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Abstract

This paper empirically assesses the wage effects of the Job Corps program, one of the largest
federally-funded job training programs in the United States. Even with the aid of a randomized
experiment, the impact of a training program on wages is difficult to study because of sample
selection, a pervasive problem in applied micro-econometric research. Wage rates are only
observed for those who are employed, and employment status itself may be affected by the
training program. This paper develops an intuitive trimming procedure for bounding average
treatment effects in the presence of sample selection. In contrast to existing methods, the
procedure requires neither exclusion restrictions nor a bounded support for the outcome of
interest. Identification results, estimators, and their asymptotic distribution, are presented. The
bounds suggest that the program raised wages, consistent with the notion that the Job Corps raises
earnings by increasing human capital, rather than solely through encouraging work. The estimator
is generally applicable to typical treatment evaluation problems in which there is non-random
sample selection/attrition.
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1 Introduction

For decades, many countries around the world have adnmimistgpovernment-sponsored employment and
training programs, designed to help improve the labor mankecomes of the unemployed or economically
disadvantaged.To do so, these programs offer a number of different seryiegg)ing from basic classroom
education and vocational training, to various forms of jelrsh assistance. The key question of interest
to policymakers is whether or not these programs are agta#iictive, sufficiently so to justify the cost to
the public. The evaluation of these programs has been thes fafca large substantive and methodological
literature in economics. Indeed, Heckman et al. (1999) miesihat “[flew U.S. government programs have
received such intensive scrutiny, and been subject to sy hfferent types of evaluation methodologies,
as governmentally-supplied job training.”

Econometric evaluations of these programs typically fanugheir reduced-from impacts on total earn-
ings, a first-order issue for cost-benefit analysis. Unfaataly, exclusively studying the effect on total
earnings leaves open the question of whether any earninigs @& achieved through raising individuals’
wage rateqprice effects) or hours of work (quantity effects). Thatastraining program may lead to a
meaningful increase in human capital, thus raising paditis’ wages. Alternatively, the program may
have a pure labor supply effect: through career counseligeamcouragement of individuals to enter the
labor force, a training program may simply be raising incerbg increasing the likelihood of employment,
without any increase in wage rates.

But assessing the impact of training programs on wage ratestistraightforward, due to the well-
known problem of sample selection, which is pervasive inliagpmicro-econometric research. That is,
wages are only observed for individuals who are employedsTéven if there is random assignment of the
“treatment” of a training program, there may not only be daafon wages, but also on the probability that
a person’s wage will even be observed. Even a randomizedimg@ cannot guarantee that treatment and
control individuals will be comparableonditional on being employethdeed, standard labor supply theory
predicts that wages will be correlated with the likelihoddemployment, resulting in sample selection
bias (Heckman, 1974). This missing data problem is espgcilevant for analyzing public job training
programs, which typically target individuals who have lowmgoyment probabilities.

This paper empirically assesses tiageeffects of the Job Corps program, one of the largest fegerall

1See Heckman et al. (1999) for figures on expenditures onealethor market programs in OECD countries. See also Martin
(2000).



funded job training programs in the United State¥he Job Corps is a comprehensive program for eco-
nomically disadvantaged youth aged 16 to 24, and is quiengite: the typical participant will live at a
local Job Corps center, receiving room, board, and heatthcgs while enrolled, for an average of about
eight months. During the stay, the individual can expeceteive about 1100 hours of vocational and aca-
demic instruction, equivalent to about one year in high sth@he Job Corps is also expensive, with the
average cost at about $14,000 per particifafihis paper uses data from the National Job Corps Study, a
randomized evaluation funded by the U.S. Department of t.abo

Standard parametric or semi-parametric methods for dimgefor sample selection require exclusion
restrictions that have little justification in this case. gteown below, the data include numerous baseline
variables, but all of those that are found to be related toleynpent probabilities (i.e., sample selection)
could also potentially have a direct impact on wage rates.

Thus, this paper develops an alternative method, a gen@medgure for bounding the treatment effects.
The method amounts to first identifying the excess numbendifiduals who are induced to be selected
(employed) because of the treatment, and then “trimming”ubper and lower tails of the outcome (e.g.,
wage) distribution by this number, yielding a worst-casenseio bound. The assumptions for identifying
the bounds are already assumed in conventional modelsrgleaelection: 1) the regressor of interest is
independent of the errors in the outcome and selection ieqagand 2) the selection equation can be written
as a standard latent variable binary response model. Iradeeaf an experiment, random assignment ensures
that the first assumption holds. It is proven that the tringnocedure yields the tightest bounds for the
average treatment effect that are consistent with the ebdatata. No exclusion restrictions are required,
nor is a bounded support for the outcome variable.

An estimator for the bounds is introduced and shown tq/meconsistent and asymptotically normal
with an intuitive expression for its asymptotic variancendt only depends on the variance of the trimmed
outcome variable, but also on the trimming threshold, wis@m estimated quantile. There is also an added
term that accounts for the estimationwhich quantile (e.g., the 10th, 11th, 12th, etc. percentile) ef th

distribution to use as the trimming threshold.

2In the 2004 fiscal year, the U.S. Department of Labor's Empleyt and Training Administration spent $1.54 billion foeth
operation of the Job Corps. By comparison, it spent abou8 $88lion on "Adult Employment and Training Activities" (jp
search assistance for anyone and job training availableyore if such training is needed for obtaining or retainingptoy-
ment) and about $1.44 billion on "Dislocated Workers Empiept and Training Activities” (employment and training\sees for
unemployment and underemployed workers) (U.S. Departofdrdabor, 2005a).

3A summary of services provided and costs can be found in Budjtet al. (2001).



For the analysis of Job Corps, the trimming procedure isunsgntal to measuring the wage effects,
producing bounds that are somewhat narrow. For examplegak W0 after random assignment, the es-
timated interval for the treatment effect is 4.2 to 4.3 petceven when wages are missing for about 54
percent of individuals. By the end of the 4-year follow-ugipd, the interval is still somewhat informa-
tive, statistically rejecting effects more negative thary-percent and more positive than 11.2 percent. By
comparison, the assumption-free, “worst-case scenadahtls proposed by Horowitz and Manski (2000a)
produce a lower bound of -75 percent effect and an upper boti8d percent.

Adjusting for the reduction in potential work experienckely caused by the program, the evidence
presented here points to a positive causal effect of thergnog@n wage rates. This is consistent with the
view that the Job Corps program represents a human capitgdtiment, rather than a means to improve
earnings through raising work effort alone.

The proposed trimming procedure is neither specific to thieation nor to randomized experiments.
It will generally be applicable to treatment evaluationkgems when outcomes are missing, a problem that
often arises in applied research. Reasons for missing metsoange from survey non-response (e.g., Stu-
dents not taking tests), to sample attrition (e.g., ingbib follow individuals over time), to other structural
reasons (e.g., mortality). Generally, this estimator if-audted for cases where the researcher is uncom-
fortable imposing exclusion restrictions in the standaro-equation sample selection model, and when the
support of the outcome variable is too wide to yield inforv@bounds on treatment effects.

This paper is organized as follows. It begins, in Sectionifh & description of the Job Corps program,
the randomized experiment, and the nature of the sampletisgigoroblem. After this initial analysis, the
proposed bounding procedure is described in Sections 3.a8dction 3 presents the identification results,
while Section 4 introduces a consistent and asymptoticalynal estimator of the bounds, and discusses

inference. Section 5 reports the results from the empignalysis of the Job Corps. Section 6 concludes.

2 The National Job Corps Study and Sample Selection

This section describes both the Job Corps program and theudatl for the analysis, replicates the main
earnings results of the recently-completed randomizetuatran, and illustrates the nature of the sample
selection problem. It is argued below that standard sangbdetson correction procedures are not appropri-

ate for this context. Also, in order to provide an initial bamark, the approach of Horowitz and Manski



(2000a) is used to provide bounds on the Job Corps’ effect ages: They are to be compared to the

“trimming” bounds presented in Section 5, which impleméhtsestimator developed in Sections 3 and 4.

2.1 The Job Corps Program and the Randomized Experiment

The U.S. Department of Labor describes the Job Corps progray as “a no-cost education and vocational
training program ... that helps young people ages 16 thr@dgiet a better job, make more money and take
control of their lives” (U.S. Department of Labor, 2005b)o he eligible, an individual must be a legal
resident of the United States, be between the ages of 16 grah@4ome from a low-income househdld.
The administration of the Job Corps is considered to be sdraeuniform across the 110 local Job Corps
centers in the United States.

Perhaps the most distinctive feature of the program is tlust marticipants live at the local Job Corps
center while enrolled. This residential component of thegpam includes formal social skills training,
meals, and a dormitory-style life. During the stay, with tiep of counselors, the participants develop
individualized, self-paced programs which will consistafombination of remedial high school education,
including consumer and driver education, as well as vopatitraining in a number of areas, including
clerical work, carpentry, automotive repair, building aagmhrtment maintenance, and health related work.
On average, enrollees can expect to receive about 440 hibacademic instruction and about 700 hours of
vocational training, over an average of 30 weeks. Centesgbvide health services, as well as job search
assistance upon the students’ exit from the Job Corps.

In the mid-1990s, three decades after the creation of JopsCtre U.S. Department of Labor funded
a randomized evaluation of the progranfPersons who applied for the program for the first time between
November 1994 and December 1995, and were found to be eli@bl883 persons), were randomized into
a “program” group and a “control” group. The control groub6f7 7 individuals was essentially embargoed
from the program for three years, while the remaining applis could enroll in the Job Corps as usual.
Since those who were still eligible after randomization eveot compelled to participate, the differences in
outcomes between program and control group members reprbsereduced-form effect of eligibility, or
the “intent-to-treat” effect. This treatment effect is floeus of the empirical analysis presented befow.

Of the program group, 9409 applicants were randomly salettiebe followed for data collection.

“4Information on the Job Corps and the National Job Corps Stadybe found in Schochet et al. (2001).
5The study was conducted by Mathematica Policy Research, Inc
5Throughout the paper, when | use the phrase “effect of thgram”, | am referring to this reduced-form treatment effect
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The research sample of 15386 individuals was interviewedratom assignment, and at three subsequent
points in time: 12, 30, and 48 months after random assignménte to programmatic reasons, some
sub-populations were randomized into the program grouf diftering, but known, probabilities. Thus,
analyzing the data requires the use of the design-weights.

This paper uses the public-release data of the National dopsCStudy. Table | provides descriptive
statistics for the data used in the analysis below. For lmesak well as post-assignment variables, it reports
the treatment and control group means, standard deviapomgortion of the observations with non-missing
values for the specified variable, as well as the differendbhé means and associated standard error. The
table shows that the proportion non-missing and the meartsdalemographic variables (the first 12 rows),
education and background variables (the next 4 rows), iecarbaseline (the next 9 rows), and employment
information (the next 6 rows) are quite similar. For only arfeéhe variables — usual weekly hours on the
most recent job at the baseline — is the difference (0.91)@tatistically significant. A logit of the treat-
ment indicator on all baseline characteristics in Table $ wstimated; the chi-square test of all coefficients
equalling zero yielded a p-value of 0.5¥7The overall comparability between the treatment and contro
groups is consistent with successful randomization ofrésatinent.

It is important to note that the analysis in this paper absirérom missing values due to interview
non-response and sample attrition over time. Thus, onlyithehls who had non-missing values for weekly
earnings and weekly houfer every weelafter the random assignment are used; the estimation sasnple
thus somewhat smaller (9145 vs. 15386). It will become diedow that the trimming procedure could
be applied exclusively to the attrition/non-response lanoly which is a mechanism for sample selection
that is quite distinct from the selection into employmeiatiss. More intensive data collection can solve
the attrition/non-response problem, but not the problersamfiple selection on wages caused by employ-
ment. For this reason, the analysis below focuses exclysirethe latter problem, and analyzes the data

conditional on individuals having continuously valid eéags and hours dafh.

