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ABSTRACT
Treatment effect estimates in regression discontinuity (RD) designs are often sensitive to the choice of
bandwidth and polynomial order, the two important ingredients of widely used local regression methods.
While Imbens and Kalyanaraman and Calonico, Cattaneo, and Titiunik provided guidance on bandwidth,
the sensitivity to polynomial order still poses a conundrum to RD practitioners. It is understood in the
econometric literature that applying the argument of bias reduction does not help resolve this conundrum,
since it would always lead to preferring higher orders. We therefore extend the frameworks of Imbens
and Kalyanaraman and Calonico, Cattaneo, and Titiunik and use the asymptotic mean squared error of the
local regression RD estimator as the criterion to guide polynomial order selection. We show in Monte Carlo
simulations that the proposed order selection procedure performs well, particularly in large sample sizes
typically found in empirical RD applications. This procedure extends easily to fuzzy regression discontinuity
and regression kink designs.
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1. Introduction

Regression discontinuity designs (RD designs or RDD) have
been widely used in empirical social science research in recent
years. Two important reasons for its appeal are that the research
design permits clear and transparent identification of causal
parameters of interest, and the design itself has testable impli-
cations similar in spirit to those in a randomized experiment
(Lee 2008; Lee and Lemieux 2010).

Although the identification strategy is both transparent and
credible in principle, many methods can be used to estimate
the same causal parameter of interest. The key challenge is to
estimate the values of the conditional expectation functions
at the discontinuity cutoff without making strong assumptions
about the shape of that function.

Typical practice in applied research is to employ a non-
parametric local regression estimator. We surveyed leading
economics journals between 1999 and 2017 and found that
of the 110 studies employing RDD, 76 use a local polynomial
regression as their main specification (Table A1, supplemen-
tary material). Among these 76 studies, local linear is the
modal choice and is applied as the main specification in 45
studies, but the remaining 31 (about 40%) choose a different
order.

As a practical matter, researchers often report results from
using different polynomial orders, and feel reassured when
their estimates are robust. But what are they to do when
their conclusions are sensitive to polynomial order? This
question mirrors the motivation behind optimal bandwidth
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proposals by Imbens and Kalyanaraman (2012) and Calonico,
Cattaneo, and Titiunik (2014), and it is the focus of the present
article.

Reasoning grounded in bias reduction of the RD estimator
provides no guidance on this question. As both Hahn, Todd, and
Van der Klaauw (2001) and Porter (2003) pointed out, higher
order polynomials have a smaller asymptotic bias than lower
orders. On the other hand, Gelman and Imbens (2019) argued
that high-order polynomials can perform poorly in certain
contexts.

In this article, we propose to extend the now widely used
theoretical framework and data-driven approach of Imbens and
Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik
(2014)—which use estimated asymptotic mean squared error
(AMSE or asymptotic MSE) of the RD estimator as an optimal-
ity criterion for bandwidth choice—to guide polynomial order
selection. Thus, the proposed procedure is based on a local (as
opposed to global) optimality criterion, as advocated by Gelman
and Imbens (2019).

Our proposal is complementary to the recent work by Hall
and Racine (2015), who call into question the practice of choos-
ing the polynomial order ad hoc for nonparametric estimation
at an interior point, and suggest a cross-validation method to
select the polynomial order jointly with the bandwidth. Instead
of cross-validation, we provide a formal justification for the
application of a suggestion by Fan and Gijbels (1996) to RD
designs, paralleling Imbens and Kalyanaraman (2012).

In order to assess the potential usefulness of the proposed
procedure, we conduct Monte Carlo simulations based on two
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well-known examples (Lee 2008 and Ludwig and Miller 2007),
where we use the exact same parameters as the simulations
conducted by Imbens and Kalyanaraman (2012) and Calonico,
Cattaneo, and Titiunik (2014). First, we illustrate the nature of
the conundrum that researchers face in practice. Unsurprisingly,
we find that in some cases the local linear specification performs
the best, but in many other configurations, alternative polyno-
mials fare better in terms of their MSE, coverage rate of the
95% confidence interval (CI), and size-adjusted CI length. Sec-
ond, we find that the estimator chosen by comparing estimated
AMSEs performs well, especially in larger sample sizes we often
see employed in RD applications.

