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1 Introduction

Regression Discontinuity (RD) designs were first introduced by Thistlethwaite and Campbell (1960) as a

way of estimating treatment effects in a non-experimental setting where treatment is determined by whether

an observed “assignment” variable (also referred to in the literature as the “forcing” variable or the “run-

ning” variable) exceeds a known cutoff point. In their initial application of RD designs, Thistlethwaite and

Campbell (1960) analyzed the impact of merit awards on future academic outcomes, using the fact that the

allocation of these awards was based on an observed test score. The main idea behind the research design

was that individuals with scores just below the cutoff (who did not receive the award) were good compar-

isons to those just above the cutoff (who did receive the award). Although this evaluation strategy has been

around for almost fifty years, it did not attract much attention in economics until relatively recently.

Since the late 1990s, a growing number of studies have reliedon RD designs to estimate program effects

in a wide variety of economic contexts. Like Thistlethwaiteand Campbell (1960), early studies by Van der

Klaauw (2002) and Angrist and Lavy (1999) exploited threshold rules often used by educational institutions

to estimate the effect of financial aid and class size, respectively, on educational outcomes. Black (1999)

exploited the presence of discontinuities at the geographical level (school district boundaries) to estimate

the willingness to pay for good schools. Following these early papers in the area of education, the past five

years have seen a rapidly growing literature using RD designs to examine a range of questions. Examples

include: the labor supply effect of welfare, unemployment insurance, and disability programs; the effects of

Medicaid on health outcomes; the effect of remedial education programs on educational achievement; the

empirical relevance of median voter models; and the effectsof unionization on wages and employment.

One important impetus behind this recent flurry of research is a recognition, formalized by Hahn et

al. (2001), that RD designs require seemingly mild assumptions compared to those needed for other non-

experimental approaches. Another reason for the recent wave of research is the belief that the RD design

is not “just another” evaluation strategy, and that causal inferences from RD designs are potentially more

credible than those from typical “natural experiment” strategies (e.g. difference-in-differences or instru-

mental variables), which have been heavily employed in applied research in recent decades. This notion

has a theoretical justification: Lee (2008) formally shows that one need notassumethe RD design isolates

treatment variation that is “as good as randomized”; instead, such randomized variation is aconsequenceof

agents’ inability to precisely control the assignment variable near the known cutoff.
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So while the RD approach was initially thought to be “just another” program evaluation method with

relatively little general applicability outside of a few specific problems, recent work in economics has shown

quite the opposite.1 In addition to providing a highly credible and transparent way of estimating program

effects, RD designs can be used in a wide variety of contexts covering a large number of important economic

questions. These two facts likely explain why the RD approach is rapidly becoming a major element in the

toolkit of empirical economists.

Despite the growing importance of RD designs in economics, there is no single comprehensive summary

of what is understood about RD designs – when they succeed, when they fail, and their strengths and weak-

nesses.2 Furthermore, the “nuts and bolts” of implementing RD designs in practice are not (yet) covered in

standard econometrics texts, making it difficult for researchers interested in applying the approach to do so.

Broadly speaking, the main goal of this paper is to fill these gaps by providing an up-to-date overview of

RD designs in economics and creating a guide for researchersinterested in applying the method.

A reading of the most recent research reveals a certain body of “folk wisdom” regarding the applicability,

interpretation, and recommendations of practically implementing RD designs. This article represents our

attempt at summarizing what we believe to be the most important pieces of this wisdom, while also dispelling

misconceptions that could potentially (and understandably) arise for those new to the RD approach.

We will now briefly summarize the most important points aboutRD designs to set the stage for the rest

of the paper where we systematically discuss identification, interpretation, and estimation issues. Here, and

throughout the paper, we refer to the assignment variable asX. Treatment is, thus, assigned to individuals

(or “units”) with a value ofX greater than or equal to a cutoff valuec.

• RD designs can be invalid if individuals can precisely manipulate the “assignment variable”.

When there is a payoff or benefit to receiving a treatment, it is natural for an economist to consider

how an individual may behave to obtain such benefits. For example, if students could effectively

“choose” their test scoreX through effort, those who chose a scorec (and hence received the merit

award) could be somewhat different from those who chose scores just belowc. The important lesson

here is that the existence of a treatment being a discontinuous function of an assignment variable is

not sufficient to justify the validity of an RD design. Indeed, ifanything, discontinuous rules may

1See Cook (2008) for an interesting history of the RD design ineducation research, psychology, statistics, and economics. Cook
argues the resurgence of the RD design in economics is uniqueas it is still rarely used in other disciplines.

2See, however, two recent overview papers by Van der Klaauw (2008b) and Imbens and Lemieux (2008) that have begun
bridging this gap.
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generate incentives, causing behavior that wouldinvalidatethe RD approach.

• If individuals – even while having some influence – are unableto precisely manipulate the as-

signment variable,a consequence of this is that the variation in treatment near the threshold is

randomized as though from a randomized experiment.

This is a crucial feature of the RD design, since it is the reason RD designs are often so compelling.

Intuitively, when individuals have imprecise control overthe assignment variable, even if some are

especially likely to have values ofX near the cutoff,every individual will have approximately the

same probability of having anX that is just above (receiving the treatment) or just below (being de-

nied the treatment) the cutoff – similar to a coin-flip experiment. This result clearly differentiates the

RD and IV approaches. When using IV for causal inference, onemustassumethe instrument is ex-

ogenously generated as if by a coin-flip. Such an assumption is often difficult to justify (except when

an actual lottery was run, as in Angrist (1990), or if there were some biological process, e.g. gender

determination of a baby, mimicking a coin-flip). By contrast, the variation that RD designs isolate

is randomizedas a consequenceof the assumption that individuals have imprecise control over the

assignment variable.

• RD designs can be analyzed – and tested – like randomized experiments.

This is the key implication of the local randomization result. If variation in the treatment near the

threshold is approximately randomized, then it follows that all “baseline characteristics” – all those

variables determined prior to the realization of the assignment variable – should have the same distri-

bution just above and just below the cutoff. If there is a discontinuity in these baseline covariates, then

at a minimum, the underlying identifying assumption of individuals’ inability to precisely manipulate

the assignment variable is unwarranted. Thus, the baselinecovariates are used totest the validity of

the RD design. By contrast, when employing an IV or a matching/regression-control strategy, as-

sumptions typically need to be made about the relationship of these other covariates to the treatment

and outcome variables.3

• Graphical presentation of an RD design is helpful and informative, but the visual presentation

should not be tilted toward either finding an effect or finding no effect.

3Typically, one assumes thatconditional on the covariates, the treatment (or instrument) is essentially “as good as” randomly
assigned.
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It has become standard to summarize RD analyses with a simplegraph showing the relationship

between the outcome and assignment variables. This has several advantages. The presentation of

the “raw data” enhances the transparency of the research design. A graph can also give the reader

a sense of whether the “jump” in the outcome variable at the cutoff is unusually large compared to

the bumps in the regression curve away from the cutoff. Also,a graphical analysis can help identify

why different functional forms give different answers, andcan help identify outliers, which can be a

problem in any empirical analysis. The problem with graphical presentations, however, is that there

is some room for the researcher to construct graphs making itseem as though there are effects when

there are none, or hiding effects that truly exist. We suggest later in the paper a number of methods to

minimize such biases in presentation.

• Non-parametric estimation does not represent a “solution”to functional form issues raised by

RD designs. It is therefore helpful to view it as a complementto – rather than a substitute for –

parametric estimation.

When the analyst chooses a parametric functional form (say,a low-order polynomial) that is incorrect,

the resulting estimator will, in general, be biased. When the analyst uses a non-parametric procedure

such as local linear regression – essentially running a regression using only data points “close” to

the cutoff – there will also be bias.4 With a finite sample, it is impossible to know which case has a

smaller bias without knowing something about the true function. There will be some functions where

a low-order polynomial is a very good approximation and produces little or no bias, and therefore

it is efficient to use all data points – both “close to” and “faraway” from the threshold. In other

situations, a polynomial may be a bad approximation, and smaller biases will occur with a local linear

regression. In practice, parametric and non-parametric approaches lead to the computation of the exact

same statistic.5 For example, the procedure of regressing the outcomeY onX and a treatment dummy

D can be viewed as a parametric regression (as discussed above), or as a local linear regression with a

very large bandwidth. Similarly, if one wanted to exclude the influence of data points in the tails of the

X distribution, one could call the exact same procedure “parametric” after trimming the tails, or “non-

4Unless the underlying function is exactly linear in the areabeing examined.
5See Section 1.2 of Powell (1994), where it is argued that is ismore helpful to viewmodelsrather than particular statistics as

“parametric” or “nonparametric”. It is shown there how the same least squares estimator can simultaneously viewed as solutions to
parametric, semi-parametric, and nonparametric problems.
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parametric” by viewing the restriction in the range ofX as a result of using a smaller bandwidth.6

Our main suggestion in estimation is to not rely on one particular method or specification. In any

empirical analysis, results that are stable across alternative and equally plausible specifications are

generally viewed as more reliable than those that are sensitive to minor changes in specification. RD

is no exception in this regard.

• Goodness-of-fit and other statistical tests can help rule out overly restrictive specifications.

Often the consequence of trying many different specifications is that it may result in a wide range of

estimates. Although there is no simple formula that works inall situations and contexts for weed-

ing out inappropriate specifications, it seems reasonable,at a minimum, not to rely on an estimate

resulting from a specification that can be rejected by the data when tested against a strictly more flex-

ible specification. For example, it seems wise to place less confidence in results from a low-order

polynomial model, when it is rejected in favor of a less restrictive model (e.g., separate means for

each discrete value ofX). Similarly, there seems little reason to prefer a specification that uses all

the data, if using the same specification but restricting to observations closer to the threshold gives a

substantially (and statistically) different answer.

Although we (and the applied literature) sometimes refer tothe RD “method” or “approach”, the RD design

should perhaps be viewed as more of adescriptionof a particular data generating process. All other things

(topic, question, and population of interest) equal, we as researchers might prefer data from a randomized

experiment or from an RD design. But in reality, like the randomized experiment – which is also more

appropriately viewed as a particular data generating process, rather than a “method” of analysis – an RD

design will simply not exist to answer a great number of questions. That said, as we show below, there has

been an explosion of discoveries of RD designs that cover a wide range of interesting economic topics and

questions.

The rest of the paper is organized as follows. In Section 2, wediscuss the origins of the RD design and

show how it has recently been formalized in economics using the potential outcome framework. We also

introduce an important theme that we stress throughout the paper, namely that RD designs are particularly

6The main difference, then, between a parametric and non-parametric approach is not in the actual estimation, but ratherin
the discussion of the asymptotic behavior of the estimator as sample sizes tend to infinity. For example, standard non-parametric
asymptotics considers what would happen if the bandwidthh – the width of the “window” of observations used for the regression
– were allowed to shrink as the number of observationsN tended to infinity. It turns out that ifh→ 0 andNh→ ∞ asN → ∞, the
bias will tend to zero. By contrast, with a parametric approach, when one is not allowed to make the model more flexible withmore
data points, the bias would generally remain – even with infinite samples.
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compelling because they are close cousins of randomized experiments. This theme is more formally ex-

plored in Section 3 where we discuss the conditions under which RD designs are “as good as a randomized

experiment”, how RD estimates should be interpreted, and how they compare with other commonly used

approaches in the program evaluation literature. Section 4goes through the main “nuts and bolts” involved

in implementing RD designs and provides a “guide to practice” for researchers interested in using the de-

sign. A summary “checklist” highlighting our key recommendations is provided at the end of this section.

