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Abstract

A regression discontinuity (RD) research design is appropriate for program evaluation problems in which treatment

status (or the probability of treatment) depends on whether an observed covariate exceeds a fixed threshold. In many

applications the treatment-determining covariate is discrete. This makes it impossible to compare outcomes for

observations ‘‘just above’’ and ‘‘just below’’ the treatment threshold, and requires the researcher to choose a functional

form for the relationship between the treatment variable and the outcomes of interest. We propose a simple econometric

procedure to account for uncertainty in the choice of functional form for RD designs with discrete support. In particular,

we model deviations of the true regression function from a given approximating function—the specification errors—as

random. Conventional standard errors ignore the group structure induced by specification errors and tend to overstate the

precision of the estimated program impacts. The proposed inference procedure that allows for specification error also has a

natural interpretation within a Bayesian framework.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the classic regression-discontinuity (RD) design (Thistlethwaite and Campbell, 1960) the treatment status
of an observation is determined by whether an observed covariate is above or below a known threshold. If the
covariate is predetermined it may be plausible to think that treatment status is ‘‘as good as randomly
assigned’’ among the subsample of observations that fall just above and just below the threshold.1 As in a true
experiment, no functional form assumptions are necessary to estimate program impacts when the treatment-
determining covariate is continuous: one simply compares average outcomes in small neighborhoods on either
side of the threshold. The width of these neighborhoods can be made arbitrarily small as the sample size
e front matter r 2007 Elsevier B.V. All rights reserved.
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tion may or may not be plausible, depending upon the context. In particular, if the treatment is under perfect control of

there are incentives to ‘‘sort’’ around the threshold, the RD design may be invalid. On the other hand, even when

e partial control over the covariate, as long as there is a stochastic component that has continuous density, the treatment

ood as (locally) randomly assigned. See Lee (2006) for details.
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grows, ensuring that observed and unobserved characteristics of observations in the treatment and control
groups are identical in the limit. This idea underlies the approach of Hahn et al. (2001) and Porter (2003), who
describe non-parametric and semi-parametric estimators of RD gaps.

In many applications where the RD design seems compelling, however, the covariate that determines
treatment is inherently discrete or is only reported in coarse intervals. For example, government programs like
Medicare and Medicaid have sharp age-related eligibility rules that lend themselves to an RD framework, but
in most data sets age is only recorded in months or years. In the discrete case it is no longer possible to
compute averages within arbitrarily small neighborhoods of the cutoff point, even with an infinite amount of
data. Instead, researchers have to choose a particular functional form for the model relating the outcomes of
interest to the treatment-determining variable. Indeed, with an irreducible gap between the ‘‘control’’
observations just below the threshold and the ‘‘treatment’’ observations just above, the causal effect of the
program is not even identified in the absence of a parametric assumption about this function.

In this paper we propose a simple procedure for inference in RD designs in which the treatment-determining
covariate is discrete. The basic idea is to model the deviation between the expected value of the outcome and
the predicted value from a given functional form as a random specification error. Modeling potential
specification error in this way has a number of immediate implications. Most importantly, it introduces a
common component of variance for all the observations at any given value of the treatment-determining
covariate. This creates a problem similar to the one analyzed by Moulton (1990) for multi-level models in
which some of the covariates are only measured at a higher level of aggregation (e.g., micro models with state-
level covariates). Random specification errors can be easily incorporated in inference by constructing sampling
errors that include a grouped error component for different values of the treatment-determining covariate.
The use of ‘‘clustered’’ standard errors will generally lead to wider confidence intervals that reflect the
imperfect fit of the parametric function away from the discontinuity point.

More subtly, inference in an RD design involves extrapolation from observations below the threshold to
construct a counterfactual for observations above the threshold. As in a classic out-of-sample forecasting
problem, the sampling error of the counterfactual prediction for the point of support just beyond the threshold
includes a term reflecting the expected contribution of the specification error at that point. Since the estimated
(local) treatment effect is just the difference between the mean outcome for these observations and the
counterfactual prediction, the precision of the estimated treatment effect depends on whether one assumes that
the same specification error would prevail in the counterfactual world. If so, this error component vanishes. If
not, the confidence interval for the local treatment effect has to be widened even further.

The paper is organized as follows. Section 2 describes the RD framework and why discreteness in the
treatment-determining covariate implies that the treatment effect is not identified without assuming a
parametric functional form. Section 3 describes the proposed inference procedure under a model where
specification errors are considered random. Section 4 describes a modified procedure under less restrictive
assumptions about the specification errors. Section 5 proposes an alternative, efficient estimator for the
treatment effect, and Section 6 relates this estimator to a Bayesian approach. Section 7 concludes.
2. The RD design with discrete support

2.1. The problem of discreteness

To illustrate how discreteness causes problems for identification in an RD framework, consider the
following potential outcomes formulation.2 There is a binary indicator D of treatment status which is
determined by whether an observed covariate X is above or below a known threshold x0: D ¼ 1½XXx0�.
Let Y 1 represent the potential outcome if an observation receives treatment and let Y 0 represent the potential
outcome if not. The goal is to estimate E½Y 1 � Y 0jX ¼ x0�; the average treatment effect at the threshold.
As usual, Y 1 and Y 0 are not simultaneously observed for any individual. Instead, we observe
Y ¼ DY 1 þ ð1�DÞY 0.
2For an overview of the potential outcomes framework for program evaluation problems see, for example, Angrist and Krueger (1999).
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When the support of X is continuous and certain smoothness assumptions are satisfied, E½Y 1 � Y 0jX ¼ x0�

is identified by the discontinuity in the regression function for the observed outcome Y at x0. More specifically,
if E½Y 1jX ¼ x� and E½Y 0jX ¼ x� are both continuous in x at x0, then

E½Y jX ¼ x0� � lim
e!0þ

E½Y jX ¼ x0 � e�

¼ E½Y 1jX ¼ x0� � lim
e!0þ

E½Y 0jX ¼ x0 � e�

¼ E½Y 1 � Y 0jX ¼ x0�.

This idea is illustrated in Fig. 1. The data identify E½Y 1jX ¼ x� when xXx0; and E½Y 0jX ¼ x� when xox0,
as indicated by the solid lines. Because of the discontinuous rule that determines treatment status, the data do
not identify the dashed lines, or the counterfactual mean E½Y 0jX ¼ x0� (the open circle). What the data do
yield is E½Y 0jX ¼ x0 � e�, which can be an arbitrarily good approximation to E½Y 0jX ¼ x0�, with e sufficiently
small. In this setting, non-parametric and semi-parametric procedures for estimation are appropriate (Hahn
et al., 2001; Porter, 2003), particularly when the sample size is large, in which case one can precisely estimate
local averages just above and below x0.

This limiting argument, however, does not work when the support of X is discrete. Suppose X can take on J

distinct values (x1; . . . ;xJ) and let xk ¼ 0 be the value of the covariate at the discontinuity threshold. Fig. 2 is a
discrete analog to Fig. 1. As before, the counterfactual mean E½Y 0jX ¼ 0� is unobservable. Here, the discrete
analog to E½Y jX ¼ x0� � lime!0þ E½Y jX ¼ x0 � e� is E½Y jX ¼ 0� � E½Y jX ¼ xk�1�, which substantially over-
estimates the true effect E½Y 1 � Y 0jX ¼ 0�.

Unlike the continuous case, even if the population quantities E½Y jX ¼ xj� (j ¼ 1; . . . ; J) are known,
E½Y 1 � Y 0jX ¼ 0� remains unidentified. Identification can be achieved by assuming that the regression
function can be expressed as

E½Y jX ¼ xj� ¼ Djb0 þ hðxjÞ, (1)

where hð�Þ is a continuous function, Dj ¼ 1½xjX0�, and hð0Þ ¼ E½Y 0jX ¼ 0�. With this specification b0 (equal to
E½Y 1 � Y 0jX ¼ 0�) is the parameter of interest. Eq. (1) is equivalently expressed as a model for the micro-data

Y ij ¼ Djb0 þ hðxjÞ þ eij , (2)

where Y ij is the outcome for the ith individual with the jth value of X, and eij � Y ij � E½Y ijjX ¼ xj�, with
conditional variance s2ej.