"This paper uses the variable DSGN_WGT as described in Sehethl. (2003).

8Missing values for each of the baseline variables were istbutith the mean of the variable. The analysis below uses this
imputed data.

9Although the analysis here abstracts from the non-resppretgem, there is some evidence that it is a second-ordee.iss
The proportion of control group individuals, at week 90 tthave continuously non-missing earnings and hours dat82&20and
the proportion is 0.003 smaller (standard error of 0.008)tie treatment group. If the analysis below is applied toattgtion
problem, it implies that there is no attrition bias. An amglos calculation for any week from the 48-month interviemeliiding
week 208) will not yield the same zero effect. This is becabgedesign, fewer treatment group individuals were coetctiue
to data collection costs. Mathematica Policy Research, “‘landomly selected 93 percent of program group memberswére
eligible for 48-month interviews” (Schochet et al., 2003).



The bottom of Table | shows that the only set of variables #atw important (and statistically sig-
nificant) differences between treatment and control areptst-assignment labor market outcomes. The
treatment group has lower weekly hours and earnings at w2ekub higher hours and earnings at the 3-
year and 4-year marks. At week 208, the earnings gain is @dollars, with the control mean of about
200 dollars. The effect on weekly hours at that time is asttatilly significant 1.95 hour¥

Figure I illustrates the treatment effects on earnings &mheweek subsequent to random assignment.
It shows an initial negative impact on earnings for the filGtwaeeks, after which point a positive treat-
ment effect appears and grows. The estimates in the bottoraldé | and plotted in Figure | are similar

qualitatively and quantitatively to the impact estimatesarted in Schochet et al. (2004).

2.2 The Effect on Wages and the Sample Selection Problem

It seems useful to assess the impact of the programvame ratesas distinct from total earnings, which is
a product of both the price of labor (the wage) and labor sufyhether the person works, and if so, how
many hours). Distinguishing between price and quantitgcff is important for better understanding the
mechanism through which the Job Corps leads to more favotabbr market outcomes.

On the one hand, one of the goals of the Job Corps is to eneuvatk and self-sufficiency; thus,
participants’ total earnings might rise simply becauseptogram succeeds in raising the likelihood that
they will be employed, while at the same time leaving the ratvkage for their labor unaffected. On the
other hand, the main component of the Job Corps is signifi@eatlemic and vocational training, which
could be expected to raise wages. There is a great deal ofieahividence to suggest a positive causal
effect of education on wagé3.

Unfortunately, even though the National Job Corps studyasandomized experiment, one cannot use
simple treatment-control differences to estimate thecéfiéthe program on wage rates. This is because the
effective “prices” of labor for these individuals are onlyserved to the econometrician when the individuals

are employed. This gives rise to the classic sample seteptiablem (e.g., see Heckman (1979)).

10This is consistent with Mathematica’s final report, whiclmskd that the program had about a 12 percent positive effect o
earnings by the fourth year after enroliment, and suggdsigdifetime gains in earnings could very well exceed thegpam's
costs (Burghardt et al., 2001).

11In Schochet et al. (2001), the reported estimates used attésgent sample criterion. Instead of requiring non-inigvalues
for 208 consecutive weeks, individuals only needed to cetepthe 48-month interview (11313 individuals). Therefdoe that
sample, some weeks’ data will be missing. Despite the diffee in the samples, the levels, impact estimates, and tiafiéep
reported in Schochet et al. (2001) are also quite simildnéséd found in Figures Il, and 11l (below).

12For a survey of the recent literature on the causal effectioéation on earnings, see Card (1999).



Figure 1l suggests that sample selection may well be a prolide the analysis of wage effects of the
Job Corps. It reports employment rates (the proportion efsimple that has positive work hours in the
week) for both treated and control individuals, for each kvedlowing random assignment. The results
show that the program had a negative impact on employmepepsities in the first half of the follow-up,
and a positive effect in the latter half. This shows that thle Corps itself affected whether individuals
would have a non-missing wage rate.

Put another way, Figure Il illustrates that even though erapndom assignment will imply that the
treatment and control groups are comparable at the baséfing may well be systematically different
conditional on being employeith a given period subsequent to the random assignment. Asudt,réne
treatment-control difference in mean log-hourly wagesplagted in Figure 11, may not represent the true
causal effect of the prografi.

There are two other reasons why sample selection can galteie important in this case. As shown in
Figure I, a large fraction of individuals are not employeanployment rates start at about 20 percent and
grow to at most 60 percent at the four-year mark. Second.emgployed and employed individuals appear
to be systematically different on a number of important olegle dimensions. Table Il reports log-odds
coefficients from a logit of employment in week 208 on thettmeant dummy and the baseline characteristics
listed in Table I. As might be expected, gender, race, edutatriminal history, and employment status at
the baseline are all very strong predictors of employmemteak 208.

The problem of non-random sample selection is well undedsio the training literature; it may be one
of the reasons why most evaluations of job training progréoogs on total earnings, including zeros for
those without a job, rather than on wages conditional on eympént. Of the 24 studies referenced in a
survey of experimental and non-experimental studies of Ehfhloyment and training programs (Heckman
et al., 1999), most examine annual, quarterly, or monthiniegs without discussing the sample selection
problem of examining wage raté$. As for the Job Corps, when reporting results on hourly wages f

the working, Schochet et al. (2001) is careful to note thahee of the selection into employment, the

L3Hourly wage is computed by dividing weekly earnings by wgdtdurs worked, for the treatment and control groups. Note
the pattern of “kinks” that occur at the 12- and 30-month markhich is also apparent in Figure I. This could be causedby t
retrospective nature of the interviews that occur at 12-, 80d 48-months post-random-assignment. This patteridamufound
if there were systematic over-estimation of earnings onleynpent that was further away from the interview date. Thediwould
“connect” if respondents were reminded of their answer ftheprevious interview. Note that these potential erroraatcseem
to be too different between the treatment and control groagghere are no obvious kinks in the difference (solid seg)ar

14The exceptions include Kiefer (1979), Hollister et al. (A38Barnow (1987). The sources from Tables 22 and 24 in Henkma
et al. (1999) were surveyed.



treatment-control differences cannot be interpreted gmanestimates.

2.3 Existing Approaches

Currently, there are two general approaches to addresBgample selection problem. The first is to
explicitly model the process determining selection. Theveational setup, following Heckman (1979),

models the wage determining process as

Y*=DB+Xm+U 1)
Z" =Dy+Xm+V

Y=1[z">0]-Y*

whereY* is the offered market wage as of a particular point in timg.(aveek 208 after randomization),
D is the indicator variable of receiving the treatment of gegiven access to the Job Corps program, and
X is a vector of baseline characteristi@:. is a latent variable representing the propensity to be eysglo
y represents the causal effect of the treatment on employpmepéensities, whilg8 is the causal parameter
of interest!® Both Y* and Z* are unobserved, but the wage conditional on employneist observed,
where 1] is the indicator variable(U,V) are assumed to be jointly independent of the regreggnis) .6
Within a standard labor supply framework, it is easy to imaghe possibility that job training could raise
the market wage for individuals, leading to a positfge and at the same time raise the probability of
participating in the labor forcey(> 0) since a higher wage will more likely exceed the reservatiage for
participating®’

As in Heckman (1979), sample selection bias can be seen eificgion error in the conditional expec-
tation

E[Y|D,X,Z* >0 =DB+Xm+E[U|D,X,V > —Dy— X5

One modeling approach is to assume that data are missingdtmg perhaps conditional on a set of

151n this specification, the treatment effect is constant.

16This assumption, which is stronger than necessary, is #tvolow for expositional purposes. It will be shown below tiuhat
is required is instead independencedfV) andD, conditional onX.

170f course, it should be noted that since the goal here is tmat a reduced-form treatment effect, we do not adopt a
particular labor supply model, or prohibit ways in which theatment could affect participation. For exampleould be positive
if the program’s job search assistance component was iaort



covariates (Rubin, 1976). This amounts to assumingWhandV are independent of one another, or that
employment status is unrelated to the determination of wafjkis assumption is strictly inconsistent with
standard models of labor supply that account for the pp#tmn decision (e.g., see Heckman (1974)).

A more common modeling assumption is that some of the exagewariables determine sample se-
lection, but do not have their own direct impact on the outearhinterest; that is, some of the elements
of rq are zero while corresponding elementsrpfare nonzero. Such exclusion restrictions are utilized in
parametric and semi-parametric models of the censoredtiesigorocess (e.g., Heckman (1979), Heckman
(1990), Ahn and Powell (1993), Andrews and Schafgans (19983 et al. (2003)).

The practical limitation to relying on exclusion restraris for the sample selection problem is that there
may not exist credible “instruments” that can be excludednfthe outcome equation. This seems to be
true for an analysis of the Job Corps experiment. There arg wexiables available to the researcher from
the Job Corps evaluation, and many of the key variables stedlin Tables | and Il. But for each of the
variables in Table Il that have significant associationgeinployment, there is a well-developed literature
suggesting that those variables may also influence wagesoff@r example, race, gender, education, and
criminal histories all could potentially impact wages. lebold income and past employment experiences
are also likely to be correlated with unobserved determahwages.

Researchers’ reluctance to rely upon specific exclusidricésns motivates a second, general approach
to addressing the sample selection problem: the consiruofi “worst-case scenario” bounds of the treat-
ment effect. When the support of the outcome is boundedgdteeis to impute the missing data with either
the largest or smallest possible values to compute thedaagel smallest possible treatment effects con-
sistent with the data that is observed. Horowitz and ManBDQa) use this notion to provide a general
framework for constructing bounds for treatment effectapagters when outcome and covariate data are
non-randomly missing in an experimental settiigThis strategy is discussed in detail in Horowitz and
Manski (2000a), which shows that the approach can be usélehYvis a binary outcome.

This imputation procedure cannot be used when the suppartisunded. Even when the support is
bounded, if it is very wide, so too will be the width of the the@nt effect bounds. In the context of the

Job Corps program, the bounds are somewhat uninformatatde Tl computes the Horowitz and Manski

18An early example of sensitivity analysis that imputed nmigsialues is found in the work of Smith and Welch (1986). Cgher
(Balke and Pearl, 1997; Heckman and Vytlacil, 1999, 2000te&e constructed such bounds to address a very differebtgon
— that of imperfect compliance of the treatment, even whatefition” to treat is effectively randomized (Bloom, 19&ipbins,
1989; Imbens and Angrist, 1994; Angrist et al., 1996).



(2000a) bounds for the treatment effect of the Job Corpsranogn log-wages in week 208. Specifically,

it calculates the upper bound of the treatment effect as

Priz*>0D=1E[Y|D =1]+Pr[Zz* < 0D =1]YYB

—Pr[z* >0D=0|E[Y|D=0]+Pr[z* <0D=0]Y"®

where all population quantities can be estimated, 88 andY'E are the upper and lower bounds of the
support of log-wages. As reported in the Tabi¥2 andY-B are taken to be 2.77 and 0.90 ($15.96 and
$2.46 an hour), respectively.

Table Ill shows that the lower bound for the treatment effactiwveek 208 log-wages is -0.75 and the
upper bound is 0.80. Thus, the interval is almost as comsistéh extremely large negative effects as
it is with extremely large positive effects. The reason fus twide interval is that more than 40 percent
of the individuals are not employed in week 208. In this ceptenputing the missing values with the
maximal and minimal values of is so extreme as to yield an interval that includes effe@ssihat are
arguably implausible. Nevertheless, the Horowitz and Maf000a) bounds provide a useful benchmark,
and highlight that some restrictions on the sample selegirocess are needed to produce tighter bounds
(Horowitz and Manski, 2000b).

The procedure proposed below is a kind of “hybrid” of the tvemeral approaches to the sample selec-
tion problem. It yields bounds on the treatment effect, evben the outcome is unbounded. It does so by

imposing some structure on the sample selection procesgjitiout requiring exclusion restrictions.