Finally, we compute the AMSE of the fuzzy RD estimator, the
sharp and fuzzy estimators in the regression kink design (RK
design or RKD), and the bias-corrected estimator of Calonico,
Cattaneo, and Titiunik (2014) in all these contexts. We have
implemented these computations in a Stata package rdmse.
The installation instruction and program documentation are
available online at https://peizhuan.github.io/programs/.

The remainder of the article is organized as follows. Sec-
tion 2 summarizes the theory of local polynomial RD estimators,
and the corresponding Appendix A (appendix, supplementary
material) shows the consistency of our proposed polynomial
order selection procedure. Section 3 presents simulation results.
In Section 4, we discuss the extensions of our proposal to fuzzy
RDDs and RKDs. Section 5 concludes.

2. RD Local Polynomial Order: Theoretical
Considerations

In this section, we review and re-examine the theoretical jus-
tification for the choices in nonparametric RD estimation. In
a sharp RD design, the binary treatment D is a discontinuous
function of the running variable X: D = 1[X�0] where we
normalize the policy cutoff to 0. Hahn, Todd, and Van der
Klaauw (2001) and Lee (2008) showed that under smoothness
assumptions, the estimand:

lim
x→0+ E[Y|X = x] − lim

x→0− E[Y|X = x] (1)

identifies the treatment effect τ ≡ E[Y1 − Y0|X = 0], where Y1
and Y0 are the potential outcomes. To estimate (1), researchers
typically use local polynomial regressions to separately estimate
its two terms. Specifically, they solve the minimization problem
using only observations above the cutoff as denoted by the +
superscript:

min
{β̃+

j }

n+∑
i=1

{Y+
i − β̃+

0 − β̃+
1 X+

i −· · ·− β̃+
p (X+

i )p}2K

(
X+

i
h

)
. (2)

The resulting β̂+
0 is the estimator for limx→0+ E[Y|X = x],

and the estimator β̂−
0 for limx→0− E[Y|X = x] is defined

analogously. The RD treatment effect estimator is τ̂p ≡ β̂+
0 −β̂−

0 ,
where we emphasize its dependence on p by the subscript.

Any nonparametric RD estimator is generally biased in finite
samples. Expressions for the exact bias require knowledge of
the true underlying conditional expectation functions; thus, the
econometric literature has focused on the first-order asymptotic

approximations for the bias and variance. Applying these ideas,
Lemma 1 of Calonico, Cattaneo, and Titiunik (2014) derived
the AMSE of the pth order local polynomial estimator τ̂p as a
function of bandwidth

AMSEτ̂p(h) = h2p+2B2
p + 1

nh
Vp (3)

where Bp and Vp are unknown constants that depend on the
properties of the data-generating process (DGP). The AMSE
approximates the conditional MSE of τ̂p with bandwidth h:
MSEτ̂p(h) ≡ E[(τ̂p(h) − τ)2|X], where X = [X1, . . . , Xn]
consists of X of all n sample observations. The first term of the
AMSE is the approximate squared bias, and the second term the
approximate variance.

First-order approximations like the one above have been used
in the literature in two ways. First, Hahn, Todd, and Van der
Klaauw (2001) argued in favor of the local linear RD estimator
(p = 1) over the kernel regression estimator (p = 0) for its
smaller order of asymptotic bias—the biases of the two different
estimators are h2B1 and hB0 and are of orders O(h2) and O(h),
respectively. However, by the same logic, the asymptotic bias of
the local quadratic estimator (p = 2) is of order O(h3), and
the bias of the local cubic is of order O(h4). More generally, the
bias of the pth-order estimator is of order O(hp+1). Therefore, if
researchers were exclusively focused on the maximal shrinkage
rate of the asymptotic bias, they would choose p to be as large
as possible. Hahn, Todd, and Van der Klaauw (2001) recom-
mended p = 1, implicitly recognizing that factors beyond bias
shrinkage rate should also be taken into consideration.

