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ABSTRACT 
Within the verification community, there has been a recent 
increase in interest in Quantified Boolean Formula evaluation 
(QBF) as many interesting sequential circuit verification 
problems can be formulated as QBF instances. A closely related 
research area to QBF is Boolean Satisfiability (SAT). Recent 
advances in SAT research have resulted in some very efficient 
SAT solvers. One of the critical techniques employed in these 
solvers is Conflict Driven Learning.  In this paper, we adapt 
conflict driven learning for application in a QBF setting. We 
show that conflict driven learning can be regarded as a 
resolution process on the clauses. We prove that under certain 
conditions, tautology clauses obtained from resolution in QBF 
also obey the rules for implication and conflicts of regular (non-
tautology) clauses; and therefore they can be treated as regular 
clauses and used in future search. We have implemented this 
idea in a new QBF solver called Quaffle and our initial 
experiments show that conflict driven learning can greatly 
speed up the solution process for most of the benchmarks we 
tested. 

1. Introduction 
Given a Quantified Boolean Formula, the question whether it is 
satisfiable (i.e. evaluates to 1) is called a Quantified Boolean 
Satisfiability (QBF) problem.  Many practical problems ranging 
from AI planning [1] to sequential circuit verification [2] can be 
transformed to QBF instances. Recently, because of the wide 
industrial adoption of search based (in contrast to BDD based) 
sequential verification techniques, researchers in the EDA 
community are very interested in finding efficient QBF 
evaluation algorithms to make current search based sequential 
verification methods (e.g. bounded model checking [3]) 
complete. 

Research on QBF solvers has been going on for some time. In 
[4], the authors present a resolution-based algorithm and prove 
that it is complete and sound. In [5], the authors present a 
decision procedure for QBF, which is similar to a resolution 
process. Both of these algorithms have the potential memory 
blow up problem encountered by most resolution based 
decision methods. Algorithms based on variations of the Davis 
Logemann Loveland (sometimes referred to as DPLL) 
procedure [6] such as [7] [8] [9] [10] [11] have also made a lot 
of progress. These methods use the classic DPLL algorithm 

without learning. Though methods based on traditional DPLL 
algorithm do not have the memory blow up problem, they 
require significant CPU cycles and are unable to handle 
practical sized problems as of now. 

A closely related problem to QBF is the well-known Boolean 
Satisfiability problem (SAT). SAT can be regarded as a 
restricted form of QBF. In a SAT problem, only existential 
quantifiers are allowed. As SAT is very important both in 
theory as well as in practice, it has attracted significant research 
attention. Recent years have seen significant advancements in 
SAT research, resulting in some very efficient complete SAT 
solvers (e.g. GRASP [12], rel_sat [13], SATO [14], Chaff [15]). 
These solvers are also based on the DPLL algorithm. Most of 
these SAT solvers employ conflict driven learning and non-
chronological backtracking techniques. Conflict driven learning 
utilize the knowledge learned from failures in certain search 
space to help prune search in future spaces. Experiments shows 
that conflict driven learning is very effective in pruning the 
search space for structured (in contrast to random) SAT 
instances. Because of the inherent similarity of search in QBF 
and SAT, the same idea of conflict driven learning should also 
help with structured QBF instances.  

In this paper we present our work of incorporating conflict 
driven learning in a QBF solver. We assume that readers have 
some familiarity with state of the art SAT solvers, though every 
attempt will be made to explain the concepts used from that 
domain. 

2. Problem Formulation 
A QBF has the form  

 Q1x1……Qnxn ϕ   (1) 

Where ϕ is a propositional formula involving propositional 
variables xi  (i=1…n). Each Qi is either an existential quantifier 
∃ or a universal quantifier ∀. It is not a restriction to require ϕ 
being in Conjunctive Normal Form (CNF), because there exist 
methods to translate any propositional logic formula into 
equivalent CNF (e.g. [17]). In the rest of the paper, we require 
that ϕ be in CNF, i.e. it is constituted of a conjunction of 
clauses. Each clause is a disjunction of literals. A literal is the 
occurrence of a variable in either positive or negative phase. 
Because ∃x∃y ϕ = ∃y∃x ϕ and ∀x∀y ϕ = ∀y∀x ϕ, we can 



always group the quantified variables into disjoint sets where 
each set consists of adjacent variables with the same type of 
quantifier. In the rest of the paper, we will assume QBFs of the 
form: 

Q1X1……QnXn  C1….Cm  (2) 
Here Cj’s are clauses, Xi’s are mutually disjoint sets of 
variables. Each variable in the formula must belong to one of 
these sets. We will call the variables existential or universal 
according to the quantifier of their respective quantifier sets. 
Also, each variable has a quantification level associated with it. 
The variables belonging to the outermost quantification set have 
quantification level 1, and so on. In the following, we will call 
the formula in form (2) a QBF in CNF. 

