solvers for the test
suite we use. For a comprehensive comparison of how other
state-of-the-art QBF solvers fare on these benchmarks, we refer
the readers to [18]. QuBE-BJ is the backjumping [11] version
of QuBE [10], while QuBE-BT is the version with simple
backtracking scheme. Decide [8] is the solver by J. Rintanen.

The benchmark suite was obtained from J. Rintanen’s home
page [20]. We are unable to provide details on the benchmarks
(e.g. number of variables, number of clauses etc.) because of
space limitations. These, as well as additional benchmarks are
available on a website for this paper [21]. The benchmarks
shown here consist of some random QBF instances as well as
some instances generated from real applications. The tests were
conducted on a Dell PIII 933 machine with 1G memory. The
timeout limit is 1800 seconds for each instance. We omitted the
instances for which all the solvers timeout.

Currently, Quaffle does not have any of the advanced
techniques employed in other state-of-the-art QBF solvers such
as pure literal rule [7], trivial truth [7], inversion of quantifiers
[8], implicit unrolling [9], connected component detection [8]
etc. Therefore, it is not surprising that the naïve version of
Quaffle is not very competitive compared with others. The
Quaffle-BJ version fares much better than Quaffle-naïve,
because of non-chronological backjumping. In comparison, it is
doing better in this particular benchmark suite than QuBE-BJ.
We suspect that is so because our branch heuristic VSIDS is
better suited for these examples. Notice that in most of the
benchmarks, Quaffle-CDL is much better than Quaffle-BJ. This
shows the effectiveness of conflict driven learning in a QBF
setting compared with back jumping only. The only exceptions
are four of the TOILET test cases. We suspect that is due to
noise introduced in learning that brings the search to some area
that is hard to get out of. Random restarts and other techniques
that can bring search out of the “valley area” may help in these
cases.

We want to point out that the effectiveness of conflict driven
learning depends on how many conflicts are encountered in the
searching process. In some of the benchmarks (e.g. CHAIN),
almost all of the terminal leaves of the search are satisfying
leaves (i.e. in Figure 1, the status is SAT). In that case, learned
clauses do not contribute much compared with just back
jumping. We would like to show some representative data for
the search tree size, number of implications, number of conflicts
etc. for each solver. However, we do not have access to the
source code of other solvers, and their print outs after each run
are not quite informative. All three solvers use different
implication rules, thus making direct comparison of number of
branches misleading. For example, decide [8] uses a look ahead
technique for each branch, this will reduce the number of
decisions, but will increase the time need for each decision.
Therefore, we can only show the run time for each of the

solvers, because that is the ultimate criterion in evaluating a
solver.

From the experimental results we find that Quaffle is quite
competitive compared with other state-of-the-art QBF solvers.
It seems that conflict driven learning has great effect in pruning
the search space, as shown by comparing the naïve version and
CDL version of Quaffle. Quaffle with CDL outperforms
Quaffle-BJ in most of the structured benchmarks,
demonstrating that CDL is more effective than simple

backjumping. Decide fares very well on this particular
benchmark suite, mainly because the “inversion of quantifier”
[8] and “implicit unrolling” [9] heuristic it employs seem to be
very effective for these particular benchmark suites. Our focus
in this paper was to study conflict driven learning for QBF, and
thus our experiments are currently focused on evaluating the
gains provided by this capability.