It is important to note that b0 is only identified when hð�Þ is determined by a limited number of parameters.
With only J distinct values of X, if hð�Þ contains J or more parameters, there is no way for the data to
x0

E
[Y
|X
=
x
]

E[Y1|X=x]

E[Y0|X=x]

X

x0-e

Fig. 1. Regression discontinuity, continuous covariate.
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Fig. 2. Regression discontinuity, discrete covariate.
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distinguish between a discontinuity in the regression function, and a continuous function that connects
E½Y jX ¼ xk�1� and E½Y jX ¼ 0�.

In addition, the asymptotic arguments used to justify non-parametric estimation of b0 (as in Hahn et al.,
2001) cannot be applied here. Even with an infinite amount of data, there are no data in a region in an
‘‘arbitrarily’’ small neighborhood below 0. For example, a one-sided kernel (or local linear) estimator will, in
the limit, place no weight on observations for which Xpxk�1, and all of the weight on observations slightly
below 0 (but above xk�1). But because of the discrete support there are no data in this neighborhood.

2.2. Parametric estimation and inference

It is common practice for researchers to estimate RD designs by regressing Y on a low-order polynomial in
xj, and the treatment indicator Dj (e.g., Card and Shore-Sheppard, 2004; Kane, 2003; DiNardo and Lee, 2004;
Lee, 2006). If the polynomial function is the correct form for hð�Þ, then conventional least squares inference is
appropriate.

When the covariate is discrete, a simple goodness-of-fit statistic for the polynomial functional form can be
calculated as

G �
ðESSR � ESSURÞ=ðJ � KÞ

ESSUR=ðN � JÞ
, (3)

where ESSR is the (restricted) error sum of squares from estimating (2) with a polynomial in xj for hðxjÞ, and
ESSUR is the (unrestricted) sum of squares from regressing Y ij on a full set of dummy variables for the J

values of X. Under normality (and homoskedasticity) of eij, this statistic is distributed as F ðJ � K ;N � JÞ,
where K is the number of parameters estimated in (2) and N is the number of observations.3 If the statistic
exceeds the critical value, it suggests that the polynomial function is too restrictive.

A rejection of the polynomial, however, need not imply that the least squares estimate b̂ is inconsistent for
b0. Following White (1980) and Chamberlain (1994), b̂ is consistent for b�, the discontinuity in the function
3Under non-normal (homoskedastic) eij , ðJ � KÞ � G will be asymptotically distributed as w2ðJ � KÞ. Letting W j be the vector of

regressors (the polynomial and dummy variable), under heteroskedastic eij , one can compute the statistic as

~G �
XJ

j¼1

Xnj

i¼1

1

ŝ2ej
ðY ij �W j ŷÞ2 �

XJ

j¼1

Xnj

i¼1

1

ŝ2ej
ðY ij � Y jÞ

2

which is a version of ESSR � ESSUR, weighted by the reciprocal of ŝ2ej ¼ ð
1
nj

Pnj

i¼1ðY ij �Y jÞ
2. Equivalently, ~G ¼ ½

PJ
j¼1

Pnj

i¼1

ð1=ŝ2ejÞðY ij �W j ŷÞ2� �N, or ~G ¼
PJ

j¼1 ðnj=ŝ2ejÞðY j �W j ŷÞ2. It can be shown that ~G is distributed asymptotically as w2ðJ �KÞ.
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that is the least squares approximation to the true function in Eq. (1).4 The difference between b� and b0 is
unknown, but may be small (or could even be zero), even if the goodness-of-fit statistic leads one to reject the
polynomial specification.

Despite this possibility, it seems natural for a researcher to be relatively more ‘‘skeptical’’ of b̂ as an estimate

of b0 when the goodness-of-fit statistic rejects the model, and relatively more ‘‘confident’’ in b̂ when the
F-statistic is relatively close to 1. The inference procedures proposed below formalizes this notion. We propose
to inflate conventional standard errors to reflect ‘‘modeling uncertainty’’. As we show below, the degree of
inflation is directly related to the goodness-of-fit statistic G.
3. Random specification error

Suppose a polynomial is chosen to approximate hð�Þ. The regression in Eq. (2) can be re-written as

Y ij ¼ a0 þDjb0 þ X jg0 þ aj þ eij, (4)

where X j is a row vector of polynomial terms in xj (with the normalization xk ¼ 0), and aj � hðxjÞ � X jg0 is

specification error—the degree to which the true function hð�Þ deviates from the polynomial function.5

Throughout the paper, we focus on the case of no other individual-level covariates, but it will be clear that the
analysis can be extended to include such covariates. Moreover, if the RD design is valid, they can be excluded
in the same way that baseline covariates can be excluded in an analysis of a randomized experiment (see, for
example, the discussion in Lee, 2006). We also focus on the case of the ‘‘sharp’’ RD design – in which the
treatment is a deterministic function of X. It will be clear, however, that these ideas also extend to ‘‘fuzzy’’ RD
designs—in which there is imperfect compliance of the treatment.6 The Appendix describes how to apply the
inference procedures described below to the ‘‘fuzzy’’ design.

Our first proposed inference procedure stems from treating this modeling error as random and orthogonal
to X (or, alternatively, E½ajjX ¼ xj� ¼ 0, j ¼ 1; . . . ; J). This assumption implies that the least squares estimate

b̂ will be consistent for b0. More importantly, it implies that the conventional heteroskedasticity-consistent

variance estimators will generally be inconsistent for the true variance of b̂. This is because the randomness in
aj has induced a within-group correlation (at the j level) in the error. Essentially, the specification error here is

a random effect, and it is well known that standard error estimates that ignore this within-group correlation
will under-state the true variability of the least squares estimates (Moulton, 1990).

Thus, our first observation is that if the polynomial function is viewed as an approximation that nonetheless
gives unbiased estimates of the discontinuity, and specification errors are considered to be random, then
conventional standard error formulas understate the variability of the least squares estimate of the
discontinuity gap.

Letting y0 � ða0;b0; g0Þ, and ŷ be the least squares estimator in the regression of Y ij on W j � ð1;Dj ;X jÞ, a
consistent estimator for the asymptotic variance of

ffiffiffiffiffi
N
p
ðŷ� y0Þ is given by

1

N

XJ

j¼1

Xnj

i¼1

W 0
jW j

 !�1
J

N

� �
1

J

XJ

j¼1

Xnj

i¼1

W 0
jðY ij �W j ŷÞ

 ! Xnj

i¼1

W jðY ij �W j ŷÞ

 ! !

�
1

N

XJ

j¼1

Xnj

i¼1

W 0
jW j

 !�1
ð5Þ
4When this interpretation of b̂ is adopted, the conventional heteroskedasticity-consistent standard errors are appropriate for inferences

about b�. Chamberlain (1994) derives the asymptotic distribution of minimum distance estimators under mis-specification, and shows the

equivalence of the variance to the heteroskedasticity-consistent variance in a least squares regression.
5X j may include interactions between the polynomial terms and the treatment indicator. This allows the regression function to have

different derivatives (up to the order of the interaction terms) on either side of the threshold.
6Discussion of the distinction between the ‘‘sharp’’ and ‘‘fuzzy’’ designs can be found in Hahn et al. (2001).
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with nj finite as J !1. The computation of this variance is available as a standard option in today’s typical
statistical analysis software.7

The assumption that aj is orthogonal to X may seem restrictive, but it should be noted that conventional
inference using parametric functional forms (like polynomial functions) implicitly imposes the strictly more
restrictive assumption of no specification error, aj ¼ 0.

3.1. Clustered standard errors and the goodness-of-fit statistic

There is a connection between the goodness-of-fit statistic given in (3), and the difference between the non-
clustered and clustered variance estimators.

To see this, first note that (5) can be re-written as

V̂C �
1

J

XJ

j¼1

nj

N=J
W 0

jW j

 !�1
1

J

XJ

j¼1

nj

N=J

� �2

W 0
jW jðY j �W j ŷÞ

2

 !

