Appendix C. Proofs

Condition A1. Random draw from population. Let μ be a probability measure on (Ω, \mathcal{F}). Each $\omega \in \Omega$ represents an individual. $(\Omega, \mathcal{F}, \mu)$ describes the probabilities of drawing individuals from a (possibly infinite) population.

Condition A2. Stochastic treatment assignment. For each $\omega \in \Omega$, let v_{ω} be a probability measure on $(\Delta, \mathcal{D}) .\left(\Delta, \mathcal{D}, v_{\omega}\right)$ describes the probabilities associated with receiving the treatment (or, in the RDD, the score V), for each individual ω. Assume that for any $B \in \mathcal{D}, v_{\omega}(B)$ as a function of ω is measurable \mathcal{F}. Let \mathcal{G} be the σ-field consisting of all sets $\Omega \times A$, where $A \in \mathcal{D}$.

Condition A3. Probabilities for the overall experiment. Define P as follows: $\forall E \in \mathcal{F} \times \mathcal{D}$, $P(E)=\int_{\Omega} v_{\omega}[\delta:(\omega, \delta) \in E] \mu(d \omega)$. It can be shown that P is a probability measure on $(\Omega \times\{0,1\}, \mathcal{F} \times \mathcal{D})$.

Condition A4. Pre-determined characteristics. Let $X=x(\omega)$ be a real-valued function that is measurable $\mathcal{F} \times \mathcal{D}$. It follows that it is also measurable \mathcal{F}.

Condition A5. Finite first moments. E_{P} and E_{μ} denote expectations with respect to probability measures P and μ, respectively. Where appropriate, $Y, Y_{1}, Y_{0}, \frac{f_{\omega}(0)}{f(0)} Y, \frac{f_{\omega}(0)}{f(0)} Y_{1}$, and $\frac{f_{\omega}(0)}{f(0)} Y_{0}$ are each assumed to be integrable P and integrable μ.

Condition B1. Binary treatment assignment model. Let $\Delta=\{0,1\}$ and $\mathcal{D}=\{\varnothing,\{0\},\{1\},\{0,1\}\}$. Define the random variable D as $D=\delta, \delta \in \Delta$, which is measurable $\mathcal{F} \times \mathcal{D}$.

Condition B2. Regression discontinuity design. Let $\Delta=\mathbb{R}$, and $\mathcal{D}=\mathcal{R}^{1}$ be the class of linear Borel sets. Define the random variable V - measurable on $\mathcal{F} \times \mathcal{D}-$ as $V(\delta)=\delta, \delta \in \Delta$, and let $D=$ $1[V \geq 0]$.

Condition C1. Potential outcomes. Let $Y_{1}=y_{1}(\omega), Y_{0}=y_{0}(\omega)$, be real-valued functions that are measurable $\mathcal{F} \times \mathcal{D}$ (and hence measurable \mathcal{F}). Let $Y=D Y_{1}+(1-D) Y_{0}$.

Condition C2. Potential outcome function. Let $Y=y(\omega, \delta)$ be a real-valued function that is measurable $\mathcal{F} \times \mathcal{D}$. Let $y(\cdot, \cdot)$ be continuous in the second argument except at $\delta=0$, where the function is only continuous from the right. Define the function $Y^{+}=y(\omega, 0)$ and $Y^{-}=\lim _{\varepsilon \rightarrow 0^{+}} y(\omega,-\varepsilon)$.

Condition D1. Treatment randomization. v_{ω} is identical for all $\omega \in \Omega$
Condition D2. Continuous density of score. Let $F_{\omega}(\delta)=v_{\omega}(-\infty, \delta]$, and $f_{\omega}(\delta)$ its derivative with respect to δ. Let $f(\delta)=\int_{\Omega} f_{\omega}(\delta) \mu(d \omega)$. Assume that $0<f_{\omega}(\delta)$, and $f_{\omega}(\delta)$ is continuous in δ on \mathbb{R}. (Note that if v_{ω} is measurable \mathcal{F}, one can show that in this set-up, so too are F_{ω} and f_{ω}).