Our framework is based on the DPLL procedure, which is a 
branch and search procedure on the variables. Therefore, in the 
rest of the paper, many of the statements will have the implicit 
“with regard to the current assignment of variable values” as a 
suffix. For example, when we say “the clause is conflicting”, 
we mean that “the clause is conflicting with regard to current 
variable assignments”. We will omit this suffix for concise 
presentation when no confusion can result. The value 
assignment to the variables may be a partial assignment. Some 
variables may not be assigned a value yet. We will call 
variables (and their corresponding literals) that have not been 
assigned free. Moreover, the DPLL algorithm is a branch 
procedure. Each branch has a decision level associated with it. 
The first branch variable has decision level 1, and so on. All of 
the variables implied by a decision variable will assume the 
same decision level as the decision variable. In the rest of the 
paper, we may use terms like “in the current branch”. This has 
the same meaning as “in the partial variable assignment 
resulting from the implications of the current branching 
variables’ assignments”. All current QBF algorithms based on 
DPLL require that the branch order obeys the quantification 
order. A variable can be chosen as a branch variable if and only 
if all variables that has smaller quantification levels have 
already been assigned a value. In this paper, we assume that the 
quantification order is obeyed.  

A tautology clause contains both a literal and its complement. 
We can assume that the initial input to the QBF solver has no 

tautology clauses. If it has, we can simply delete the tautology 
clauses without changing the propositional formula. A clause is 
conflicting if all of its existential literals evaluate to 0, and none 
of its universal literals evaluates to 1. A clause is satisfied if at 
least one of its literals evaluates to 1. A clause that is not 
satisfied is unsatisfied. If an unsatisfied clause has only one 
existential variable free, and all the free universal literals have 
quantification levels higher than the level of this free variable, 
then the clause is called a unit clause, and the free existential 
literal is called the unit literal. 

If a clause is not a tautology, then it satisfies the following 
properties (assuming the quantification order is obeyed during 
branching). If it is a conflicting clause, then the current branch 
is unsatisfiable [7]. We will call this property the Conflict Rule 
for Non-Tautology Clauses. If it is a unit clause, the unit literal 
of the clause must evaluate to 1 in order to make the formula 
satisfiable in the current branch [7]. We will call this property 
the Implication Rule for Non-Tautology Clauses. The process of 
assigning all unit literals with value 1 is called unit 
propagation. When a variable is forced to assume a value by 
unit propagation, this variable is said to be implied. The clause 
that implies it is called the antecedent of the variable. Notice 
that only existential variables can be implied.  

The basic framework of our algorithm for QBF solving is 
described in Figure 1. It differs from a SAT solving process 
(e.g. [12]) in some aspects. First, the branch procedure needs to 
obey the quantification order. Second, the deduction procedure 
uses the implication rule described earlier instead of the unit 
literal rule for SAT. Another difference of the procedure from 
DPLL for SAT is the case when deduction finds that the current 
branch is satisfiable. In SAT, it will immediately return with the 
solution found. In a QBF solver, we need to make sure both 
branches of a universal variable lead to a satisfiable solution. 
Therefore, the solver needs to backtrack and continue search. 

The naïve DPLL algorithm will backtrack chronologically. 
Each decision variable will have a flag associated with it. The 
flag’s value is either flipped or unflipped. When a decision is 
made, the flag will assume the initial value of unflipped. 
Function analyze_conflict() will find the unflipped 
existential decision variable with the highest decision level, flip 

  Fig. 1. The top level DPLL algorithm for QBF evaluation.   

while (true) { 
    decide_next_branch()    //choose a branch variable 
    while(true) {  
        status = deduce();    //unit propagation 
        if (status == CONFLICT) {   
            blevel = analyze_conflict(); //find out the reason for conflict 
            if (blevel < 0)   //even without branch, problem still unsat
                return UNSATISFIABLE; 
            else backtrack(blevel); 
        }  
        else if (status == SATISFIABLE) {  
            blevel = analyze_SAT()       //find out the reason for satisfactory 
            if (blevel < 0)   //even without branch, problem still sat 
                return SATISFIABLE; 
            else backtrack(blevel);  
        } 
        else break; 
    } 
} 



it (i.e. make it assume the opposite phase, and mark it flipped), 
and return that decision level. Similarly, analyze_SAT() 
will find the unflipped universal decision variable with the 
highest decision level, flip it, and return the decision level. If no 
such decision variable exists, both will return -1.  

The main topic of this paper is to improve the 
analyze_conflict() routine to make it smarter by 
determining the reasons for a conflict, and recording the reasons 
as clauses. These clauses can be used to prune the search space 
by avoiding making the same mistakes in the future. Recording 
reasons from conflicts is called conflict driven learning.  

3. Conflict Driven Learning by Resolution 
Conflict Driven Learning in Boolean SAT was proposed in the 
1990’s by Silva and Sakallah [12] and Bayardo and Schrag 
[13]. Conflict driven learning is the primary reason for the 
practical success of contemporary SAT solvers. Practical 
implementation of conflict-driven learning has been presented 
in the form of bi-partitioning of the implication graph in prior 
research (e.g. [12] 16]). 