Second, expression (3) is used as a criterion to determine
the optimal bandwidth for a chosen order p. Since the AMSE
is a convex function of h, one can solve for the optimal band-
width that leads to the smallest value of AMSE: hopt

(
p
) ≡

arg min
h

AMSEτ̂p (h). Imbens and Kalyanaraman (2012) did pre-

cisely this to propose a bandwidth selector for local linear esti-
mation (henceforth IK bandwidth) and Calonico, Cattaneo, and
Titiunik (2014) further extended the selector to polynomial
estimators of alternative orders (henceforth CCT bandwidth).

We now highlight that there is no theoretical ground to
always prefer a specific polynomial order across all empirical
contexts. By evaluating expression (3) at hopt(p), which is of

order O(n− 1
2p+3 ), AMSEτ̂p

(
hopt

(
p
))

is equal to Cp · n− 2p+2
2p+3 with

Cp being a function of the constants Bp and Vp. Therefore, as
the sample size n increases, AMSEτ̂p

(
hopt

(
p
))

shrinks faster
for a larger p and will eventually, for the same n, fall below
that of a lower order polynomial. Intuitively, if E[Y|X = x] is
close to being linear on both sides of the cutoff, then the local
linear specification will provide an adequate approximation, and
consequently τ̂1 will have a smaller AMSE than that of τ̂2 for a
large range of sample sizes. On the other hand, if the curvature of
E[Y|X = x] is large near the cutoff, a higher p will have a lower
AMSE, possibly even for small sample sizes. Although we expect
higher order polynomials to have lower AMSE in sufficiently
large samples, the precise sample size threshold at which that
happens depends on the DGP through the constant Cp.

This point is concretely illustrated in Figure 1, using the
two DGPs we employ for subsequent simulations. The DGPs
are based on Lee (2008) and Ludwig and Miller (2007) and

https://peizhuan.github.io/programs/
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Figure 1. Asymptotic mean-squared-error as a function of sample size.
Note: We plot theoretical AMSEs as functions of sample size in two RD and two RK DGPs. We calculate the AMSEs for local linear and quadratic estimators with triangular

kernel and the theoretical MSE-optimal bandwidth. In Panels (A) and (B), we superimpose the simulated MSEs of the local linear (cross) and quadratic (circle) estimators.
These MSEs are taken from Tables 1 and 2. We discuss the rate at which the MSE-optimal polynomial order increases with sample size in the Remark below Proposition 1 in
Appendix A (supplementary material).

described in greater detail in Appendix B.1 (supplementary
material). Since we know the parameters of the underlying
DGPs, we can analytically compute the quantities on the right
hand side of equation (3). Using Lemma 1 of Calonico, Cattaneo,
and Titiunik (2014), we plot in Figure 1 the AMSEτ̂p under the
triangular kernel in the two DGPs as a function of sample size
n for p = 1, 2 (see Appendix C.1 for details, supplementary
material).

For the Lee (2008) DGP in Panel (A), AMSEτ̂1 is marginally
below AMSEτ̂2 at small sample sizes but is larger at sample
sizes over n = 1467. Therefore, for the actual sample size
in Lee (2008), nactual = 6558, local quadratic should be
preferred to local linear based on the AMSE comparison—
the associated reduction in AMSE is 8%. For the Ludwig
and Miller (2007) DGP in Panel (B), the difference between
p = 1 and p = 2 is much larger, and AMSEτ̂2 dominates
AMSEτ̂1 for all n under 7000. At the actual sample size in
Ludwig and Miller (2007), nactual = 3105, the local quadratic
estimator reduces the AMSE by a considerable 37%. It is worth
noting that at nactual, the AMSEs closely match the MSEs
from our simulations in Section 3 below, which are marked
by a cross for the local linear estimator and a circle for local
quadratic.