Proposition 1. If Conditions A1-A5, B1, C1, and D1 hold, then:
a) $\forall F \in \mathcal{F}, P[F \times \Delta \mid D=1]=P[F \times \Delta \mid D=0]=P[F \times \Delta]=\mu[F]$
b) $E_{P}[Y \mid D=1]-E_{P}[Y \mid D=0]=E_{\mu}\left[Y_{1}-Y_{0}\right] \equiv A T E$
c) $\forall x_{0} \in \mathbb{R}, P\left[X \leq x_{0} \mid D=1\right]=P\left[X \leq x_{0} \mid D=0\right]=P\left[X \leq x_{0}\right]=\mu\left[\omega: X \leq x_{0}\right]$

Proof. a) $P[F \times \Delta \mid D=1]=P[(F \times \Delta) \cap(\Omega \times\{1\})] / P[\Omega \times\{1\}]$. Numerator is $\int_{F \times\{1\}} P(d(\omega, \delta))$.
This is equal to $\int_{F}\left[\int_{\{1\}} v_{\omega}(d \delta)\right] \mu(d \omega)=v_{\omega}(\{1\}) \cdot \mu[F]$ by 18.20.c of Billingsley (1995) and by D1. Similarly, denominator is $v_{\omega}(\{1\})$. Similar argument holds for $P[F \times \Delta \mid D=0]$. b) Need to show that conditional expectation of Y_{1} given \mathcal{G}, evaluated at $D=1$ is equal to $E_{\mu}\left[Y_{1}\right]$. It can be shown that the conditional expectation of Y given \mathcal{G} can be written as $\alpha\left(\delta_{0}\right) \equiv \frac{1}{P\left[\Omega \times\left\{\delta_{0}\right\}\right]} \int_{\Omega \times\left\{\delta_{0}\right\}} Y_{\delta_{0}} P(d(\omega, \delta))$, for $\delta_{0}=0$ and 1. Consider the case when $\delta_{0}=1$. We then have $\frac{1}{P[\Omega \times\{1\}]} \int_{\Omega \times\{1\}} Y_{1} P(d(\omega, \delta))=$ $\frac{1}{P[\Omega \times\{1\}]} \int_{\Omega}\left[\int_{\{1\}} Y_{1} v_{\omega}(d \delta)\right] \mu(d \omega)$ by 18.20.c of Billingsley (1995). Because Y_{1} is only a function of ω, and by D1, this becomes $\frac{v_{\omega}(\{1\})}{P[\Omega \times\{1\}\}} \int_{\Omega} Y_{1} \mu(d \omega)$ which is equal to $\int_{\Omega} Y_{1} \mu(d \omega)=E_{\mu}\left[Y_{1}\right]$; a similar argument shows that $\alpha(0)=E_{\mu}\left[Y_{0}\right]$. c) By A4, for every $x_{0} \in \mathbb{R}, F \equiv\left[\omega: X(\omega) \leq x_{0}\right]$ is in \mathcal{F}, and thus c) follows from a).

Proposition 2 If Conditions A1-A5, B2, C1, and D2 hold, then:
a) $\forall F \in \mathcal{F}, P[F \times \Delta \mid V=v]$ is continuous in v at $v=0$
b) $E_{P}[Y \mid V=0]-\lim _{\varepsilon \rightarrow 0^{+}} E_{P}[Y \mid V=-\varepsilon]=E_{P}\left[Y_{1}-Y_{0} \mid V=0\right]=E_{\mu}\left[\frac{f_{\omega}(0)}{f(0)}\left(Y_{1}-Y_{0}\right)\right] \equiv$ ATE*
c) $\forall x_{0} \in \mathbb{R}, P\left[X \leq x_{0} \mid V=v\right]$ is continuous in v at $v=0$