Implementation issues in several specific situations (discrete assignment variable, panel data, etc.) are cov-

ered in Section 5. Based on a survey of the recent literature,Section 6 shows that RD designs have turned

out to be much more broadly applicable in economics than was originally thought. We conclude in Section

7 by discussing recent progress and future prospects in using and interpreting RD designs in economics.

2 Origins and Background

In this section, we set the stage for the rest of the paper by discussing the origins and the basic structure

of the RD design, beginning with the classic work of Thistlethwaite and Campbell (1960), and moving to

the recent interpretation of the design using modern tools of program evaluation in economics (potential

outcomes framework). One of the main virtues of the RD approach is that it can be naturally presented

using simple graphs, which greatly enhances its credibility and transparency. In light of this, the majority

of concepts introduced in this section are represented in graphical terms to help capture the intuition behind

the RD design.

2.1 Origins

The RD design was first introduced by Thistlethwaite and Campbell (1960) in their study of the impact of

merit awards on the future academic outcomes (career aspirations, enrollment in post-graduate programs,

etc.) of students. Their study exploited the fact that theseawards were allocated on the basis of an observed

test score. Students with test scoresX, greater than or equal to a cutoff valuec, received the award, while

those with scores below the cutoff were denied the award. This generated a sharp discontinuity in the

“treatment” (receiving the award) as a function of the test score. Let the receipt of treatment be denoted by

the dummy variableD ∈ {0,1}, so that we haveD = 1 if X ≥ c, andD = 0 if X < c.

At the same time, there appears to be no reason, other than themerit award, for future academic out-
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comes,Y, to be a discontinuous function of the test score. This simple reasoning suggests attributing the

discontinuous jump inY at c to the causal effect of the merit award. Assuming that the relationship be-

tweenY andX is otherwise linear, a simple way of estimating the treatment effectτ is by fitting the linear

regression

Y = α +Dτ +Xβ + ε (1)

whereε is the usual error term that can be viewed as a purely random error generating variation in the value

of Y around the regression lineα +Dτ +Xβ . This case is depicted in Figure 1, which shows both the true

underlying function and numerous realizations ofε .

Thistlethwaite and Campbell (1960) provided some graphical intuition for why the coefficientτ could

be viewed as an estimate of the causal effect of the award. We illustrate their basic argument in Figure 1.

Consider an individual whose scoreX is exactlyc. To get the causal effect for a person scoringc, we need

guesses for what herY would be with and without receiving the treatment.

If it is “reasonable” to assume that all factors (other than the award) are evolving “smoothly” with respect

to X, thenB′ would be a reasonable guess for the value ofY of an individual scoringc (and hence receiving

the treatment). Similarly,A′′ would be a reasonable guess for that same individual in the counterfactual state

of not having received the treatment. It follows thatB′−A′′ would be the causal estimate. This illustrates

the intuition that the RD estimates should use observations“close” to the cutoff (e.g. in this case, at points

c′ andc′′).

There is, however, a limitation to the intuition that “the closer toc you examine, the better”. In practice,

onecannot“only” use data close to the cutoff. The narrower the area that is examined, the less data there

are. In this example, examining data any closer thanc′ andc′′ will yield no observations at all! Thus, in

order to produce a reasonable guess for the treated and untreated states atX = c with finite data, one has no

choice but to use dataaway from the discontinuity.7 Indeed, if the underlying function is truly linear, we

know that the best linear unbiased estimator ofτ is the coefficient onD from OLS estimation (using all of

the observations) of Equation (1).

This simple heuristic presentation illustrates two important features of the RD design. First, in order

for this approach to work, “all other factors” determiningY must be evolving “smoothly” with respect to

7Interestingly, the very first application of the RD design byThistlethwaite and Campbell (1960) was based on discrete data
(interval data for test scores). As a result, their paper clearly points out that the RD design is fundamentally based on an extrapolation
approach.
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X. If the other variables also jump atc, then the gapτ will potentially be biased for the treatment effect of

interest. Second, since an RD estimate requires data away from the cutoff, the estimate will be dependent

on the chosen functional form. In this example, if the slopeβ were (erroneously) restricted to equal zero, it

is clear the resulting OLS coefficient onD would be a biased estimate of the true discontinuity gap.

2.2 RD Designs and the Potential Outcomes Framework

While the RD design was being imported into applied economicresearch by studies such as Van der Klaauw

(2002), Black (1999), and Angrist and Lavy (1999), the identification issues discussed above were for-

malized in the theoretical work of Hahn et al. (2001), who described the RD evaluation strategy using the

language of the treatment effects literature. Hahn et al. (2001) noted the key assumption of a valid RD design

was that “all other factors” were “continuous” with respectto X, and suggested a non-parametric procedure

for estimatingτ that did not assume underlying linearity, as we have in the simple example above.

The necessity of the continuity assumption is seen more formally using the “potential outcomes frame-

work” of the treatment effects literature, with the aid of a graph. It is typically imagined that for each

individual i, there exists a pair of “potential” outcomes:Yi(1) for what would occur if the unit were exposed

to the treatment andYi(0) if not exposed. The causal effect of the treatment is represented by the difference

Yi(1)−Yi(0). The fundamental problem of causal inference is that we cannot observe the pairYi(0) and

Yi(1) simultaneously. We therefore typically focus on average effects of the treatment, that is, averages of

Yi(1)−Yi(0) over (sub-)populations, rather than on unit-level effects.

In the RD setting, we can imagine there are two underlying relationships between average outcomes

andX, represented byE [Yi (1) |X] andE [Yi (0) |X], as in Figure 2. But by definition of the RD design, all

individuals to the right of the cutoff (c = 2 in this example) are exposed to treatment, and all those to the

left are denied treatment. Therefore, we only observeE [Yi (1) |X] to the right of the cutoff andE [Yi (0) |X]

to the left of the cutoff, as indicated in the figure.

It is easy to see that with what is observable, we could try to estimate the quantity

B−A= lim
ε↓0

E[Yi|Xi = c+ ε ]− lim
ε↑0

E[Yi|Xi = c+ ε ],

which would equal

E [Yi (1)−Yi (0) |X = c] .
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This is the “average treatment effect” at the cutoffc.

This inference is possible because of the continuity of the underlying functionsE [Yi (1) |X] andE [Yi (0) |X].8

In essence, this continuity condition enables us to use the average outcome of those right below the cutoff

(who are denied the treatment) as a valid counterfactual forthose right above the cutoff (who received the

treatment).

Although the potential outcome framework is very useful forunderstanding how RD designs work in

a framework applied economists are used to dealing with, it also introduces some difficulties in terms of

interpretation. First, while the continuity assumption sounds generally plausible, it is not completely clear

what it means from an economic point of view. The problem is that since continuity is not required in

the more traditional applications used in economics (e.g. matching on observables), it is not obvious what

assumptions about the behavior of economic agents are required to get continuity.

Second, RD designs are a fairly peculiar application of a “selection on observables” model. Indeed, the

view in Heckman et al. (1999) was that “[r]egression discontinuity estimators constitute a special case of

selection on observables,” and that the RD estimator is “a limit form of matching at one point.” In general,

we need two crucial conditions for a matching/selection on observables approach to work. First, treatment

must be randomly assigned conditional on observables (theignorability or unconfoundednessassumption).

In practice, this is typically viewed as a strong, and not particularly credible, assumption. For instance, in

a standard regression framework this amounts to assuming that all relevant factors are controlled for, and

that no omitted variables are correlated with the treatmentdummy. In an RD design, however, this crucial

assumption is trivially satisfied. WhenX ≥ c, the treatment dummyD is always equal to 1. WhenX < c, D

is always equal to 0. Conditional onX, there is no variation left inD, so it cannot, therefore, be correlated

with any other factor.9

At the same time, the other standard assumption ofoverlap is violated since, strictly speaking, it is not

possible to observe units with eitherD = 0 or D = 1 for a given value of the assignment variableX. This

is the reason the continuity assumption is required - to compensate for the failure of the overlap condition.

So while we cannot observe treatment and non-treatment for the same value ofX, we can observe the two

8The continuity of both functions is not the minimum that is required, as pointed out in Hahn et al. (2001). For example,
identification is still possible even if onlyE [Yi (0) |X] is continuous, and only continuous atc. Nevertheless, it may seem more
natural to assume that the conditional expectations are continuous for all values ofX, since cases where continuity holds at the
cutoff point but not at other values ofX seem peculiar.

9In technical terms, the treatment dummyD follows a degenerate (concentrated atD = 0 or D = 1), but nonetheless random
distribution conditional onX. Ignorability is thus trivially satisfied.
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outcomes for values ofX around the cutoff point that are arbitrarily close to each other.

2.3 RD design as a Local Randomized Experiment

When looking at RD designs in this way, one could get the impression that they require some assumptions

to be satisfied, while other methods such as matching on observables and IV methods simply require other

assumptions.10 From this point of view, it would seem that the assumptions for the RD design are just

as arbitrary as those used for other methods. As we disucss throughout the paper, however, we do not

believe this way of looking at RD designs does justice to their important advantages over most other existing

methods. This point becomes much clearer once we compare theRD design to the “gold standard” of

program evaluation methods, randomized experiments. We will show that the RD design is a much closer

cousin of randomized experiment than other competing methods.

In a randomized experiment, units are typically divided into treatment and control groups on the basis

of a randomly generated number,ν . For example, ifν follows a uniform distribution over the range[0,4],

units with ν ≥ 2 are given the treatment while units withν < 2 are denied treatment. So the randomized

experiment can be thought of as an RD design where the assignment variable isX = ν and the cutoff is

c = 2. Figure 3 shows this special case in the potential outcomesframework, just as in the more general RD

design case of Figure 2. The difference is that because the assignment variableX is now completely random,

it is independent of the potential outcomesYi (0) andYi (1), and the curvesE [Yi (1) |X] andE [Yi (0) |X] are

flat. Since the curves are flat, it trivially follows that theyare also continuous at the cutoff pointX = c. In

other words, continuity is a direct consequence of randomization.

The fact that the curvesE [Yi (1) |X] andE [Yi (0) |X] are flat in a randomized experiment implies that, as

is well known, the average treatment effect can be computed as the difference in the mean value ofY on the

right and left hand side of the cutoff. One could also use an RDapproach by running regressions ofY onX,

but this would be less efficient since we know that if randomization were successful, thenX is an irrelevant

variable in this regression.