3 Identification of Bounds on Treatment Effects

This section first uses a simple case in order to illustragdrituition behind the main identification result,
and then generalizes it for a very unrestrictive samplecele model.

Consider the case where there is only the treatment indjoatth no other covariates. That i, is

19The wage variable was transformed before being analyzedider to minimize the effect of outliers, and also so that the
Horowitz and Manski (2000a) bounds would not have to relyt@se outliers. Specifically, the entire observed wageiligton
was split into 20 categories, according to the 5th, 10thh,15t 95th percentile wages, and the individual was asdigine mean
wage within each of the 20 groups. Thus, the upper “boundhefdupport, for example, is really the mean log-wage forahos
earning more than the 95th percentile. The same data arefaistite trimming procedure described below. Strictly spegk
the Horowitz and Manski (2000a) bounds would use the thiaddtounds of the support of the population log-wage distion.
Since these population maximums and minimums are not abdeone could instead utilize the log of the minimum and maxm
log-wage observed in the sample. It is clear that doing sdavaroduce wider bounds than that given by the implementdiere.
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a constant, so thatp, and @ will be intercept terms. It will become clear that the resadlow is also
valid conditional on any value oK. Describing the identification result in this simple casekesaclear
that the proposed procedure does not rely on exclusionatestis. In addition, this section and the next
assumes thdd (and henc&’) has a continuous distribution. Doing so will simplify thepesition; it can be
shown that the proposed procedure can be applied to dismiateme variables as well. Without loss of
generality, assume thgt> 0, so that the treatment causes an increase in the likelibbibe outcome being
observed.

From Equation (1), the observed population means for th&@oand treatment groups can be written
as

EYID=0,Z">0=m+EUD=0,V > —75] )

and

ElYID=1Z">0=m+B+EUID=1V > -1V 3)

, respectively. This shows that whehandV are correlated, the difference in the means will generadly b
biased forg.

Identification of3 would be possible if we could estimate
EYD=1V>-m]=m+B+EUD=1V > —T1g] (4)

because (2) could be subtracted to yield the effe(tinceD is independent ofU,V)). But the mean in (4)
is not observed.
But this mean can be bounded. This is because all obsersaiioyi needed to compute this mean are a

subset of the selected populatidh® —7m — y). For example, we know that
EYID=1,Z">0=(1-p)E[YID=1V > -1+ pE[YD=1,-—y<V < —7B]

wherep = %. The observed treatment mean is a weighted average of (4thantean for

a sub-population of “marginal” individuals(e» — y <V < —71B) that are induced to be selected into the

sample because of the treatment.

20see an earlier draft of this paper, Lee (2002), for an impheat®n of the bounds for a binary response outcome.
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E[Y|D=1V > —rp] is therefore bounded above B{Y|D =1,Z* > 0,Y > y,]|, wherey, is the pth
guantile of the treatment group’s obserwédistribution. This is true because among the selected ptpuol
withV > —1% — y, D = 1, no sub-population with proportiofil — p) can have a mean that is larger than the
average of the large$l — p) values ofY.

Put another way, we cannot identify which observations afi@marginal(V > —7%) and which are
marginal(—1 — y <V < —7B). But the “worst-case” scenario is that the smallestalues ofY belong to
the marginal group and the largestJ values belong to the inframarginal group. Thus, by trimntimg
lower tail of theY distribution by the proportiom, we obtain an upper bound for the inframarginal group’s
mean in (4). ConsequentlgY| D=1,2Z*>0,Y >yp]—E[Y|D=0,Z"> 0] is an upper bound foB.
Note that the trimming proportiop is equal to

Pr(z* > 0|D = 1] — Pr[z* > 0|D = 0]
PriZ- > 0D = 1]

where each of these probabilities is identified by the data.

To summarize, a standard latent-variable sample seleotimel implies that the observed outcome
distribution for the treatment group is a mixture of two disttions: 1) the distribution for those who
would have been selected irrespective of the treatmenir{tf@marginal group), and 2) the distribution for
those induced into being selected because of the treatitienin@rginal group). It is possible to quantify
the proportion of the treatment group that belongs to thieisé group, using a simple comparison of the
selection probabilities of the treatment and control geowdthough it is impossible to identify specifically
whichtreated individuals belong to the second group, “worsetasenarios can be constructed by assuming
that they are either at the very top or the very bottom of tlstridution. Thus, trimming the data by the

known proportion of excess individuals should yield bouadshe mean for the inframarginal group.

3.1 Identification under a Generalized Sample Selection Mcal

This identification result applies to a much wider class ofgle selection models. It depends neither on a

constant treatment effect, nor on homoskedasticity, waietboth implicitly assumed in Equation (1).
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To see this, consider a general sample selection modelliyasdor heterogeneity in treatment effects:

(Y1, Y5, S1, S, D) is i.i.d. across individuals (5)
S=S5D+S(1-D)
Y=S{Y;D+Y;(1-D)}

(Y,S D) is observed

whereD, S §, and$; are all binary indicator variable® denotes treatment stati;andS, are “potential”
sample selection indicators for the treated and contréésta=or example, when an individual Has= 1
andS = 0, this means that the outconvewill be observed S= 1) if treatment is given, and will not be
observed S= 0) if treatment is denied. The second line highlights the faat for each individual, we only
observeS, or §. Y7 andYy are latent potential outcomes for the treated and contatéstand the third line
points out that we observe only one of the latent outcowjesr Yy, and only if the individual is selected

into the sampl&S= 1. It is assumed throughout the paper 848D = 1] ,E[SD = 0] > 0.

Assumption 1 (Independence)(Y;",Yy, S, S) is independent ob.

This assumption corresponds to the independendd &f) and(D, X) in the previous section. In the context

of experiments, random assignment will ensure this assampiill hold.

Assumption 2a (Monotonicity): S; > S with probability 1.

This assumption implies that treatment assignment canadfdgt sample selection in “one direction”. Some
individuals will never be observed, regardless of treatnassignment$ = S = 0), others will always be
observed & = 1,5 = 1), and others will be selected into the sampézauseof the treatmentg = 0,

S =1). This assumption is commonly invoked in studies of impetricompliance of treatment (Imbens
and Angrist, 1994; Angrist et al., 1996); the differencehiattin those studies, monotonicity is for how an

instrument affectsreatment statusHere, the monotonicity is for how treatment affestgnple selectian

13



In the context of the Job Corps program, the monotonicitymaggion essentially limits the degree of
heterogeneity in the effect of the program on labor forcéigipation. It does not allow, for example, the job
search assistance services provided by Job Corps to indowte become employed while simultaneously
causing others to drop out of the labor foréeSimilar to the case of LATE, with only information on the
outcome, treatment status, and selection status, the ooty assumption is fundamentally untestable. It
should be noted that monotonicity has been shown to be dgoivi@ assuming a latent-variable threshold-

crossing model (Vytlacil, 2002), which is the basis forwatly all sample selection models in econometrics.

Proposition 1: Let Y5 andY;" be continuous random variables. If Assumptions 1 and 2a
hold, thenA§® and AY® are sharp lower and upper bounds for the average treatnieat ef

EY) —Y5|S=1,S = 1], where

AP =EYD=1S=1Y<y; ] -E[Y|D=0,S=1]
AP=E[Y|D=1S=1Y >y,]|-E[Y|D=0,S=1]

yq = G 1(q), with G the cdf ofY, conditional orD = 1,S=1

_ Pr[S=1jD=1]—Pr[S= 1D =0]
Po= PI[S=1D =1

The bounds are sharp in the sense th#t (A3 ®) is the largest (smallest) lower (upper) bound

that is consistent with the observed d&ta.

Obviously, this result is equally valid if one were to assummnotonicity in the opposite directioly{> S
with probability 1). Furthermore, since any poi A§® < A < A§®, cannot be ruled out by the data, the

interval [A§3, A ®] is contained in any other valid bounds that impose the samengstions?®

21A negative impact could occur, for example, if the job seatinseling induced some to pursue further education (ancehe
drop out of the labor force).

22If 5 > S; with probability 1, then the control group’s, rather thaa treatment group’s, outcome distribution must be trimmed.

3To see that anyA strictly within the interval [A52,A58] cannot be ruled out by the observed data, note
that AY® >E[Y|D=1S=1] — E[Y|D=0,S=1] >E[Y[D=1S=1Y<yy] — E[Y|D=0,S=1]. Therefore,
for any A between E[Y|D=1,S=1-E[Y|[D=0,S=1] and Ay® there existsA € [0,1] such thatA = AAYE +
(1-M{E[YID=1S=1Y <yp]-E[Y|D=0,S=1]}. With this A , we can construct 1) a density of; con-
ditional on § = 1,5 = 1 as Ag(y) + (1—A)h(y) and 2) a density ofYy conditional on § = 0,5, = 1 being

(1?—;}0 - 1;—0p°)\)g(y) + <17 1;—0p° (17)\)> h(y), whereg(y) is the density ofy conditional onY > yy , andh(y) is the
density ofY conditional onY < yp,. The mixture of these two latent densities, by construgtieplicates the observed density
of Y conditional onD = 1,S= 1; furthermore, by construction the mean of the constructedsity ofY;" conditional on

S = 1,5 = 1 minus the control mean yields the propoged A symmetric argument can be made about Anyn between
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Remark 1. The sharpness of the bouﬂ@B means that it is the “best” upper bound that is consistent
with the data. A specific example of where this proposition ba applied is in Krueger and Whitmore
(2001), who study the impact of the Tennessee STAR classesiperiment. In that study, students are
randomly assigned to a regular or small class and the outcdnméerest is the SAT (or ACT) scores, but
not all students take the exam. On p. 25, Krueger and Whitr{R061) utilize Assumptions 1 and 2a
to derive a different upper bound, given By= E[Y| D=1,S=1]- % — E[Y|D=0,S=1].
Proposition 1 implies that this bourR] like any otherproposed bound utilizing these assumptions, cannot
be smaller thady 8.24

Remark 2. An important practical implication of Assumptions 1 andi@ahat aspg vanishes, so
does the sample selection bf&sThe intuition is that ifpy = 0, then under the monotonicity assumption,
both treatment and control groups are comprised of indal&lavhose sample selection was unaffected
by the assignment to treatment, and therefore the two gratmsomparabfé. Thus, when analyzing
randomized experiments, if the sample selection ratesitréatment and control groups are similar, and if
the monotonicity condition is believed to hold, then a congum of the treatment and control means is a
valid estimate of an average treatment efféct.

Remark 3. Assumptions 1 and 2a are minimally sufficient for computihg bounds. First, the inde-
pendence assumption is also important, since it is whafigssthe contrast between the trimmed treatment
group and the control group.

Second, monotonicity ensures that the sample-selectadotgrnoup consists only of those individuals
with § = 1,S = 1. Without monotonicity, the control group could consistebp of observations with

S =15 =0, and the treatment group solely of observations &th= 0,S = 1. Since the two sub-

E[Y|D=1,S=1]-E[Y|D=0,S=1] andA{®. Therefore, eacth within the interval [A58,AYB] cannot be ruled out by the
observed data.

24Thus, in the context of Krueger and Whitmore (2001), Prapmsil implies that computing the bourilis unnecessary
after already computing a very different estimatetheir “linear truncation” estimate. They justify under a different set of
assumptions: 1) that “the additional small-class studieisced to take the ACT exam are from the left tail of the disiion” and
2) “if attending a small class did not change the ranking adishts in small classes.” Their estimatés mechanically equivalent to
the boundagB. Therefore, Proposition 1 implies that their estimats actually the sharp upper bound given the mild assumptions
that were used to justify their bourigi

25/ vanishingp corresponds to individuals with the same value of the sasglkction correction term, and it is well known that
there is no selection bias, conditional on the correctiomte&See, for example, Heckman and Robb (1986), Heckman },1866
and Powell (1993), and Angrist (1997).