3.1 Conflict Driven Learning in Boolean SAT 

In this section, we present an alternate equivalent formulation 
of the learning process in a Boolean SAT solver using 
resolution. Resolution is a process to generate a clause from 
two clauses analogous to the process of consensus in the logic 
optimization domain (e.g. [19]). 
We now define the process of resolution of two clauses C1 and 
C2 with respect to a variable a. Suppose clause C1 contains 
literals {l1,l2,…lm, a}, clause C2 contains literals {lm+1,lm+2,…ln, 
a’}, here li  (1≤i≤n) are literals, and a and a’ are two literals 
corresponding to the same variable but have different phases. 
The resolvent of clause C1 and C2 with respect to a is a clause 
containing literals {l1,l2,…lm,lm+1…ln}. Similar to the well-
known consensus law (e.g.[19]), the resulting clause of 
resolution between two clauses is redundant with respect to the 
original clauses. Therefore, we can always generate clauses 
from original clause database by resolution and add the 
generated clause back to the clause database without changing 
the satisfiability of the original formula.  

For a SAT solver, the procedure of analyze_conflict() 
is shown in Figure 2. At the beginning, the function checks 

whether the current decision level is already 0. If that is the 
case, the function will return -1, essentially saying that there is 
no way to resolve the conflict and the formula is unsatisfiable. 
Otherwise, the solver determines the cause of the conflict. 
Iteratively, the procedure resolves the conflicting clause with 
the antecedent clause of a variable that appears in the 
conflicting clause. Function choose_literal() will 
always choose an implied literal (instead of the decision 
variable) from the input clause. Function 
resolve(cl1,cl2,var) returns a clause that has all the 
literals appearing in cl1 and cl2 except for the literals 
corresponding to var. If the generated clause meets some 
predefined stopping criterion, the iteration will stop; otherwise 
the resolution process is carried on iteratively. The actual 
learning is performed by add_clause_to_database(). 
In current state-of-the-art SAT solvers, choose_literal() 
always chooses the literals in reverse chronological order, i.e. 
the literal implied last in the clause will be chosen first. The 
stopping criterion is that the resulting clause be an asserting 
clause. An asserting clause is a clause with all value 0 literals, 
and among them, only one literal is at the current decision level. 
After backtrack, the clause will be a unit clause and this literal 
will be forced to flip, thus bringing the search to a new space. 
For more details about learning in a Boolean SAT solver, 
readers are referred to [16]. We want to point out that the 
formulation we provide here is equivalent to the usual 
implication graph partition formulation. For example, if the stop 
criterion is to stop at the first asserting clause, then it is exactly 
the same as the FirstUIP scheme described in [16]. 

3.2 Long Distance Resolution 
In this section, we will discuss resolution as we use it in the 
context of QBFs. To clarify, we want to point out that we are 
interested in resolution here only because the learning process 
needs to use resolution to generate valid learned clauses. We do 
not imply that our solver framework is resolution based like the 
algorithms in [4] [5]. Our framework is based on the DPLL 
procedure; therefore, it does not have the same memory blow-
up problem encountered by most resolution-based algorithms. 
In our framework learned clauses can always be deleted without 
affecting the correctness of the algorithm.  

To apply the same procedure of Figure 2 to QBF solvers, we 
need to introduce a concept called long distance resolution. 
Similar to the concept of distance between two cubes in logic 
optimization (e.g. [19]), the distance between two clauses is the 
number of times a literal appears in positive phase in one of the 
clauses and in negative phase in the other clause. Note that in 
the SAT case, because one of the input clauses to resolve() 
is a conflicting clause (i.e. all literals evaluate to 0), and the 
other is an antecedent of the input variable (i.e. all but one 
literal evaluate to 0), the distance between these two clauses is 
always 1.  

In QBF, the situation is different. Consider two clauses of a 
formula (there are other clauses in the QBF, but we only show 
two of them that we are most interested in): 

(a(1) + b(3) + x(4) +c(5)) (a(1) + b’(3) + x(4)’ +d(5)) 

  Fig. 2 Conflict Analysis by Resolution  

analyze conflict(){ 
  if (current_decision_level()==0)  
    return -1; 
  cl = find_conflicting_clause(); 
  while (!stop_criterion_met(cl)) { 
    lit = choose_literal(cl); 
    var = variable_of_literal( lit ); 
    ante = antecedent( var ); 
    cl = resolve(cl, ante, var); 
  } 
  add_clause_to_database(cl); 
  back_dl = clause_asserting_level(cl); 
  return back_dl; 
} 



a, b, c, and d are existential variables, x is a universal variable. 
The numbers in the subscript are the quantification levels for 
the corresponding variables. Suppose initially, c and d are both 
implied to be 0 at decision level 5, and all the other literals are 
free. At decision level 6, suppose we make a branch a=0. By 
the implication rule, the first clause is unit because x has a 
higher quantification level than b, and c is already 0. Therefore, 
b is implied to be 1. This implication results in the second 
clause to become conflicting (because a, b’, and d are all 0). 
The function analyze_conflict() calls resolve() in 
Figure 2. The result of the resolution of clause 2 with the 
antecedent of b (i.e. the first clause) gives  

(a(1) + x(4) + x(4)’+ c(5) + d(5)). 
This clause is a tautology clause because we have both x and x’ 
as literals in it. This is not a surprise because the consensus of 
two cubes with distance larger than 1 is an empty cube, and 
correspondingly the resolution of two clauses with distance 
greater than 1 is a tautological clause.  However, in the 
following we will prove that we can regard such a resolvent 
clause between two clauses with distances greater than 1 as a 
regular (i.e. non-tautology) clause, and this clause will obey the 
same unit implication rule and conflict rule as regular clauses. 
In the previous example, because a has a lower quantification 
level than x; and c and d are assigned 0 at decision level 5, this 
last clause is a unit clause at decision level 5. Therefore, a 
should be implied at decision level 5 with value 1. Note that 
this does not follow immediately, as this clause is a tautology 
clause. The proof for the implication rule for non-tautology 
clauses in [7] will not apply here.  