 Quaffle Quaffle Quaffle QuBE QuBE Decide Quaffle Quaffle Quaffle QuBE QuBE DecideBenchmark
Name

-CDL -BJ -naïve -BT -BJ

Benchmark
 Name -CDL -BJ -naïve -BT -BJ

BLOCKS3i.4.4 F 0.07 0.07 - - - 0.05 impl20 T 15.82 - - - - -

BLOCKS3i.5.3 F 29.92 128.42 - - - 31.89 logn...A0 F 0 0 0 0 0 0.01

BLOCKS3i.5.4 T 2.91 30.75 - - - 6.59 logn...A1 F 2.23 67.47 - - 7.28 0.47

BLOCKS3ii.4.3 F 0.05 0.07 - - 5.02 0.03 logn...A2 T 127.4 - - - - 28.28

BLOCKS3ii.5.2 F 0.13 0.82 - - 82.19 0.07 logn...B0 F 0.01 0.01 0.01 0 0 0.03

BLOCKS3ii.5.3 T 0.33 2 - - - 1.5 logn...B1 F 8.47 342.55 - - 37.89 0.61

BLOCKS3iii.4 F 0.03 0.05 - - 1.62 0.01 logn...B2 F 767.94 - - - - 1.88

BLOCKS3iii.5 T 0.28 0.72 - - - 0.26 R...3...50_0.T T 1.23 3.15 - 0 0 0.03

BLOCKS4i.6.4 F 254.11 - - - - 5.35 R...3...50_1.F F 0.02 2.52 - 0.03 0.01 0.47

BLOCKS4ii.6.3 F 400.99 - - - - 4.53 R...3...50_2.T T 0.83 1.11 738.7 0 0 0.05

BLOCKS4ii.7.2 F - - - - - 9.15 R...3...50_3.T T 1.07 1.65 521.98 0.11 0 0.06

BLOCKS4ii.7.3 T - - - - - 731.24 R...3...50_4.T T 1.44 2.74 - 0.06 0.01 0.1

BLOCKS4iii.6 F 40.27 - - - - 2.92 R...3...50_5.T T 0.97 21.42 71.41 0.01 0 0.07

BLOCKS4iii.7 T - - - - - 414.76 R...3...50_6.F F 1.53 11.99 - 0.07 0.03 20.52

CHAIN12v.13 T 0.31 0.32 - 0.36 0.34 0.41 R...3...50_7.F F 0.6 7.88 - 0.05 0.02 1.91

CHAIN13v.14 T 0.69 0.69 - 0.84 0.8 0.79 R...3...50_8.F F 0.28 1.33 - 0.22 0.06 0.32

CHAIN14v.15 T 1.47 1.49 - 2.45 2.27 1.6 R...3...50_9.T T 0.87 1.03 40.99 0.05 0.01 0.25

CHAIN15v.16 T 3.19 3.25 - 4.57 5.17 3.25 R...7...60_0.F F 0.13 2.19 479.68 0.44 0.02 0.01

CHAIN16v.17 T 6.9 7.03 - 15.53 13.38 6.7 R...7...60_1.T T 0.23 0.52 0.55 0.07 0.01 0.06

CHAIN17v.18 T 15.27 15.14 - 34.89 43.44 14.48 R...7...60_2.T T 1.28 0.65 423.71 0 0 0.05

CHAIN18v.19 T 32.21 33.02 - 97.73 100.06 31.21 R...7...60_3.T T 0.33 0.51 36.83 0.75 0.02 0.15

CHAIN19v.20 T 74.04 75.09 - 234.65 249.04 61.08 R...7...60_4.T T 13.44 51.64 - 0.76 0.01 0.04

CHAIN20v.21 T 152.88 166.98 - 527.92 650.44 130.71 R...7...60_5.F F 1.32 8.32 - 0.64 0.01 27.12

CHAIN21v.22 T 340.29 362.24 - 1271 1462.59 272.58 R...7...60_6.T T 0.51 1.79 150.08 0.19 0.03 0.83

CHAIN22v.23 T 741 846.08 - - - 569.65 R...7...60_7.T T 2.22 11.9 - 0.73 0.06 0.18

CHAIN23v.24 T 1783.73 1790.14 - - - 1200.91 R...7...60_8.F F 0 0 1.85 0.02 0.01 0.08

impl02 T 0 0 0 0 0 0 R...7...60_9.T T 0.23 3.75 - 0.02 0 0.09

impl04 T 0 0 0 0 0 0.01 TOILET02.1.iv.3 F 0 0 0 0 0 0

impl06 T 0.01 0.01 0.01 0 0.01 0.04 TOILET02.1.iv.4 T 0 0 0 0 0 0

impl08 T 0.01 0.04 0.07 0.01 0 0.29 TOILET06.1.iv.11 F 40.15 7.46 757.08 25.68 5.4 10.45