�
1

J

XJ

j¼1

nj

N=J
W 0

jW j

 !�1
, ð6Þ

where Y j ¼ ð1=njÞ
Pnj

i¼1 Y ij; note that this estimator has been re-normalized to be consistent for the asymptotic

variance for
ffiffiffi
J
p
ðŷ� y0Þ, rather than for

ffiffiffiffiffi
N
p
ðŷ� y0Þ. This shows that the clustered standard error formula in

the micro-level regression is equivalent to using the conventional heteroskedasticity-consistent standard error

in a ‘‘cell-level’’ regression of Y j on W j, weighting each cell by the weight nj=ðN=JÞ.8

Consider the simplified case where nj ¼ n0 for all cells, so the weight becomes 1, and that aj and eij have
constant variance s2a and s2e across all J cells. In this case, we have

V̂C!
p
E½W 0

jW j �
�1 s2a þ

s2e
n0

� �
while the non-clustered variance estimator V̂NC!

p
E½W 0

jW j�
�1ðs2a þ s2e Þð1=n0Þ.

9 It follows that the ratio of the
clustered to the non-clustered estimated variance will converge in probability to

n0
s2a þ s2e=n0

s2a þ s2e
. (7)

This quantity represents the extent to which the non-clustered variance must be ‘‘inflated’’.
This ratio can be estimated by a Lagrange Multiplier version of the goodness-of-fit statistic in G in (3),

which is given by

1

J � K
LM ¼

1=ðJ � KÞðESSR � ESSURÞ

ð1=NÞESSR

¼ n0

ð1=ðJ � KÞÞ
PJ

j¼1ðY j �W j ŷÞ
2

ð1=NÞ
PJ

j¼1

Pn0
i¼1ðY ij �W j ŷÞ

2

which, with n0 fixed and J !1, can be shown to converge in probability to the ratio in (7).

4. Mis-specification of counterfactual functions

In this section, we show that the special structure of an RD design implies that in some circumstances, the
clustered standard errors may still understate the variability of b̂. If the specification error is random, then it is
7For example, in STATA, this variance can be computed by regressing Y ij on W j , and using the ‘‘cluster’’ option, where the groups are

defined by the discrete values of X.
8The sum of these weights across the J cells is equal to J.
9
ð1=n0Þ is added because this is the estimator for the asymptotic variance for

ffiffiffi
J
p
ðŷ� y0Þ, rather than for

ffiffiffiffiffi
N
p
ðŷ� y0Þ.
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necessary to decide how the error in estimating E½Y 1jX ¼ xk� is related to the specification error in estimating
E½Y 0jX ¼ xk�. As shown below, if the errors are assumed to be identical, then the approach described above is
appropriate. If the errors are independent, then the standard errors for b̂ must be inflated even further.

Before describing these two cases in detail, we provide some intuition for the difference between the two
cases. As we have argued above, in the case of discrete X, non-parametric identification of the RD design is
impossible. Since it is necessary to impose some functional form, estimating the ‘‘discontinuity gap’’ amounts
to using data away from the discontinuity threshold to estimate the average outcome at the threshold.

Consider Fig. 3A, which abstracts from sampling error (i.e., suppose there is an infinite amount of data
per value of X). The solid dots represent E½Y jX ¼ xj� away from the discontinuity. Essentially, we are

using data from the right, as well as an approximating function, to estimate the true E½Y 1jX ¼ xk�. In the
figure, the approximating function (the solid line) is not perfect, and the true E½Y 1jX ¼ xk� is larger than that
predicted by the functional form. Similarly, the extrapolation of E½Y 0jX ¼ xk� from data on the left also
under-predicts the truth. Assuming ‘‘identical’’ specification errors means that we are assuming that the error
in our ‘‘forecast’’ of E½Y 1jX ¼ xk� is of the same sign and magnitude as our forecast error of E½Y 0jX ¼ xk�, in
repeated draws of the random effect error. One realization of this process is illustrated in Fig. 3A.

Fig. 3B, by contrast, depicts a single realization from a process that allows the prediction error for
E½Y 1jX ¼ xk� to be independent of the error for E½Y 0jX ¼ xk�. In the figure, the parametric functional form
over-predicts E½Y 0jX ¼ xk� and under-predicts E½Y 1jX ¼ xk�.
E
[Y
|X
=
x
]

X

E[Y1|X=xk]

E[Y0|X=xk]

E
[Y
|X
=
x
]

X

E[Y1|X=xk]

E[Y0|X=xk]

Fig. 3. (A) Counterfactual specification, identical errors; (B) Counterfactual specification, independent errors.
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4.1. Identical specification errors

Suppose we approximate the following two counterfactual functions by the following polynomial functions

E½Y 1jX ¼ xj� ¼ a0 þ X jg0 þ b0 þ a1j,

E½Y 0jX ¼ xj� ¼ a0 þ X jg0 þ a0j, ð8Þ

where a1j and a0j are the random specification errors in the approximations for E½Y 1jX ¼ xj� and
E½Y 0jX ¼ xj�, respectively. The approximation for E½Y 1jX ¼ xj � is parallel to the approximation for
E½Y 0jX ¼ xj�, and different by exactly b0 for each value of X.

If we assume that a1j ¼ a0j, and we use the fact that Y ¼ DY 1 þ ð1�DÞY 0, then we obtain

E½Y jX ¼ xj � ¼ a0 þ X jg0 þDjb0 þ aj ,

where aj � Dja1j þ ð1�DjÞa0j. This expression leads to the same regression specification given in (4). As

before, b0 (or, E½Y 1 � Y 0jX ¼ xk�) is the causal parameter of interest, and the clustered standard error formula
is appropriate for inference.

The assumption of identical specification errors is equivalent to assuming that the same approximation error
would arise whether the cell at the discontinuity point assigned to treatment or not. Equivalently, this assumption
implies that the treatment effect at the discontinuity is deterministic, that is, E½Y 1 � Y 0jX ¼ xk� ¼ b0.

One case where this assumption may be valid is when the researcher believes that the source of the
approximation error is independent of treatment status. For example Card and Shore-Sheppard (2004) use a
regression discontinuity design to examine the impact of the Medicaid expansions on health insurance. The
family income eligibility limits for Medicaid were relaxed for children born after a certain date, and Card and
Shore-Sheppard (2004) examine the relationship between Medicaid enrollment and quarter of birth. It is
possible that there are small health differences by season of birth, implying that demand for Medicaid
coverage varies by quarter of birth; here, aj would reflect those seasonal differences. Arguably, the same
seasonal differences would be present irrespective of treatment status.

Note that the specification errors a1j and a0j could be identical even when the counterfactual functions are
not strictly parallel. To see this, consider the specification

E½Y 1jX ¼ xj� ¼ a0 þ X jg�1 þ b0 þ a1j ,

E½Y 0jX ¼ xj� ¼ a0 þ X jg�0 þ a0j.

Here, the coefficients on the polynomial terms are allowed to be different. We now have

E½Y jX ¼ xj � ¼ a0 þ X jg�0 þ X jDjðg�1 � g�0Þ þDjb0 þ aj,

where again, aj � Dja1j þ ð1�DjÞa0j. This, too, leads to the ‘‘random-effects’’ regression equation given in (4),
except that interactions between Dj and the polynomial terms are included. In this fully-interacted model the
treatment effect function

E½Y 1 � Y 0jX ¼ xj� ¼ X jðg�1 � g�0Þ þ b0 (9)

is itself a polynomial in X. Therefore, in order to use this specification, it is necessary to assume that even if
polynomials provide only an approximation to each counterfactual function separately, there is no approximation
error in describing the difference in the counterfactual functions as a polynomial in X (at least at X ¼ xk).

4.2. Independent specification errors

Alternatively, one can allow a1jaa0j. When this is true, the treatment effect of interest is no longer equal to
b0. Instead, we have, using (8),

E½Y 1 � Y 0jX ¼ xk� ¼ b0 þ a1k � a0k.
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b̂ will be consistent for b0, but not for the parameter of interest, E½Y 1 � Y 0jX ¼ xk�. Formally, with non-
identical a1j , a0j, we have

b̂� E½Y 1 � Y 0jX ¼ xk� ¼ ðb̂� b0Þ � ða1k � a0kÞ, (10)

where the first term converges in probability to 0 as J !1, while the second term does not. No matter how
much data are available, there is still uncertainty in the average treatment effect, induced by uncertainty about
the realizations of a1k, a0k.

Inference about E½Y 1 � Y 0jX ¼ xk� requires accounting for this uncertainty. In particular, it is necessary to
assume that the specification errors are drawn from some parametric distribution. A natural choice is to
assume that a1j and a0j are jointly and mutually independent, for each j. Independence implies that the forecast
error for E½Y 1jX ¼ xk� is independent of the forecast error for E½Y 0jX ¼ xk�.