We will briefly outline our proof strategy in plain language 
first, and a more rigorous proof will follow. Clauses in a QBF 
solver have two functions. The first function is to provide non-
conflicting implications, and thus lead the search to a new 
space, the second is to show conflicts, and thus declare that a 
certain search space has no solution. Therefore, to prove that 
clauses (regardless of tautology or not) generated from 
resolution can be regarded as regular clauses, we only need to 
prove that they also can be used to generate implications and 
conflicts by the same implication rule and conflict rule. 
Therefore, our main effort is to prove that if both of the two 
input clauses to the function resolve() in Figure 2 obey 
these two rules, then the output clause will also obey them 
(even if the output clause is a tautology clause). As we know, 
initially the entire clause database consists of non-tautology 
clauses, and they obey both rules. Therefore, we can use 
induction to prove that any clauses generated from the routine 
analyze_conflict() will obey these two rules, and can 
be regarded as regular clauses for implication and conflict 
generation in future search. 

A note on the language used: In the following, we will not 
define all the terminology used due to space limitations. 
Sometimes we may use language informally if it does not cause 
confusion to improve readability. For example, we may say a 
rule holds for a clause, or a clause follows a rule, or a clause 
satisfies a rule etc. They all mean the same thing. 

To prove that long distance resolution is feasible, we need to 
redefine some terms and formalize some assumptions.  

Definition 1. Similar to the notion of distance between cubes or 
clauses, the distance between two sets of literals S1 and S2 is 
the number of literals l such that l ∈ S1, l’∈ S2, We use D(S1, 
S2) to denote the distance between S1 and S2.  

For a clause C in a QBF in the form of (2), we use notation 
E(C) for the set of existential literals, and U(C) for the set of 
universal literals. We use a, b, c… (letters at the start of the 
alphabet) to denote existential literals, x, y, z… (letters at the 
end of the alphabet) to denote universal literals, and V(a), 
V(b)… to denote the value of the literals. If literal a is free, V(a) 
= X. We use L(a), L(b)… to denote the quantification levels of 
the variables corresponding to the literals.  

Definition 2. Implication Rule: For a QBF F, if under a certain 
variable assignment, a clause C has literal a s.t. 

1. a ∈ E(C), V(a) = X. If b ∈ E(C) and b ≠ a, then 
V(b)=0. 

2. ∀x ∈U(C), V(x) ≠ 1. If V(x) = X, then L(x) > L(a) 
Then the formula F can be satisfied in the branch only if we 
assign V(a)=1. 

Definition 3. Conflict Rule: For a QBF F, if under a certain 
variable assignment, there exists a clause C, s.t.∀a ∈ E(C), V(a) 
= 0, and ∀x ∈ U(C), V(x) ≠ 1, then F cannot be satisfied in the 
branch.  

Note that in these two rules, we do not require the clause to be 
non-tautology. Therefore, these two rules are definitions instead 
of lemmas because they are not shown to be valid yet. In the 
following, we will prove that they actually hold for all the 
clauses that can appear in the database if we follow the 
procedure depicted in Figure 2.  

Lemma 1. If for clause C, ∀x∈U(C), x’∉U(C), then the clause 
C follows both the Implication Rule and the Conflict Rule.  

Proof: If ∀a∈E(C), a’∉E(C), then the clause C is not a 
tautology clause. This is essentially Lemma 2.6 of [7]. 
Otherwise, it is impossible for this clause to satisfy the 
conditions of the Implication Rule and Conflict rule, so they 
obviously hold.  

Lemma 2. If clause C1 and C2 both follow the Conflict and 
Implication Rule, and they satisfy: 

1. D(E(C1), E(C2)) = 1. Let the distance 1 literal be a. 
i.e. a ∈ E(C1), a’∈E(C2),  

2. For any x, if x∈U(Ci) and x’∈U(Cj), i,j ∈{1,2} then 
L(x)> L(a) 

Then, the resolvent clause C with E(C) = (E(C1)\a) ∪ 
(E(C2)\a’) and U(C) = U(C1) ∪ U(C2) also obeys these two 
rules. 

Proof: To simplify the notation, define E’(C1) = E(C1)\a, 
E’(C2) = E(C2)\a’. We will prove each rule separately.  

 a) Clause C obeys the Conflict Rule. 