But now imagine that, for ethical reasons, people are compensated for having received a “bad draw”

by getting a monetary compensation inversely proportionalto the random numberX. For example, the

treatment could be job search assistance for the unemployed, and the outcome whether one found a job

10For instance, in the survey of Angrist and Krueger (1999), RDis viewed as an IV estimator, thus having essentially the same
potential drawbacks and pitfalls.
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within a month of receiving the treatment. If people with a larger monetary compensation can afford to take

more time looking for a job, the potential outcome curves will no longer be flat and will slope upward. The

reason is that having a higher random number, i.e. a lower monetary compensation, increases the probability

of finding a job. So in this “smoothly contaminated” randomized experiment, the potential outcome curves

will instead look like the classical RD design case depictedin Figure 2.

Unlike a classical randomized experiment, in this contaminated experiment a simple comparison of

means no longer yields a consistent estimate of the treatment effect. By focusing right around the threshold,

however, an RD approach would still yield a consistent estimate of the treatment effect associated with

job search assistance. The reason is that since people just above or below the cutoff receive (essentially)

the same monetary compensation, we still have locally a randomized experiment around the cutoff point.

Furthermore, as in a randomized experiment, it is possible to test whether randomization “worked” by

comparing the local values of baseline covariates on the twosides of the cutoff value.

Of course, this particular example is highly artificial. Since we know the monetary compensation is

a continuous function ofX, we also know the continuity assumption required for the RD estimates of the

treatment effect to be consistent is also satisfied. The important result, due to Lee (2008), that we will

show in the next section is that the conditions under which welocally have a randomized experiment (and

continuity) right around the cutoff point are remarkably weak. Furthermore, in addition to being weak,

the conditions for local randomization are testable in the same way global randomization is testable in a

randomized experiment by looking at whether baseline covariates are balanced. It is in this sense that the

RD design is more closely related to randomized experimentsthan to other popular program evaluation

methods such as matching on observables, difference-in-differences, and IV.

3 Identification and Interpretation

This section discusses a number of issues of identification and interpretation that arise when considering an

RD design. Specifically, the applied researcher may be interested in knowing the answers to the following

questions:

1. How do I know whether an RD design is appropriate for my context? When are the identification

assumptions plausible or implausible?
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2. Is there any way I can test those assumptions?

3. To what extent are results from RD designs generalizable?

On the surface, the answers to these questions seem straightforward: 1) “An RD design will be appropriate

if it is plausible that all other unobservable factors are “continuously” related to the assignment variable,”

2) “No, the continuity assumption is necessary, so there areno tests for the validity of the design,” and

3) “The RD estimate of the treatment effect is only applicable to the sub-population of individuals at the

discontinuity threshold, and uninformative about the effect anywhere else.” These answers suggest that the

RD design is no more compelling than, say, an instrumental variables approach, for which the analogous

answers would be 1) “The instrument must be uncorrelated with the error in the outcome equation,” 2) “The

identification assumption is ultimately untestable,” and 3) “The estimated treatment effect is applicable to

the sub-population whose treatment was affected by the instrument.” After all, who’s to say whether one

untestable design is more “compelling” or “credible” than another untestable design? And it would seem

that having a treatment effect for a vanishingly small sub-population (those at the threshold, in the limit) is

hardly more (and probably much less) useful than that for a population “affected by the instrument.”

As we describe below, however, a closer examination of the RDdesign reveals quite different answers

to the above three questions:

1. “When there is a continuously distributed stochastic error component to the assignment variable –

which can occur when optimizing agents do not haveprecisecontrol over the assignment variable

– then the variation in the treatment will be as good as randomized in a neighborhood around the

discontinuity threshold.”

2. “Yes. As in a randomized experiment, the distribution of observed baseline covariates should not

change discontinuously at the threshold.”

3. “The RD estimand can be interpreted as a weighted average treatment effect, where the weights are

the relative ex ante probability that the value of an individual’s assignment variable will be in the

neighborhood of the threshold.”

Thus, in many contexts, the RD design may have more in common with randomized experiments (or circum-

stances when an instrument is truly randomized) – in terms oftheir “internal validity” and how to implement
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them in practice – than with regression control or matching methods, instrumental variables, or panel data

approaches. We will return to this point after first discussing the above three issues in greater detail.

3.1 Valid or Invalid RD?

Are individuals able to influence the assignment variable, and if so, what is the nature of this control? This

is probably the most important question to ask when assessing whether a particular application should be

analyzed as an RD design. If individuals have a great deal of control over the assignment variable and if

there is a perceived benefit to a treatment, one would certainly expect individuals on one side of the threshold

to be systematically different from those on the other side.

Consider the test-taking RD example. Suppose there are two types of students:A andB. Suppose type

A students are more able thanB types, and thatA types are also keenly aware that passing the relevant

threshold (50 percent) will give them a scholarship benefit,while B types are completely ignorant of the

scholarship and the rule. Now suppose that 50 percent of the questions are trivial to answer correctly, but

due to random chance, students will sometimes make carelesserrors when they initially answer the test

questions, but would certainly correct the errors if they checked their work. In this scenario, only typeA

students will make sure to check their answers before turning in the exam, thereby assuring themselves of a

passing score. Thus, while we would expect those who barely passed the exam to be a mixture of typeA and

type B students, those who barely failed would exclusively be typeB students. In this example, it is clear

that the marginal failing students donot represent a valid counterfactual for the marginal passing students.

Analyzing this scenario within an RD framework would be inappropriate.

On the other hand, consider the same scenario, except assumethat questions on the exam arenot trivial;

there are no guaranteed passes, no matter how many times the students check their answers before turning in

the exam. In this case, it seems more plausible that among those scoring near the threshold, it is a matter of

“luck” as to which side of the threshold they land. TypeA students can exert more effort – because they know

a scholarship is at stake – but they do not know the exact scorethey will obtain. In this scenario, it would be

reasonable to argue that those who marginally failed and passed would be otherwise comparable, and that

an RD analysiswouldbe appropriate and would yield credible estimates of the impact of the scholarship.

These two examples make it clear that one must have some knowledge about the mechanism generating

the assignment variable, beyond knowing that if it crosses the threshold, the treatment is “turned on”. It is

“folk wisdom” in the literature to judge whether the RD is appropriate based on whether individuals could
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manipulate the assignment variable andprecisely“sort” around the discontinuity threshold. The key word

here is “precise”, rather than “manipulate”. After all, in both examples above, individuals do exert some

control over the test score. And indeed in virtually every known application of the RD design, it is easy to

tell a plausible story that the assignment variable is to some degree influenced bysomeone. But individuals

will not always be able to haveprecisecontrol over the assignment variable. It should perhaps seem obvious

that it is necessary to rule out precise sorting to justify the use of an RD design . After all, individual self-

selection into treatment or control regimes is exactly why simple comparison of means is unlikely to yield

valid causal inferences. Precise sorting around the threshold is self-selection.

What is not obvious, however, is that when one formalizes thenotion of having imprecise control over

the assignment variable, there is a striking consequence: the variation in the treatment in a neighborhood of

the threshold is “as good as randomized”. We explain this below.

3.1.1 Randomized Experiments from Non-Random Selection

To see how the inability to precisely control the assignmentvariable leads to a source of randomized varia-

tion in the treatment, consider a simplified formulation of the RD design:11

Y = Dτ +Wδ1 +U (2)

D = 1[X ≥ c]

X = Wδ2 +V

whereY is the outcome of interest,D is the binary treatment indicator, andW is the vector of all pre-

determined and observable characteristics of the individual that might impact the outcome and/or the as-

signment variableX.

This model looks like a standard endogenous dummy variable set-up, except that we observe the treat-

ment determining variable,X. This allows us to relax most of the other assumptions usually made in this

type of model. First, we allowW to be endogenously determined, as long as it is determined prior to V.

Second, we take no stance as to whether some elements ofδ1 or δ2 are zero (exclusion restrictions). Third,

we make no assumptions about the correlations betweenW,U, andV.12

11We use a simple linear endogenous dummy variable setup to describe the results in this section, but all of the results could be
stated within the standard potential outcomes framework, as in Lee (2008).

12This is much less restrictive than textbook descriptions ofendogenous dummy variable systems. It is typically assumedthat
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In this model, individual heterogeneity in the outcome is completely described by the pair of random

variables(W,U); anyone with the same values of(W,U) will have one of two values for the outcome,

depending on whether they receive treatment. Note that since RD designs are implemented by running

regressions ofY on X, equation (2) looks peculiar sinceX is not included withW andU on the right hand

side of the equation. We could add a function ofX to the outcome equation, but this would not change

anything to the model since we have not made any assumptions about the joint distribution ofW,U, and

V. For example, our setup allows for the case whereU = Xδ3 +U ′ , which yields the outcome equation

Y = Dτ +Wδ1+Xδ3+U ′. For the sake of simplicity, we work with the simple case whereX is not included

on the right hand side of the equation.13

Now consider the distribution ofX, conditional on a particular pair of valuesW = w, U = u . It is

equivalent (up to a translational shift) to the distribution ofV conditional onW = w,U = u . If an individual

has complete and exact control overX, we would model it as having a degenerate distribution, conditional

onW = w,U = u. That is, in repeated trials, this individual would choose the same score. This is depicted

in Figure 4 as the thick line.

If there is some room for error, but individuals can nevertheless have precise control about whether they

will fail to receive the treatment, then we would expect the density ofX to be zero just below the threshold,

but positive just above the threshold, as depicted in Figure4 as the truncated distribution. This density would

be one way to model the first example described above for the typeA students. Since typeA students know

about the scholarship, they will double-check their answers and make sure they answer the easy questions,

which comprise 50 percent of the test. How high they score above the passing threshold will be determined

by some randomness.

Finally, if there is stochastic error in the assignment variable and individuals donot have precise control

over the assignment variable, we would expect the density ofX (and henceV), conditional onW = w,U = u

to be continuous at the discontinuity threshold, as shown inFigure 4 as the untruncated distribution.14 It is

important to emphasize that in this final scenario, the individual still has control overX : through her efforts,

she can choose to shift the distribution to the right. This isthe density for someone withW = w,U = u, but

(U,V) is independent ofW.
13When RD designs are implemented in practice, the estimated effect of X onY can either reflect a true causal effect ofX onY,

or a spurious correlation betweenX and the unobservable termU . Since it is not possible to distinguish between these two effects
in practice, we simplify the setup by implicitly assuming that X only comes into equation (2) indirectly through its (spurious)
correlation withU .

14For example, this would be plausible whenX is a test score modeled as a sum of Bernoulli random variables, which is
approximately normal by the central limit theorem.
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may well be different – with a different mean, variance, or shape of the density – for other individuals, with

different levels of ability, who make different choices. Weare assuming, however, that all individuals are

unable to precisely control the score just around the threshold.

Definition: We say individuals have imprecise control overX when conditional onW = w and

U = u , the density ofV (and henceX) is continuous.

When individuals have imprecise control overX this leads to the striking implication that variation in treat-

ment status will be randomized in a neighborhood of the threshold. To see this, note that by Bayes’ Rule,

we have

Pr[W = w,U = u|X = x] = f (x|W = w,U = u)
Pr[W = w,U = u]

f (x)
(3)

where f (·) and f (·|·) are marginal and conditional densities forX. So whenf (x|W = w,U = u) is contin-

uous inx, the right hand side will be continuous inx, which therefore means that the distribution ofW,U

conditional onX will be continuous inx.15 That is,all observed and unobserved pre-determined character-

istics will have identical distributions on either side of x= c, in the limit, as we examine smaller and smaller

neighborhoods of the threshold.