Proof. a) Fix $F \in \mathcal{F}$, and consider the function $\alpha: \Omega \times \Delta \rightarrow \mathbb{R}, \alpha(z, \delta) \equiv \frac{\int_{F} f_{\omega}(\delta) \mu(d \omega)}{f(\delta)}$. It suffices to show 1) that $\alpha(z, \delta)$ is a version of the conditional probability of $F \times \Delta$ given \mathcal{G}, and 2) that $\alpha(z, \delta)$ is continuous in δ on \mathbb{R}. First, for each $\Omega \times A$ we have - by 18.20.c and 18.20.d of Billingsley
(1995) - $\int_{\Omega \times A} \alpha(z, \delta) P(d(z, \delta))=\int_{A} \frac{\int_{F} f_{\omega}(\delta) \mu(d \omega)}{f(\delta)} v(d \delta)$, where v is a probability measure defined by $v(B)=\int_{\Omega} v_{\omega}(B) \mu(d \omega)$, for all $B \in \mathcal{D} . v$ has density f with respect to Lebesgue measure because for all $B \in \mathcal{D}, \int_{B} f(\delta) d \delta=\int_{B}\left[\int_{\Omega} f_{\omega}(\delta) \mu(d \omega)\right] d \delta=\int_{\Omega}\left[\int_{B} f_{\omega}(\delta) d \delta\right] \mu(d \omega)=\int_{\Omega} v_{\omega}(B) \mu(d \omega)$, by Fubini's theorem, and because $f_{\omega}(\delta)$ is a density of v_{ω}. Thus, by theorem 16.11 of Billingsley (1995), $\int_{A} \frac{\int_{F} f_{\omega}(\delta) \mu(d \omega)}{f(\delta)} v(d \delta)=\int_{A}\left[\int_{F} f_{\omega}(\delta) \mu(d \omega)\right] d \delta$, which equals $\int_{F}\left[\int_{A} f_{\omega}(\delta) d \delta\right] \mu(d \omega)$, by Fubini's theorem. This equals $\int_{F} v_{\omega}(A) \mu(d \omega)=P[F \times A]$, because f_{ω} is a density and by 18.20.c of Billingsley (1995).

Second, to show continuity of $\alpha(z, \delta)$, it suffices to show that for any $F \in \mathcal{F}$ and any sequence $\delta_{n} \rightarrow 0, \int_{F} f_{\omega}\left(\delta_{n}\right) \mu(d \omega) \rightarrow \int_{F} f_{\omega}(0) \mu(d \omega)$. This follows from dominated convergence, noting that $f_{\omega}\left(\delta_{n}\right) \leq g_{\omega}$, if $g_{\omega} \equiv \sup _{n} f_{\omega}\left(\delta_{n}\right)$, which is finite for each ω, because $f_{\omega}\left(\delta_{n}\right)$ converges to $f_{\omega}(0)$, by D2.
b) Consider the function $\beta: \Omega \times \Delta \rightarrow \mathbb{R}, \beta(z, \delta)=\int_{\Omega} Y \frac{f_{\omega}(\delta)}{f(\delta)} \mu(d \omega)$. It suffices to show that 1) $\beta(z, \delta)$ is a version of the conditional expectation of Y given \mathcal{G}, and 2) $\beta(z, 0)=E_{P}\left[Y_{1} \mid V=0\right]=$ $E_{\mu}\left[\frac{f_{\omega}(\delta)}{f(\delta)} Y_{1}\right]$ and $\lim _{\varepsilon \rightarrow 0^{+}} \beta(z,-\varepsilon)=E_{P}\left[Y_{0} \mid V=0\right]=E_{\mu}\left[\frac{f_{\omega}(\delta)}{f(\delta)} Y_{0}\right]$. First, for all $\Omega \times A \in \mathcal{G}$, we have $\int_{\Omega \times A} \beta(z, \delta) P(d(z, \delta))=\int_{A}\left[\int_{\Omega} Y \frac{f_{\omega}(\delta)}{f(\delta)} \mu(d \omega)\right] v(d \delta)$ by 18.20.c and 18.20.d of Billingsley (1995). This is equal to $\int_{\Omega}\left[\int_{A} Y \frac{f_{\omega}(\delta)}{f(\delta)} v(d \delta)\right] \mu(d \omega)=\int_{\Omega}\left[\int_{A} Y f_{\omega}(\delta) d \delta\right] \mu(d \omega)$ because v has density f (see above). This is equal to $\int_{\Omega}\left[\int_{A} Y v_{\omega}(d \delta)\right] \mu(d \omega)=\int_{\Omega \times A} Y P(d(\omega, \delta))$, because v_{ω} has density f_{ω}, and by 18.20.c of Billingsley (1995). Second, let $\delta=0 . \int_{\Omega} Y \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)=\int_{\Omega} Y_{1} \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)=E_{P}\left[Y_{1} \mid V=0\right]$, by the definition of Y, and the same argument above. Also, $\int_{\Omega} Y_{1} \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)=E_{\mu}\left[\frac{f_{\omega}(0)}{f(0)} Y_{1}\right]$. Finally, let $\delta_{n}<0$, $\delta_{n} \rightarrow 0 . \frac{f_{\omega}\left(\delta_{n}\right)}{f\left(\delta_{n}\right)} \rightarrow \frac{f_{\omega}(0)}{f(0)}$, by D2. Need to show $\lim _{n} \int_{\Omega} Y_{0} \frac{f_{\omega}\left(\delta_{n}\right)}{f\left(\delta_{n}\right)} \mu(d \omega)=\int_{\Omega} Y_{0} \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)$. This follows from dominated convergence with $\left|Y_{0} \frac{f_{\omega}\left(\delta_{n}\right)}{f\left(\delta_{n}\right)}\right|$ dominated by $\left|Y_{0} \frac{g_{\omega}}{\inf _{n} f\left(\delta_{n}\right)}\right|$ (same g_{ω} as above).By the same argument as above, $\int_{\Omega} Y_{0} \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)=E_{P}\left[Y_{0} \mid V=0\right]=E_{\mu}\left[\frac{f_{\omega}(0)}{f(0)} Y_{0}\right]$.
c) By A4, for every $x_{0} \in \mathbb{R}, F \equiv\left[\omega: X(\omega) \leq x_{0}\right]$ is in \mathcal{F}, and thus c) follows from a).