impl10 T 0.02 0.33 0.48 ** ** 2.29 TOILET06.1.iv.12 T 18.17 5.57 1633.03 12.36 1.48 0.1

impl12 T 0.06 2.34 3.57 ** ** 17.38 TOILET07.1.iv.13 F - 104.47 - 599.6 92.06 141.17

impl14 T 0.25 18.19 26.41 ** ** 130.64 TOILET07.1.iv.14 T - 74.77 - 265.3 23 0.22

impl16 T 0.99 135.22 195.52 ** ** 974.53 TOILET10.1.iv.20 T - - - - 1.31

impl18 T 3.98 985.57 1445.76 ** ** -

TOILET16.1.iv.32 T -

- - - 15.39

Figure 3. Run time (in seconds) comparison of Quaffle with other solvers
** Qube generated segmentation fault on these benchmarks
- Solver aborted after 1800 seconds

5. Related Work
A closely related work is presented by E. Giunchiglia et al.
recently in [11]. In that paper, the authors demonstrate how to
add backjumping into their QBF solving process. Our work
differs from their conflict directed backjumping in the way that
we keep the knowledge from conflicts as learned clauses, and
non-chronological backjumping is a direct consequence of the
learned clauses much like in modern SAT solvers. As this
learned clause is recorded in the database, it may be used for
future pruning of the search space. In contrast, in [11] learning
is not possible. On the other hand, the paper has the concept of
solution directed backjumping, which can prune the search
space when a satisfying leaf is encountered. In this work, we do
not have a corresponding concept for that. We have
independently developed new techniques to deal with this
deficiency in [24].
Recently there has been a big resurgence in QBF research. We
are now aware of two research efforts with contemporaneous
publications. In particular, in [22], the authors propose to cache
lemmas and models to help the search. The idea of cache
lemmas is similar to the idea discussed here about conflict
driven learning. In that work, even though the authors used
resolution (more specifically, Q-resolution [4], a stronger
version of regular resolution for QBF) to generate lemmas, they
do not show that tautology clauses can be treated exactly the
same as regular clauses, as shown by this work. In [23], the
authors also proposed to incorporate conflict driven learning in
their QuBE framework. However, their approach is not
resolution based, thus needs some special treatment (i.e. pre-fix
closed) for the variable assignments in order to construct
reasons correctly for learning. These two papers also developed
schemes for learning for satisfied leaves, denoted model
caching in [22] and good solution learning in [23] respectively.
Basically, they are improving the function analyze_SAT()
discussed in this paper with more powerful schemes. We have
also independently proposed our own version of the idea in
[24], which expands the work presented here. For a more
detailed comparison of these solvers, we refer readers to [21]
for more experiment results.

6. Conclusion
In this paper we present our work on incorporating conflict
driven learning into a Quantified Boolean Formulae evaluation
framework. Conflict driven learning has been tremendously
successful in Boolean SAT solvers. Our experiments show that
it is also very promising in a QBF solver framework. To adapt
the algorithm for the QBF case, we introduce long distance
resolution and prove that the resulting clauses obey the rules of
regular clauses. We implemented this algorithm in a new QBF
solver called Quaffle. Experiments shows that conflict driven
learning can greatly speed up the solving process.

