
Appendix C. Proofs

Condition A1. Random draw from population. Let � be a probability measure on (
;F). Each ! 2 


represents an individual. (
;F ; �) describes the probabilities of drawing individuals from a (possibly

in�nite) population.

Condition A2. Stochastic treatment assignment. For each ! 2 
, let v! be a probability measure

on (�;D). (�;D; v!) describes the probabilities associated with receiving the treatment (or, in the RDD,

the score V ), for each individual !. Assume that for any B 2D, v! (B) as a function of ! is measurable

F . Let G be the �-�eld consisting of all sets 
�A, where A 2D.

Condition A3. Probabilities for the overall experiment. De�ne P as follows: 8E 2F�D,

P (E) =
R

 v! [� : (!; �) 2 E]� (d!). It can be shown thatP is a probability measure on (
� f0; 1g ;F �D).

Condition A4. Pre-determined characteristics. Let X = x (!) be a real-valued function that is

measurable F�D. It follows that it is also measurable F .

Condition A5. Finite �rst moments. EP and E� denote expectations with respect to probability

measures P and �, respectively. Where appropriate, Y , Y1, Y0, f!(0)f(0) Y ,
f!(0)
f(0) Y1, and

f!(0)
f(0) Y0 are each

assumed to be integrable P and integrable �.

Condition B1. Binary treatment assignmentmodel. Let� = f0; 1g andD= f?; f0g; f1g; f0; 1gg.

De�ne the random variable D as D = �, � 2 �, which is measurable F�D.

Condition B2. Regression discontinuity design. Let � = R, and D=R1 be the class of linear

Borel sets. De�ne the random variable V � measurable on F�D � as V (�) = �, � 2 �, and let D =

1 [V � 0].

Condition C1. Potential outcomes. Let Y1 = y1 (!) ; Y0 = y0 (!), be real-valued functions that

are measurable F�D (and hence measurable F). Let Y = DY1 + (1�D)Y0.

Condition C2. Potential outcome function. Let Y = y (!; �) be a real-valued function that is

measurable F�D. Let y (�; �) be continuous in the second argument except at � = 0, where the function is

only continuous from the right. De�ne the function Y + = y (!; 0) and Y � = lim"!0+ y (!;�").
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Condition D1. Treatment randomization. v! is identical for all ! 2 


Condition D2. Continuous density of score. Let F! (�) = v!(�1; �], and f! (�) its derivative

with respect to �. Let f (�) =
R

 f! (�)� (d!). Assume that 0 < f! (�), and f! (�) is continuous in � on

R. (Note that if v! is measurable F , one can show that in this set-up, so too are F! and f!).

Proposition 1. If Conditions A1-A5, B1, C1, and D1 hold, then:

a) 8F 2F , P [F ��jD = 1] = P [F ��jD = 0] = P [F ��] = � [F ]

b) EP [Y jD = 1]� EP [Y jD = 0] = E� [Y1 � Y0] � ATE

c) 8x0 2 R, P [X � x0jD = 1] = P [X � x0jD = 0] = P [X � x0] = � [! : X � x0]

Proof. a)P [F ��jD = 1] = P [(F ��) \ (
� f1g)] =P [
� f1g]. Numerator is
R
F�f1g P (d (!; �)) :

This is equal to
R
F

hR
f1g v! (d�)

i
� (d!) = v! (f1g) � � [F ] by 18.20.c of Billingsley (1995) and by D1.

Similarly, denominator is v! (f1g). Similar argument holds for P [F ��jD = 0]. b) Need to show that

conditional expectation of Y1 given G, evaluated at D = 1 is equal to E� [Y1]. It can be shown that

the conditional expectation of Y given G can be written as � (�0) � 1
P [
�f�0g]

R

�f�0g Y�0P (d (!; �)),

for �0 = 0 and 1. Consider the case when �0 = 1. We then have 1
P [
�f1g]

R

�f1g Y1P (d (!; �)) =

1
P [
�f1g]

R



hR
f1g Y1v! (d�)

i
� (d!) by 18.20.c of Billingsley (1995). Because Y1 is only a function of !,

and by D1, this becomes v!(f1g)
P [
�f1g]

R

 Y1� (d!) which is equal to

R

 Y1� (d!) = E� [Y1]; a similar argu-

ment shows that � (0) = E� [Y0]. c) By A4, for every x0 2 R, F � [! : X (!) � x0] is in F , and thus c)

follows from a).