In the Appendix, it is shown that, assuming that a1j and a0j have equal variance s2a across all j values,

b̂� E½Y 1 � Y 0jX ¼ xk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid
Vðb̂Þ þ 2ŝ2a

q !
d
Nð0; 1Þ, (11)

where
d

Vðb̂Þ � V̂C=J is the standard cluster-consistent variance estimator.10 ŝ2a is a consistent estimator of s2a, given by

ŝ2a �
1

N

XJ

j¼1

njðY j �W j ŷÞ
2
�

1

N

XJ

j¼1

1

nj � 1

Xnj

i¼1

ðY ij � Y jÞ
2. (12)

The first term is the weighted variance of the mean residual from the regression. With nj fixed, and as J !1,

it converges in probability to s2a þ limJ!1 ðJ=NÞð1=JÞ
PJ

j¼1 s
2
ej. It contains the variance in the specification

error aj, as well as sampling error in estimating the Y j’s. The second term is an estimate of

limJ!1 ðJ=NÞð1=JÞ
PJ

j¼1 s
2
ej , the average sampling variance.11

This implies that the interval

b̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid
Vðb̂Þ þ 2ŝ2a

q
; b̂þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid
Vðb̂Þ þ 2ŝ2a

q� �
(13)

will contain E½Y 1 � Y 0jX ¼ xk� with approximately 0:95 probability. The interpretation of this confidence
interval is similar to conventional confidence intervals, except that here the parameter E½Y 1 � Y 0jX ¼ xk� is
itself random, due to the randomness of the specification errors. Thus, the correct statement of inference is
that the interval contains E½Y 1 � Y 0jX ¼ xk� about 95% of the time in repeated draws of both eij and the
(random) specification errors a1k and a0k.

12

The interval in (13) strictly contains the usual confidence interval, and therefore leads to more conservative
inferences. A wider interval is an intuitive result, since uncertainty regarding the extrapolation errors should
yield less precise inferences. Another intuitive aspect of the interval in (13) is that it collapses to the
conventional one when the chosen parametric form is exactly correct and s2a is known to be zero.

There is a close connection between ŝ2a and the goodness-of-fit statistic G. Consider the case of a constant
sampling error variance s2e across all j cells. In this case, an alternative consistent estimator for s2a could be
10It may appear that the homoskedasticity and normality of a1j and a0j is restrictive, but it is important to remember that it is less

restrictive than assuming that there is no specification error at all (i.e., s2a ¼ 0).
11Under heteroskedasticity of eij across the J groups, a consistent estimator is given by

ŝ2a �
1PJ

j¼1 ðnj=ŝ2ejÞ

XJ

j¼1

nj

ŝ2ej
ðY j �W j ŷÞ

2
�

1PJ
j¼1 ðnj=ŝ2ejÞ

XJ

j¼1

nj

ŝ2ej

ŝ2ej
nj

 !
,

where ŝ2ej ¼ ð1=njÞ
Pnj

i¼1ðY ij � Y jÞ
2.

12(13) has been called an ‘‘Empirical Bayes’’ Confidence Interval. See Morris (1983).
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given by

~s2a �
J

J � K

� �
1

N

XJ

j¼1

njðY j �W j ŷÞ
2
�

J

N

1

N � J

XJ

j¼1

Xnj

i¼1

ðY ij � Y jÞ
2.

The probability limits of the first and second terms are s2a þ limJ!1 ðJ=NÞs2e and limJ!1 ðJ=NÞs2e ,
respectively. It is also true that ~s2a ¼ ðG � 1ÞðESSUR=N � JÞðJ=NÞ. Thus, the more that G exceeds 1—evidence
that the parametric approximation is too restrictive—the wider the confidence interval (13). Obtaining a
negative value for ~s2a simply implies that a goodness-of-fit statistic would be less than 1.

Finally, we draw attention to a technical point that leads to two complications. First, under conventional

asymptotics, (11) only holds when s2a 40. When s2a ¼ 0,
ffiffiffi
J
p
ðb̂� E½Y 1 � Y 0jX ¼ xk�Þ converges in

distribution to Nð0;VCÞ (where VC ¼ p limðV̂CÞ). But J
d

Vðb̂Þ þ 2Jŝ2a does not converge to VC: the first term

converges to VC, but the second term does not vanish. Secondly, under conventional asymptotics, even when

s2a 40, b̂� E½Y 1 � Y 0jX ¼ xk� converges in distribution to Nð0; 2s2aÞ, because the variance in the estimator of b0
vanishes as the number of cells increases. Thus, with any fixed sample, the usual asymptotic approximation leads

to an unintuitive result that the variance is VC=J when s2a ¼ 0, but jumps to 2s2a for s2a 40 but arbitrarily small.

The source of these problems is that the estimation error b̂� b0 is Opð1=
ffiffiffi
J
p
Þ, while the specification error

a1k � a0k is Opð1Þ. In the Appendix, we propose a sequence for the data that allows the variance of X to shrinks
as the number of cells J grows. Intuitively, although the increase in the number of cells tends to decrease the
variability in the least squares estimator, the shrinking variance in the regressors offsets this
tendency, leading to an estimation error that is of the same stochastic order as the specification error. The
expression in Eq. (11) will then be valid whether or not s2a ¼ 0, and the asymptotic variance in the overall error
b̂� E½Y 1 � Y 0jX ¼ xk� will be continuous at s2a ¼ 0:
5. Efficient estimation

When the specification errors a1j and a0j are assumed to be different, there is an estimator for E½Y 1 � Y 0jX ¼ 0�
that is more efficient than the OLS estimator b̂. This is because the least squares estimate of b0 amounts to the
difference between the prediction for E½Y 1jX ¼ 0� and the prediction for E½Y 0jX ¼ 0�, using data away from the
discontinuity threshold. While it is necessary to make such an extrapolation for E½Y 0jX ¼ 0� (since this quantitity is
unobservable), information on E½Y 1jX ¼ 0� is available from the sample mean Y k. Use of this information can
lead to a more efficient estimator of the treatment effect.

Fig. 3B illustrates the point. In the figure, b̂ estimates the discontinuity in the function represented by the
solid lines. In this particular realization of the data, the treatment effect at X ¼ 0 is the difference between the
solid circle, which is above the parametric function, and the open circle, which is below. The deviation of the
open circle from the parametric line is unobservable, but the cell mean provides information on E½Y 1jX ¼ 0�.
Indeed, as the number of observations per cell tends to infinity, we can estimate E½Y 1jX ¼ 0� perfectly.

More formally, assume that Eq. (4) is valid, with the normalization that xk ¼ 0. Let âþ b̂ be the least
squares estimate of E½Y 1jX ¼ 0� that leaves out the kth cell in the estimation.13 Now consider the combination
estimator

b� ¼ b̂þ lðY k � ðâþ b̂ÞÞ (14)

which is the least squares estimator of the discontinuity adjusted by the kth cell mean’s deviation from the least
squares prediction. The error in the estimator is given by

b� � E½Y 1 � Y 0jX ¼ 0� ¼ ðb̂� b0Þ � ða1k � a0kÞ þ lða0 þ b0 þ a1k þ ek � ðâþ b̂ÞÞ

¼ ðb̂� b0Þ � ða1k � a0kÞ þ lða1k þ ek � ðâþ b̂� ða0 þ b0ÞÞÞ

which will be centered around zero.
13Note that this estimator is asymptotically equivalent to one that includes the kth cell.
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The variance of this error is

V ðb̂Þ þ 2s2a þ l2V ða1k þ ek � ðâþ b̂ÞÞ þ 2lCððb̂� ða1k � a0kÞ; a1k þ ek � ðâþ b̂ÞÞ

¼ V ðb̂Þ þ 2s2a þ l2 s2a þ
s2�k
nk

þ V ðâþ b̂Þ
� �

� 2lðCðb̂; ðâþ b̂ÞÞ þ s2aÞ,

where the equality holds because the least squares estimators â and b̂ do not include data from the kth cell.
The optimal l can be found by differentiating this variance with respect to l and solving for the first order

condition, yielding

l ¼
s2a þ Cðb̂; ðâþ b̂ÞÞ

s2a þ V ðâþ b̂Þ þ s2�k=nk

. (15)

