Appendix C. Proofs

Condition A1. Random draw from population. Let μ be a probability measure on (Ω, \mathcal{F}) . Each $\omega \in \Omega$ represents an individual. $(\Omega, \mathcal{F}, \mu)$ describes the probabilities of drawing individuals from a (possibly infinite) population.

Condition A2. Stochastic treatment assignment. For each $\omega \in \Omega$, let v_{ω} be a probability measure on (Δ, \mathcal{D}) . $(\Delta, \mathcal{D}, v_{\omega})$ describes the probabilities associated with receiving the treatment (or, in the RDD, the score V), for each individual ω . Assume that for any $B \in \mathcal{D}$, $v_{\omega}(B)$ as a function of ω is measurable \mathcal{F} . Let \mathcal{G} be the σ -field consisting of all sets $\Omega \times A$, where $A \in \mathcal{D}$.

Condition A3. Probabilities for the overall experiment. Define *P* as follows: $\forall E \in \mathcal{F} \times \mathcal{D}$, $P(E) = \int_{\Omega} v_{\omega} [\delta : (\omega, \delta) \in E] \mu(d\omega)$. It can be shown that *P* is a probability measure on $(\Omega \times \{0, 1\}, \mathcal{F} \times \mathcal{D})$.

Condition A4. Pre-determined characteristics. Let $X = x(\omega)$ be a real-valued function that is measurable $\mathcal{F} \times \mathcal{D}$. It follows that it is also measurable \mathcal{F} .

Condition A5. Finite first moments. E_P and E_{μ} denote expectations with respect to probability measures P and μ , respectively. Where appropriate, Y, Y_1 , Y_0 , $\frac{f_{\omega}(0)}{f(0)}Y$, $\frac{f_{\omega}(0)}{f(0)}Y_1$, and $\frac{f_{\omega}(0)}{f(0)}Y_0$ are each assumed to be integrable P and integrable μ .

Condition B1. Binary treatment assignment model. Let $\Delta = \{0, 1\}$ and $\mathcal{D} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$. Define the random variable D as $D = \delta, \delta \in \Delta$, which is measurable $\mathcal{F} \times \mathcal{D}$.

Condition B2. Regression discontinuity design. Let $\Delta = \mathbb{R}$, and $\mathcal{D}=\mathcal{R}^1$ be the class of linear Borel sets. Define the random variable V – measurable on $\mathcal{F} \times \mathcal{D}$ – as $V(\delta) = \delta$, $\delta \in \Delta$, and let D = 1 [$V \ge 0$].

Condition C1. Potential outcomes. Let $Y_1 = y_1(\omega)$, $Y_0 = y_0(\omega)$, be real-valued functions that are measurable $\mathcal{F} \times \mathcal{D}$ (and hence measurable \mathcal{F}). Let $Y = DY_1 + (1 - D)Y_0$.

Condition C2. Potential outcome function. Let $Y = y(\omega, \delta)$ be a real-valued function that is measurable $\mathcal{F} \times \mathcal{D}$. Let $y(\cdot, \cdot)$ be continuous in the second argument except at $\delta = 0$, where the function is only continuous from the right. Define the function $Y^+ = y(\omega, 0)$ and $Y^- = \lim_{\varepsilon \to 0^+} y(\omega, -\varepsilon)$.

Condition D1. Treatment randomization. v_{ω} is identical for all $\omega \in \Omega$

Condition D2. Continuous density of score. Let $F_{\omega}(\delta) = v_{\omega}(-\infty, \delta]$, and $f_{\omega}(\delta)$ its derivative with respect to δ . Let $f(\delta) = \int_{\Omega} f_{\omega}(\delta) \mu(d\omega)$. Assume that $0 < f_{\omega}(\delta)$, and $f_{\omega}(\delta)$ is continuous in δ on \mathbb{R} . (Note that if v_{ω} is measurable \mathcal{F} , one can show that in this set-up, so too are F_{ω} and f_{ω}).

Proposition 1. If Conditions A1-A5, B1, C1, and D1 hold, then:

a)
$$\forall F \in \mathcal{F}, P [F \times \Delta | D = 1] = P [F \times \Delta | D = 0] = P [F \times \Delta] = \mu [F]$$

b) $E_P [Y | D = 1] - E_P [Y | D = 0] = E_\mu [Y_1 - Y_0] \equiv ATE$
c) $\forall x_0 \in \mathbb{R}, P [X \le x_0 | D = 1] = P [X \le x_0 | D = 0] = P [X \le x_0] = \mu [\omega : X \le x_0]$