26These individuals can be thought of as the “always-takarbsmopulation (Angrist et al., 1996), except that “takirghot the
taking of the treatment, but rather selection into the sampl

27Note thatpg here is proportional to theifferencein the fraction that are sample selected between the trestamel control
groups. Thus, the notion of a vanishipghould not be confused with “identification at infinity” in @dkman, 1990), in which the
bias term vanishes as the fraction that is selected intoaimpke tends to 1.
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populations do not “overlap”, the difference in the meanddoot be interpreted as a causal effect.

An interesting exception to this arises in the special chaeB[§D = 0] + E[SD = 1] > 1, in which
case bounds can be constructed without invoking monotgnas demonstrated in Zhang and Rubin (2003).
There, the insight is that the proportion of those whoSre 1, S, = 0 can be no larger than the proportion
in the treatment group who have missing values EI[§D = 1]. It follows that within the control group, the
fraction of S = 1,5 = 1 individuals cannot be less th&{SD = 0] — (1— E[SD = 1)), which is positive,
as assumed. It thus follows that, for example, the upper dhdanthe mean ofYy for $=1,5 =1
is the mean after trimming the bottoﬂ@% fraction of the observed control group distribution. A
symmetric argument can be made for bounding the meaj &br § = 1,5 = 1. This idea is formalized
in Zhang and Rubin (2003), and also discussed in Zhang €@08]. It should be noted, however, that the
procedure of Zhang and Rubin (2003) will not work for a gehsample selection model, as the assumption
E[SD=0]+E[SD=1] > 1is crucial?® Specifically, ifE[SD = 0] + E[SD = 1] < 1 then the “worst-
case” scenario would involve trimmirgl of the observed treatment and control observations, meguit
no bounds?

Remark 4. Whenpgy = 0 in a randomized experimental setting, there is a limitstdaéwhether the sim-
ple difference in means suffers from sample selection [Bagmpose that each of the four sub-populations,
defined by(§=0,5=1), (=15 =0), (S =0,5 =0),0r (S =1,5 = 1), have a different distribu-
tion of baseline characteristiés. If pg = 0 and monotonicity holds, then both treatment groups witistst
solely of the(S =1,S = 1) group; thus, the distribution of th€s should be the same in the treatement
and control groups;onditional on being selectedf monotonicity does not hold, then the selected, treated
group will comprise of two sub-population§ =1, = 1) and(S = 0,5, = 1), while the control group
will be comprised of the group§ =1,S =1) and (S =1,S = 0). This implies that there should be
treatment-control differences in the distributionXsd, conditional on being selected.

Finally, the trimming procedure described above placegdheunds on the average treatment effect for
a particular sub-population — those individuals who willdedected irrespective of the treatment assignment

(S5 =1,5 =1). It should be noted, however, that this sub-populatidhesonly one for which it is possible

28For example, the procedure will not work if 49 percent of tleatment group is missing and 52 percent of the control giwup
missing.

29AIthough E [SID = 0] + E [SID = 1] > 1 is not formally stated as an assumption in Zhang and Ruli@3or in Zhang et
al. (2008), it is clear that it is a necessary one. Using thatiom of Zhang and Rubin (2003f;¢ and Prg are equivalent to
E[SD = 0] andE[JD = 1], respectively. IfPfcg+ Prg < 1, this means thathg is bounded above bl (the line below their
Equation (12)), which means that their Equations (11) a@) yleld (—, ) as bounds (if the dependent variable has unbounded
support).
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to learn about treatment effects, given Assumptions 1 ar{dtdaast, in this missing data problem). For the
marginal & = 0,S; = 1) observations, the outcomes are missing in the contrahegFor the remaining

(S = 0,5 = 0) observations, outcomes are missing in both the treatemehtontrol regimes. It would still

be possible to appeal to the bounds of Horowitz and ManskKi@@pto construct bounds on this remaining
population of the “never observed”, but this interval (wh@ddth would be 2 times the width of the outcome
variable’s support) would not require any data. Whetheradttime sub-population of the “always observed”
is of interest will depend on the context. In the case of theQorps program, for example, it is useful to
assess the impact of the program on wage rates for those whgdeyment status was not affected by the

program.

4 Estimation and Inference

This section proposes and discusses an estimator for thedbourhe estimator can be shown to {Ja
consistent and asymptotically normal. The asymptoticaveng is comprised of three components, reflecting
1) the variance of the trimmed distribution, 2) the variantéhe estimated trimming threshold, and 3) the
variance in the estimate of how much of the distribution imrTo minimize redundancies, the discussion
below continues to consider the case tBat S with probability 1 (from Assumption 2a); the results are

also analogously valid for the reverse cas&pf S .

4.1 Estimation

The estimates of the bounds are sample analogs to the parandeffined in Proposition 1. First, the
trimming proportionp is estimated by taking the treatment-control differencénhi proportion with non-
missing outcomes, and dividing by the proportion that iecteld in the treatment group. Next, tha (or
the (1— p)th) quantile of the treatment group’s outcome distributi®calculated. Finally, these quantiles
are used to trim the data for the treatment group’s outcomeésampute the bounds-B andAUB,

Formally, we have
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Definition of Estimator.

5. 2Y'SD: 1Y <vyi ] _3Y:S(1-D)
~ YSD-1[Y <y S (1-D)
SY-SD-1[Y>¥] §Y-S(1-D)

(6)

AU =
$S-D-1[Y >y S (1-D)
%;min{y:% _q}

- (52582 (32)

where the summation is over the entire sample of size

4.2 Consistency, Asymptotic Normality, Variance Estimaibn, and Inference

The estimatoraLB andAUB are consistent foAk® andAYB under fairly standard conditions:

Proposition 2 (Consistency):LetY have bounded support (i.eL,U such that Pjy < L]and
Pr[Y > U] equal zero), and suppofdSD = 0] > 0 andpo > 0, thenAtB 2 ALB andAUB 2
AYe,

As shown in the Appendix, the proof involves showing that ¢éisémator is a solution to a GMM prob-
lem, showing that the moment function vector is, with praligbl, continuous at each possible value of
ALB,AYB, and applying Theorem 2.6 of Newey and McFadden (1894).

The estimatorALE andAUB are also asymptotically normal, with an intuitive expresadior the variance.

Proposition 3 (Asymptotic Normality): Definey'® = E[Y| D=1,S=1Y <vy; g
anduVB=E[Y|D=1,S=1,Y >yp,]. In addition to the conditions in Proposition 2, assume
E[SD = 0] <E[ID = 1] < 1. Then/n (E-\B —A'5‘3> 9 N (0,VLB 4+ ) andy/ (A/U\B —AgB)
4N (0,VYB+\¢), where

30Recall that boundedness of the suppor¥ d§ unnecessary for identification. Furthermore, consistean be proven without
boundedness (see Lee (2005)).
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VLB Var[Y|D=1S= 17YSY1—po]+ (yl—po_“LB)zpo
E[SD (1-po) E[SD (1 po)
Yipo — B ?
s () v
yue _ VarlY[D=1S=1Y>ya] (Ve —H®)"po
E[SD (11— po) E [SD/(1— po)
Yo — HYUB
s () v
VP — (1_p)2 (1_15{%(3) + (1_00) (7)
’ E[D](lg'—om) (1-E[D]) ao

and\V\c is the usual asymptotic variance of the estimated mean éocdhtrol group (divided by

E[S(1—D))).3

Consider the three terms M'B. The first term would be the variance of the estimate if thearting
thresholdy,_,, were knowr?? The second term reflects the fact that the threshold is a itgiétmat needs
to be estimated. Taken together, the first two terms are lgx@gpivalent to the expression given in Stigler
(1973), which derives the asymptotic distribution of a @ied “po-trimmed” mean, whepg is known. But
Po is not known, and must be estimated, which is reflected inhind term. The third term itself includes
the asymptotic variance ¢f multiplied by the square of the gradient of the populatidmined mean with
respect topg.33 The Appendix contains the proposition’s proof, which imes applying Theorem 7.2
of Newey and McFadden (1994), an asymptotic normality tefeulGMM estimators when the moment
function is not smooth.

Estimation of the variances is easily carried out by replaall of the above quantities (e.de,[SD],
Ypo) With either of their sample analogs (e.é.z SD, yp). After assuming a finite second moment for
consistency follows because the resulting estimator isdraoous function of consistent estimators for each

part.

311t is divided byE [S(1— D)], because here is the total number of observations (selected and electsd, treated and control).
32The termm exists becauseis the size of the entire sample (both treatment and coranal all observations including
those with missing outcomes).

1--9_

33Note thatlggO and ( i"") are the odds of an observation being missing conditionaleamgbin the control group and the
1-po

treatment group, respectively.

19



There are two simple ways to compute confidence intervalst, KFine can compute the inter\![ztlflL\B
196"\}_B , AYB 1 1.96. %}, O = \/VTA/E» Oug = V(A/U\\B>. This interval will asymptotically
contain the regior{A§®,A3®] with at least 095 probability®* Imbens and Manski (2004) point out that
this same interval will contain thparameter HY;' —Y;'|S = 1,5, = 1] with an even greater probability,
suggesting the confidence interval for the parameter willdreower for the same coverage rate. The results

of Imbens and Manski (2004) imply that a (smaller) intervh[AdB ~C, 9s AVB | Cn UUB] whereC,

Sl

%Im

satisfies o
AU B__ ALB

® (Cn+ vn ) —®(-Cp) =0.95,

max(0ig, O0uB)
can be computed, and will contain the paraméi€Y;” — Y;|S = 1,S; = 1] with a probability of at least
0.95.

The interval of Imbens and Manski (2004) is more approprieee since the object of interest is the
treatment effect, and not thregion of all rationalizable treatment effects. Nevertheless ctumpleteness,

both intervals are reported in the presentation of the tsul

4.3 Inference with Unknown sgn(po)

The discussion to this point has presumed figat 0 and therefore the procedure described so far is appro-
priate when the researcher has reason to believe that #eitatus has a (strictly) positive impact on the
outcome being observed. But a researcher may want to remgaostc about the sign qfy. Specifically,

we have so far assumed tt&t> S with probability one. But the researcher — still concernledud sample

selection — may instead want to adopt the following asswmnpti

Assumption 2b (Monotonicity): EitherS, > & with probability 1 orS > S with proba-
bility 1.

This means that monotonicity is maintained but theection in which treatment effects selection is un-

known.

— — ALB__ALB AUB__ AUB
34To see this, note that P-B— 19608 < ALB, AYB+ 1.960VB > AYB] is equivalent to F{&ZEAL < 1.96, A—GUBAO— >

~1.96 =1- Pr[A A" - 1.96 - Pr[—UBAO— < —1.96/+ Pr[A 285 5 1.96 2255 < _1.96], which is equal to 1 0.025—

_ AUB_ AU _ALB uB
0.025+ Pr{A A > 1.96, &GUBAO— < —1.96, WhenA—EBA— ﬂUBA_ is standard bivariate normal.
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The above identification, estimation, and inference procedeadily generalizes to this case. First, from

an identification standpoint, it is clear that the sharp lobaund is given by

A = 1[po>0{E[YID=1,S=1Y<y; ] —E[Y|D=0,S=1]}

+1[po < O] {E[Y|D=1,S=1]-E[Y|D=0,S=1]Y > ypa]}

whereyy, is the pgth quantile of the control group’s observed distributionvofin other words, wheipo > 0,
the upper tail of the treatment grougysdistribution is trimmed, as described above; but wipgrc 0, the
lower tail of the control group is trimmed for exactly same reasoning as describedeipitevious section.
There is an analogous expression A§f.

Replacing the above population quantities with their sangplalogues, an estimator for the bounds in

this less restrictive model becomes

AB = 1[p>0]-AB 4+ 1[p<0]- A

— — —

AYB = 1[p>0]-AYB+1[p< 0] -AYE

whereALB* andAUB* are the analogous bounds when the control groups are tricAtns long aspg # 0,
ALB is consistent because it is a function of consistent estragt ALB ALB* | and the function is continuous
at the true parameter values of those estimators.