The intuition behind this formula is illustrated by considering the case in which two separate parametric forms
are used to model the function to the left and the right of the discontinuity threshold; that is, when the terms of
the parametric function are completely interacted with the treatment dummy variable. Use the identity
Cðb̂; âþ b̂Þ ¼ V ðâþ b̂Þ � Cðâ; âþ b̂Þ, and note that Cðâ; âþ b̂Þ ¼ 0 here, because in a completely interacted
model, only data to the left are used to estimate â and only data to the right are used to estimate âþ b̂. The
optimal value of l then becomes

l ¼
s2a þ V ðxkĝþ b̂Þ

s2a þ V ðxkĝþ b̂Þ þ s2�k=nk

. (16)

When the parametric function is ‘‘good’’, s2a will be relatively small compared to the cell-level sampling error
s2ek=nk: l will thus tend to 0, and the linear combination estimator will be closer to the original parametric
estimator b̂. On the other hand, if the parametric form is ‘‘bad’’, s2a will be relatively large. As a result, l will
tend towards 1, and the combination estimator will converge towards Y k � â, which is the difference between
the cell mean and the prediction of E½Y 0jX ¼ xk� using data on the left side of the discontinuity threshold. The
combination estimator thus provides a simple way to optimally combine two alternative estimators of
E½Y 1 � Y 0jX ¼ 0�—b̂ and Y k � â. Note that the usual OLS estimator that includes the kth cell can also be
written in the same form as (14), using the recursive residual formula of Brown et al. (1975). The implied
weight by the OLS will in general not be equal to the weight given by (14).14

Whether or not the model is fully interacted, the optimal l can be substituted into the expression above to
yield the variance of this combination estimator:

V ðb�Þ ¼ ðV ðb̂Þ þ 2s2aÞ � l2 s2a þ V ðâþ b̂Þ þ
s2ek
nk

� �
. (17)

Note that the first set of parentheses is the error variance as discussed in the previous section, while the second
term is non-negative. Thus, the variance of the combination estimator will be weakly smaller than the variance
of the estimator b̂.

To make this estimator feasible, it is necessary to obtain sample analogs to the population variances and

covariances in either (15) or (16). s2a can be estimated by ŝ2a as defined in the previous section. The estimator

for V ðâþ b̂Þ is simply the ‘‘standard error of the prediction’’ at X ¼ 0, which is a standard option in most

statistical packages. Cðb̂; âþ b̂Þ ¼ V ðb̂Þ þ Cðâ; b̂Þ can be estimated using the estimated variance of b̂ and

covariance between b̂ and (as long as the threshold is normalized to be zero) the estimated intercept â; these
quantities are usually computed in most statistical packages. Finally, the usual variance estimator of Y k can be

used as the sample analog to s2ek=nk. Together, these quantities imply an estimator l̂, which can be used to

construct b̂�, a feasible version of b�.
14Using the recursive residual formula, the OLS coefficient using all observations can be written as

ŷ ¼ ŷ�k þ ðW
0W Þ�1W 0

kðY k � ŷ�kÞ,

where �k denotes leaving out the kth cell, and W k denotes the kth row of W.
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In the Appendix, we provide conditions under which

b̂� � E½Y 1 � Y 0jX ¼ xk�ffiffiffiffiffiffiffiffiffiffiffiffid
Vðb̂�Þ

q !
d
Nð0; 1Þ,

where
d

Vðb̂�Þ is defined by (17), with population quantities replaced by their sample analogs.
The usual asymptotic arguments lead to the same complications described in the previous section.

Therefore, we continue to adopt the ‘‘shrinking variance’’ sequence in computing the asymptotic distribution,
and providing a consistent variance estimator. In addition, as shown in the Appendix, in order to consistently
estimate s2�k, while maintaining that s2�k=nk has the same order as b̂, it is necessary to assume that the number
of observations and the variance of � in the kth cell both grow as the number of cells increase. Without
increasing the number of observations in the kth cell, one can neither consistently estimate l̂; nor the V ðb̂�Þ.
Without further requiring that s2�k grows with the number of observations in the cell, the term s2�k=nk will
vanish in the expressions for l and V ðb�Þ.

6. Relation to Bayesian estimation

There is a close connection to the proposed estimator b̂� and a Bayesian approach to the problem.
Specifically, the confidence intervals proposed above can be interpreted as Bayesian posterior intervals.

For example, note that (14) can be re-written as

b� ¼ ½lY k þ ð1� lÞðâþ b̂Þ� � â.

The expression in brackets can be viewed as an estimate of E½Y 1jX ¼ 0�—a l-weighted average of the kth cell
mean and the predicted value from the regression—and the term â as an estimate of E½Y 0jX ¼ 0�.

Consider a simple Bayesian approach to estimating E½Y 1jX ¼ xk� � E½Y 0jX ¼ xk�. A likelihood for the
observed data would be specified; for example, Y ik�NðE½Y 1jX ¼ 0�;s2Þ; assume here that s2 is known. Now
consider a prior distribution for ðE½Y 1jX ¼ xk�;E½Y 0jX ¼ xk�Þ given by

N ðE1;E0Þ
s21 0

0 s20

 ! !
.

In this simple setup, given the observed data, the posterior distribution for the quantity E½Y 1jX ¼ xk� would
be given by

NðlY k þ ð1� lÞE1; ð1� lÞs21Þ

with l ¼ s21=ðs
2=nk þ s21Þ. Since at X ¼ 0, there are no data for the outcome in the untreated regime, the

posterior for E½Y 0jX ¼ xk� is the same the prior, NðE0;s20Þ. With some re-arrangement, the resulting posterior
distribution for E½Y 1 � Y 0jX ¼ 0� is

N ½lY k þ ð1� lÞE1� � E0;s21 þ s20 � l2
s2

nk

þ s21

� �� �
.

Note that under an uninformative (diffuse) prior on E½Y 0jX ¼ 0�, the posterior for the treatment effect will
also be uninformative. In the case where only data on the kth cell are provided, this is intuitive: without any
outside information, one should not be able to provide an informative estimate of the treatment effect.

What are reasonable choices for the components of the prior distribution E1, E0, s21, and s20? One possibility

is to use the data away from the discontinuity threshold to generate values for these parameters. For example,

âþ b̂, the predicted value of E½Y 1jX ¼ 0� using all data to the right of the kth cell in a parametric regression

could be viewed as a reasonable value for E1. The variance of that prediction,
d

Vðâþ b̂Þ þ ŝ2a, is a reasonable

value for s21. Similarly, a regression using all data to the left of the kth cell could generate â and dVðâÞ þ ŝ2a,
which could be used as values for E0 and s20, yielding the prior distribution for E½Y 0jX ¼ xk�. Using these
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values—and substituting ŝ2� for s2—yields a posterior distribution for E½Y 1 � Y 0jX ¼ 0� given by

Nðb̂�;
d

Vðb̂�ÞÞ.15 It is important to note that a hierarchical Bayesian approach could be used for this problem.
Rather than choosing values E1, E0, s21, and s20, a prior distribution could be specified for the hyperparameters
of the model a0, b0, g0, s

2
a, and s2�j .

7. Summary

This paper draws attention to functional form issues in the estimation of RD designs when the index variable
determining treatment, X, has discrete support. In the discrete case, the conditions for non-parametric or semi-
parametric methods are not satisfied; indeed, the treatment effect is not non-parametrically identified. Our goal is
to formally incorporate uncertainty in the necessary parametric modeling of the underlying RD function.

We have proposed a procedure for inference that explicitly acknowledges errors in whatever parametric
functional form is chosen. Instead of assuming that the chosen functional form ‘‘correctly’’ describes the
underlying regression function, we model the deviations of the true conditional means from the parametric
function as random specification errors with an unknown variance. Viewing these deviations as random errors
requires—at a minimum—the use of cluster-consistent standard errors (clustered on the distinct values of X),
rather than conventional heteroskedasticity-consistent standard errors. An even more flexible model of the RD
counterfactual functions requires further adjustment; the resulting confidence intervals can also be viewed as
Bayesian posterior intervals, when the prior distribution is based on data away from the discontinuity threshold.