Because of condition 1, D(E’(C1), E’(C2)) = 0. Therefore, 
there may have some variable assignments that satisfy both of 



the conditions to the Conflict Rule. i.e. the assignment can 
make∀ b ∈E(C), V(b) = 0, ∀ x ∈ U(C), V(x) ≠ 1. We will prove 
that if that is the case, the QBF is unsatisfiable in this branch. 
There are three cases: 

1. If V(a) = 0, C1 becomes the conflicting clause.  
2. If V(a) = 1, C2 becomes the conflicting clause.  
3. If V(a)=X, we will demonstrate an assignment of 

universal variables that leads to a conflict. For any 
x∈U(C), L(x) < L(a), we assign the variable 
corresponding to x s.t. V(x) = 0. This can be done 
because condition 2 guarantees that if L(x) < L(a), and 
x∈U(C) then x’∉U(C). Then, both clause C1 and C2 
satisfy the condition of Implication Rule. Clause C1 
requires V(a) = 1, while clause C2 requires V(a’) = 1. 
This leads to conflict. 

Therefore, the Conflict Rule holds. 

b) Clause C obeys the Implication Rule. 

Suppose there exists l∈ E(C), ∀b ∈ E(C), b ≠ l, V(b)=0 and ∀x 
∈U(C), V(x) ≠ 1. If V(x) = X, then L(x) > L(l). We want to 
prove that such a situation implies that the branch can be 
satisfiable only if V(l)=1.  

Because l has the smaller quantification level than that of any of 
the free universal literals appearing in C, it must be assigned a 
value before any of them. Therefore, if the assignment makes 
V(l) = 0, then the clause C satisfies the condition of the Conflict 
Rule, thus by the first part of the proof, it is a conflict. 
Therefore, F can be satisfied in the branch only if V(l)=1.  

Therefore, the Implication Rule also holds.  

Theorem. The clause generated by the procedure depicted in 
Figure 2 obeys both Implication Rule and Conflict Rule. 

Proof: We will prove this by induction on the resolution depth 
of the resulting clause. We define resolution depth recursively. 
The resolution depth of the clause generated from the 
resolve() function is the maximum resolution depth of the 
two input clauses plus 1. Initially, all of the original clauses 
have resolution depth 0.  

Induction Basis: We require that no input clause be a tautology. 
Therefore, if a clause has resolution depth 0, it satisfies both 
rules by Lemma 1.  

Induction Hypothesis: The theorem holds for resolution depth 
smaller or equal than n. 

Induction Step: Clause C with resolution depth of n+1 is 
obtained by calling resolve() on two clauses C1 and C2. 
Both C1 and C2 have resolution depth less than or equal to n. 
Therefore, both C1 and C2 follow the Implication Rule and the 
Conflict Rule. We will prove that these two clauses satisfy both 
condition 1 and 2 of Lemma 2, and thus the theorem holds. 

Suppose C2 is the antecedent of the resolution variable var, the 
corresponding literal for var is a. Then obviously, V(a)=1, 
∀l∈E(C2), l ≠ a, V(l)=0. C1 is obtained from a conflicting 
clause by some resolution steps. All the other clauses involved 
in these resolution steps are unit clauses, and the unit literals are 

removed during the resolution process. Therefore, ∀l∈E(C1), 
V(l)=0. Therefore, D(E(C1), E(C2))=1. Thus condition 1 of the 
lemma is satisfied.  

Suppose there is a literal x∈ U(C2), Then if x’∈ U(C2), L(x) > 
L(a) because otherwise a will not be implied by this clause. If 
x’∈ U(C1), we also have L(x) > L(a) because otherwise, for a 
to be implied in C2, we need V(x)=0. But then V(x’)=1, 
therefore the clause that has x’ in it will neither be a unit clause 
nor a conflicting clause, so this literal should not appear in C1.  
Thus condition 2 of the lemma is satisfied.                                ■ 

Notice in our proof, we only require that D(E(C1), E(C2)) = 1. 
We do not have any requirements for the distance between the 
universal literals. Therefore, the distance between these two 
clauses may be larger than 1. That is the reason why we call this 
long distance resolution. Our theorem proves that we can just 
regard the results from the resolution process as regular non-
tautology clauses for purposes of the Implication and Conflict 
Rules, even though some of these resolvents may contain 
universal literals in both phases.  

In [4], the authors proposed a concept called Q-resolution. Q-
resolution omits each universal variable in a resulting clause if 
no existential variable in the clause has higher quantification 
level than the universal variable. Therefore, in Q-resolution, the 
resulting clause may contain fewer variables than an ordinary 
resolvent from the same two clauses. The authors prove that Q-
resolution is valid in QBF, i.e. the result from a Q-resolution is 
redundant and can be added to the original clause database. Our 
proof for the main theorem is valid even if “Q-resolution” is 
used instead of regular resolution.  

In our proof for the Implication Rule, we used the assumption 
that a universal variable can be assigned a value only if all 
variables that have quantification level less that it have already 
been assigned. The Monotone Literal Rule [7] (sometimes 
called pure literal rule, which states that a variable can be 
assigned a value if all of its occurrences in the unsatisfied 
clauses are in the same phase. Please refer to [7] for details 
about this rule) actually invalidates this assumption. However, 
the Monotone Literal Rule will not invalidate our conclusion 
because if applied, it will only make the universal literals 
evaluate to 0. Therefore, the Implication Rule still holds even 
when the Monotone Literal Rule is applied. Because the proof 
for the Conflict Rule does not depend on the above mentioned 
assumption, the rule obviously holds.  