In sum,

Local Randomization: If individuals have imprecise control overX as defined above, then

Pr[W = w,U = u|X = x] is continuous inx: the treatment is “as good as” randomly assigned

around the cutoff.

In other words, the behavioral assumption that individualsdo not precisely manipulateX around the thresh-

old has thepredictionthat treatment is locally randomized.

This is perhaps why RD designs can be so compelling. A deeper investigation into the real-world details

of how X (and henceD) is determined can help assess whether it is plausible that individuals have precise

or imprecise control overX. By contrast, with most non-experimental evaluation contexts, learning about

how the treatment variable is determined will rarely lead one to conclude that it is “as good as” randomly

assigned.

15Since the potential outcomesY(0) andY(1) are functions ofW andU , it follows that the distribution ofY(0) andY(1)
conditional onX is also continuous inx when individuals have imprecise control overX. This implies that the conditions usually
invoked for consistently estimating the treatment effect (the conditional meansE[Y(0)|X = x] andE[Y(1)|X = x] being continuous
in x) are also satisfied. See Lee (2008) for more detail.
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3.2 Consequences of Local Random Assignment

There are three practical implications of the above local random assignment result.

3.2.1 Identification of the Treatment Effect

First and foremost, it means that the discontinuity gap at the cutoff identifies the treatment effect of interest.

Specifically, we have

lim
ε↓0

E [Y|X = c+ ε ]− lim
ε↑0

E [Y|X = c+ ε ] = τ + lim
ε↓0

∑
w,u

(wδ1+u)Pr[W = w,U = u|X = c+ ε ]

− lim
ε↑0

∑
w,u

(wδ1 +u)Pr[W = w,U = u|X = c+ ε ]

= τ

where the last line follows from the continuity of Pr[W = w,U = u|X = x].

As we mentioned earlier, nothing changes if we augment the model by adding a direct impact ofX

itself in the outcome equation, as long as the effect ofX on Y does not jump at the cutoff. For example,

in the example of Thistlethwaite and Campbell (1960), we canallow higher test scores to improve future

academic outcomes (perhaps by raising the probability of admission to higher quality schools), as long as

that probability does not jump at precisely the same cutoff used to award scholarships.

3.2.2 Testing the Validity of the RD design

An almost equally important implication of the above local random assignment result is that it makes it

possible to empirically assess the prediction that Pr[W = w,U = u|X = x] is continuous inx. Although it

is impossible to test this directly – sinceU is unobserved – it is nevertheless possible to assess whether

Pr[W = w|X = x] is continuous inx at the threshold. A discontinuity would indicate a failure of the identi-

fying assumption.

This is akin to the tests performed to empirically assess whether the randomization was carried out

properly in randomized experiments. It is standard in theseanalyses to demonstrate that treatment and

control groups are similar in their observed baseline covariates. It is similarly impossible to test whether

unobserved characteristics are balanced in the experimental context, so the most favorable statement that

can be made about the experiment is that the data “failed to reject” the assumption of randomization.
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Perfroming this kind of test is arguably more important in the RD design than in the experimental

context. After all, the true nature of individuals’ controlover the assignment variable – and whether it is

precise or imprecise – may well be somewhat debatable, even after a great deal of investigation into the

exact treatment-assignment mechanism (which itself is always advisable to do). Imprecision of control will

often be nothing more than a conjecture, but thankfully, it has testable predictions.

There is a complementary, and arguably more direct and intuitive test of the imprecision of control over

the assignment variable: examination of the density ofX itself, as suggested in McCrary (2008). If the

density ofX for each individual is continuous, then the marginal density of X over the population should

be continuous as well. A jump in the density at the threshold is probably the most direct evidence of some

degree of sorting around the threshold, and should provoke serious skepticism about the appropriateness of

the RD design.16 Furthermore, one advantage of the test is that it can always be performed in a RD setting,

while testing whether the covariatesW are balanced at the threshold depends on the availability ofdata on

these covariates.

This test is also a partial one. Whether each individual’s exante density ofX is continuous is fundamen-

tally untestable, since for each individual we only observeone realization ofX. Thus, in principle, at the

threshold some individuals’ densities may jump up while others may sharply fall, so that in the aggregate,

positives and negatives offset each other making the density appear continuous. In recent applications of

RD such occurrences seem far-fetched. Even if this were the case, one would certainly expect to see, after

stratifying by different values of the observalbe characteristics, some discontinuities in the density ofX.

These discontinuities could be detected by performing the local randomization test described above.

3.2.3 Irrelevance of Including Baseline Covariates

A consequence of a randomized experiment is that the assignment to treatment is, by construction, indepen-

dent of the baseline covariates. As such, it is not necessaryto include them to obtain consistent estimates of

the treatment effect. In practice, however, researchers will include them in regressions, because doing so can

reduce the sampling variability in the estimator. Arguablythe greatest potential for this occurs when one of

16Another possible source of discontinuity in the density of the assignment variableX is selective attrition. For example, (Di-
Nardo and Lee, 2004) look at the effect of unionization on wages several years after a union representation vote was taken. In
principle, if firms that were unionized because of a majorityvote are more likely to close down, then conditional on firm survival
at a later date, there will be a discontinuity inX (the vote share) that could threaten the validity of the RD design for estimating the
effect of unionization on wages (conditional on survival).In that setting, testing for a discontinuity in the density (conditional on
survival) is similar to testing for selective attrition (linked to treatment status) in a standard randomized experiment.
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the baseline covariates is a pre-random-assignment observation on the dependent variable, which may likely

be highly correlated with the post-assignment outcome variable of interest.

The local random assignment result allows us to apply these ideas to the RD context. For example,

if the lagged value of the dependent variable was determinedprior to the realization ofX, then the local

randomization result will imply that that lagged dependentvariable will have a continuous relationship with

X. Thus, performing an RD analysis onY minus its lagged value should also yield the treatment effect of

interest. The hope, however, is that the differenced outcome measure will have a sufficiently lower variance

than the level of the outcome, so as to lower the variance in the RD estimator.

More formally, we have

lim
ε↓0

E [Y−Wπ|X = c+ ε ]− lim
ε↑0

E [Y−Wπ|X = c+ ε ] = τ + lim
ε↓0

∑
w,u

(w(δ1−π)+u)Pr[W = w,U = u|X = c+ ε ]

(4)

− lim
ε↑0

∑
w,u

(w(δ1−π)+u)Pr[W = w,U = u|X = c+ ε ]

= τ

whereWπ is any linear function, andW can include a lagged dependent variable, for example. We return to

how to implement this in practice in Section 4.4.

3.3 Generalizability: the RD Gap as a Weighted Average Treatment Effect

In the presence of heterogeneous treatment effects, the discontinuity gap in an RD design can be interpreted

as aweightedaverage treatment effect acrossall individuals. This is somewhat contrary to the temptation to

conclude that the RD design only delivers a credible treatment effect for the sub-population of individuals

at the threshold, and says nothing about the treatment effect “away from the threshold”. Depending on the

context, this may be an overly simplistic and pessimistic assessment.

Consider the scholarship test example again, and define the “treatment” as “receiving a scholarship by

scoring 50 percent or greater on the scholarship exam.” Recall that the pairW,U characterizes individual

heterogeneity. We now letτ (w,u) denote the treatment effect for an individual withW = w andU = u, so
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that the outcome equation in (2) is instead given by

Y = Dτ (W,U)+Wδ1 +U.

This is essentially a model of completely unrestricted heterogeneity in the treatment effect. Following the

same line of argument as above, we obtain

lim
ε↓0

E [Y|X = c+ ε ]− lim
ε↑0

E [Y|X = c+ ε ] = ∑
w,u

τ (w,u)Pr[W = w,U = u|X = c]

= ∑
w,u

τ (w,u)
f (c|W = w,U = u)

f (c)
Pr[W = w,U = u] (5)

where the second line follows from Equation (3).

The discontinuity gap then, is a particular kind of average treatment effectacross all individuals. If not

for the term f (c|W=w,U=u)
f (c) , it would be the average treatment effect for the entire population. The presence

of the ratio f (c|W=w,U=u)
f (c) implies the discontinuity is instead aweightedaverage treatment effect where the

weights are directly proportional to the ex ante likelihoodthat an individual’s realization ofX will be close to

the threshold. All individuals could get some weight, and the similarity of the weights across individuals is

ultimately untestable, since again we only observe one realization ofX per person and do not know anything

about the ex ante probability distribution ofX for any one individual. The weights may be relatively similar

across individuals, in which case the RD gap would be closer to the overall average treatment effect; but,

if the weights are highly varied and also related to the magnitude of the treatment effect, then the RD gap

would be very different from the overall average treatment effect. While it is not possible to know how

close the RD gap is from the overall average treatment effect, it remains the case that the treatment effect

estimated using a RD design is averaged over a larger population than one would have anticipated from a

purely “cut-off” interpretation.

Of course, we do not observe the density of the assignment variable at the individual level so we therefore

do not know the weight for each individual. Indeed, if the signal to noise ratio of the test is extremely high,

someone who scores a 90 percent may have almost a zero chance of scoring near the threshold, implying

that the RD gap is almost entirely dominated by those who score near 50 percent. But if the reliability is

lower, then the RD gap applies to a relatively broader sub-population. It remains to be seen whether or not

and how information on the reliability, or a second test measurement, or other covariates that can predict
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the assignment could be used in conjunction with the RD gap tolearn about average treatment effects for

the overall population. The understanding of the RD gap as a weighted average treatment effect serves to

highlight that RD causal evidence is not somehow fundamentally disconnected from the average treatment

effect that is often of interest to researchers.

It is important to emphasize that the RD gap is not informative about the treatment if it were defined as

“receipt of a scholarship that is awarded by scoring90 percentor higher on the scholarship exam.” This is not

so much a “drawback” of the RD design as a limitation shared with even a carefully controlled randomized

experiment. For example, if we randomly assigned financial aid awards to low-achieving students, whatever

treatment effect we estimate may not be informative about the effect of financial aid for high-achieving

students.

In some contexts, the treatment effect “away from the discontinuity threshold” may not make much

practical sense. Consider the RD analysis of incumbency in congressional elections of Lee (2008). When

the treatment is “being the incumbent party,” it is implicitly understood that incumbency entails winning

the previous election by obtaining at least 50 percent of thevote.17 In the election context, the treatment

“being the incumbent party by virtue of winning an election,whereby 90 percent of the vote is required to

win” simply does not apply to any real-life situation. Thus,in this context, it is awkward to interpret the RD

gap as “the effect of incumbency that exists at 50 percent vote-share threshold” (as if there is an effect at a

90 percent threshold). Instead it is more natural to interpret the RD gap as estimating a weighted average

treatment effect of incumbency across all districts, wheremore weight is given to those districts in which a

close election race was expected.