It follows from the delta method that, the above estimat@lse asymptotically normal with

vi(aB-ag) 2

VA (a%-nage)

N (0,1[po > O] {V"®+Vc} +1[po < O] {Vr +V°})
N (0,1[po > O] {VYB+Vc} +1[po < O] {Vr +V&®})
where the variance for the untrimmed treatment mégais analogous t&/c defined previously, an\xszUB
andV}B use the analogous expressions in Proposition 3, but forahtat group.
To summarize, suppose the researcher is unsure about thefgig, but knows thafyg is nonzero. As

an overall procedure, it is asymptotically valid to estienpt and if positive, trim the treatment group and

5Y-S(1-D)1[Y>y | $Y-S$(1-D)1[v<y -]

35 @ f llv. ALB* — 3Y:SD _ Y d @ _ 3YSD _ T ith =
i.e., more formally, SSD zS(l—D>-1[Y2y;¢} an SSD ZS<17D>-1[Y§y;5,,] , with g
i . 2S(1-D)-1[y<y] ~_ (32S(-D) SD S(1-D)
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conduct inference as discussed in subsections 4.1 and A®if Aegative, trim the control group instead,
and conduct inference using the same forméfaZhe intuition behind this is that as sample size increase,
and the sampling variability op shrinks, the probability that the “wrong” group (treatmenmtcontrol) is
trimmed, leading to the wrong asymptotic variance beingluganishes.

It is useful to consider the asymptotic behavior of thisreatbr whenpg = 0. In the Appendix, the
estimator is shown to remain consistent, even without bedrsdipport. Intuitively, the amount of trimming
vanishes with sample size, and so the trimmed mean convesgbe (unbiased) untrimmed mean. On
the other hand, it is clear that conventional first-ordemastptics will not apply. Close inspection of the
above expressions reveals that keeping all other parasraiastant, the asymptotic variance of either of the
bounds is in general discontinuouspgt= 0. Specifically, whemg approaches zero from the right the third
component of the variance of the trimmed treatment mearimgleneral converge to a quantity that differs
from the third component that must appear for the variandbefrimmed control mean whegw becomes
negative.

This leads to two practical implications. First, when thee@cher knowgg to be exactly zero, the
above asymptotic expressions do not apply. Second, in gewhenpgy # 0, even though coverage rates
for confidence intervals are asymptotically correct, adadtgcontinuity in the asymptotic variance suggests
coverage rates may be inaccurate when sample sizes areaswhad is “close” to zero, which would imply
that the “wrong” group is being trimmed with nontrivial prattility in repeated samples.

It is useful to note, however, that for any finite sample siemg approaches zero, the confidence interval
constructed from thantrimmedestimator will have coverage folhe parameter of intereshat approaches
the correct raté® since the bias (the difference between the untrimmed ptpalenean and the population
trimmed mean) is continuous ipy, and equal to zero gtp = 0. Therefore, the untrimmed estimator for
the treatment effect may have better coverage rates in a Bainple, even though its coverage will be
zero asymptotically. Thus, at a minimum, it seems worthevfor the researcher to additionally report the
untrimmed estimator and standard errors. A simple, coatigevapproach to combining the trimmed and

untrimmed intervals is to compute their union. In repeatsitifisamples, gbg arbitrarily close to zero, this

36That is, letD* = 1— D and replac® everywhere wittD*.

37As can be seen from the asymptotic expressions above, thentiisuity in the asymptotic variance disappears when the
treatment and control groups have similar scale, in theestivaty — ut for the treatment group is equal tg —y for the control
group, whereur andpic are the untrimmed treatment and control means,yeamtly are the population maximum and minimum
for the treatment and control groups, respectively. N

38Approximately, that is. The sample size still has to be lageugh so that the normal is a good approximation.
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guarantees at least nominal coverédye.

The issue of the estimator’s finite sample behavior whgilis close to zero has some similarities to
that regarding inference in instrumental variables whenfiitst-stage coefficient is close to zero. Just as
instrumental variables presumes the existence of a fagesthere we presume that there is a non-trivial
selection problemy nonzero). In both cases, first-order asymptotic approxonatmay be inadequate
in finite samples when the nuisance parameter (h&jkeis close to zero. The problem for IV is indeed

nontrivial, and has motivated a number of theoretical pafmousing on inference with weak instrumeffts.

5 Empirical Results

This section uses the trimming estimator to compute boundketreatment effect of the Job Corps on wage
rates. The procedure is first employed for wages at week 208ars after the date of random assignment.
The width of the bounds are reasonably narrow and are sugges$tpositive wage effects of the program.
The bounds for the effect at week 208 do contain zero, but thumds at week 90 do not. Overall, the
evidence presented below points towards a positive tredteféect, but not significantly more than a 10

percent effect.

5.1 Main Results at Week 208

Table IV reports the estimates of the bounds of the treateféedt on wages at week 208. The construction
of the bounds and their standard errors are illustratedeitethle. Rows (iii) and (vi) report the means of log-
wages for the treated and control groups. Rows (ii) and @mtethat about 61 percent of the treated group
has non-missing wages while about 57 percent of the contoelpghave non-missing wages. This implies
a trimming proportion of about 6.8 percent of the treatedigreample. Thepth quantile is about 1.64, and
therefore the upper bound for the treated group is the meéantamming the tail of the distribution below

1.6441 After trimming, the resulting mean is about 2.09, and so fiygen bound of the treatment effdsB

391t should also be recalled that the untrimmed estimatordisveen the point estimators of the two bounds with prokigbil
1, and therefore it may well be with many applications andamsizes the untrimmed confidence interval may be contained
in the trimmed confidence interval with high probability, améng that inferences based on the trimming bounds wouldbe t
conservative.

405ee, for example, Staiger and Stock (1997) and Andrews €2G07) and the references therein. Although there are some
similarities, the trimming problem presented here is gdiginct from the IV case. For one, the bounds are still itfiest and the
proposed estimator is still consistent (with bounded stipgoen whenpg = 0.

41The procedure can be easily adapted to the case of a depasadiaiie with discrete support. Suppose therergrebserva-
tions with non-missing wages in the treatment group. Therdéita can be sorted by the dependent variable and thépfirst]

23



is 0.093 (row (xi)). A symmetric procedure yield/ek\B of -0.019 (row (xii)).

The width of these bounds is about 0.11. Note that this ist/fl#e width of the bounds yielded by
existing “imputation” procedures as reported in TabledHI€ulate 1.55 from rows (xi) and (xii)). The much
larger interval in Table 11l is clearly driven by the relagly wide support of the outcome varialffe. The
difference between the two sets of bounds make an importietethce in gauging the magnitude of the
effects of the program. From Table Ill, the negative regiomered by the bounds is almost as large as the
positive region contained by the bounds. In this sense, tliads from Table Il are almost as consistent
with large negative effects as they are with large positffeces.

The width of the trimming bounds in Table IV is also narrow eghb to rule out plausible effect sizes. For
example, suppose the training component of the Job Corpsarowas ineffective at raising the marketable
skills of the participants. We would then expect Job Corplsaee a negative impact on wages, insofar as
the time spent in the program caused a delay in accumulathmy Imarket experience.

Suppose annual wage growth is about 8 percent a year, anddbgeam group spent more time in
education and training programs than the control group bgraount equivalent to 0.72 of a school yé&r.

If a full school year in training causes a year delay in eagmigrowth, this would imply Job Corps impact

of about -0.058. The lower bound in Table IV is -0.019. Thirg $cenario described above is ruled out
by the trimming bounds computed in Table IV. By contrast, rmpact of -0.058 is easily contained by the

support-dependent interval [-0.746,0.802] of Table 1.

An impact of -0.058 is also outside the interval after act¢imgnfor sampling errors of the estimated
bounds. The right side of Table IV illustrates the constarcof these standard errors. For the estimate of
the upper bound for the treatment group, Component 1 is #velatd error associated with the first term

in Equation (7)** Component 2 reflects sampling error in estimating the tringnthreshold®® Component

observations can be thrown out (whéies the greatest integer function), before calculating timerhed mean. This procedure was
used here, with the slight modification that the design wisiglere used, so the observations were dropped until theradated
sum of the weights equaled the trimming proportion timegdite sum of the weights in the treatment group.

42For a detailed theoretical discussion of how the imputabionnds (e.g. Table Ill) compare to the trimming bounds (€afple
IV) when the outcome is binary, see Lee (2002).

43From Figure 11, there appears to be about 40 percent nomiagévgrowth over 4 years. Inflation over that length of time in
the late 1990s was about 9 percent (CPI-U for 1995: 152.4t968; 166.6). Schochet et al. (2001) find that the Job Corpadin
on time spent in any education and training programs amduntabout one school year per participant. The estimateddirger
eligible applicant was 28 percent lower.

44specifically, it is the square root of the sample analog:&fy VarY|D = 1, S=1,Y > yy], wheren"RM s the number of
observations after trimming.

HUB)Z

St is the square root of the sample analog-gwm %Wp‘), wherenYNTRIM 5 the number of non-missing observations
before trimming.
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3 reflects sampling error in estimating the trimming projorf® In this case, the largest source of the
variance in the upper bound comes from the estimation ofitmerting proportion. The total of 0.010 is the
square root of the sum of the squared components.

Doing a similar calculation for the lower bound, and themgdhe standard error on the mean for the
control group, yields standard errors 98 andALB of 0.0130 and 0.0179, as shown in the bottom of Table
IV. These standard errors can then be used to compute twe 085 percent confidence intervals. The first
covers the entire set of possible treatment effects witleagt|0.95 probability, while the second interval,
using the result from Imbens and Manski (2004), covers tire treatment effect at least 95 percent of the
time. A plausible negative impact of -0.058 is outside bdtthese intervals.

As argued previously, the Job Corps data do not seem to im@udausible instrument for selection.
Nevertheless, it is useful to compare the bounding inferéaconventional parametric and non-parametric
sample selection estimators that do rely on exclusionicéstis. The bottom of Table IV presents both
a Heckman two-step estimator, as well as the non-paranesttimator of Das et al. (2003). Both use the

“Months Employed in Previous Year” variable to predict séergelectiorf’

5.2 Using Covariates to Narrow Bounds

A straightforward extension to the above analysis is to peedbounds of the treatment effect, stratified by
observed characteristics, such as gender, race, or eglucdtiis clear that the above analysis can all be
conditioned on covariates. It is possible to estimate bounds for the average treateféett for each value
of X.

Alternatively, one can use these covariates to reduce ttithwi the bounds for the same estimand that
has been discussed so far (the average treatment effetiofe tvho would always be observed). To gain
intuition for this, suppose half of the workers in the treatrngroup earns the wagé', while the other half
earns the lower wage @f-. The trimming procedure described in the previous secsoiggests removing

only low wage individuals, by a proportigm to obtain an upper bound of the mean for the “inframargirially

1-.%_
481t is the square root of the sample analodyf, — uUB)2 (n% = 3 1;;“) , wheren andn® are the number of treatment
T=pg

and control observations (missing and non-missing) in dmeyde.

47Specifically, for the Heckman two-step estimator, selectimtus was the dependent variable in a first-step probitding
the treatment status and Months Employed. The predictestgawill's ratio was used as an additional regressor in eessipn
of wages at week 208 on treatment status. For the estimaa®gt al. (2003), the probability of selection was predidtem a
regression of selection status on treatment Months Emg|dyeir interaction and the square of Months Employed. Huoisd-
stage regressed wages at week 208 on treatment status apebdieted probability. As in Das et al. (2003), the orderghaf
polynomials and interactions for both first and second stagere determined by cross-validation.
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selected. The trimmed mean will necessarily be larger.