In practice, Equation (3) cannot be directly applied because
Bp and Vp depend on unknown quantities such as the deriva-
tives of the conditional expectation function, conditional vari-
ances, and the density of X. Thus, Imbens and Kalyanaraman
(2012) and Calonico, Cattaneo, and Titiunik (2014) used the
empirical analog of Equation (3) for the local linear estimator

̂AMSEτ̂1 (h) = h4B̂2
1 + 1

nh
V̂1, (4)

where B1 and V1 are replaced by consistent estimators B̂1
and V̂1, and the MSE-optimal feasible bandwidth is defined
as ĥ (1) ≡ arg min

h
̂AMSEτ̂1 (h). The two studies differ in

how they arrive at the estimates of B1 and V1. Additionally,
Calonico, Cattaneo, and Titiunik (2014) generalized Imbens
and Kalyanaraman (2012) by proposing bandwidth selectors
for τ̂p for any p.

In this article, we simply extend the logic that justifies the
optimal bandwidth by noting that we can choose the polynomial
order corresponding to the lowest estimated AMSE. That is, we
define

p̂ ≡ arg min
p∈�

̂AMSEτ̂p

(
ĥ

(
p
))

,



4 Z. PEI ET AL.

where � consists of a finite number of candidate polynomial
orders (� can contain as few as two elements if a researcher is
just choosing between two orders; see Appendix A (supplemen-
tary material) for more discussion of �). For the AMSE of τ̂p, no
new quantities need to be computed beyond the estimators B̂p
and V̂p and the optimal ĥ

(
p
)
, which must already be calculated

when implementing, for example, the CCT bandwidth.
In summary, once one has already chosen an estimator (and

the corresponding AMSE-minimizing bandwidth selector such
as CCT), then it is straightforward to also report the resulting
̂AMSEτ̂p for any given p and compare ̂AMSEτ̂p across different
candidate polynomial orders. Appendix C.2 (supplementary
material) provides the exact expressions needed from Calonico,
Cattaneo, and Titiunik (2014) for the calculation of the AMSE
of τ̂p, which is implemented in the Stata package rdmse.

Although this simple order selection approach was suggested
by Fan and Gijbels (1996) for general local polynomial regres-
sion, to the best of our knowledge, a formal theoretical justifi-
cation has yet to be discussed, and the approach has yet to be
applied to RD designs. In Appendix A (supplementary mate-
rial), we investigate the asymptotic property of the procedure
and prove the consistency of p̂ in two asymptotic frameworks
that have been invoked in the literature.

Before proceeding to examine the finite sample performance
of p̂, we make several remarks.

Remark 1. We can also estimate the AMSE of the bias-corrected
estimator of Calonico, Cattaneo, and Titiunik (2014) (denoted
by τ̂ bc

p ). Appendix C.2 (supplementary material) provides
details, and the calculation is also implemented in the Stata
package rdmse.

Remark 2. We can allow for different polynomial orders on
two sides of the threshold, similar to recent developments that
permit different bandwidths. Calonico et al. (2017, 2019) imple-
mented bandwidths that are optimal for the left and right inter-
cept estimators, respectively. Following this line of reasoning,
our Stata package can calculate the AMSE of each intercept esti-
mator of a given polynomial order with the Calonico et al. (2017,
2019) bandwidths. Another recent study by Arai and Ichimura
(2018) proposed simultaneous left and right bandwidth selec-
tors that are MSE-optimal for the sharp RD estimator. It is also
possible to extend Arai and Ichimura (2018) and jointly select
left and right polynomial orders that are optimal for the RD
estimator itself. In fact, the finiteness of the polynomial choice
set makes the exercise easier than the bandwidth selection by
Arai and Ichimura (2018), who have to innovate to avoid a
degenerate optimization problem.