3.4 Variations on the Regression Discontinuity Design

To this point, we have focused exclusively on the “classic” RD design introduced by Thistlethwaite and

Campbell (1960), whereby there is a single binary treatmentand the assignment variable perfectly predicts

treatment receipt. We now discuss two variants of this base case: 1) when there is so-called “imperfect

compliance” of the rule, and 2) when the treatment of interest is a continuous variable.

In both cases, the notion that the RD design generates local variation in treatment that is “as good as

randomly assigned” is helpful because we can apply known results for randomized instruments to the RD

design, as we do below. The notion is also helpful for addressing other data problems, such as differential

17For this example, consider the simplified case of a two-partysystem.
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attrition or sample selection, whereby the treatment affects whether or not you observe the outcome of

interest. The local random assignment result means that in principle, one could extend the ideas of Horowitz

and Manski (2000) or Lee (2009), for example, to provide bounds on the treatment effect, accounting for

possible sample selection bias.

3.4.1 Imperfect Compliance: the “Fuzzy” RD

In many settings of economic interest, treatment is determined partly by whether the assignment variable

crosses a cutoff point. This situation is very important in practice for a variety of reasons, including cases of

imperfect take-up by program participants or when factors other than the threshold rule affect the probability

of program participation. Starting with Trochim (1984), this setting has been referred to as a “fuzzy” RD

design. In the case we have discussed so far – the “sharp” RD design – the probability of treatment jumps

from 0 to 1 whenX crosses the thresholdc. The fuzzy RD design allows for a smaller jump in the probability

of assignment to the treatment at the threshold and only requires

lim
ε↓0

Pr(D = 1|X = c+ ε) 6= lim
ε↑0

Pr(D = 1|X = c+ ε).

Since the probability of treatment jumps by less than one at the threshold, the jump in the relationship

betweenY andX can no longer be interpreted as an average treatment effect.As in an instrumental variable

setting however, the treatment effect can be recovered by dividing the jump in the relationship betweenY

andX atc by the fraction induced to take-up the treatment at the threshold – in other words, the discontinuity

jump in the relation betweenD andX. In this setting, the treatment effect can be written as

τF =
limε↓0E[Y|X = c+ ε ]− limε↑0E[Y|X = c+ ε ]

limε↓0E[D|X = c+ ε ]− limε↑0E[D|X = c+ ε ]
,

where the subscript “F” refers to the fuzzy RD design.

There is a close analogy between how the treatment effect is defined in the fuzzy RD design and in

the well-known “Wald” formulation of the treatment effect in an instrumental variables setting. Hahn et al.

(2001) were the first to show this important connection and tosuggest estimating the treatment effect using

two-stage least-squares (TSLS) in this setting. We discussestimation of fuzzy RD designs in greater detail

in Section 4.3.3.
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Hahn et al. (2001) furthermore pointed out that the interpretation of this ratio as a causal effect requires

the same assumptions as in Imbens and Angrist (1994). That is, one must assume “monotonicity” (i.e.X

crossing the cutoff cannot simultaneouslycausesome units to take up and others to reject the treatment) and

“excludability” (i.e. X crossing the cutoff cannot impactY except through impacting receipt of treatment).

When these assumptions are made, it follows that18

τF = E[Y(1)−Y(0)|unit is complier,X = c],

where “compliers” are units that receive the treatment whenthey satisfy the cutoff rule (Xi ≥ c), but would

not otherwise receive it.

In summary, if there is local random assignment (e.g. due to the plausibility of individuals’ imprecise

control overX), then we can simply apply all of what is known about the assumptions and interpretability

of instrumental variables. The difference between the “sharp” and “fuzzy” RD design is exactly parallel

to the difference between the randomized experiment with perfect compliance and the case of imperfect

compliance, when only the “intent to treat” is randomized.

For example, in the case of imperfect compliance, even if a proposed binary instrumentZ is randomized,

it is necessary to rule out the possibility thatZ affects the outcome, outside of its influence through treatment

receipt,D. Only then will the instrumental variables estimand – the ratio of the reduced form effects ofZ on

Y and ofZ onD – be properly interpreted as a causal effect ofD onY. Similarly, supposing that individuals

do not have precise control overX, it is necessary to assume that whetherX crosses the thresholdc (the

instrument ) has no impact ony except by influencingD. Only then will the ratio of the two RD gaps inY

andD be properly interpreted as a causal effect ofD onY.

In the same way that it is important to verify a strong first-stage relationship in an IV design, it is equally

important to verify that a discontinuity exists in the relationship betweenD andX in a fuzzy RD design.

Furthermore, in this binary-treatment-binary-instrument context with unrestricted heterogeneity in treat-

ment effects, the IV estimand is interpreted as the average treatment effect “for the sub-population affected

by the instrument,” (or LATE). Analogously, the ratio of theRD gaps inY and D (the “fuzzy design”

estimand) can be interpreted as aweightedLATE, where the weights reflect the ex ante likelihood the in-

dividual’s X is near the threshold. In both cases, the exclusion restriction and monotonicity condition must

18See Imbens and Lemieux (2008) for a more formal exposition.
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hold.

3.4.2 Continuous Endogenous Regressor

In a context where the “treatment” is a continuous variable –call it T – and there is a randomized binary

instrument (that can additionally be excluded from the outcome equation), an IV approach is an obvious

way of obtaining an estimate of the impact ofT onY. The IV estimand is the reduced-form impact ofZ on

Y divided by the first-stage impact ofZ onT.

The same is true for an RD design when the regressor of interest is continuous. Again, the causal impact

of interest will still be the ratio of the two RD gaps (i.e. thediscontinuities inY andT).

To see this more formally, consider the model

Y = Tγ +Wδ1 +U1 (6)

T = Dφ +Wγ +U2

D = 1[X ≥ c]

X = Wδ2 +V

which is the same set-up as before, except with the added second equation, allowing for imperfect compli-

ance or other factors (observablesW or unobservablesU2) to impact the continuous regressor of interestT.

If γ = 0 andU2 = 0, then the model collapses to a “sharp” RD design (with a continuous regressor).

Note that we make no additional assumptions aboutU2 (in terms of its correlation withW or V). We do

continue to assume imprecise control overX (conditional onW andU1, the density ofX is continuous).19

Given the discussion so far, it is easy to show that

lim
ε↓0

E [Y|X = c+ ε ]− lim
ε↑0

E [Y|X = c+ ε ] =

{
lim
ε↓0

E [T|X = c+ ε ]− lim
ε↑0

E [T|X = c+ ε ]

}
γ (7)

The left hand side is simply the “reduced form” discontinuity in the relation betweeny andX. The term

precedingγ on the right hand side is the “first-stage” discontinuity in the relation betweenT andX, which is

also estimable from the data. Thus, analogous to the exactly-identified instrumental variable case, the ratio

19Although it would be unnecessary to do so for the identification of γ , it would probably be more accurate to describe the
situation of imprecise control with the continuity of the density ofX conditional on the three variables(W,U1,U2). This is because
U2 is now another variable characterizing heterogeneity in individuals.
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of the two discontinuities yields the parameterγ : the effect ofT onY. Again, because of the added notion

of imperfect compliance, it is important to assume thatD (X crossing the threshold) does not directly enter

the outcome equation.

In some situations, more might be known about the rule determining T. For example, in Angrist and

Lavy (1999) and Urquiola and Verhoogen (2007), class size isan increasing function of total school en-

rollment, except for discontinuities at various enrollment thresholds. But additional information about

characteristics such as the slope and intercept of the underlying function (apart from the magnitude of the

discontinuity) generally adds nothing to the identification strategy.

To see this, change the second equation in (6) toT = Dφ +g(X) whereg(·) is any continuous function

in the assignment variable. Equation (7) will remain the same, and thus knowledge of the functiong(·)is

irrelevant for identification.20

There is also no need for additional theoretical results in the case when there is individual-level hetero-

geneity in the causal effect of the continuous regressorT. The local random assignment result allows us

to borrow from the existing IV literature and interpret the ratio of the RD gaps as in Angrist and Krueger

(1999), except that we need to add the note that all averages are weighted by the ex ante relative likelihood

that the individual’sX will land near the threshold.

3.5 Summary: A Comparison of RD and Other Evaluation Strategies

We conclude this section by comparing the RD design with other evaluation approaches. We believe it

is helpful to view the RD design as a distinct approach, rather than as a special case of either IV or

matching/regression-control. Indeed, in important ways the RD design is more similar to a randomized

experiment, which we illustrate below.

Consider a randomized experiment, where subjects are assigned a random numberX, and are given the

treatment ifX ≥ c. By construction,X is independent and not systematically related to any observable or

unobservable characteristic determined prior to the randomization. This situation is illustrated in Panel A of

Figure 5. The first column shows the relationship between thetreatment variableD andX, a step function,

going from 0 to 1 at theX = c threshold. The second column shows the relationship between the observables

W andX. This is flat becauseX is completely randomized. The same is true for the unobservable variable

U , depicted in the third column. These three graphs capture the appeal of the randomized experiment:

20As discussed in 3.2.1, the inclusion of a direct effect ofX in the outcome equation will not change identification ofτ.
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treatment varies while all other factors are kept constant (on average). And even though we cannot directly

test whether there are no treatment-control differences inU , we can test whether there are such differences

in the observableW.

Now consider an RD (Panel B of Figure 5) where individuals have imprecise control overX. BothW and

U may be systematically related toX, perhaps due to the actions taken by units to increase their probability

of receiving treatment. Whatever the shape of the relation,as long as individuals have imprecise control

overX, the relationship will be continuous. And therefore, as we examineY near theX = c cutoff, we can

be assured that like an experiment, treatment varies (the first column) while other factors are kept constant

(the second and third columns). And, like an experiment, we can test this prediction by assessing whether

observables truly are continuous with respect toX (the second column).21

We now consider two other commonly-used non-experimental approaches, referring to the model (2):

Y = Dτ +Wδ1 +U

D = 1[X ≥ c]

X = Wδ2 +V

3.5.1 Selection on Observables: Matching/Regression Control

The basic idea of the “selection on observables” approach isto adjust for differences in theW’s between

treated and control individuals. It is usually motivated bythe fact that it seems “implausible” that the

unconditional meanY for the control group represents a valid counterfactual forthe treatment group. So it

is argued that,conditional on W,treatment-control contrasts may identify the (W-specific) treatment effect.

The underlying assumption is that conditional onW, U andV are independent. From this it is clear that

E [Y|D = 1,W = w]−E [Y|D = 0,W = w] = τ +E [U |W = w,V ≥ c−wδ2]−E [U |W = w,V < c−wδ2]

= τ

Two issues arise when implementing this approach. The first is one of functional form: how exactly to

control for theW’s? When theW’s take on discrete values, one possibility is to compute treatment effects

for each distinct value ofW, and then average these effects across the constructed “cells”. This will not

21We thank an anonymous referee for suggesting these illustrative graphs.
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work, however,whenW has continuous elements, in which case it is necessary to implement multivariate

matching, propensity score, re-weighting procedures, or nonparametric regressions.22

Regardless of the functional form issue, there is arguably amore fundamental question of whichW’s

to use in the analysis. While it is tempting to answer “all of them” and hope that moreW’s will lead

to less biased estimates, this is obviously not necessarilythe case. For example, consider estimating the

economic returns to graduating high school (versus dropping out). It seems natural to include variables like

parents’ socioeconomic status, family income, year, and place of birth in the regression. Including more and

more family-levelW’s will ultimately lead to a “within-family” sibling analysis; extending it even further by

including date of birth leads to a “within-twin-pair” analysis. And researchers have been critical – justifiably

so – of this source of variation in education. The same reasons causing discomfort about the twin analyses

should also cause skepticism about “kitchen sink” multivariate matching/propensity score/regression control

analyses.23

It is also tempting to believe that if theW’s do a “good job” in predictingD, the selection on observables

approach will “work better.” But the opposite is true: in theextreme case when theW’s perfectly predictX

(and henceD), it is impossibleto construct a treatment-control contrast for virtually all observations. For

each value ofW, the individuals will either all be treated or all control. In other words, there will be literally

no overlap in the support of the propensity score for the treated and control observations. The propensity

score would take the values of either 1 or 0.