Suppose now there is a baseline covarktinat perfectly predicts whether an individual will easfi
or w-. Then, due to the random assignment of treatment, Assungpficand 2a also hold conditional on
X. Therefore, the results in the previous section can beegppgkparately for the two types of workers. If,

for both groups, the same proportion of observations isti&a, the overall mean will not be altered by this

trimming proceduré®

More formally, consider the following alternative to Asspiion 1,

Assumption 3 (Independence)let X be a vector of covariates, and &, Yy, S, S, X)

be independent db.

In the case of the Job Corps Experiment, this assumptiodigwhenX represents baseline characteristics;

this is due to random assignment of treatment.

Proposition 4: Let Yy andY;" be continuous random variables. If Assumptions 3 and 2a

hold, thenA'(-,_B and Ag_B are sharp lower and upper bounds for the average treatmfet ef

EY) —Y5|S=1,S = 1], where

AEE = / ALBdH (x)

AYB = /AEBdH(x) , whereH is the cdf ofX conditional orD = 0,S= 1
AP=E)YD=1S=1Y <y p,X=X—-E[Y[D=0,S=1X =X
ANPB=E[YID=1S=1Y >y, , X=X—-E[Y|D=0,S=1X =X

Yq = G 1 (q), with Gy the cdf ofY, conditional orD = 1,S=1,X = x

_PriS=1D=1X=x—Pr[S=1D =0,X=X]
PriS=1D=1X =X

The bounds are sharp in the sense fijt (A3B) is the largest (smallest) lower (upper) bound

that is consistent with the observed data. Furthermifje> AL andAYE < AYE.

48strictly speaking, there are no upper or lower “tails” irsteimple example, where the outcome is discrete. Nevesthellee
procedure can be adapted to discrete outcomes, as describedsubsection 5.1.
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The first part of the proposition follows from applying Praejimn 1 conditionally onX = x. The second
claim, that the width of the bounds must be narrower aftdizintg the covariates, is seen by noting that
any treatment effect that is consistent with an observedilptipn distribution of(Y,S D, X), must also
be consistent with the data after throwing away informatonX, and observing only the distribution of
(Y,S D). This necessity is strictly inconsistent witly® > AY®.

This procedure is illustrated using a variable that splies $ample into 5 mutually exclusive groups,
based on their observed baseline characteristics. Anyibas®variate will do, as will any function of all
the baseline covariates. In the analysis here, a singldibas®variate — which is meant to be a proxy for
the predicted wage potential for each individual — is cartdéd from a linear combination of all observed
baseline characteristics. This single covariate is theareiized, so that effectively five groups are formed
according to whether the predicted wage is within interdained by $6.75, $7, $7.50, and $840.

Then, a trimming analysis is conducted for each of the fiveigsseparately. Note that for each of the 5
groups, there is a different trimming proportion. The lowad upper bounds of the treatment group means,
by each of the 5 groups, are given in the left and right coluoiri&able V, respectively. The lower bounds
range from 1.80 to 2.12, while the upper bounds range fro th.2.20. The standard errors are computed
for each group separately in the same manner as in Table IV.

To compute the bounds for the overall averd&g®y;'|S = 1,5, = 1|, the group-specific bounds must
be averaged, weighted by the proportion$Gtoup JS = 1,S; = 1]. This is provided in the row labelled
“Total”.%° This leads to an interval of [-0.0118, 0.0889]. This intéisabout 11 percent narrower than that
reported in Table IV. The estimated asymptotic variancéifese overall averages is the sum of 1) a weighted
average of the group-specific variances and 2) the (weighteeian squared deviation of the group-specific
estimates from the overall mean. This second term takeswtount the sampling variability of the weights,

as described in Chamberlain (1994)These sampling errors lead to a 95 percent Imbens-Manskivait

495pecifically, the coefficients from the linear combinatidrite Xs are the coefficients from a regression of Week 208 wages
on all baseline characteristics in Table I. The coefficievitge then applied tall individuals to impute a predicted wage.

50There are slight differences in the number of observatinresath group after trimming, for the upper and lower boundss T
is due to the use of the design weights.

51The weighted mean of the 5 group-specific means, can be seemasmum distance estimator where the weights are the
estimated proportions in each group. Chamberlain (1994)sghe asymptotic variance for this estimator even whemth@ent
vector is mis-specified, as would be the case if the groupiipeneans are different. The asymptotic variance is the sfitwo
components: 1) the (weighted) average of the asymptotiarnves for each group/\g in Chamberlain (1994), 2) the (weighted)
average squared deviation of each group’s estimate frorfTttal” mean ¢\, in Chamberlain (1994)).
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of [-0.037,0.112].
By statistically ruling out any effect more negative tharD3¥, this suggests that after 4 years, the Job
Corps enabled program group members to offset at least =mefand perhaps more) of the potential

0.058 loss in wages due to lost labor market experience thad tiave been caused by the program.

5.3 Effects by Time Horizon and Testable Implications

An analysis of the bounds at different time horizons prositiegther evidence that the Job Corps program
had a positive impact on wage rates. The analysis of Tabled¥ performed for impacts on wage rates at
weeks 45, 90, 135, and 180, and these results are reportedblia 1.

As would be expected, the width of the intervals are direalgted to the treatment-control difference
in the proportion missing. When the proportion is the latgas at week 45, the range is [-0.074,0.127]. At
week 180, when the proportion is 0.0724, the interval i9B3,0.087].

At week 90, the estimated trimming proportion is close tcozemd the resulting bounds are given
by the interval [0.042,0.043]. Maintaining the assumptibat the truepy # 0, we note that the standard
errors are larger for these bounds, even though they are giitilar to the untrimmed treatment-control
difference. This is partly due to the sampling error in thtning proportion. Using these standard errors,
and the Imbens and Manski (2004) confidence interval for ib&trinent effecparameteris computed to
be [-0.004,0.092]. As noted above, if the true trimming mien po is arbitrarily close to zero, then
the untrimmed confidence interval will have almost accucateerage in a finite sample. This untrimmed
treatment effect confidence interval is [0.020,.065]. Thowagh procedures can rule out effects more negative
than -0.004 at conventional levels of significance.

If we were to alternatively assume thaf= 0 at week 90, then one can provide limited evidence on the
plausibility of the monotonicity condition (Assumption 21if at week 90E [SD = 1] — E[S|D = Q] is truly
zero, then the average causal effect on sample seleefiBn— S is zero. If monotonicity holds, then this
can only be true i, = S with probability 12

If the only observed data are the trighs S D), then it is impossible to test this monotonicity assumption
On the other hand, if there exist baseline characteri3tjas in the case of the Job Corps Experiment, then

it is possible to test whethé&y = S with probability 1. That is, it is possible to test whether éach value

52f 5, = § with less than probability 1, then there would be a nonzeabahility of S; < S, and it would be equal to the
probability of S > S (in order forE [S; — ] = 0). This would contradict monotonicity.
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of X, P[S=1D=1,X =X =PrS =1|X = x| is equal to PIS= 1D =0,X = x| = P{S = 1|X = x|,
which should be the case for allif S = S with probability 1. Intuitively, if it was found that for soen
values ofX, the treatment caused wages to be observed, while for cshees/ofX, the treatment was found
to cause wages to be missing, then Assumption 2a must nat hold

By Bayes’ Rule and independence (Assumption 1)SPr1|D =1 X =x] = P{S=1|D =0,X =X
for all x implies that the distribution oX conditional onS= 1,D = 1 should be the same as the distribution
conditional onS=1,D = 0.8

A simple way to check this empirically is to examine the meahthe variables in Table |, butondi-
tional on having non-missing wages. This is done for week 90, andpsrted in Appendix Table I. The
differences between the treatment and control means fdr e@mtable are small and consistently statisti-
cally insignificant. A joint test of significance is given bylaistic regression of the treatment indicator
on the baseline characteristi¥s using a sample of all those with non-missing wages at week 9the
resulting test of all coefficients equaling zero yields aahse of 0.851. Thus, the data are consistent with

the monotonicity condition holding at week 90.

6 Conclusion: Implications and Applications

This paper focuses on an important issue in evaluating thadtof a job training program on wage rates —
the sample selection problem. Itis a serious issue even thegneatment of a training program is believed
to be independent of all other factors, as was the case inatidomized experimental evaluation of the
U.S. Job Corps. Existing sample selection correction nittlaoe infeasible due to the absence of plausible
exclusion restrictions, and in this case, one cannot regnupe boundedness of the outcome variable’s
support to yield informative bounds on the treatment eftéaterest.

In order to estimate the impact of the Job Corps on wagespépisr develops a new method for bound-
ing treatment effects in the presence of sample selectitreinoutcome. An appealing feature of the method
is that the assumptions for identification, independencenaonotonicity, are typically already assumed in
standard models of the sample selection process, such amati& (1). In the case of randomized exper-

iments, the independence assumption is satisfied, andisisalied in the previous section, the existence of

53This is because the density Xf conditional orD, does not depend on the valueldfand the probability o= 1 conditional
on D also does not depend @ by assumption.

54This is a valid test since in this context,[8e 1| D= 1,X = x] = Pf{S= 1| D = 0,X = X for all x, is equivalent to the test
PID=1/S=1,X=x/PiD=0/S=1,X=x = Pr[D=0]/Pr[D=1].
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baseline characteristics suggest a limited test of moimtpn More importantly, the bounding approach
does not require any exclusion restrictions for the outcemgation. Nor do the trimming-bounds rely on
the bounds of the support of the outcome variable.

The analysis using the proposed “trimming” bounds pointsvtosubstantive conclusions about the Job
Corps. First, the evidence casts doubt on the notion thabrtbgram only raised earnings through raising
labor force participation. Effects more negative than 3@.@an be statistically ruled out. If there were
literally no wage effect, one might expect to see a more maganpact (perhaps around a -0.058 effect)
due to lost labor market experience, since these youngcampdi are on the steep part of their wage profile.

Another reason to interpret the evidence as pointing tatigesivage effects is that the lower bound is
based on an extreme, and unintuitive assumption — that watgeroes are perfectlyegativelycorrelated
with the propensity to be employed. From a purely theorkstandpoint, a simple labor supply model
suggests that, all other things equal, those on the margoeioly employed will have lowest wages, not
the highest wages (i.e. the “reservation wage” will be thallat wage that draws the individual into the
labor force). In addition, the empirical evidence in Tallsuggests that there is positive selection into
employment: those who are predicted to have higher wagesare likely to be employed (i.dJ andV
are positively correlated). If this is true, it seems refglif more plausible to trim the lower rather than the
upper tail of the distribution to get an estimate of the tresxit effect.

Second, the intervals provided here are comparable to oatesurn found in the returns to education
literature. At week 208, the point estimates an interval-0fJ118,0.0889]. Program participants may be
lagging behind their control counterparts by as much as &imsdn labor market experience due to enroll-
ment in the program. As argued above, this could translaés touch as a 5.8 percent wage disadvantage
even 4 years after random assignment, because many of flaelirads in this sample are still on the steep
part of their age-earnings profiles. Projecting to ages wwherwage profile flattens leads to an interval of
[.047,0.145]. A similar adjustment for week 90 wages yieddsinterval tightly centered around 0.10. As
found in a survey of studies that exploit institutional feas of school systems Card (1999), point estimates
of the return to a single year of schooling range from 0.060.163>° Thus, the magnitudes found in this
analysis of the Job Corps are roughly consistent with viguiive program as a human capital investment of
one year of schooling.