Remark 3. Calonico et al. (2019) considered the identifica-
tion, estimation, and inference in local RD regressions with
covariates. Among other contributions, they propose covariate-
adjusted MSE-optimal bandwidth selectors, which require the
estimation of covariate-adjusted biases and variances. This arti-
cle can be extended to select polynomial orders after covariate
incorporation by building on Calonico et al. (2019).

Remark 4. Our MSE-optimal polynomial order selection
procedure stems from the perspective of point estimation and

not inference. Calonico, Cattaneo, and Farrell (2020) recently
showed that the inference-optimal bandwidth that minimizes
confidence interval coverage error rate is different from the
MSE-optimal bandwidth (the former shrinks faster as a function
of n). The same may also be true for polynomial order choices.
Future work can study inference-optimal polynomial orders by
building on the Edgeworth expansion approach in Calonico,
Cattaneo, and Farrell (2020).

Remark 5. There exist alternative econometric estimation
and inference approaches to the local polynomial paradigm,
but many still require a polynomial order as input. Our
proposal is applicable to frequentist approaches based on
local approximation, for example, Otsu, Xu, and Matsushita
(2015), whose empirical likelihood procedure relies on moment
conditions formulated from the local linear RD estimator. One
could adapt the Otsu, Xu, and Matsushita (2015) procedure by
starting with our MSE-optimal polynomial order. In contrast,
our way of calculating the AMSE does not apply to the local
randomization approach by Cattaneo, Titiunik, and Vazquez-
Bare (2017), where the polynomial choice amounts to a
parametric assumption, or the order of global polynomial fit
lines in RD graphs (Calonico, Cattaneo, and Titiunik 2015), for
which Lee and Lemieux (2010) suggested selection procedures
based on goodness-of-fit criteria. Finally, our frequentist
proposal does not apply to the Bayesian RD approach of
Geneletti et al. (2015), and we leave the polynomial order
choice therein as an open question. (In another Bayesian study,
Branson et al. 2019 largely circumvented this polynomial choice
by modeling the potential outcome means conditional on X
as Gaussian processes; although the mean functions of the
Gaussian processes are still specified as polynomials, their
choice is shown to be inconsequential in examples.)

3. Monte Carlo Results

Although AMSE provides the theoretical basis for bandwidth
selection and our complementary proposal for polynomial
order selection, it is nevertheless a first-order asymptotic
approximation. In this section, we conduct Monte Carlo
simulations to examine the finite sample performance of local
polynomial estimators of various orders—which themselves
use the CCT bandwidth selectors—and our proposed order
selection procedure.

We employ DGPs from two well-known empirical examples,
Lee (2008) and Ludwig and Miller (2007), and the specifications
of these DGPs follow exactly those in Imbens and Kalyanaraman
(2012) and Calonico, Cattaneo, and Titiunik (2014). The con-
ditional expectation functions are specified as piecewise quin-
tic polynomials (see Appendix B.1 for details, supplementary
material). Because of the fifth-order specification of the DGPs,
the highest polynomial order we allow is pmax = 4 so that we
do not mechanically favor estimators from correctly specified
regressions.

Our simulations draw 10,000 repeated samples from the
two DGPs. Below, we present results using a triangular kernel;
additional results using the uniform kernel are available in the
previous working article (Pei et al. 2020), and the qualitative
conclusions are the same.
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The simulation results are organized as follows. Tables 1 and
2 report on the performances of conventional RD estimators
(τ̂p) applied to the two DGPs, respectively, while Tables B.1
and B.2 (appendix, supplementary material) report on the bias-
corrected RD estimators (τ̂ bc

p ) and the associated robust confi-
dence intervals as per Calonico, Cattaneo, and Titiunik (2014).
Each of the four tables displays results corresponding to two
sample sizes: the actual sample size in Panel A and large sample
size in Panel B. The actual sample size is that of the analysis
sample in the two empirical studies: nactual = 6558 for Lee
(2008) and nactual = 3105 for Ludwig and Miller (2007). We
set the large sample size to nlarge = 60,000 for the Lee DGP and
nlarge = 30,000 for Ludwig–Miller. nlarge is about 10 × nactual in
both studies, and it is comparable to or lower than the n in many
empirical papers.