Proof. a) $P[F \times \Delta | D = 1] = P[(F \times \Delta) \cap (\Omega \times \{1\})] / P[\Omega \times \{1\}]$. Numerator is $\int_{F \times \{1\}} P(d(\omega, \delta))$. This is equal to $\int_F \left[\int_{\{1\}} v_\omega(d\delta)\right] \mu(d\omega) = v_\omega(\{1\}) \cdot \mu[F]$ by 18.20.c of Billingsley (1995) and by D1. Similarly, denominator is $v_\omega(\{1\})$. Similar argument holds for $P[F \times \Delta | D = 0]$. b) Need to show that conditional expectation of Y_1 given \mathcal{G} , evaluated at D = 1 is equal to $E_\mu[Y_1]$. It can be shown that the conditional expectation of Y given \mathcal{G} can be written as $\alpha(\delta_0) \equiv \frac{1}{P[\Omega \times \{\delta_0\}]} \int_{\Omega \times \{\delta_0\}} Y_{\delta_0} P(d(\omega, \delta))$, for $\delta_0 = 0$ and 1. Consider the case when $\delta_0 = 1$. We then have $\frac{1}{P[\Omega \times \{1\}]} \int_{\Omega \times \{1\}} Y_1 P(d(\omega, \delta)) = \frac{1}{P[\Omega \times \{1\}]} \int_\Omega \left[\int_{\{1\}} Y_1 v_\omega(d\delta)\right] \mu(d\omega)$ by 18.20.c of Billingsley (1995). Because Y_1 is only a function of ω , and by D1, this becomes $\frac{v_\omega(\{1\})}{P[\Omega \times \{1\}]} \int_\Omega Y_1 \mu(d\omega)$ which is equal to $\int_\Omega Y_1 \mu(d\omega) = E_\mu[Y_1]$; a similar argument shows that $\alpha(0) = E_\mu[Y_0]$. c) By A4, for every $x_0 \in \mathbb{R}$, $F \equiv [\omega : X(\omega) \le x_0]$ is in \mathcal{F} , and thus c) follows from a).

Proposition 2 If Conditions A1-A5, B2, C1, and D2 hold, then:

a)
$$\forall F \in \mathcal{F}, P [F \times \Delta | V = v]$$
 is continuous in v at $v = 0$
b) $E_P [Y | V = 0] - \lim_{\varepsilon \to 0^+} E_P [Y | V = -\varepsilon] = E_P [Y_1 - Y_0 | V = 0] = E_\mu \left[\frac{f_\omega(0)}{f(0)} (Y_1 - Y_0) \right] \equiv$

 ATE^*

c) $\forall x_0 \in \mathbb{R}, P \left[X \leq x_0 | V = v \right]$ is continuous in v at v = 0

Proof. a) Fix $F \in \mathcal{F}$, and consider the function $\alpha : \Omega \times \Delta \to \mathbb{R}$, $\alpha(z, \delta) \equiv \frac{\int_F f_{\omega}(\delta)\mu(d\omega)}{f(\delta)}$. It suffices to show 1) that $\alpha(z, \delta)$ is a version of the conditional probability of $F \times \Delta$ given \mathcal{G} , and 2) that $\alpha(z, \delta)$ is continuous in δ on \mathbb{R} . First, for each $\Omega \times A$ we have – by 18.20.c and 18.20.d of Billingsley

 $(1995) - \int_{\Omega \times A} \alpha (z, \delta) P(d(z, \delta)) = \int_{A} \frac{\int_{F} f_{\omega}(\delta)\mu(d\omega)}{f(\delta)} v(d\delta), \text{ where } v \text{ is a probability measure defined by}$ $v(B) = \int_{\Omega} v_{\omega}(B) \mu(d\omega), \text{ for all } B \in \mathcal{D}. \quad v \text{ has density } f \text{ with respect to Lebesgue measure because}$ for all $B \in \mathcal{D}, \quad \int_{B} f(\delta) d\delta = \int_{B} [\int_{\Omega} f_{\omega}(\delta) \mu(d\omega)] d\delta = \int_{\Omega} [\int_{B} f_{\omega}(\delta) d\delta] \mu(d\omega) = \int_{\Omega} v_{\omega}(B) \mu(d\omega), \text{ by}$ Fubini's theorem, and because $f_{\omega}(\delta)$ is a density of v_{ω} . Thus, by theorem 16.11 of Billingsley (1995), $\int_{A} \frac{\int_{F} f_{\omega}(\delta)\mu(d\omega)}{f(\delta)} v(d\delta) = \int_{A} [\int_{F} f_{\omega}(\delta) \mu(d\omega)] d\delta, \text{ which equals } \int_{F} [\int_{A} f_{\omega}(\delta) d\delta] \mu(d\omega), \text{ by Fubini's theorem}.$ This equals $\int_{F} v_{\omega}(A) \mu(d\omega) = P[F \times A], \text{ because } f_{\omega} \text{ is a density and by 18.20.c of Billingsley}$ (1995).