It should be emphasized that the trimming-bounds introdiee are specific neither to selection into

55See Table 4 in Card (1999).
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employment nor to randomized experiments. For exampleoouts can be missing due to survey non-
response (e.g., students not taking tests), sampleait(g.g., inability to follow individuals over time),

or other structural reasons (e.g., mortality). As long &srésearcher believes that the sample selection
process can be written as a model like Equation (1) or (5)sénmee trimming method can be applied. Also,
the basis for matching estimators for evaluations is thekereassumption thaty;",Y;) is independent of

D, conditional onX, rather than Assumption 3. It is immediately clear that tirarning bounds proposed
here can be applied even whé¥y',Y;,S,S1) is independent oD, but only conditional orX, as long as
Assumption 2b holds conditional of. In this situation, the procedure described in sub-sedi@rcan be

applied>®

56But it should be noted that since the baseline characestivould no longer be independent of the treatment, one could no
longer use Remark 4 to test the monotonicity assumption.
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Mathematical Appendix

Lemma. LetY be a continuous random variable and a mixture of two randaomahlas,
with cdfsM* (y) andN* (y), and a known mixing proportiop* € [0, 1), so that we have* (y) =
p*M*(y) + (1—p*)N*(y). ConsiderG*(y) = max[o, %] which is the cdf ofY after
truncating thep* lower tail ofY. Then [* ydG* (y) > [ ydN* (y). [©,ydG* (y) is a sharp (in

the sense of Horowitz and Manski (1995)) upper bound/forydN* (y).

Proof of Lemma. See Horowitz and Manski (1995), Corollary 4.1.
Proof of Proposition 1. It suffices to show thapuVB = E[Y|D =1,S=1Y >y,] is a sharp upper
bound forE [Y;'|S = 1,S; = 1]. A similar argument for the sharp lower bound would follonssimptions

1and 2a imply thapp = PS5 2 IS 2000 PRS0S4 et F (y) be the cdf ofY conditional on

D =1,S=1. Assumption 2a implies th&t (y) = poM (y) + (1— po) N (y), whereM (y) denotes the cdf of
Y}, conditional onD =1, § =0, § = 1, andN (y) denotes the cdf of;’, conditional onD =1, § =1,
S1 = 1. By Assumption 1N (y) is also the cdf of(}", conditional ong = 1,S; = 1. By the LemmauY® =
iy yAF () > [ZydN(y) =E [V} |S=1,5 =1].

To show thatuV® equals the maximum possible value BfY;|S = 1,5, = 1] that is consistent with
the distribution of the observed data O S,D), it must be shown that 1) conditional g, u"® is a sharp
upper bound, and ) is uniquely determined by the data. 1) follows from the Lem&jgis true because
the data yield a unique probability function [Be=s,D =d|, s,d = 0,1, which uniquely determinepp.
Q.E.D.

Proof of Proposition 2. It is sufficient to prove consistency for the trimmed meantf@ treatment
group, and only for the lower bound, since a symmetric argumal follow for the upper bound. Denote
Ho =E[Y|D=1,S=1Y <yi ] as the true lower bound of interest. Consistency followsfapplying

Theorem 2.6 of Newey and McFadden (1994), which applies tavcdétimators. Define the moment
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function
(Y —Du)SD- 1Y <y1_p|
(1Y >y1_p]—p)SD
9(z0) = i
(s— Darlp) D

(S-(1-D)a)(1-D)

whered’ = (4,y1-p, p,a)’, 65 = (Lo, Y1-py Po; Q0)’, Ao = E [S= 1|D = 0], andZ = (Y, S, D)’. The estimator

of o, the lower bound oE Y} |S; = 1,S;, = 1], as provided in Equation (6) is a solution to m{iy g(z, 8))'-
(39(z,08)). From Theorem 2.6, (i) holds because as longE#SD = 0] > 0 , this just-identified system
yields only one solution, (ii) holds if we take the parameipace to be the bounds of the support for the
trimmed mean and quantiles, af@1] to be the parameter space for the two probabilitieand p , (jii)
continuity holds, and bounded support implies (iv). Q.E.D.

Proof of Proposition 3. As in the proof above, it is sufficient to focus only on the apyatic properties
of the estimator ofyy. This estimator will be independent of that for the (untriedj control group mean.
The proof follows by showing that the conditions of Theorer@ @f Newey and McFadden (1994) are
satisfied.

Definego (6) = E[g(z 0)], andgn (60) =n~15 g(z 6). (i) of Theorem 7.2 holds. (jii) holds because by
assumption, each of the parameters is in the interior of #rarpeter space defined in proposition 2. (iv)
holds by the central limit theorem. LE&tbe the derivative ofp (6) at8 = 6y. An explicit expression fo6,

a square matrix, is given below and will be shown to be nongarghence (ii) holds as well.

The stochastic equicontinuity condition in (v) can be shdaerhold using Theorem 1 of Andrews
(1994). Assumption C of this theorem holds, and Assumptionofls with envelopeM = |Y — Dpg| +
ID|sup, ||to — p|| for the first element, and 1 for the remaining elementg @ 6). Boundedness of the

2446

support implie€ |Y|“"® < o for somed > 0, which implies thaE |w2+5 < oo for somed > 0, and there-

fore Assumption B holds as well.

From Theorem 7.2 of Newey and McFadden (1994), the asyrspiatiance isv'B = G153 (G/) !

whereX is the asymptotic variance of (6o). After lettingy = (U,y1-p)’ andd = (p,a)’, it can be shown

G, Gs N >3 0
andZ can be partitioned a

0 Ms 0 %

The upper left 2« 2 block of V8 can then be shown to be equal @;'%; (G, )" + G,'GsM; 2,

that G can be written as the partitioned matrx
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(M(;l)/Gi5 (G;l)'. The first term contains the variance of the trimmed meandfttmming proportion
Po is known. The second term captures the variance due to timeadisin of the trimming proportion.

Consider the first term. After computirgg (6), G, can be shown to equal

£[SD —(1=po) (Y1-po—Ho) f (Y1-po) |

0 —f(Y1-po)

wheref (+) is the density ol conditional orD = 1,S=1. ¥, is equal to

Yo7 (y— Ho)? f (y)dy-E[SD 0
0 po(1— po) E[SD

It follows that the upper left element &%, (G, %) is

1
En ) (VAP =1S=1Y <yi ul + 01 Hol’ o)

, as stated in Equation (7).

Consider the second term. Direct calculatiorGgf Mg, andX, yields

Gs =E[SD 0 0 M; — ~E[DJao—~ ~EDly
O 0 ~(1-E[D)
- 13%0(1_15%())'5[[)] 0
0 ao(1— ap) (1— E[D))

After simplifying terms, it follows that the upper left elemt of G, 1GsM; %, (M(;l)’Gi5 (G;l)' is equal

(Y1pouo)2<<1la%o> n (1—ao) )7

ED] (%) (-EDDa

to

as stated in Equation (7), after substituting/ity
Finally, direct computation of the upper left elemenM);lZg (Mgl)/ yields the expression forP .
Q.E.D.

Proof of consistency whenpy = 0. Assume thatpp = 0 . We know that as long a&|Y| < =, the
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untrimmed treatment effect estimatﬁrconverges to the true treatment effégt . It is thus sufficient

to show that for anyd > 0, we haven_IEOrIPr[‘Eﬁ—K‘ < 5] = 1. First note that PHZE—E‘ < 5} =
PrHAAL/B—E‘ <dl0< ﬁgr—)} Pro< p<Tp +PrHAAL/B—E‘ < 5m>p} Pr[p > D +Pr[‘EL§—B‘ <5/0>

p > p*|Pr[0> p> pf +PrHE§—E‘ < 6][3<F] Pr[p < p*]. Sincepy =0, for any positivep and
negativep* the second and fourth terms converge to zero. Now considdirg term. Lefp be any positive
value such thafy — AG® < &, whereARP is the population trimmed mean after trimming the top tail by
the proportionp. Now note that for any sample indexed By we have PHEEE—E‘ <0l0<p< p] =

fob Pr Hzfé — 3‘ <o|p= p} dR\ (p) whereRy is the cdf ofp'conditional on 0< p < . For any realization

of the data,

EIE—E‘ is non-decreasing ip. Therefore, PHEE—E‘ <o|p= p] is non-increasing irp.”
It follows thatfferZﬁ—E( <3|p= p} dfu (p) > foﬁPrHBﬁ—E( < 5|ﬁ:r>} dRu (p) = Pr[(&ﬁ—ﬁ(
< &|p = P, which converges to 1, by construction pf Pri0 < p < p] converges to .5, and therefore so

does the first term above. A parallel argument shows the tlird converges to .5 as well. Q.E.D.
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Table I: Summary Statistics, by Treatment Status, National Job Corps Study

Variable

Female

Age at Baseline
White, Non-Hispanic
Black, Non-Hispanic
Hispanic

Other Race/Ethnicity
Never married
Married

Living together
Separated

Has Child

Number of children

Education
Mother's Educ.
Father's Educ.
Ever Arrested

Household Inc: <3000
3000-6000
6000-9000
9000-18000
>18000

Personal Inc: <3000
3000-6000
6000-9000
>9000

At Baseline:

Have Job
Mos. Empl. Prev. Yr.
Had Job, Prev. Yr.
Earnings, Prev. Yr.
Usual Hours/Week
Usual Wkly Earnings

After Random Assignment:

Week 52 Wkly Hours
Week 104 Wkly Hours
Week 156 WkKly Hours
Week 208 Wkly Hours
Week 52 Wkly. Earn.
Week 104 Wkly Earn.
Week 156 WKkly Earn.
Week 208 Wkly Earn.
Total Earn. (4 years)

Number of Obs

Control Program Difference

Prop. Non- Mean Std. Dev. Prop. Non- Mean Std. Dev. Diff. Std. Err.

Missing Missing
1.00 0.458 0.498 1.00 0.452 0.498 -0.006 0.011
1.00 18.351 2.101 1.00 18.436 2.159 0.085 0.045
1.00 0.263 0.440 1.00 0.266 0.442 0.002 0.009
1.00 0.491 0.500 1.00 0.493 0.500 0.003 0.011
1.00 0.172 0.377 1.00 0.169 0.375 -0.003 0.008
1.00 0.074 0.262 1.00 0.072 0.258 -0.002 0.006
0.98 0.916 0.278 0.98 0.917 0.275 0.002 0.006
0.98 0.023 0.150 0.98 0.020 0.139 -0.003 0.003
0.98 0.040 0.197 0.98 0.039 0.193 -0.002 0.004
0.98 0.021 0.144 0.98 0.024 0.154 0.003 0.003
0.99 0.193 0.395 0.99 0.189 0.392 -0.004 0.008
0.99 0.268 0.640 0.99 0.270 0.650 0.002 0.014
0.98 10.105 1.540 0.98 10.114 1.562 0.009 0.033
0.81 11.461 2.589 0.82 11.483 2.562 0.022 0.061
0.61 11.540 2.789 0.62 11.394 2.853 -0.146 0.077
0.98 0.249 0.432 0.98 0.249 0.432 -0.001 0.009
0.65 0.251 0.434 0.63 0.253 0.435 0.002 0.012
0.65 0.208 0.406 0.63 0.206 0.405 -0.002 0.011
0.65 0.114 0.317 0.63 0.117 0.321 0.003 0.008
0.65 0.245 0.430 0.63 0.245 0.430 0.000 0.011
0.65 0.182 0.386 0.63 0.179 0.383 -0.003 0.010
0.92 0.789 0.408 0.92 0.789 0.408 -0.001 0.009
0.92 0.131 0.337 0.92 0.127 0.334 -0.003 0.007
0.92 0.046 0.209 0.92 0.053 0.223 0.007 0.005
0.92 0.034 0.181 0.92 0.031 0.174 -0.003 0.004
0.98 0.192 0.394 0.98 0.198 0.398 0.006 0.009
1.00 3.530 4.238 1.00 3.596 4.249 0.066 0.091
0.98 0.627 0.484 0.98 0.635 0.482 0.007 0.010
0.93 2810.482 4435.616 0.94 2906.453 6401.328 95971  117.097
1.00 20.908 20.704 1.00 21.816  21.046 0.908 *  0.446
1.00 102.894 116.465 1.00 110.993 350.613 8.099 5.093
1.00 17.784 23.392 1.00 15297  22.680 -2.487 *  0.495
1.00 21.977 26.080 1.00 22.645  26.252 0.668 0.560
1.00 23.881 26.151 1.00 25.879  26.574 1.997 *  0.563
1.00 25.833 26.250 1.00 27.786  25.745 1.953 *  0.558
1.00 103.801 159.893 1.00 91.552 149.282 -12.249 *  3.335
1.00 150.407 210.241 1.00 157.423 200.266 7.015 4.417
1.00 180.875 224.426 1.00 203.714 239.802 22839 * 4936
1.00 200.500 230.661 1.00 227912 250.222 27.412 *  5.106
1.00 30007 26894 1.00 30800 26437 794 572
3599 5546

Note: N=9145. * denotes difference is statistically significant from 0 at the 5 percent (or less) level. Computations use design weights.
Chi-square test of all coefficients equalling zero, from a logit of the treatment indicator on all baseline characteristics (where mean
values were imputed for missing values) yields 24.95; associated p-value from a chi-squared (27 dof) distribution is 0.577.