In part (a) of each panel, we show the summary statistics for
the local linear estimator with two bandwidths. The first band-
width is the (infeasible) theoretical optimal bandwidth (hopt),
which minimizes AMSE using knowledge of the underlying
DGP. Even though the theoretically optimal bandwidth is never
known in an empirical application, we present simulation results
for hopt as a check on our theoretical intuition. As documented
below, MSE decreases monotonically with p under hopt with
moderately large sample sizes, which is consistent with our
discussion of the asymptotic behavior of AMSEτ̂p(hopt(p)) in
Section 2. The second bandwidth is the default CCT band-
width selector from Calonico, Cattaneo, and Titiunik (2014)
(ĥCCT).

We report averages and percentages across the simulations:
average bandwidth in column (2), average number of obser-
vations within the bandwidth in column (3), MSE in column
(4), coverage rate of the 95% CI in column (5), the average
CI length in column (6), and the average size-adjusted CI
length in column (7). While the other statistics are standard
in Monte Carlo exercises, the size-adjusted CI length warrants
further explanation. Size-adjustment is necessary because not
all 95% CIs achieve the nominal coverage rate, in which case
no standard metric tells us how to trade off a lower coverage
rate for a shorter confidence interval. Therefore, we adapt the
size-adjusted power proposal from Zhang and Boos (1994) to
calculate size-adjusted 95% CIs. Specifically, instead of using
1.96 as the critical value for constructing the 95% CI, we find
the smallest critical value so that the resulting size-adjusted
95% CI has the nominal coverage rate in the simulation. We
simply report the average length of these size-adjusted CIs in
column (7).

In part (b) of each table, we present the same statistics for
different polynomial orders. In columns (4), (6), and (7), we
express the quantities as a ratio to the quantity in the local linear
specification for ease of comparison.

3.1. Performances of Alternative Polynomials

The set of polynomial orders we assess is limited by the piece-
wise quintic specification of the two DGPs. As mentioned above,
since the kth-order derivative of the conditional expectation
function is zero at the cutoff for k > 5, the highest-order
estimator we allow is local quartic to ensure the finiteness of the

theoretical optimal bandwidth. For the Lee DGP, the alterna-
tive polynomial orders are p = 0, 2, 3, 4, as well as the order
p̂ selected from the set {0, 1, 2, 3, 4} that minimizes estimated
AMSE. For Ludwig-Miller, we exclude p = 0 from the simu-
lations under the actual sample size, because hopt for p = 0 is so
small (0.004) that the average effective sample size is only 17.

We highlight several findings from the four tables. First,
although the de facto local linear estimator performs compet-
itively in some cases (e.g., Lee DGP with CCT bandwidth selec-
tors in Panel A of Table 1 and Table B.1, supplementary mate-
rial), it does not deliver the lowest MSE. Looking down column
(4) in part (b) of every table, there is at least one alternative
estimator for which the MSE ratio is less than one. In these cases,
the reduction in MSE ranges from 2% (local quadratic with ĥCCT
in Panel A of Table 2) to 72% (local quartic with hopt in Panel B
of Table 2).

Second, from column (5) in all tables, alternative estimators
may improve upon the local linear in terms of its 95% CI cover-
age rate. It is worth noting that the coverage rate of the local lin-
ear CI is close to the nominal level in many instances, in which
case the improvement by alternative estimators is small. But the
improvement can sometimes be substantial. Given the analysis
of Calonico, Cattaneo, and Titiunik (2014), it is not surprising
that the conventional local linear CI sometimes undercover. The
undercoverage is more serious under the Lee DGP: for example,
the local linear CI coverage rate is 83% in simulations with nactual
and ĥCCT (Part (a) of Panel A in Table 1). But this undercoverage
is alleviated with the use of higher order alternatives, and the
local quadratic, cubic and quartic estimators all lead to a cover-
age rate of at least 90%. The robust local linear CI has better
coverage rates as shown in the appendix (Tables B.1 and B.2,
supplementary material), and the use of alternative orders may
bring further improvement.