The “selection on observables” approach is illustrated in Panel C of Figure 5. ObservablesW can help

predict the probability of treatment (first column), but ultimately one must assume that unobservable factors

U must be the same for treated and control units for every valueof W. That is, the crucial assumption is that

the two lines in the third column be on top of each other. Importantly, there is no comparable graph in the

second column because there is no way to test the design sinceall theW’s are used for estimation.

3.5.2 Selection on Unobservables: Instrumental Variablesand “Heckit”

A less restrictive modeling assumption is to allowU andV to be correlated, conditional onW. But because

of the arguably “more realistic”/flexible data generating process, another assumption is needed to identify

22See Hahn (1998) on including covariates directly with nonpaparmetric regression.
23Researchers question the twin analyses on the grounds that it is not clear why one twin ends up having more education than

the other, and that the assumption that education differences among twins is purely random (as ignorability would imply) is viewed
as far-fetched. We thank David Card for pointing out this connection between twin analyses and matching approaches.

27



τ . One such assumption is that some elements ofW (call themZ) enter the selection equation, but not the

outcome equation and are also uncorrelated withU . An instrumental variables approach utilizes the fact that

E [Y|W∗ = w∗,Z = z] = E [D|W∗ = w∗,Z = z]τ +w∗γ +E [U |W∗ = w∗,Z = z]

= E [D|W∗ = w∗,Z = z]τ +w∗γ +E [U |W∗ = w∗]

whereW has been split up intoW∗ andZ. Conditional onW∗ = w∗, Y only varies withZ because of how

D varies withZ. Thus, one identifiesτ by “dividing” the reduced form quantityE [D|W∗ = w∗,Z = z]τ

(which can be obtained by examining the expectation ofY conditional onZ for a particular valuew∗ of

W∗) by E [D|W∗ = w∗,Z = z], which is also provided by the observed data. It is common to model the

latter quantity as a linear function inZ, in which case the IV estimator is (conditional onW∗) the ratio of

coefficients from regressions ofY on Z andD on Z. WhenZ is binary, this appears to be the only way to

identify τ without imposing further assumptions.

WhenZ is continuous, there is an additional approach to identifying τ . The “Heckit” approach uses the

fact that

E [Y|W∗ = w∗,Z = z,D = 1] = τ +E [U |W = w,V ≥−wδ2]

E [Y|W∗ = w∗,Z = z,D = 0] = E [U |W = w,V < −wδ2]

If we further assume a functional form for the joint distribution of U,V, conditional onW∗ andZ, then the

“control function” termsE [U |W = w,V ≥−wδ2] and E [U |W = w,V < −wδ2] are functions of observed

variables, with the parameters then estimable from the data. It is then possible, for any value ofW = w, to

identify τ as

(E [Y|W∗ = w∗,Z = z,D = 1]−E [Y|W∗ = w∗,Z = z,D = 0])− (8)

(E [U |W = w,V ≥−wδ2]−E [U |W = w,V < −wδ2])

Even if the joint distribution ofU,V is unknown, in principle it is still possible to identifyτ , if it were

possible to choose two different values ofZ such that−wδ2 approaches−∞ and∞. If so, the last two terms

in (8) approachE [U |W = w], and hence cancel one another. This is known as “identification at infinity”.
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Perhaps the most important assumption that any of these approaches require is the existence of a variable

Z that is (conditional onW∗) independent ofU .24 There does not seem to be any way of testing the validity

of this assumption. Different, but equally “plausible”Zs may lead to different answers, in the same way that

including different sets ofW’s may lead to different answers in the selection on observables approach.

Even when there is a mechanism that justifies an instrumentZ as “plausible,” it is often unclear which

covariatesW∗ to include in the analysis. Again, when different sets ofW∗ lead to different answers, the

question becomes which is more plausible:Z is independent ofU conditional onW∗, or Z is independent of

U conditional on asubsetof the variables inW∗? While there may be some situations where knowledge of

the mechanism dictates which variables to include, in othercontexts, it may not be obvious.

The situation is illustrated in Panel D of Figure 5. It is necessary that the instrumentZ is related to

the treatment (as in the first column). The crucial assumption is regarding the relation betweenZ and the

unobservablesU (the third column). In order for an IV or a “Heckit” approach to work, the function in the

third column needs to be flat. Of course, we cannot observe whether this is true. Furthermore, in most cases,

it is unclear how to interpret the relation betweenW andZ (second column). Some might argue the observed

relation betweenW andZ should be flat ifZ is truly exogenous, and that ifZ is highly correlated withW,

then it casts doubt onZ being uncorrelated withU . Others will argue that using the second graph as a test is

only appropriate whenZ is truly randomized, and that the assumption invoked is thatZ is uncorrelated with

U , conditional on W. In this latter case, the design seems fundamentally untestable, since all the remaining

observable variables (theW’s) are being “used up” for identifying the treatment effect.

3.5.3 RD as “Design” not “Method”

RD designs can be valid under the more general “selection on unobservables” environment, allowing an ar-

bitrary correlation amongU,V, andW, but at the same time not requiring an instrument. As discussed above,

all that is needed is that conditional onW,U , the density ofV is continuous, and the local randomization

result follows.

How is an RD design able to achieve this, given these weaker assumptions? The answer lies in what is

absolutely necessary in an RD design: observability of the latent indexX. Intuitively, given that both the

24For IV, violation of this assumption essentially means thatZ varies withY for reasons other than its influence onD. For the
textbook “Heckit” approach, it is typically assumed thatU,V have the same distribution for any value ofZ. It is also clear that the
“identification at infinity” approach will only work ifZ is uncorrelated withU , otherwise the last two terms in equation (8) would
not cancel. See also the framework of Heckman and Vytlacil (2005), which maintains the assumption of the independence ofthe
error terms andZ, conditional onW∗.
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“selection on observables” and “selection on unobservables” approaches rely heavily on modelingX and its

components (e.g. whichW’s to include, and the properties of the unobservable errorV and its relation to

other variables, such as an instrumentZ), actuallyknowingthe value ofX ought to help.

In contrast to the “selection on observables” and “selection on unobservables” modeling approaches,

with the RD design the researcher can avoid taking any strongstance about whatW’s to include in the

analysis, since the designpredictsthat theW’s are irrelevant and unnecessary for identification. Having data

onW’s is, of course, of some use, as they allow testing of the underlying assumption (described in Section

4.4).

For this reason, it may be more helpful to consider RD designsas a description of a particulardata

generating process, rather than a “method” or even an “approach”. In virtually any context with an outcome

variableY, treatment statusD, and other observable variablesW, in principle a researcher can construct a

regression-control or instrumental variables (after designating one of theW variables a valid instrument)

estimator, and state that the identification assumptions needed are satisfied.

This is not so with an RD design. Either the situation is such that X is observed, or it is not. If not,

then the RD design simply does not apply.25 If X is observed, then one has little choice but to attempt to

estimate the expectation ofY conditional onX on either side of the cutoff. In this sense, the RD design

forcesthe researcher to analyze it in a particular way, and there islittle room for researcher discretion – at

least from an identification standpoint. The design also predicts that the inclusion ofW’s in the analysis

should be irrelevant. Thus it naturally leads the researcher to examine the density ofX or the distribution of

W’s, conditional onX, for discontinuities as a test for validity.

The analogy of the truly randomized experiment is again helpful. Once the researcher is faced with what

she thinks is a properly carried out randomized controlled trial, the analysis is quite straightforward. Even

before running the experiment, most researchers agree it would be helpful to display the treatment-control

contrasts in theW’s to test whether the randomization was carried out properly, then to show the simple

mean comparisons, and finally to verify the inclusion of theWs make little difference in the analysis, even

if they might reduce sampling variability in the estimates.

25Of course, sometimes it may seem at first that an RD design doesnot apply, but a closer inspection may reveal that it does. For
example, see Pettersson-Lidbom (2000), which eventually became the RD analysis in Pettersson-Lidbom (2008).
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4 Presentation, Estimation, and Inference

In this section, we systematically discuss the nuts and bolts of implementing RD designs in practice. An

important virtue of RD designs is that they provide a very transparent way of graphically showing how

the treatment effect is identified. We thus begin the sectionby discussing how to graph the data in an

informative way. We then move to arguably the most importantissue in implementing an RD design: the

choice of the regression model. We address this by presenting the various possible specifications, discussing

how to choose among them, and showing how to compute the standard errors.

Next, we discuss a number of other practical issues that often arise in RD designs. Examples of ques-

tions discussed include whether we should control for othercovariates and what to do when the assignment

variable is discrete. We discuss a number of tests to assess the validity of the RD designs, which examine

whether covariates are “balanced” on the two sides of the threshold, and whether the density of the assign-

ment variable is continuous at the threshold. Finally, we summarize our recommendations for implementing

the RD design.

Throughout this section, we illustrate the various concepts using an empirical example from Lee (2008)

who uses an RD design to estimate the causal effect of incumbency in U.S. House elections. We use a sample

of 6,558 elections over the 1946-98 period (see Lee (2008) for more detail). The assignment variable in this

setting is the fraction of votes awarded to Democrats in the previous election. When the fraction exceeds

50 percent, a Democrat is elected and the party becomes the incumbent party in the next election. Both the

share of votes and the probability of winning the next election are considered as outcome variables.

4.1 Graphical Presentation

A major advantage of the RD design over competing methods is its transparency, which can be illustrated

using graphical methods. A standard way of graphing the datais to divide the assignment variable into a

number of bins, making sure there are two separate bins on each side of the cutoff point (to avoid having

treated and untreated observations mixed together in the same bin). Then, the average value of the outcome

variable can be computed for each bin and graphed against themid-points of the bins.

More formally, for some bandwidthh, and for some number of binsK0 andK1 to the left and right of
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the cutoff value, respectively, the idea is to construct bins (bk,bk+1], for k = 1, . . . ,K = K0 +K1, where

bk = c− (K0−k+1) ·h.

The average value of the outcome variable in the bin is

Yk =
1
Nk

·
N

∑
i=1

Yi ·1{bk < Xi ≤ bk+1}.

It is also useful to calculate the number of observations in each bin

Nk =
N

∑
i=1

1{bk < Xi ≤ bk+1},

to detect a possible discontinuity in the assignment variable at the threshold, which would suggest manipu-

lation.