The inference procedure proposed in this paper can be summarized as follows:
1.
1

pol

par

est
1

con
Normalize the X variable so the threshold is at 0, so the intercept in the regression can be interpreted as the
estimate of E½Y 0jX ¼ 0�. Choose the parametric form for the approximation. Run the regression on the
micro-data, computing both heteroskedasticity- and cluster-consistent (clustering on the individual values
of X) standard errors.
2.
 Consider whether or not the counterfactual functions can be modeled so that specification errors in
E½Y 1jX ¼ xk� and E½Y 0jX ¼ xk� are the same. If so, then the clustered standard errors can be used for
inference.
3.
 If not, collapse the data to the cell level, retaining information on the means, variances, and number of
observations in each cell. Run the (cell size-weighted) regression using the cell-data.16 Use mean squared
error from the regression and cell variances to compute ŝ2a as in (12). Adjust the sampling variance by 2ŝ2a
according to (13).
4.
 If a more efficient estimator is desired, use the estimated variances and covariances of the discontinuity coefficients

and intercept, as well as the kth cell variance, compute l̂, and use this estimator for computing b̂� and
d

Vðb̂�Þ.

Althouh our proposed procedure allows for specification error, there remains the issue of how to choose the
functional form for the systematic part of the functional form (e.g., the order of the polynomial in X).
Nevertheless, we believe our approach is better than simply assuming the parametric form is correct.
Moreover, our proposed procedures can be easily implemented using the variances and covariances provided
by regression routines in standard statistical packages.
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Appendix A. Proofs

A.1. Notation

Consider the regression in matrix form

y ¼ Dbþ Xgþ e,

where y (J � 1) is a vector of cell means for the outcome, the two columns of D (J � 2) are the intercept and
treatment indicator variable, the columns of X (J � K) are the K polynomial terms in the treatment-
determining covariate, and each element of e (J � 1) is the composite error term aj þ �j. b and g are the
corresponding coefficient vectors. The proofs below are for an unweighted least squares estimate, but they also
hold for weighted (by the number of observations per cell) least squares estimates, by first pre-multiplying the
regression equation by the square root of an appropriate weighting matrix. Let yj ; Dj, X j , ej be the jth row of
the corresponding matrices (vectors).

A.2. Assumptions

The main assumption is that X has a shrinking variance—after partialling out the intercept and the

treatment dummy—as the number of cells increases. That is, we assume that X � E½X �jD� þ ð1=
ffiffiffi
J
p
Þ

ðX � � E½X �jD�Þ, where X � is a J � K random matrix. For the proofs below, note that this definition is

equivalent to X � DE½D0jDj�
�1E½D0jX

�
j � þ ð1=

ffiffiffi
J
p
Þ ðX � �DE½D0jDj�

�1E½D0jX
�
j �Þ, where X �j is the jth row of X �.

By adopting this sequence, the estimated discontinuity—which amounts to the difference between two linear
forecasts at the discontinuity threshold—will not become more precise as J increases. Instead the discontinuity
estimator will converge to a normal distribution with finite variance.

Further assume that E½ðX �j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þ
0
ðX �j �DjE½D

0
jDj �

�1E½D0jX
�
j �Þ� ¼ C, a positive definite

matrix, and that E½D0jDje
2
j �, E½D

0
jX
�
j e2j �, and E½X �0j X �j e2j � are finite matrices.

A.3. Asymptotic distribution of b̂ as J !1

It can be shown that the least squares estimator for b can be written as

b̂ ¼ ðD0DÞ�1D0y� ðD0DÞ�1D0X ðX 0MX Þ�1X 0My,

where M � I �DðD0DÞ�1D0. It follows that

b̂� b ¼ ðD0DÞ�1D0e� ðD0DÞ�1D0X � ðX 0MX Þ�1X 0Me. (18)

The first term is opð1Þ. ðD
0DÞ�1D0X !

p
E½D0jDj�

�1 E½D0jX
�
j �. X 0MX!

p
C, because

X 0MX ¼
1

J
ðX � �DE½D0jDj �

�1E½D0jX
�
j �Þ
0
ðX � �DE½D0jDj�

�1E½D0jX
�
j �Þ

� ððD0DÞ�1D0X � � E½D0jDj �
�1E½D0jX

�
j �Þ
0 1

J
ðD0X � �D0DE½D0jDj �

�1E½D0jX
�
j �Þ

�
1

J
ðX �0D� E½X �0j Dj�E½D

0
jDj�

�1D0DÞððD0DÞ�1D0X � � E½D0jDj�
�1E½D0jX

�
j �Þ

�ððD0DÞ�1D0X � � E½D0jDj�
�1E½D0jX

�
j �Þ
0 1

J
D0DððD0DÞ�1D0X � � E½D0jDj�

�1E½D0jX
�
j �Þ

where the first line converges to C, and the second, third, and fourth lines are opð1Þ.
Finally, we have

X 0Me ¼
1ffiffiffi
J
p ðX � �DE½D0jDj�

�1E½D0jX
�
j �Þ
0e� ððD0DÞ�1D0X � � E½D0jDj�

�1E½D0jX
�
j �Þ
0 1ffiffiffi

J
p D0e

¼
1ffiffiffi
J
p ðX � �DE½D0jDj�

�1E½D0jX
�
j �Þ
0eþ opð1Þ.



ARTICLE IN PRESS
D.S. Lee, D. Card / Journal of Econometrics 142 (2008) 655–674 669
Thus, we have

b̂� b!
d
Nð0;E½D0jDj�

�1E½D0jX
�
j �COCE½D0jX

�
j �
0E½D0jDj�

�1Þ

where O � E½ðX �j �DjE½D
0
jDj �

�1E½D0jX
�
j �Þ
0
ðX �j �DjE½D

0
jDj�

�1E½D0jX
�
j �Þe

2
j �.

This is the asymptotic distribution of the first term Eq. (10). The second term in (10), consisting of the
specification errors, is by assumption a difference of the two independent normals with equal variances. The
asymptotic covariance between the two terms in (10) is zero, so Eq. (11) follows, given the proofs in A.4, A.5,
and A.6 below.
A.4. Proof of consistency of
g
Vðb̂Þ (variance estimator using true b)

The expression in (18) can be used to construct a natural consistent variance estimator assuming a known b.
Using (18), consider

g
Vðb̂Þ � ðD0DÞ�1

XJ

j¼1

D0jDje
2
j

 !
ðD0DÞ�1

þ B
XJ

j¼1

ðX j �DjðD
0DÞ�1D0X Þ0Dje

2
j

 !
ðD0DÞ�1

þ ðD0DÞ�1
XJ

j¼1

D0jðX j �DjðD
0DÞ�1D0X Þe2j

 !
B0

þ B
XJ

j¼1

ðX j �DjðD
0DÞ�1D0X Þ0ðX j �DjðD

0DÞ�1D0X Þe2j

 !
B0, ð19Þ

where B � �ðD0DÞ�1D0X ðX 0MX Þ�1. We first show that this is a consistent estimator for the variance given
above, and then show that it is numerically identical to the conventional least squares clustered variance
estimator (with known b).

The first three terms in (19) will be shown to be opð1Þ, and the final term will converge to the desired
asymptotic variance. The first term is opð1Þ. The second term in (19) can be equivalently written as

B
XJ

j¼1

ðX j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þ
0Dje

2
j

 !
ðD0DÞ�1

þ BðE½D0jDj�
�1E½D0jX

�
j � � ðD

0DÞ�1D0X Þ0
XJ

j¼1

D0jDje
2
j

 !
ðD0DÞ�1

¼ B
XJ

j¼1

ðX j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þ
0Dje

2
j

 !
ðD0DÞ�1 þ opð1Þ

¼ B
1ffiffiffi
J
p

XJ

j¼1

ðX �j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þ
0Dje

2
j

 !
ðD0DÞ�1 þ opð1Þ

¼ opð1Þ þ opð1Þ,

where the first equality follows because ðD0DÞ�1D0X is consistent for E½D0jDj�
�1E½D0jX

�
j � and X 0MX!

p
C,

which implies that B is Opð1Þ, the second equality follows by the definition of X j, and the third equality follows

because ðD0DÞ�1is Opð1=JÞ. The third term in (19) is similarly opð1Þ.
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The fourth term in (19) can be re-written as