Proposition 3

If Conditions A1-A5, B2, C2, and D2 hold, then:
a) and c) of Proposition 2 are true, and
b) $E_{P}[Y \mid V=0]-\lim _{\varepsilon \rightarrow 0^{+}} E_{P}[Y \mid V=-\varepsilon]=E_{\mu}\left[\frac{f_{\omega}(0)}{f(0)}\left(Y^{+}-Y^{-}\right)\right] \equiv A T E^{* *}$

Proof. For a) and c), see the proof to Proposition 2. b) First, following the argument the proof to Proposition 2, $\beta(z, \delta)$ is a version of the conditional expectation of Y given \mathcal{G}. Second, let $\delta=0$. $\int_{\Omega} Y \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)=\int_{\Omega} Y^{+} \frac{f_{\omega}(0)}{f(0)} \mu(d \omega)=E_{\mu}\left[\frac{f_{\omega}(0)}{f(0)} Y^{+}\right]$. Finally, let $\delta_{n}<0, \delta_{n} \rightarrow 0 . \frac{f_{\omega}\left(\delta_{n}\right)}{f\left(\delta_{n}\right)} \rightarrow \frac{f_{\omega}(0)}{f(0)}$, by D2. Need to show $\lim _{n} \int_{\Omega} Y \frac{f_{\omega}\left(\delta_{n}\right)}{f\left(\delta_{n}\right)} \mu(d \omega)=\int_{\Omega} Y^{-\frac{f_{\omega}(0)}{f(0)}} \mu(d \omega)$. This follows from dominated convergence with $\left|Y \frac{f_{\omega}\left(\delta_{n}\right)}{f\left(\delta_{n}\right)}\right|$ dominated by $\left|h_{\omega} \frac{g_{\omega}}{\inf _{n} f\left(\delta_{n}\right)}\right|$ (same g_{ω} as above) where $h_{\omega} \equiv \sup _{n}\left|y\left(\omega, \delta_{n}\right)\right|$, which is finite for each ω, because $y\left(\omega, \delta_{n}\right) \rightarrow Y^{-}$, by C2.It follows that $\int_{\Omega} Y^{-\frac{f_{\omega}(0)}{f(0)}} \mu(d \omega)=E_{\mu}\left[\frac{f_{\omega}(0)}{f(0)} Y^{-}\right]$.