There are several important advantages in graphing the datathis way before starting to run regressions

to estimate the treatment effect. First, the graph providesa simple way of visualizing what the functional

form of the regression function looks like on either side of the cutoff point. Since the mean ofY in a bin is,

for non-parametric kernel regression estimators, evaluated at the bin mid-point using a rectangular kernel,

the set of bin means literally represent non-parametric estimates of the regression function. Seeing what the

non-parametric regression looks like can then provide useful guidance in choosing the functional form of

the regression models.

A second advantage is that comparing the mean outcomes just to the left and right of the cutoff point

provides an indication of the magnitude of the jump in the regression function at this point, i.e. of the

treatment effect. Since an RD design is “as good as a randomized experiment” right around the cutoff point,

the treatment effect could be computed by comparing the average outcomes in “small” bins just to the left

and right of the cutoff point. If there is no visual evidence of a discontinuity in a simple graph, it is unlikely

the formal regression methods discussed below will yield a significant treatment effect.

A third advantage is that the graph also shows whether there are unexpected comparable jumps at other

points . If such evidence is clearly visible in the graph and cannot be explained on substantive grounds, this

calls into question the interpretation of the jump at the cutoff point as the causal effect of the treatment. We

discuss below several ways of testing explicitly for the existence of jumps at points other than the cutoff .
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Note that the visual impact of the graph is typically enhanced by also plotting a relatively flexible

regression model, such as a polynomial model, which is a simple way of smoothing the graph. The advantage

of showing both the flexible regression line and the unrestricted bin means is that the regression line better

illustrates the shape of the regression function and the size of the jump at the cutoff point, and laying this

over the unrestricted means gives a sense of the underlying noise in the data.

Of course, if bins are too narrow the estimates will be highlyimprecise. If they are too wide, the

estimates may be biased as they fail to account for the slope in the regression line (negligible for very

narrow bins). More importantly, wide bins make the comparisons on both sides of the cutoff less credible,

as we are no longer comparing observations just to the left and right of the cutoff point.

This raises the question of how to choose the bandwidth (the width of the bin). In practice, this is

typically done informally by trying to pick a bandwidth thatmakes the graphs look informative in the sense

that bins are wide enough to reduce the amount of noise, but narrow enough to compare observations “close

enough” on both sides of the cutoff point. While it is certainly advisable to experiment with different

bandwidths and see how the corresponding graphs look, it is also useful to have some formal guidance in

the selection process.

One approach to bandwidth choice is based on the fact that, asdiscussed above, the mean outcomes by

bin correspond to kernel regression estimates with a rectangular kernel. Since the standard kernel regression

is a special case of a local linear regression where the slopeterm is equal to zero, the cross-validation

procedure described in more detail in section 4.3.1 can alsobe used here by constraining the slope term to

equal zero.26 For reasons we discuss below, however, one should not solelyrely on this approach to select

the bandwidth since other reasonable subjective goals should be considered when choosing how to the plot

the data.

Furthermore, a range a bandwidths often yield similar values of the cross-validation function in practical

applications (see below). A researcher may, therefore, want to use some discretion in choosing a bandwidth

that provides a particularly compelling illustration of the RD design. An alternative approach is to choose

26In Section 4.3.1, we consider the cross-validation function CVY(h) = 1
N ∑N

i=1

(
Yi −Ŷ(Xi)

)2
whereŶ(Xi) is the predicted value

of Yi based on a regression using observations with a bin of widthh on either the left (for observations on left of the cutoff) orthe
right (for observations on the right of the cutoff) of observation i, but not including observationi itself. In the context of the graph
discussed here, the only modification to the cross-validation function is that the predicted valuêY(Xi) is based only on a regression
with a constant term, which meansŶ(Xi) is the average value ofY among all observations in the bin (excluding observationi). Note
that this is slightly different from the standard cross-validation procedure in kernel regressions where the left-outobservation is in
the middle instead of the edge of the bin (see, for example, Blundell and Duncan (1998)). Our suggested procedure is arguably
better suited to the RD context since estimation of the treatment effect takes place at boundary points.

33



a bandwidth based on a more heuristic visual inspection of the data, and then perform some tests to make

sure this informal choice is not clearly rejected .

We suggests two such tests. Consider the case where one has decided to useK′ bins based on a visual

inspection of the data. The first test is a standard F-test comparing the fit of a regression model withK′ bin

dummies to one where we further divide each bin into two equalsized smaller bins, i.e. increase the number

of bins to 2K′ (reduce the bandwidth fromh′ to h′/2). Since the model withK′ bins is nested in the one with

2K′ bins, a standard F-test withK′ degrees of freedom can used. If the null hypothesis is not rejected, this

provides some evidence that we are not oversmoothing the data by using onlyK′ bins.

Another test is based on the idea that if the bins are “narrow enough”, then there should not be a sys-

tematic relationship betweenY andX , that we capture using a simple regression ofY on X, within each

bin. Otherwise, this suggests the bin is too wide and that thethe mean value ofY over the whole bin is

not representative of the mean value ofY at the boundaries of the bin. In particular, when this happens in

the two bins next to the cutoff point, a simple comparison of the two bin means yields a biased estimate of

the treatment effect. A simple test for this consists of adding a set of interactions between the bin dummies

andX to a base regression ofY on the set of bin dummies, and testing whether the interactions are jointly

significant. The test statistic once again follows a F distribution withK′ degrees of freedom.

Figures 6 and 7 show the graphs for the share of Democrat vote in the next election and the probability

of Democrats winning the next election, respectively. Three sets of graphs with different bandwidths are

reported using a bandwidth of 0.02 in Figures 6a and 7a, 0.01 in Figures 6b and 7b, and 0.005 in Figures

6c and 7c. In all cases, we also show the fitted values from a quartic regression model estimated separately

on each side of the cutoff point. Note that the assignment variable is normalized as the difference between

the share of vote to Democrats and Republicans in the previous election. This means that a Democrat is the

incumbent when the assignment variable exceeds zero. We also limit the range of the graphs to winning

margins of 50 percent or less (in absolute terms) as data become relatively sparse for larger winning (or

losing) margins.

All graphs show clear evidence of a discontinuity at the cutoff point. While the graphs are all quite

informative, the ones with the smallest bandwidth (0.005, Figure 6c and 7c) are more noisy and likely

provide too many data points (200) for optimal visual impact.

The results of the bandwidth selection procedures are presented in Table 1. Panel A shows the cross-

validation procedure always suggests using a bandwidth of 0.02 or more, which corresponds to similar or
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wider bins than those used in Figures 6a and 7a (those with thelargest bins) . This is true irrespective of

whether we pick a separate bandwidth on each side of the cutoff (first two rows of the panel), or pick the

bandwidth that minimizes the cross-validation function for the entire date range on both the left and right

sides of the cutoff. In the case where the outcome variable iswinning the next election, the cross-validation

procedure for the data to the right of the cutoff point and forthe entire range suggests using a very wide bin

(0.049) that would only yield about 10 bins on each side of thecutoff.

As it turns out, the cross-validation function for the entire data range has two local minima at 0.021

and 0.049 that correspond to the optimal bandwidths on the left and right hand side of the cutoff. This is

illustrated in Appendix Figure A2, which plots the cross-validation function as a function of the bandwidth.

By contrast, the cross-validation function is better behaved and shows a global minimum around 0.020

when the outcome variable is the vote share (Figure A1). For both outcome variables, the value of the

cross-validation function grows quickly for bandwidths smaller than 0.02, suggesting that the graphs with

narrower bins (Figures 6b, 6c, 7b, and 7c) are too noisy.

Panel B of Table 1 shows the results of our two suggested specification tests. The tests based on doubling

the number of bins and running regressions within each bin yield remarkably similar results. Generally

speaking, the results indicate that only fairly wide bins are rejected. Looking at both outcome variables, the

tests systematically reject models with bandwidths of 0.05or more (20 bins over the -0.5 to 0.5 range). The

models are never rejected for either outcome variable once we hit bandwidths of 0.02 (50 bins) or less. In

practice, the testing procedure rules out bins that are larger than those reported in Figures 6 and 7.

At first glance, the results in the two panels of Table 1 appearto be contradictory. The cross-validation

procedure suggests bandwidths ranging from 0.02 to 0.05, while the bin and regression tests suggests than

almost all bandwidth of less than 0.05 is acceptable. The reason for this discrepancy is that while the cross-

validation procedure tries to balance precision and bias, the bin and regression tests only deal with the “bias”

part of the equation by checking whether the value ofY is more or less constant within a given bin. Models

with small bins easily pass this kind of test, although they may yield a very noisy graph. One alternative

approach is to choose the largest possible bandwidth that passes the bin and the regression test, which turns

out to be 0.033 in Table 1, a bandwidth that is within the rangeof those suggested by the cross-validation

procedure.

From a practical point of view, it seems to be the case that formal procedures, and in particular cross-

validation, suggest bandwidths that are wider than those one would likely choose based on a simple visual
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examination of the data. In particular, both Figure 6b and 7b(bandwidth of 0.01) look visually acceptable

but are clearly not recommended on the basis of the cross-validation procedure. This likely reflects the fact

that one important goal of the graph is to show how the raw datalook, and too much smoothing would defy

the purpose of such a data illustration exercise. Furthermore, the regression estimates of the treatment effect

accompanying the graphical results are a formal way of smoothing the data to get precise estimates. This

suggests that there is probably little harm in undersmoothing (relative to what formal bandwidth selection

procedures would suggest) to better illustrate the variation in the raw data when graphically illustrating an

RD design.

4.2 Regression Methods

4.2.1 Parametric or Non-parametric Regressions?

When we introduced the RD design in Section 2, we followed Thistlethwaite and Campbell (1960) in as-

suming that the underlying regression model was linear in the assignment variableX:

Y = α +Dτ +Xβ + ε .

In general, as in any other setting, there is no particular reason to believe that the true model is linear. The

consequences of using an incorrect functional form are moreserious in the case of RD designs however,

since misspecification of the functional form typically generates a bias in the treatment effect,τ .27 This

explains why, starting with Hahn et al. (2001), the estimation of RD designs have generally been viewed as

a nonparametric estimation problem.

This being said, applied papers using the RD design often just report estimates from parametric models.

Does this mean that these estimates are incorrect? Should all studies use non-parametric methods instead?

As we pointed out in the introduction, we think that the distinction between parametric and non-parametric

methods has sometimes been a source of confusion to practitioners. Before covering in detail the practical

issues involved in the estimation of RD designs, we thus provide some background to help clarify the

insights provided by non-parametric analysis, while also explaining why, in practice, RD designs can still

27By contrast, when one runs a linear regression in a model where the true functional form is nonlinear, the estimated model
can still be interpreted as a linear predictor that minimizes specification errors. But since specification errors are only minimized
globally, we can still have large specification errors at specific points including the cutoff point and, therefore, a large bias in RD
estimates of the treatment effect.
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be implemented using “parametric” methods.