B
XJ

j¼1

ðX j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þ
0
ðX j �DjE½D

0
jDj�

�1E½D0jX
�
j �Þe

2
j

 !
B0

þ BðE½D0jDj�
�1E½D0jX

�
j � � ðD

0DÞ�1D0X Þ0
XJ

j¼1

D0jDje
2
j

 !
�ðE½D0jDj�

�1E½D0jX
�
j � � ðD

0DÞ�1D0X ÞB0 þ BðE½D0jDj �
�1E½D0jX

�
j � � ðD

0DÞ�1D0X Þ0

�
XJ

j¼1

D0jðX j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þe

2
j

 !
B0

þ B
XJ

j¼1

ðX j �DjE½D
0
jDj �

�1E½D0jX
�
j �Þ
0Dje

2
j

 !
�ðE½D0jDj�

�1E½D0jX
�
j � � ðD

0DÞ�1D0X ÞB0

which is equal to

B
1

J

XJ

j¼1

ðX �j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þ
0
ðX �j �DjE½D

0
jDj�

�1E½D0jX
�
j �Þe

2
j

 !
B0

þOpð1Þ �Op
1

J

� �
�OpðJÞ �Op

1

J

� �
�Opð1Þ

þOpð1Þ �Op
1

J

� �
�Opð

ffiffiffi
J
p
Þ �Opð1Þ

þOpð1Þ �Opð
ffiffiffi
J
p
Þ �Op

1

J

� �
�Opð1Þ

because E½D0jDj�
�1E½D0jX

�
j � � ðD

0DÞ�1D0X is Opð1=JÞ, and ð
PJ

j¼1 D0jðX j �DjE½D
0
jDj�

�1 E½D0jX
�
j �Þe

2
j Þ is Opð

ffiffiffi
J
p
Þ,

which can be seen by noting that X is, by definition, shrinking towards the predicted means. The first line also

follows by the definition of X. Thus the fourth term in (19) converges in probability to E½D0jDj �
�1

E½D0jX
�
j �COCE½D0jX

�
j �
0E ½D0jDj�

�1.

Next, (19) can be shown to be numerically identical to the conventional least squares clustered variance
estimator (with b known), after some re-arrangement of terms. Specifically, after expanding the middle two
terms, (19) becomes

ðD0DÞ�1
XJ

j¼1

D0jDje
2
j

 !
ðD0DÞ�1 � BX 0DðD0DÞ�1

XJ

j¼1

D0jDje
2
j

 !
ðD0DÞ�1

� ðD0DÞ�1
XJ

j¼1

D0jDje
2
j

 !
ðD0DÞ�1D0XB0

þ B
XJ

j¼1

X 0jDje
2
j

 !
ðD0DÞ�1 þ ðD0DÞ�1

XJ

j¼1

D0jX je
2
j

 !
B0

þ B
XJ

j¼1

ðX j �DjðD
0DÞ�1D0X Þ0ðX j �DjðD

0DÞ�1D0X Þe2j

 !
B0.
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After expanding the last term and collecting terms with
PJ

j¼1 D0jDje
2
j ,
PJ

j¼1 X 0jDje
2
j ,
PJ

j¼1 D0jX je
2
j , andPJ

j¼1 X 0jX je
2
j , we obtain

A
XJ

j¼1

D0jDje
2
j

 !
Aþ B

XJ

j¼1

X 0jDje
2
j

 !
Aþ A

XJ

j¼1

D0jX je
2
j

 !
B0 þ B

XJ

j¼1

X 0jX je
2
j

 !
B0,

where A � ðD0DÞ�1 � BX 0DðD0DÞ�1 ¼ ðD0DÞ�1 þ ðD0DÞ�1D0X ðX 0MX Þ�1X 0DðD0DÞ�1, and B � �ðD0DÞ�1

D0X ðX 0MX Þ�1. This is exactly the expression that would be obtained by using the partitioned inverse formula
for the conventional least squares clustered variance estimator (with b known) for b̂.
A.5. Proof that
d
Vðb̂Þ �

g
Vðb̂Þ is opð1Þ

Let
d
Vðb̂Þ be the conventional clustered variance estimator (with unknown b); it is defined as

g
Vðb̂Þ except after

replacing ej with êj � Y j �Djb̂� X j ĝ. It follows that

êj ¼ ej �Djðb̂� bÞ � X jðĝ� gÞ

¼ ej �DjðD
0DÞ�1D0eþDjðD

0DÞ�1D0X ðĝ� gÞ � X jðĝ� gÞ

¼ ej �DjðD
0DÞ�1D0eþDjððD

0DÞ�1D0X � E½D0jDj �
�1E½D0jX

�
j �Þðĝ� gÞ

� ðX j �DjE½D
0
jDj�

�1E½D0jX
�
j �Þðĝ� gÞ

¼ ej �Dj �Op
1ffiffiffi
J
p

� �
þDj �Op

1

J

� �
�Opð1Þ

�
1ffiffiffi
J
p ðX �j �DjE½D

0
jDj�

�1E½D0jX
�
j �Þ �Opð1Þ.

The second and third equalities follow from re-arranging terms. The final equality follows from noting that

ðD0DÞ�1D0X � E½D0jDj �
�1E½D0jX

�
j � is Opð

1
J
Þ and ðĝ� gÞ is Opð1Þ, as shown in the proof of asymptotic normality.

Squaring the above residual yields

ê2j � e2j ¼ ejDj Op
1

J

� �
þOp

1ffiffiffi
J
p

� �
�Op

1ffiffiffi
J
p

� �� �
� ejX

�
j Op

1ffiffiffi
J
p

� �
þ Op

1

J

� �
þOp

1ffiffiffi
J
p

� �
�Op

1ffiffiffi
J
p

� �� �0
D0jDj Op

1

J

� �
þOp

1ffiffiffi
J
p

� �
�Op

1ffiffiffi
J
p

� �� �
� Op

1

J

� �
þOp

1ffiffiffi
J
p

� �
�Op

1ffiffiffi
J
p

� �� �0
D0jX

�
j Op

1ffiffiffi
J
p

� �
þOp

1ffiffiffi
J
p

� �0
X �0j X �j Op

1ffiffiffi
J
p

� �
. ð20Þ

Note that each of the above terms is a summation of scalars. To see that
d
Vðb̂Þ �

g
Vðb̂Þ is opð1Þ, substitute each

of these scalars for ‘‘e2j ’’ in (19). The first three terms will be opð1Þ as argued in the proof for the consistency ofg
Vðb̂Þ. In addition, the fourth term will also be opð1Þ because each of these scalars is a product that includes a

Opð�Þ term in (20).
A.6. Proof that ŝ2a!
p
s2a

First, note the definition ŝ2a � ð1=JÞ
P

j ê2j � ð1=JnÞ
P

jð1=ðn� 1ÞÞ
P

i ðY ij � yjÞ
2. Next, summing over (20), it

follows that ð1=JÞ
P

j ê2j !
p
ð1=JÞ

P
j e2j , which converges to s2a þ s2� =n. Finally, the second term is a consistent

estimator for s2� =n, as J !1.
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A.7. Proof of asymptotic distribution of shrinkage estimator

In addition to the assumptions above, normalize so that xk, the point of the threshold, is zero, and let
b ¼ ða;bÞ, so that a is the intercept and b is the discontinuity gap. Also assume that nk ¼ Jn�k, n�k a finite
constant, and eik ¼

ffiffiffiffiffi
nk
p

e�ik, so that s2ek ¼ nks�2ek , s
�2
ek a finite constant.

We will show that

b̂� � E½Y 1 � Y 0 j X ¼ 0�ffiffiffiffiffiffiffiffiffiffiffiffid
Vðb̂�Þ

q !
d
Nð0; 1Þ

by first showing that b̂� � E½Y 1 � Y 0jX ¼ 0�!
d
Nð0;V ðb�ÞÞ, and then showing that

d
Vðb̂�Þ is consistent for

V ðb�Þ.

First, re-write ð1=
ffiffiffi
J
p
Þðb̂� � E½Y 1 � Y 0jX ¼ 0�Þ as ð1=

ffiffiffi
J
p
Þðb̂� E½Y 1 � Y 0jX ¼ 0�þ l̂ðY k � ðâþ b̂ÞÞÞ. Define

cJ as the vector ðð1=
ffiffiffi
J
p
Þðb̂� E½Y 1 � Y 0jX ¼ 0�Þ; ð1=

ffiffiffi
J
p
ÞðY k� ðâþ b̂ÞÞ; l̂Þ0, so that ð1=

ffiffiffi
J
p
Þðb̂� � E½Y 1 � Y 0j

X ¼ 0�Þ ¼ f ðcJ Þ, noting that f ð�Þ is a continuous function.