Proposition 2 If Conditions A1-A5, B2, C1, and D2 hold, then:

a) 8F 2F , P [F ��jV = v] is continuous in v at v = 0

b) EP [Y jV = 0] � lim"!0+ EP [Y jV = �"] = EP [Y1 � Y0jV = 0] = E�

h
f!(0)
f(0) (Y1 � Y0)

i
�

ATE�

c) 8x0 2 R, P [X � x0jV = v] is continuous in v at v = 0

Proof. a) Fix F 2 F , and consider the function � : 
 � � ! R, � (z; �) �
R
F
f!(�)�(d!)

f(�) . It

suf�ces to show 1) that � (z; �) is a version of the conditional probability of F � � given G, and 2) that

� (z; �) is continuous in � on R. First, for each 
 � A we have � by 18.20.c and 18.20.d of Billingsley
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(1995) �
R

�A � (z; �)P (d (z; �)) =

R
A

R
F
f!(�)�(d!)

f(�) v (d�), where v is a probability measure de�ned by

v (B) =
R

 v! (B)� (d!), for all B 2D. v has density f with respect to Lebesgue measure because

for all B 2D,
R
B f (�) d� =

R
B[
R

 f! (�)� (d!)]d� =

R

[
R
B f! (�) d�]� (d!) =

R

 v! (B)� (d!), by

Fubini's theorem, and because f! (�) is a density of v!. Thus, by theorem 16.11 of Billingsley (1995),R
A

R
F
f!(�)�(d!)

f(�) v (d�) =
R
A[
R
F f! (�)� (d!)]d�, which equals

R
F [
R
A f! (�) d�]� (d!), by Fubini's theo-

rem. This equals
R
F v! (A)� (d!) = P [F �A], because f! is a density and by 18.20.c of Billingsley

(1995).

Second, to show continuity of � (z; �), it suf�ces to show that for any F 2F and any sequence

�n ! 0,
R
F f! (�n)� (d!) !

R
F f! (0)� (d!). This follows from dominated convergence, noting that

f! (�n) � g!, if g! � supn f! (�n), which is �nite for each !, because f! (�n) converges to f! (0), by D2.

b) Consider the function � : 
 � � ! R; � (z; �) =
R

 Y

f!(�)
f(�) � (d!). It suf�ces to show that

1) � (z; �) is a version of the conditional expectation of Y given G, and 2) � (z; 0) = EP [Y1jV = 0] =

E�

h
f!(�)
f(�) Y1

i
and lim"!0+ � (z;�") = EP [Y0jV = 0] = E�

h
f!(�)
f(�) Y0

i
. First, for all 
� A 2 G; we haveR


�A � (z; �)P (d (z; �)) =
R
A[
R

 Y

f!(�)
f(�) � (d!)]v (d�) by 18.20.c and 18.20.d of Billingsley (1995). This

is equal to
R

[
R
A Y

f!(�)
f(�) v (d�)]� (d!) =

R

[
R
A Y f! (�) d�]� (d!) because v has density f (see above).

This is equal to
R

[
R
A Y v! (d�)]� (d!) =

R

�A Y P (d (!; �)), because v! has density f!, and by 18.20.c

of Billingsley (1995). Second, let � = 0.
R

 Y

f!(0)
f(0) � (d!) =

R

 Y1

f!(0)
f(0) � (d!) = EP [Y1jV = 0], by the

de�nition of Y , and the same argument above. Also,
R

 Y1

f!(0)
f(0) � (d!) =E�

h
f!(0)
f(0) Y1

i
. Finally, let �n < 0,

�n ! 0. f!(�n)f(�n)
! f!(0)

f(0) , by D2. Need to show limn
R

 Y0

f!(�n)
f(�n)

� (d!) =
R

 Y0

f!(0)
f(0) � (d!). This follows

from dominated convergence with jY0 f!(�n)f(�n)
j dominated by jY0 g!

infn f(�n)
j (same g! as above):By the same

argument as above,
R

 Y0

f!(0)
f(0) � (d!) = EP [Y0jV = 0] = E�

h
f!(0)
f(0) Y0

i
.

c) By A4, for every x0 2 R, F � [! : X (!) � x0] is in F , and thus c) follows from a).

Proposition 3

If Conditions A1-A5, B2, C2, and D2 hold, then:

a) and c) of Proposition 2 are true, and
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b) EP [Y jV = 0] � lim"!0+ EP [Y jV = �"] = E�

h
f!(0)
f(0) (Y

+ � Y �)
i
� ATE��

Proof. For a) and c), see the proof to Proposition 2. b) First, following the argument the proof

to Proposition 2, � (z; �) is a version of the conditional expectation of Y given G. Second, let � = 0.R

 Y

f!(0)
f(0) � (d!) =

R

 Y

+ f!(0)
f(0) � (d!) = E�

h
f!(0)
f(0) Y

+
i
. Finally, let �n < 0, �n ! 0. f!(�n)f(�n)

! f!(0)
f(0) , by

D2. Need to show limn
R

 Y

f!(�n)
f(�n)

� (d!) =
R

 Y

� f!(0)
f(0) � (d!). This follows from dominated convergence

with jY f!(�n)
f(�n)

j dominated by jh! g!
infn f(�n)

j (same g! as above) where h! � supn jy (!; �n) j, which is �nite

for each !, because y (!; �n)! Y �, by C2:It follows that
R

 Y

� f!(0)
f(0) � (d!) = E�

h
f!(0)
f(0) Y

�
i
.
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