Finally, we compare the length of confidence intervals across
different choices of p. Table B.2 (supplementary material) shows
that the coverage rates are close to the nominal 95% for all robust
confidence intervals for the Ludwig-Miller DGP, and all of the
polynomial orders greater than one yield confidence intervals
that are smaller, and substantially so in many cases. In Tables 1,
2, and B.1, the CI coverage rates of local linear can fall noticeably
below the nominal 95% rate. Thus, we rely on size-adjusted
confidence intervals in column (7) to compare the precision
of the estimates on equal footing. Of the 36 specifications that
use higher order polynomials in those tables, 33 of them have
shorter size-adjusted confidence intervals than local linear.

3.2. Performance of the Polynomial Order Selection
Procedure

We have thus far provided both theoretical arguments and
Monte Carlo evidence that point toward a more flexible view
regarding the choice of p. We have presented simulation results
on the performance of estimators that take p as given and
use existing methods for choosing the ̂AMSE-minimizing
h, conditional on the given p. The evidence of the local
linear specification performing well in some cases but not in
others underscores the polynomial-order-choice conundrum
researchers sometimes face.
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We now turn to the performance of our proposed order selec-
tion procedure. Specifically, we designate our candidate set � to
contain all of the polynomial orders considered in Section 3.1,
and for a particular Monte Carlo draw, we compute the RD
estimator for each p in � and their corresponding ̂AMSE τ̂p .
For that same draw, we choose the p with the lowest ̂AMSE .
By repeating this process over the Monte Carlo draws, we can
examine how well this procedure performs in terms of MSE,
coverage, and the length of the confidence interval.

We report the results in the rows labeled “p̂” below the
quartic in each table. Overall, our procedure tends to select
a polynomial specification that performs well. Although the
selected polynomial order varies across repeated sample draws,
the modal value of p̂ coincides with the lowest MSE order in the
majority of cases. In fact, this happens for all 8 permutations
(2 DGPs × 2 bandwidth selectors × 2 estimators) under the
large sample size, nlarge. Sometimes, our procedure leads to the
local linear specification being the modal choice, but when it
does not, it always results in an estimator with improved MSE
over local linear. In these cases, the reduction in MSE ranges
between 17% and 43% for the Lee DGP and between 46% than
72% for the Ludwig–Miller DGP. We see qualitatively similar
results for the p̂-selected estimator in terms of its CI coverage
rate and length. When the procedure does not select linear as the
modal choice, it maintains the coverage rate if the local linear
CI coverage rate is close to 95%, and it improves coverage if
the local linear CI undercovers. The procedure also helps to
reduce the CI length relative to local linear, especially for the
Ludwig–Miller DGP. As emphasized in Remark 4, however, our
procedure is not theoretically grounded in inference, and the
good performance of the CI here may not generalize to other
contexts.

We show additional results in the appendix (Tables B.3 to B.4,
supplementary material) for the sample size nsmall = 500. This
is the sample size used in the simulations of Imbens and Kalya-
naraman (2012) and Calonico, Cattaneo, and Titiunik (2014).
We see from Panel A of Table B.3 (supplementary material) that
because p = 1 minimizes the MSE of the conventional estimator
τ̂p under the Lee DGP, our polynomial selection procedure
fares worse than always using local linear. As shown in Panel
A of Table B.4, p̂ does better for the bias-corrected estimator
τ̂ bc

p , for which local constant is MSE-minimizing(!), leading
to comparable or lower MSEs, but the corresponding CI may
undercover. This somewhat underwhelming performance of p̂
in small sample sizes is an important caveat, but we note that it is
rare to find RD studies that rely on 500 or fewer observations. In
our survey of 110 studies, only three papers use fewer than 500
observations, a third of the papers use fewer than 6000 obser-
vations, and the median sample size is 21,561. A sample size of
60,000, the largest sample size used in our simulations, sits at the
63rd percentile. Therefore, it is fairly common to see studies with
n � 60, 000, much more so than seeing studies with about 500
observations. But even with 500 observations, our selection pro-
cedure performs well under the Ludwig-Miller DGP as shown
in Panel B of Tables B.3 and B.4 (supplementary material): the
modal p̂ always coincides with the MSE minimizing polyno-
mial order, and relative to local linear, our procedure leads to
improved MSE.