We need to show cJ has probability limit c ¼ ð0; 0; lÞ, and that
ffiffiffi
J
p
ðcJ � cÞ converges in distribution to

Nð0;V�Þ. If true, then
ffiffiffi
J
p
ðf ðcJÞ � f ðcÞÞ will converge in distribution to Nð0; ð1; l; 0Þ0V�� ð1; l; 0ÞÞ, by the delta

method. The zero in the last element of the gradient vector implies that the resulting asymptotic variance does

not include the variance of l̂, or its covariance with any other element of bJ . As a result, it will be true that

b̂� � E½Y 1 � Y 0jX ¼ 0�!
d
Nð0;V ðb�ÞÞ.

To show cJ!
p

c � ð0; 0; lÞ, recall from above that b̂� E½Y 1 � Y 0jX ¼ 0� is Opð1Þ; multiplying by 1=
ffiffiffi
J
p

yields opð1Þ. Similarly, Y k � ðâþ b̂Þ ¼ ðâ� aÞ þ ðb� b̂Þ þ ak þ ek is also Opð1Þ, because ð1=nkÞ
Pnk

i¼1 eik ¼

ð1=
ffiffiffi
J
p

n�kÞ
Pnk

i¼1 e
�
ik; multiplying by 1=

ffiffiffi
J
p

yields opð1Þ. l̂ is consistent for l, because the sample analogs to each

of its parts are consistent. For example, as shown above, the standard estimators for Cðb̂; âþ b̂Þ and V ðb̂Þ are
consistent, as is ŝ2a. Also,

1

n2
k

Xnk

i¼1

ðY ik � Y kÞ
2
¼

1

n2
k

Xnk

i¼1

�2ik þ
2

n2
k

Xnk

i¼1

�ikðE½Y ik� � Y kÞ þ
1

n2
k

Xnk

i¼1

ðE½Y ik� � Y kÞ
2

¼
1

nk

Xnk

i¼1

e�2ik þ

ffiffiffiffiffi
nk
p

n2
k

ðE½Y ik� � Y kÞ
Xnk

i¼1

e�ik þ
1

nk

ðE½Y ik� � Y kÞ
2

¼
1

nk

Xnk

i¼1

e�2ik þO

ffiffiffi
J
p

J2

� �
Opð1ÞopðJÞ þO

1

J

� �
Opð1Þ,

where the first and second equalities hold after some re-arrangement, and the third equality holds because

E½Y ik� � Y k is Opð1Þ:
To show

ffiffiffi
J
p
ðcJ � cÞ!

d
Nð0;V�Þ, we decompose the vector as

ffiffiffi
J
p
ðcJ � cÞ ¼

b̂� b

ða� âÞ þ ðb� b̂Þffiffiffi
J
p
ðl̂� lÞ

0B@
1CAþ 0

ek

0

0B@
1CAþ ak1 � ak0

ak1

0

0B@
1CA.

The element in the second vector is ð1=nkÞ
Pnk

i¼1 eik ¼ ð1=
ffiffiffiffiffi
n�k

p
Þ
Pnk

i¼1 e
�
ik, which converges to a normal. The third

vector is normal, by assumption. The first two elements converge to a normal as in the proof of the asymptotic

normality of b̂, as shown above. Finally,
ffiffiffi
J
p
ðl̂� lÞ can also be expressed as a summation in the form
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of ð1=
ffiffiffi
J
p
Þ
PJ

j¼1 zj.

ffiffiffi
J
p ŝ2a þ

d
Cðb̂; âþ b̂Þ

ŝ2a þ
d

Vðâþ b̂Þ þ ŝ2ek=nk

�
s2a þ Cðb̂; âþ b̂Þ

s2a þ V ðâþ b̂Þ þ s2ek=nk

0@ 1A
converges in probability to

ffiffiffi
J
p ŝ2a � s2a þ

d
Cðb̂; âþ b̂Þ � Cðb̂; âþ b̂Þ

s2a þ V ðâþ b̂Þ þ s�2�k=n�k

0@ 1A.

The numerator can be shown to be a summation in the form of ð1=
ffiffiffi
J
p
Þ
PJ

j¼1 zj þ opð1Þ. The central limit

theorem applies.

We have shown that each of the parts that make up l̂ is consistent. Those same terms are used to constructd
Vðb̂�Þ , which is therefore consistent for V ðb�Þ.

Appendix B. Extension to ‘‘fuzzy’’ RD designs

Many interesting applications of the RD research design involve ‘‘imperfect compliance’’: the relation
between the treatment of interest is not a deterministic function of X. Instead the conditional expectation of
the treatment is a discontinuous function of X. Angrist and Lavy (1998), for example, use discontinuities in the
mapping from the number of students in a grade to average class size to identify the effect of class size on test
scores. The rule, while not perfectly followed, nevertheless generates a discontinuity in the expected class size.
A very simple version of this setup consists of two equations:

Y 1ij ¼ Djd0 þ X jg1 þ uij ,

Y 2ij ¼ Y 1ijb0 þ X jg2 þ vij ,

where ðY 1ij ;Y 2ijÞ is a pair of observed outcomes for the ith individual in the jth cell, X j and Dj are as
previously defined, d0 is the discontinuity in Y 1 at X ¼ 0, b0 is the causal effect of Y 1 on Y 2, and ðuij ; vijÞ is a
pair of potentially correlated errors. Correlation between uij and vij implies that b0 cannot be estimated
consistently by a simple OLS procedure. b0 can be estimated, however, by instrumental variables method
using Dj as an instrument for Y 1ij. The maintained assumptions are that program status Dj has no direct effect
on Y 2, controlling for Y 1. Note that the resulting IV estimator is equivalent to estimating two regression
discontinuities—for the two outcomes Y 1 and Y 2—and computing the ratio of the discontinuity gaps.

A natural extension of our framework is to assume that the data generating process for the observed
outcomes is

Y 1ij ¼ Djd0 þ X jg1 þ a1j þ uij,

Y 2ij ¼ Y 1ijb0 þ X jg2 þ a2j þ vij,

where ða1j ; a2jÞ represents an i.i.d. vector of mean zero random specification errors. IV will still yield an
asymptotically unbiased estimate of b0, but the conventional IV sampling errors, as in the ‘‘sharp’’ design,
ignore the group structure of the residuals and may overstate the precision of the IV estimator (See Shore-
Sheppard, 1996 for a discussion of grouped error structures in an IV setting similar to Moulton, 1990). The use
of clustered standard errors is again a simple remedy in this situation.

Note that the above specification implicitly assumes the structure of ‘‘identical’’ specification errors in the
counterfactual functions, as described in Section 4.1. If it is more desirable to assume ‘‘independent’’ errors, as
in Section 4.2, then it is necessary to account for the variance in the forecast errors a1j and a2j. One way to

proceed would be to apply the procedure in Section 4.2, separately for both ‘‘outcomes’’ Y 1 and Y 2. This
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would give us, for example, least squares estimate b̂ and p̂ for the parameters E½Y 1
1 � Y 0

1jX ¼ 0� and E½Y 1
2 �

Y 0
2jX ¼ 0� (where the superscripts denote potential outcomes). The error in these estimators include both

estimation error and the forecast error, as in Section 4.2. It is possible to analogously compute the covariance

in the estimation error in b̂ and p̂ as well as the covariance between the specification errors for each outcome.
Following an analogous argument as in Section 4.2, it would then follow that

ðb̂� E½Y 1
1 � Y 0

1jX ¼ 0�; p̂� E½Y 1
2 � Y 0

2jX ¼ 0�Þ0Ŝ
�1

�ðb̂� E½Y 1
1 � Y 0

1jX ¼ 0�; p̂� E½Y 1
2 � Y 0

2jX ¼ 0�Þ

(where Ŝ is the corresponding consistent estimator of the variance–covariance matrix for the error vector)

converges in distribution to w2ð2Þ. One can invert this test statistic to generate, for example, a 95% joint

confidence set for E½Y 1
1 � Y 0

1jX ¼ 0� and E½Y 1
2� Y 0

2jX ¼ 0�, and from this generate the confidence set for the

ratio E½Y 1
2 � Y 0

2jX ¼ 0�=E½Y 1
1 � Y 0

1jX ¼ 0�.
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