Second, to show continuity of $\alpha(z, \delta)$, it suffices to show that for any $F \in \mathcal{F}$ and any sequence $\delta_n \to 0$, $\int_F f_{\omega}(\delta_n) \mu(d\omega) \to \int_F f_{\omega}(0) \mu(d\omega)$. This follows from dominated convergence, noting that $f_{\omega}(\delta_n) \leq g_{\omega}$, if $g_{\omega} \equiv \sup_n f_{\omega}(\delta_n)$, which is finite for each ω , because $f_{\omega}(\delta_n)$ converges to $f_{\omega}(0)$, by D2.

b) Consider the function $\beta : \Omega \times \Delta \to \mathbb{R}$, $\beta(z, \delta) = \int_{\Omega} Y \frac{f_{\omega}(\delta)}{f(\delta)} \mu(d\omega)$. It suffices to show that 1) $\beta(z, \delta)$ is a version of the conditional expectation of Y given \mathcal{G} , and 2) $\beta(z, 0) = E_P[Y_1|V = 0] = E_\mu \left[\frac{f_{\omega}(\delta)}{f(\delta)}Y_1\right]$ and $\lim_{\varepsilon \to 0^+} \beta(z, -\varepsilon) = E_P[Y_0|V = 0] = E_\mu \left[\frac{f_{\omega}(\delta)}{f(\delta)}Y_0\right]$. First, for all $\Omega \times A \in \mathcal{G}$, we have $\int_{\Omega \times A} \beta(z, \delta) P(d(z, \delta)) = \int_A [\int_{\Omega} Y \frac{f_{\omega}(\delta)}{f(\delta)} \mu(d\omega)] v(d\delta)$ by 18.20.c and 18.20.d of Billingsley (1995). This is equal to $\int_{\Omega} [\int_A Y \frac{f_{\omega}(\delta)}{f(\delta)} v(d\delta)] \mu(d\omega) = \int_{\Omega} [\int_A Y f_{\omega}(\delta) d\delta] \mu(d\omega)$ because v has density f (see above). This is equal to $\int_{\Omega} [\int_A Y v_{\omega}(d\delta)] \mu(d\omega) = \int_{\Omega \times A} YP(d(\omega, \delta))$, because v_{ω} has density f_{ω} , and by 18.20.c of Billingsley (1995). Second, let $\delta = 0$. $\int_{\Omega} Y \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = \int_{\Omega} Y_1 \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = E_P[Y_1|V = 0]$, by the definition of Y, and the same argument above. Also, $\int_{\Omega} Y_1 \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = E_\mu \left[\frac{f_{\omega}(0)}{f(0)} Y_1 \right]$. Finally, let $\delta_n < 0$, $\delta_n \to 0$. $\frac{f_{\omega}(\delta_n)}{f(\delta_n)} \to \frac{f_{\omega}(0)}{f(0)}$, by D2. Need to show $\lim_n \int_{\Omega} Y_0 \frac{f_{\omega}(\delta_n)}{\inf(f(\delta_n))} \mu(d\omega) = \int_{\Omega} Y_0 \frac{f_{\omega}(0)}{f(0)} \mu(d\omega)$. This follows from dominated convergence with $|Y_0 \frac{f_{\omega}(\delta_n)}{f(\delta_n)}|$ dominated by $|Y_0 \frac{g_{\omega}}{\inf(f(\delta_n))}|$ (same g_{ω} as above). By the same argument as above, $\int_{\Omega} Y_0 \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = E_P[Y_0|V = 0] = E_\mu \left[\frac{f_{\omega}(0)}{f(0)} Y_0 \right]$.

c) By A4, for every $x_0 \in \mathbb{R}$, $F \equiv [\omega : X(\omega) \le x_0]$ is in \mathcal{F} , and thus c) follows from a).

Proposition 3

If Conditions A1-A5, B2, C2, and D2 hold, then:

a) and c) of Proposition 2 are true, and

b)
$$E_P[Y|V=0] - \lim_{\epsilon \to 0^+} E_P[Y|V=-\epsilon] = E_\mu \left[\frac{f_\omega(0)}{f(0)}(Y^+ - Y^-)\right] \equiv ATE^{**}$$

Proof. For a) and c), see the proof to Proposition 2. b) First, following the argument the proof to Proposition 2, $\beta(z, \delta)$ is a version of the conditional expectation of Y given \mathcal{G} . Second, let $\delta = 0$. $\int_{\Omega} Y \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = \int_{\Omega} Y^+ \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = E_{\mu} \left[\frac{f_{\omega}(0)}{f(0)} Y^+ \right]$. Finally, let $\delta_n < 0$, $\delta_n \to 0$. $\frac{f_{\omega}(\delta_n)}{f(\delta_n)} \to \frac{f_{\omega}(0)}{f(0)}$, by D2. Need to show $\lim_{n} \int_{\Omega} Y \frac{f_{\omega}(\delta_n)}{f(\delta_n)} \mu(d\omega) = \int_{\Omega} Y^- \frac{f_{\omega}(0)}{f(0)} \mu(d\omega)$. This follows from dominated convergence with $|Y \frac{f_{\omega}(\delta_n)}{f(\delta_n)}|$ dominated by $|h_{\omega} \frac{g_{\omega}}{\inf_n f(\delta_n)}|$ (same g_{ω} as above) where $h_{\omega} \equiv \sup_n |y(\omega, \delta_n)|$, which is finite for each ω , because $y(\omega, \delta_n) \to Y^-$, by C2. It follows that $\int_{\Omega} Y^- \frac{f_{\omega}(0)}{f(0)} \mu(d\omega) = E_{\mu} \left[\frac{f_{\omega}(0)}{f(0)} Y^- \right]$.