To summarize, we have implemented simulations under two
DGPs (Lee and Ludwig–Miller), two bandwidth choices (hopt
and hCCT), two types of estimators (conventional and bias-
corrected), and three sample sizes (nsmall, nactual, and nlarge).
We see that the best performing polynomial order varies across
context: the MSE minimizing specification ranges from local
constant to local quartic (the highest order we consider). We
also find that our polynomial selection procedure generally
performs well, especially in larger sample sizes typically used in
RD studies.

4. Extensions: Fuzzy RD and RKD

In this section, we briefly discuss how AMSE-based local poly-
nomial order choice applies to two popular extensions of the
sharp RD design. The first extension is the fuzzy RD design,
where the treatment assignment rule is not strictly followed. We
rely on Lemma 2 and Theorem A.2 of Calonico, Cattaneo, and
Titiunik (2014) to estimate the AMSE of a fuzzy RD estimator
by first linearizing it, and we implement the calculation in the
Stata package rdmse.

The second extension is the regression kink design (Nielsen,
Sørensen, and Taber 2010; Card et al. 2015a), which our Stata
implementation also accommodates. For RKD, Calonico, Cat-
taneo, and Titiunik (2014) and Gelman and Imbens (2019)
recommend using local quadratic (p = 2) by extending the
Hahn, Todd, and Van der Klaauw (2001) argument. But similar
to our RD discussion, the AMSE of local quadratic may or may
not be lower than alternative orders, depending on the sample
size and DGP characteristics.

To illustrate this once again, but in the case of fuzzy RKD,
we specify DGPs based on the bottom- and top-kink samples
of the application in Card et al. (2015b) (see Appendix B.2 for
details, supplementary material). These DGPs again allow us
to compute AMSEτ̂p as a function of sample size for different
p. As shown in Panel (C) of Figure 1, the AMSE of the local
quadratic fuzzy estimator is asymptotically smaller. However, it
takes about 86 million observations for the local quadratic to
dominate local linear. In Panel (D) of Figure 1, the local linear
fuzzy estimator dominates its local quadratic counterpart for
sample sizes up to 200 million observations. Since these thresh-
old sample sizes are far larger than the 270,000 observations
in both the bottom- and top-kink samples, they give reason to
prefer the local linear RK estimator.

5. Conclusion

This article is motivated by the question of what researchers
should do when their RD estimates are sensitive to the choice
of polynomial order used in local regressions. Since the existing
literature does not provide a practical answer, we propose to
extend the logic of the widely used approach of Imbens and
Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik
(2014) and use the estimated AMSE to guide polynomial order
selection. In Monte Carlo simulations based on two well-known
RD examples, we see that the best polynomial ranges from
local constant to quartic (the maximum order we allow) and
varies across sample size and DGP characteristics. Our pro-
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posed order selection procedure performs reasonably well, espe-
cially in larger sample sizes typically seen in RD applications.

As a concluding remark, we view the proposed polyno-
mial selection procedure as a complement—not a substitute—
to analyses that explore result robustness to order choice. In
many cases, different polynomial orders may yield substantively
similar results, and the procedure will not be needed. But when
researchers are confronted with estimate sensitivity with respect
to polynomial order, the procedure can be used to rule out
suboptimal estimators which yield drastically different results,
as in the RKD context of Card et al. (2017).

Supplemental Material

The supplemental materials contain the Appendix and replication pro-
grams.
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