3.3 Stop Criterion for QBF  
The stop criterion will make sure that the resulting clause from 
the resolution will generate a clause that can really resolve the 
current conflict, and bring the search to a new space.  

In a QBF solver, the function choose_literal() will still 
only choose an implied literal because decision variables do not 
have an antecedent. Therefore, it automatically makes sure that 
all the chosen resolved variables will be existential.  



The stop criterion for QBF is different from SAT. The 
resolution process should stop if the generated clause satisfies 
the following conditions: 

1. Among all its existential variables, one and only one of 
them has the highest decision level (which may not be 
the current decision level). Suppose this variable is V. 

2. V is in a decision level with an existential variable as 
the decision variable. 

3. All universal literals with quantification level smaller 
than V’s are assigned 0 before decision level of V’s. 

The first and third conditions make sure that this clause is 
indeed an asserting clause (i.e. unit after backtracking). The 
second condition makes sure that we will undo at least one 
existential decision because undoing universal decisions only 
can never really resolve a conflict. An exception to this stop 
criterion is that if all existential literals in the resulting clause 
are at decision level 0, or if there are no existential literals in the 
resulting clause, then the solver should stop and immediately 
state that the problem is unsatisfiable. 

3.4 Implementing the QBF solver Quaffle 
We have implemented the above-mentioned idea in a new QBF 
solver called Quaffle. Quaffle is a loose acronym for Quantified 
Formulae Evaluator with Learning. Quaffle is implemented in 
C++. We have implemented both the naïve chronological 
backtracking scheme as well as the new conflict driven learning 
scheme in the place of analyze_conflict(), as shown in 
Figure 2. In the learning case, we use the decision strategy 
VSIDS ([15]), which has been shown to be quite successful for 
Boolean SAT solvers. In the naïve case, we still used VSIDS, 
but disabled the decaying mechanism, which makes sense only 
with learned clauses, thus just choosing the unassigned literal 
that occurs the most. In all the experiments in this paper, 
Quaffle uses the naïve chronological backtracking scheme in 
place of analyze_SAT().Section 5 provides some additional 
information on further developments on this.  

The learned clauses from conflicts can be deleted in the same 
manner as in Boolean SAT solvers. It is easy to implement 
either relevance based or clause length based clause deletion. In 
the current implementation, because the benchmarks are not 
very big and the solver is largely runtime limited, we did not 
turn the clause deletion on in all the experimental runs. For 
larger benchmarks, certain clause deletion strategies are 
obviously needed. It is also possible to implement other 
techniques commonly used in SAT solvers such as random 
restart in our framework. However, a detailed discussion and 
experimentation for that is beyond the scope of this paper.  

4. Experimental Results 
In this section, we compare the performance of three versions 
of Quaffle. The first version has the learning turned on, which 
is denoted as Quaffle-CDL in the result table shown in Figure 
3. The second version uses the same procedure as Quaffle-
CDL, except that the learned clauses are deleted immediately. 
The result is that we essentially disabled learning but enabled 
the solver to perform non-chronological backtracking. This is 
equivalent to the concept of backjumping in [11], and we 

denote it Quaffle-BJ in the table. The third version, denoted 
Quaffle-naïve in the table, is using the naïve version of 
analyze_conflict().   We also compare our solver’s 
performance with some of the existing state-of-the-art QBF 
solvers. We chose two of the most efficient solvers for the test 
suite we use. For a comprehensive comparison of how other 
state-of-the-art QBF solvers fare on these benchmarks, we refer 
the readers to [18]. QuBE-BJ is the backjumping [11] version 
of QuBE [10], while QuBE-BT is the version with simple 
backtracking scheme. Decide [8] is the solver by J. Rintanen. 

The benchmark suite was obtained from J. Rintanen’s home 
page [20]. We are unable to provide details on the benchmarks 
(e.g. number of variables, number of clauses etc.) because of 
space limitations. These, as well as additional benchmarks are 
available on a website for this paper [21]. The benchmarks 
shown here consist of some random QBF instances as well as 
some instances generated from real applications. The tests were 
conducted on a Dell PIII 933 machine with 1G memory. The 
timeout limit is 1800 seconds for each instance. We omitted the 
instances for which all the solvers timeout. 

Currently, Quaffle does not have any of the advanced 
techniques employed in other state-of-the-art QBF solvers such 
as pure literal rule [7], trivial truth [7], inversion of quantifiers 
[8], implicit unrolling [9], connected component detection [8] 
etc. Therefore, it is not surprising that the naïve version of 
Quaffle is not very competitive compared with others. The 
Quaffle-BJ version fares much better than Quaffle-naïve, 
because of non-chronological backjumping. In comparison, it is 
doing better in this particular benchmark suite than QuBE-BJ. 
We suspect that is so because our branch heuristic VSIDS is 
better suited for these examples. Notice that in most of the 
benchmarks, Quaffle-CDL is much better than Quaffle-BJ. This 
shows the effectiveness of conflict driven learning in a QBF 
setting compared with back jumping only. The only exceptions 
are four of the TOILET test cases. We suspect that is due to 
noise introduced in learning that brings the search to some area 
that is hard to get out of. Random restarts and other techniques 
that can bring search out of the “valley area” may help in these 
cases.  