Table 1I: Logit of Employment in Week 208 on Baseline Characteristics

Variable Estimate
Treatment Status 0.172 *
(0.046)
Female -0.253 *
(0.051)
Age at Baseline 0.027
(0.014)
Black, Non-Hispanic -0.471 *
(0.060)
Hispanic -0.225 *
(0.077)
Other Race/Ethnicity -0.412 *
(0.099)
Married -0.193
(0.175)
Living together 0.106
(0.130)
Separated -0.261
(0.165)
Has Child 0.121
(0.114)
Number of children -0.031
(0.070)
Education 0.104 *
(0.019)
Mother's Educ. 0.007
(0.012)
Father's Educ. -0.006
(0.012)
Ever Arrested -0.223 *
(0.055)

Variable Estimate
Household Inc:
3000-6000 0.033
(0.085)
6000-9000 0.213 *
(0.104)
9000-18000 0.149
(0.086)
>18000 0.103
(0.095)
Personal Inc:
3000-6000 0.105
(0.080)
6000-9000 0.180
(0.127)
>9000 0.197
(0.162)
At Baseline:
Have Job 0.218 *
(0.071)
Mos. Empl. Prev. Yr. 0.049 *
(0.011)
Had Job, Prev. Yr. 0.306 *
(0.091)
Earnings, Prev. Yr. (*10000) 0.012
(0.120)
Usual Hours/Week (*10000) -26.580
(19.508)
Usual Wkly Earnings (*10000) 0.845
(1.990)
Constant -1.288 *
(0.285)

Note: N=9145. Robust standard errors in parentheses. Table reports are (log-odds) coefficients
from a logit of employment (positive hours) in week 208 on treatment status and baseline
characteristics. * denotes statistically significance at the 0.05 (or less).



Table 111: Bounds on Treatment Effects for Week 208 In(wage)
Utilizing Bounds of Support (Horowitz and Manski)

(1)  Control Group Observations 3599
(i) Employment Rate 0.566
(i) Mean log(wage) 1.997
(iv) Upper Bound 2.332
(v) Lower Bound 1.520
(vi) Treatment Group Observations 5546
(vii) Employment Rate 0.607
(viin) Mean log(wage) 2.031
(ix) Upper Bound 2.321
(x) Lower Bound 1.586
(xi) Difference Upper Bound: (ix) - (v) 0.802
(xii) Lower Bound: (x) - (iv) -0.746

Note: .90 and 2.77 are the lower and upper bounds of the support of In(hourly wage)
in Week 208 after random assignment. (iv) = (ii)*(iii) + [1-(ii)]*2.77. (v) = (ii)*(iii) +
[1-(ii)]*(.90). Rows (ix) and (x) are defined analogously.



Table 1VV: Bounds on Treatment Effects for In(wage) in Week 208 using Trimming Procedure

Control (i) Number of Observations 3599  Control Standard Error
(it) Proportion Non-missing 0.566 Std. Error 0.0082
(iii) Mean In(wage) for employed 1.997
Treatment UB Standard Error
Treatment (iv) Number of Observations 5546 Component 1 0.0053
(v) Proportion Non-missing 0.607 Component 2 0.0021
(vi) Mean In(wage) for employed 2.031 Component 3 0.0083
Total 0.0100
p = [(V)-(iD)]/(v) 0.068
(vii) pth quantile 1.636  Treatment LB Standard Error
(viii) Trimmed Mean: E[Y[Y>y,] 2.090 Component 1 0.0058
Component 2 0.0037
(ixX) (1-p)th quantile 2.768 Component 3 0.0144
(x)  Trimmed Mean: E[Y[|Y<y;_p] 1.978 Total 0.0159
Effect
Effect (xi) Upper Bound Estimate = (viii)-(iii)  0.093 (xiii) UB Std.Err. 0.0130
(xii) Lower Bound Estimate = (x)-(iii)  -0.019 (xiv) LB Std.Etrr. 0.0179
Confidence Interval 1 = [(xii)-1.96*(xiv),(xi)+1.96*(xiii)] [-0.055,0.119]
Confidence Interval 2 (Imbens and Manski) = [(xii)-1.645*(xiv),(xi)+1.645*(xiii)] [-0.049,0.114]
Heckman Two-Step Estimator: 0.0148
(0.0117)
Das, Newey, and Vella (2003): 0.0140
(0.0122)

Note: Before trimming, there are 3371 non-missing observations in the treatment group. After trimming, there are 3148 (3142)
observations remaining in the treatment group after trimming the lower p (upper 1-p) of the distribution. (These numbers are
not equal due to using the design weights). For the Upper Bound Standard Error, Component 1 is the usual standard error of
the mean, using the trimmed sample. Component 2 is the square root of (1/3371)*(p/(1—p))*{(viii)-(vii)}z. Component 3 is the
square root of {((viii)-(vii))/(1-p)}**Var(p) where Var(p)=(1-p)**{(1/5546)*((1-(v))/(v)) +(1/3599)*((1-(ii))/(ii))} . "Total"
refers to the square root of the sum the squared components. The entries for the Treatment LB Standard Error are defined
analogously. (xiii) and (xiv) are the square root of the sum of the squared standard errors for the treatment UB (or LB) and
control group. For the Imbens and Manski confidence interval 1.645 satisifies F(1.645+((xi)-(xii))/(max((xiii),(xiv))) - F(-
1.645) = 0.95, where F is the standard normal cdf. See Imbens and Manski (2004) for details. The Heckman two-step estimator
uses Months Employed in the Previous Year and Treatment status in the first-stage probit. The Das, Newey, and Vella (2003)
estimator is described in text.



Table V: Bounds on Treatment Effects for In(wage) in Week 208
Trimming Procedure using Baseline Covariates

Lower Bound for Treatment Mean Upper Bound for Treatment Mean

Group  Estimate Std. Error Obs Estimate Std. Error  Obs Weight
1 1.795 0.030 343 1.979 0.025 348 0.107
2 1.938 0.052 248 1.963 0.065 250 0.131
3 1.934 0.020 931 2.051 0.017 935 0.291
4 2.025 0.028 745 2.127 0.020 748 0.238
5 2.121 0.025 712 2.204 0.022 715 0.234
Total 1.985 0.013 2979 2.086 0.012 2996 1.000
Effect  Lower Bound for Effect Upper Bound for Effect
-0.0118 0.0151 0.0889 0.0142

Note: Trimming procedure from Table Il applied separately to each Group (defined in text). “Total"
estimates are means of the 5 groups using the "Weight" as weights. Asymptotic variance for "Total" is
computed according to Chamberlain (1993): it is the (weighted, using "Weight") average of the asymptotic
variance for each group (each group's sampling variance times the number of observations for the group)
plus the (weighted by "Weight") average squared deviation of each group's estimate from the "Total" mean.
Control mean, (iii) in Table 1V, is then subtracted to obtain bounds on the treatment effect.



Table VI: Treatment Effect Estimates and Bounds, by Week

Fraction Non-missing Effect

Trimming Untrimmed Lower Upper

Control ~ Treatment Proportion Bound Bound
Week 45 0.4223 0.3424 0.1892 0.022 -0.074 0.127
(0.0219) (0.011) (0.014) (0.015)
Week 90 0.4600 0.4601 0.0003 0.043 0.042 0.043
(0.0232) (0.011) (0.024) (0.025)
Week 135 0.5173 0.5451 0.0509 0.028 -0.016 0.076
(0.0192) (0.011) (0.021) (0.014)
Week 180 0.5403 0.5825 0.0724 0.026 -0.033 0.087
(0.0177) (0.011) (0.019) (0.013)

Note: (N=9145 for each row). Standard errors in parentheses. Standard errors for Trimming Proportion
given by formula in note to Table IV. Bounds computed according to Table IV. See text for details.



Appendix Table I: Summary Statistics, by Treatment Status, National Job Corps Study
Conditional on Positive Earnings in Week 90

Variable

Female

Age at Baseline
White, Non-Hispanic
Black, Non-Hispanic
Hispanic

Other Race/Ethnicity
Never married
Married

Living together
Separated

Has Child

Number of children

Education
Mother's Educ.
Father's Educ.
Ever Arrested

Household Inc: <3000
3000-6000
6000-9000
9000-18000
>18000

Personal Inc: <3000
3000-6000
6000-9000
>9000

At Baseline:

Have Job
Mos. Empl. Prev. Yr.
Had Job, Prev. Yr.
Earnings, Prev. Yr.
Usual Hours/Week
Usual Wkly Earnings

After Random Assignment:

Week 90 In(wage)

Number of Obs

Control Program Difference

Prop. Non- Mean Prop. Non- Mean Diff. Std. Err.

Missing Missing
1.00 0.429 1.00 0.419 -0.009 0.016
1.00 18.691 1.00 18.729 0.038 0.068
1.00 0.310 1.00 0.328 0.018 0.015
1.00 0.447 1.00 0.443 -0.004 0.016
1.00 0.171 1.00 0.167 -0.004 0.012
1.00 0.072 1.00 0.063 -0.009 0.008
0.99 0.909 0.99 0.909 0.000 0.009
0.99 0.030 0.99 0.023 -0.007 0.005
0.99 0.039 0.99 0.045 0.006 0.006
0.99 0.022 0.99 0.022 0.001 0.005
0.99 0.188 1.00 0.178 -0.009 0.012
0.99 0.247 0.99 0.241 -0.007 0.019
0.99 10.381 0.98 10.371 -0.010 0.050
0.83 11.506 0.84 11.579 0.072 0.090
0.66 11.644 0.67 11.458 -0.186 0.111
0.99 0.238 0.99 0.232 -0.006 0.013
0.68 0.188 0.66 0.202 0.014 0.015
0.68 0.188 0.66 0.182 -0.006 0.015
0.68 0.116 0.66 0.119 0.003 0.012
0.68 0.289 0.66 0.270 -0.019 0.017
0.68 0.219 0.66 0.227 0.008 0.016
0.95 0.726 0.93 0.732 0.005 0.014
0.95 0.164 0.93 0.154 -0.010 0.012
0.95 0.065 0.93 0.068 0.003 0.008
0.95 0.045 0.93 0.047 0.002 0.007
0.98 0.251 0.98 0.254 0.002 0.014
1.00 4572 1.00 4.558 -0.013 0.143
0.99 0.725 0.99 0.727 0.002 0.014
0.94 3783.940 0.94 3699.524 -84.416  159.333
1.00 24.600 1.00 25.165 0.565 0.642
1.00 125.147 1.00 126.297 1.150 3.838
1.00 1.827 1.00 1.870 0.043 *  0.011
1660 2564

Note: N=4224. * denotes difference is statistically significant from 0 at the 5 percent level. Computations use
design weights. Chi-square test of all coefficients equalling zero, from a logit of the treatment indicator on all
baseline characteristics (where mean values were imputed for missing values) yields 19.50; associated p-value from
a chi-squared (27 dof) distribution is 0.851.
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