7. References
[1] J. Rintanen. Constructing conditional plans by a theorem prover.

Journal of Artificial Intelligence Research, 10:323-352, 1999
[2] M. Sheeran, S. Singh, G. Stälmark, Checking Safety Properties

Using Induction and a SAT-Solver, in Proc. of FMCAD, 2000

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs, In Tools and Algorithms for the Analysis
and Construction of Systems (TACAS), 1999

[4] H. Kleine-Büning, M. Karpinski and A. Flögel. Resolution for
quantified Boolean formulas. In Information and Computation,
117(1):12-18, 1995

[5] D. A. Plaisted, A. Biere and Y. Zhu. A Satisfiability Procedure for
Quantified Boolean Formulae, to appear, Discrete Applied Math.

[6] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. In Communications of the ACM, 5:394-397, 1962

[7] M. Cadoli, M. Schaerf, A. Giovanardi and M. Giovanardi. An
algorithm to evaluate quantified Boolean formulae and its
experimental evaluation, in Highlights of Satisfiability Research in
the Year 2000, IOS Press, 2000

[8] J. Rintanen, Improvements to the Evaluation of Quantified Boolean
Formulae, in Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 1999

[9] J. Rintanen, Partial implicit unfolding in the Davis-Putnam
procedure for quantified Boolean formulae, in International Conf. on
Logic for Programming, Artificial Intelligence and Reasoning
(LPAR), 2001

[10] E. Giunchiglia, M. Narizzano and A. Tacchella,. Qube: a system
for Deciding Quantified Boolean Formulas Satisfiability,. In
Proceedings of International Joint Conference on Automated
Reasoning (IJCAR), 2001

[11] E. Giunchiglia, M. Narizzano and A. Tacchella. Backjumping for
Quangified Boolean Logic Satisfiability. In Proceedings of
International Joint Conf. on Artificial Intelligence (IJCAI), 2001

[12] João P. Marques-Silva and Karem A. Sakallah, “GRASP: A
Search Algorithm for Propositional Satisfiability, In IEEE
Transactions on Computers, vol. 48, 506-521, 1999

[13] R. Bayard and R. Schrag. Using CSP look-back techniques to
solve real-world SAT instances, in Proc. of the 14th Nat. (US) Conf.
on Artificial Intelligence (AAAI), 1997

[14] H. Zhang. SATO: An efficient propositional prover, In Proc. of
the International Conf. on Automated Deduction, 1997

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Engineering an efficient SAT Solver, In Proc. of the Design
Automation Conference (DAC), 2001

[16] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, Efficient
Conflict Driven Learning in a Boolean Satisfiability Solver, in Proc.
of International Conf. on Computer Aided Design (ICCAD), 2001

[17] D.A. Plaisted and S. Greenbaum. A Stucture-preserving Clause
Form Translation, in J. of Symbolic Computation, 2:293-304, 1986

[18] E. Giunchiglia, M. Narizzano and A. Tacchella, On the
effectiveness of backjumping and trivial truth in quantified boolean
formulas satisfiability, in IJCAR workshop on Theory and
Application of Quantified Boolean Formulas, 2001

[19] G. Hachtel and F. Somenzi, Logic Sysntheiss and Verification
Algorithms, Kluwer Academic Publishers

[20] J. Rintanen’s benchmark suites are available at
http://ww.informatik.uni-freiburg.de/~rintanen/qbf.html

[21] More detailed and expanded experimental results are available at
http://ee.princeton.edu/~chaff/Quaffle.php

[22] R. Letz, Lemma, Model Caching in Decision Procedures for
Quantified Boolean Formulas, in International Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods, 2002

[23] E. Giunchiglia, M. Narizzano and A. Tacchella, Learning for
Quantified Boolean Logic Satisfiability, in Proc. of the 18th Nat.
(US) Conf. on Artificial Intelligence (AAAI), 2002

[24] L. Zhang, S. Malik, Towards a symmetric treatment of
satisfaction and conflicts in Quantified Boolean Formula Evaluation,
in Proc. Eighth International Conference on Principles and
Practice of Constraint Programming (CP2002), 2002