We want to point out that the effectiveness of conflict driven 
learning depends on how many conflicts are encountered in the 
searching process. In some of the benchmarks (e.g. CHAIN), 
almost all of the terminal leaves of the search are satisfying 
leaves (i.e. in Figure 1, the status is SAT). In that case, learned 
clauses do not contribute much compared with just back 
jumping. We would like to show some representative data for 
the search tree size, number of implications, number of conflicts 
etc. for each solver. However, we do not have access to the 
source code of other solvers, and their print outs after each run 
are not quite informative. All three solvers use different 
implication rules, thus making direct comparison of number of 
branches misleading. For example, decide [8] uses a look ahead 
technique for each branch, this will reduce the number of 
decisions, but will increase the time need for each decision. 
Therefore, we can only show the run time for each of the 



solvers, because that is the ultimate criterion in evaluating a 
solver.  

From the experimental results we find that Quaffle is quite 
competitive compared with other state-of-the-art QBF solvers. 
It seems that conflict driven learning has great effect in pruning 
the search space, as shown by comparing the naïve version and 
CDL version of Quaffle. Quaffle with CDL outperforms 
Quaffle-BJ in most of the structured benchmarks, 
demonstrating that CDL is more effective than simple 

backjumping. Decide fares very well on this particular 
benchmark suite, mainly because the “inversion of quantifier” 
[8] and “implicit unrolling” [9] heuristic it employs seem to be 
very effective for these particular benchmark suites. Our focus 
in this paper was to study conflict driven learning for QBF, and 
thus our experiments are currently focused on evaluating the 
gains provided by this capability.  

 

  Quaffle Quaffle Quaffle QuBE QuBE Decide    Quaffle Quaffle Quaffle QuBE QuBE DecideBenchmark 
Name 

  
-CDL -BJ -naïve -BT -BJ    

Benchmark 
 Name   -CDL -BJ -naïve -BT -BJ   

BLOCKS3i.4.4 F 0.07 0.07 - - - 0.05  impl20 T 15.82  - - - - -

BLOCKS3i.5.3 F 29.92 128.42 - - - 31.89  logn...A0 F 0 0 0 0 0 0.01

BLOCKS3i.5.4 T 2.91 30.75 - - - 6.59  logn...A1 F 2.23 67.47 - - 7.28 0.47

BLOCKS3ii.4.3 F 0.05 0.07 - - 5.02 0.03  logn...A2 T 127.4 - - - - 28.28

BLOCKS3ii.5.2 F 0.13 0.82 - - 82.19 0.07  logn...B0 F 0.01 0.01 0.01 0 0 0.03

BLOCKS3ii.5.3 T 0.33 2 - - - 1.5  logn...B1 F 8.47 342.55 - - 37.89 0.61

BLOCKS3iii.4 F 0.03 0.05 - - 1.62 0.01  logn...B2 F 767.94 - - - - 1.88

BLOCKS3iii.5 T 0.28 0.72 - - - 0.26  R...3...50_0.T T 1.23 3.15 - 0 0 0.03

BLOCKS4i.6.4 F 254.11 - - - - 5.35  R...3...50_1.F F 0.02 2.52 - 0.03 0.01 0.47

BLOCKS4ii.6.3 F 400.99 - - - - 4.53  R...3...50_2.T T 0.83 1.11 738.7 0 0 0.05

BLOCKS4ii.7.2 F - - - - - 9.15  R...3...50_3.T T 1.07 1.65 521.98 0.11 0 0.06

BLOCKS4ii.7.3 T - - - - - 731.24  R...3...50_4.T T 1.44 2.74 - 0.06 0.01 0.1

BLOCKS4iii.6 F 40.27 - - - - 2.92  R...3...50_5.T T 0.97 21.42 71.41 0.01 0 0.07

BLOCKS4iii.7 T - - - - - 414.76  R...3...50_6.F F 1.53 11.99 - 0.07 0.03 20.52

CHAIN12v.13 T 0.31 0.32 - 0.36 0.34 0.41  R...3...50_7.F F 0.6 7.88 - 0.05 0.02 1.91

CHAIN13v.14 T 0.69 0.69 - 0.84 0.8 0.79  R...3...50_8.F F 0.28 1.33 - 0.22 0.06 0.32

CHAIN14v.15 T 1.47 1.49 - 2.45 2.27 1.6  R...3...50_9.T T 0.87 1.03 40.99 0.05 0.01 0.25

CHAIN15v.16 T 3.19 3.25 - 4.57 5.17 3.25  R...7...60_0.F F 0.13 2.19 479.68 0.44 0.02 0.01

CHAIN16v.17 T 6.9 7.03 - 15.53 13.38 6.7  R...7...60_1.T T 0.23 0.52 0.55 0.07 0.01 0.06

CHAIN17v.18 T 15.27 15.14 - 34.89 43.44 14.48  R...7...60_2.T T 1.28 0.65 423.71 0 0 0.05

CHAIN18v.19 T 32.21 33.02 - 97.73 100.06 31.21  R...7...60_3.T T 0.33 0.51 36.83 0.75 0.02 0.15

CHAIN19v.20 T 74.04 75.09 - 234.65 249.04 61.08  R...7...60_4.T T 13.44 51.64 - 0.76 0.01 0.04

CHAIN20v.21 T 152.88 166.98 - 527.92 650.44 130.71  R...7...60_5.F F 1.32 8.32 - 0.64 0.01 27.12

CHAIN21v.22 T 340.29 362.24 - 1271 1462.59 272.58  R...7...60_6.T T 0.51 1.79 150.08 0.19 0.03 0.83

CHAIN22v.23 T 741 846.08 - - - 569.65  R...7...60_7.T T 2.22 11.9 - 0.73 0.06 0.18

CHAIN23v.24 T 1783.73 1790.14 - - - 1200.91  R...7...60_8.F F 0 0 1.85 0.02 0.01 0.08

impl02 T 0 0 0 0 0 0  R...7...60_9.T T 0.23 3.75 - 0.02 0 0.09

impl04 T 0 0 0 0 0 0.01  TOILET02.1.iv.3 F 0 0 0 0 0 0

impl06 T 0.01 0.01 0.01 0 0.01 0.04  TOILET02.1.iv.4 T 0 0 0 0 0 0

impl08 T 0.01 0.04 0.07 0.01 0 0.29  TOILET06.1.iv.11 F 40.15 7.46 757.08 25.68 5.4 10.45

impl10 T 0.02 0.33 0.48 ** ** 2.29  TOILET06.1.iv.12 T 18.17 5.57 1633.03 12.36 1.48 0.1

impl12 T 0.06 2.34 3.57 ** ** 17.38  TOILET07.1.iv.13 F - 104.47 - 599.6 92.06 141.17

impl14 T 0.25 18.19 26.41 ** ** 130.64  TOILET07.1.iv.14 T - 74.77 - 265.3 23 0.22

impl16 T 0.99 135.22 195.52 ** ** 974.53  TOILET10.1.iv.20 T -   - - - 1.31

impl18 T 3.98 985.57 1445.76 ** ** -
 

TOILET16.1.iv.32 T -
  

- - - 15.39

Figure 3. Run time (in seconds) comparison of Quaffle with other solvers  
** Qube generated segmentation fault on these benchmarks 
-    Solver aborted after 1800 seconds 



5. Related Work 
A closely related work is presented by E. Giunchiglia et al. 
recently in [11]. In that paper, the authors demonstrate how to 
add backjumping into their QBF solving process. Our work 
differs from their conflict directed backjumping in the way that 
we keep the knowledge from conflicts as learned clauses, and 
non-chronological backjumping is a direct consequence of the 
learned clauses much like in modern SAT solvers. As this 
learned clause is recorded in the database, it may be used for 
future pruning of the search space. In contrast, in [11] learning 
is not possible. On the other hand, the paper has the concept of 
solution directed backjumping, which can prune the search 
space when a satisfying leaf is encountered. In this work, we do 
not have a corresponding concept for that. We have 
independently developed new techniques to deal with this 
deficiency in [24]. 
Recently there has been a big resurgence in QBF research. We 
are now aware of two research efforts with contemporaneous 
publications. In particular, in [22], the authors propose to cache 
lemmas and models to help the search. The idea of cache 
lemmas is similar to the idea discussed here about conflict 
driven learning. In that work, even though the authors used 
resolution (more specifically, Q-resolution [4], a stronger 
version of regular resolution for QBF) to generate lemmas, they 
do not show that tautology clauses can be treated exactly the 
same as regular clauses, as shown by this work. In [23], the 
authors also proposed to incorporate conflict driven learning in 
their QuBE framework. However, their approach is not 
resolution based, thus needs some special treatment (i.e. pre-fix 
closed) for the variable assignments in order to construct 
reasons correctly for learning. These two papers also developed 
schemes for learning for satisfied leaves, denoted model 
caching in [22] and good solution learning in [23] respectively. 
Basically, they are improving the function analyze_SAT() 
discussed in this paper with more powerful schemes. We have 
also independently proposed our own version of the idea in 
[24], which expands the work presented here.  For a more 
detailed comparison of these solvers, we refer readers to [21] 
for more experiment results.  

6. Conclusion 
In this paper we present our work on incorporating conflict 
driven learning into a Quantified Boolean Formulae evaluation 
framework. Conflict driven learning has been tremendously 
successful in Boolean SAT solvers. Our experiments show that 
it is also very promising in a QBF solver framework. To adapt 
the algorithm for the QBF case, we introduce long distance 
resolution and prove that the resulting clauses obey the rules of 
regular clauses. We implemented this algorithm in a new QBF 
solver called Quaffle. Experiments shows that conflict driven 
learning can greatly speed up the solving process.  
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