Going beyond simple parametric linear regressions when thetrue functional form is unknown is a well-

studied problem in econometrics and statistics. A number ofnon-parametric methods have been suggested

to provide flexible estimates of the regression function. Asit turns out, however, the RD setting poses a

particular problem because we need to estimate regressionsat the cutoff point. This results in a “boundary

problem” that causes some complications for non-parametric methods.

From an applied perspective, a simple way of relaxing the linearity assumption is to include polynomial

functions ofX in the regression model. This corresponds to the series estimation approach often used in non-

parametric analysis. A possible disadvantage of the approach, however, is that it provides global estimates

of the regression function over all values ofX, while the RD design depends instead on local estimates of

the regression function at the cutoff point. The fact that polynomial regression models use data far away

from the cutoff point to predict the value ofY at the cutoff point is not intuitively appealing. That said,

trying more flexible specification by adding polynomials inX as regressors is an important and useful way

of assessing the robustness of the RD estimates of the treatment effect.

The other leading non-parametric approach is kernel regressions. Unlike series (polynomial) estimators,

the kernel regression is fundamentally a local method well suited for estimating the regression function at a

particular point. Unfortunately, this property does not help very much in the RD setting because the cutoff

represents a boundary point where kernel regressions perform poorly.

These issues are illustrated in Figure 2, which shows a situation where the relationship betweenY andX

(under treatment or control) is non-linear. First, consider the point D located away from the cutoff point. The

kernel estimate of the regression ofY onX atX = Xd is simply a local mean ofY for values ofX close toXd.

The kernel function provides a way of computing this local average by putting more weight on observations

with values ofX close toXd than on observations with values ofX far away fromXd . Following Imbens

and Lemieux (2008), we focus on the convenient case of the rectangular kernel. In this setting, computing

kernel regressions simply amounts to computing the averagevalue ofY in the bin illustrated in Figure 2. The

resulting local average is depicted as the horizontal line EF, which is very close to true value ofY evaluated

atX = Xd on the regression line.

Applying this local averaging approach is problematic, however, for the RD design. Consider estimating

the value of the regression function just on the right of the cutoff point. Clearly, only observations on the

right of the cutoff point that receive the treatment should be used to compute mean outcomes on the right
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hand side. Similarly, only observations on the left of the cutoff point that do not receive the treatment

should be used to compute mean outcomes on the left hand side.Otherwise, regression estimates would mix

observations with and without the treatment, which would invalidate the RD approach.

In this setting, the best thing is to compute the average value of Y in the bin just to the right and just

to the left of the cutoff point. These two bins are shown in Figure 2. The RD estimate based on kernel

regressions is then equal toB′−A′. In this example where the regression lines are upward sloping, it is

clear, however, that the estimateB′−A′ overstates the true treatment effect represented as the difference

B−A at the cutoff point. In other words, there is a systematic bias in kernel regression estimates of the

treatment effect. Hahn et al. (2001) provide a more formal derivation of the bias (see also Imbens and

Lemieux (2008) for a simpler exposition when the kernel is rectangular). In practical terms, the problem

is that in finite samples the bandwidth has to be large enough to encompass enough observations to get a

reasonable amount of precision in the estimated average values ofY. Otherwise, attempts to reduce the bias

by shrinking the bandwidth will result in extremely noisy estimates of the treatment effect.28

As a solution to this problem, Hahn et al. (2001) suggests running local linear regressions to reduce the

importance of the bias. In our setup with a rectangular kernel, this suggestion simply amounts to running

standard linear regressions within the bins on both sides ofthe cutoff point to better predict the value of the

regression function right at the cutoff point. In this example, the regression lines within the bins around the

cutoff point are close to linear. It follows that the predicted values of the local linear regressions at the cutoff

point are very close to the true values of A and B. Intuitively, this means that running local linear regressions

instead of just computing averages within the bins reduces the bias by an order of magnitude. Indeed, Hahn

et al. (2001) show that the remaining bias is of an order of magnitude lower, and is comparable to the usual

bias in kernel estimation at interior points like D (the small difference between the horizontal line EF and

the true value of the regression line evaluated at D).

In the literature on non-parametric estimation at boundarypoints, local linear regressions have been

introduced as a means of reducing the bias in standard kernelregression methods.29 One of the several

contributions of Hahn et al. (2001) is to show how the same bias-reducing procedure should also be applied

28The trade-off between bias and precision is a fundamental feature of kernel regressions. A larger bandwidth yields more
precise, but potentially biased, estimates of the regression. In an interior point like D, however, we see that the bias is of an order
of magnitude lower that at the cutoff (boundary) point. In more technical terms, it can be shown (see Hahn et al. (2001) or Imbens
and Lemieux (2008)) that the usual bias is of orderh2 at interior points, but of orderh at boundary point, where h is the bandwidth.
In other words, the bias dies off much more quickly whenh goes to zero when we are at interior, as opposed to boundary, points.

29See Fan and Gijbels (1996).
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to the RD design. We have shown here that, in practice, this simply amounts to applying the original insight

of Thistlethwaite and Campbell (1960) to a narrower window of observations around the cutoff point. When

one is concerned that the regression function is not linear over the whole range ofX, a highly sensible

procedure is, thus, to restrict the estimation range to values closer to the cutoff point where the linear

approximation of the regression line is less likely to result in large biases in the RD estimates. In practice,

many applied papers present RD estimates with varying window widths to illustrate the robustness (or lack

thereof) of the RD estimates to specification issues. It is comforting to know that this common empirical

practice can be justified on more formal econometric groundslike those presented by Hahn et al. (2001). The

main conclusion we draw from this discussion of non-parametric methods is that it is essential to explore

how RD estimates are robust to the inclusion of higher order polynomial terms (the series or polynomial

estimation approach) and to changes in the window width around the cutoff point (the local linear regression

approach).

4.3 Estimating the Regression

A simple way of implementing RD designs in practice is to estimate two separate regressions on each side

of the cutoff point. In terms of computations, it is convenient to subtract the cutoff value from the covariate,

i.e. transformX to X−c, so the intercepts of the two regressions yield the value of the regression functions

at the cutoff point.

The regression model on the left hand side of the cutoff point(X < c) is

Y = αl + fl (X−c)+ ε ,

while the regression model on the right hand side of the cutoff point (X ≥ c) is

Y = αr + fr (X−c)+ ε ,

where fl (·) and fr (·) are functional forms that we discuss later. The treatment effect can then be computed

as the difference between the two regressions intercepts,αr andαl , on the two sides of the cutoff point. A

more direct way of estimating the treatment effect is to run apooled regression on both sides of the cutoff
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point:

Y = αl + τ ·D+ f (X−c)+ ε ,

whereτ = αr −αl and f (X−c) = fl (X−c)+ D · [ fr (X−c)− fl (X−c)]. One advantage of the pooled

approach is that it directly yields estimates and standard errors of the treatment effectτ . Note, however,

that it is recommended to let the regression function differon both sides of the cutoff point by including

interaction terms betweenD and X. For example, in the linear case wherefl (X−c) = βl · (X − c) and

fr (X−c) = βr · (X−c), the pooled regression would be

Y = αl + τ ·D+ βl · (X−c)+ (βr −βl) ·D · (X−c)+ ε .

The problem with constraining the slope of the regression lines to be the same on both sides of the cutoff

(βr = βl ) is best illustrated by going back to the separate regressions above. If we were to constrain the

slope to be identical on both sides of the cutoff, this would amount to using data on the right hand side of the

cutoff to estimateαl , and vice versa. Remember from Section 2 that in an RD design,the treatment effect is

obtained by comparing conditional expectations ofY when approaching from the left (αl = limx↑c E[Yi |Xi =

x]) and from the right (αr = limx↓c E[Yi |Xi = x]) of the cutoff. Constraining the slope to be the same would

thus be inconsistent with the spirit of the RD design, as datafrom the right of the cutoff would be used to

estimateαl , which is defined as a limit when approaching from the left of the cutoff, and vice versa.

In practice, however, estimates where the regression slopeor, more generally, the regression function

f (X−c) are constrained to be the same on both sides of the cutoff point are often reported. One possible

justification for doing so is that if the functional form is indeed the same on both sides of the cutoff, then

more efficient estimates of the treatment effectτ are obtained by imposing that constraint. Such a con-

strained specification should only be viewed, however, as anadditional estimate to be reported for the sake

of completeness. It should not form the core basis of the empirical approach.

4.3.1 Local Linear Regressions and Bandwidth Choice

As discussed above, local linear regressions provide a non-parametric way of consistently estimating the

treatment effect in an RD design (Hahn et al. (2001), Porter (2003)). Following Imbens and Lemieux

(2008), we focus on the case of a rectangular kernel, which amounts to estimating a standard regression over
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a window of widthh on both sides of the cutoff point. While other kernels (triangular, Epanechnikov, etc.)

could also be used, the choice of kernel typically has littleimpact in practice. As a result, the convenience

of working with a rectangular kernel compensates for efficiency gains that could be achieved using more

sophisticated kernels.30

The regression model on the left hand side of the cutoff pointis

Y = αl + βl · (X−c)+ ε ,wherec−h≤ X < c,

while the regression model on the right hand side of the cutoff point is

Y = αr + βr · (X−c)+ ε ,wherec≤ X ≤ c+h.

As before, it is also convenient to estimate the pooled regression

Y = αl + τ ·D+ βl · (X−c)+ (βr −βl) ·D · (X−c)+ ε ,wherec−h≤ X ≤ c+h,

since the standard error of the estimated treatment effect can be directly obtained from the regression.

While it is straightforward to estimate the linear regressions within a given window of widthh around

the cutoff point, a more difficult question is how to choose this bandwidth. In general, choosing a bandwidth

in non-parametric estimation involves finding an optimal balance between precision and bias. One the

one hand, using a larger bandwidth yields more precise estimates as more observations are available to

estimate the regression. On the other hand, the linear specification is less likely to be accurate when a

larger bandwidth is used, which can bias the estimate of the treatment effect. If the underlying conditional

expectation is not linear, the linear specification will provide a close approximation over a limited range of

values ofX (small bandwidth), but an increasingly bad approximation over a larger range of values ofX

(larger bandwidth).

30It has been shown in the statistics literature (Fan and Gijbels (1996)) that a triangular kernel is optimal for estimating local
linear regressions at the boundary. As it turns out, the onlydifference between regressions using a rectangular or a triangular
kernel is that the latter puts more weight (in a linear way) onobservations closer to the cutoff point. It thus involves estimating
a weighted, as opposed to an unweighted, regression within abin of width h. An arguably more transparent way of putting more
weight on observations close to the cutoff is simply to re-estimate a model with a rectangular kernel using a smaller bandwidth. In
practice, it is therefore simpler and more transparent to just estimate standard linear regressions (rectangular kernel) with a variety
of bandwidths, instead of trying out different kernels corresponding to particular weighted regressions that are moredifficult to
interpret.
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As the number of observations available increases, it becomes possible to use an increasingly small

bandwidth since linear regressions can be estimated relatively precisely over even a small range of values

of X. As it turns out, Hahn et al. (2001) show the optimal bandwidth is proportional toN−1/5, which

corresponds to a fairly slow rate of convergence to zero. Forexample, this suggests that the bandwidth

should only be cut in half when the sample size increases by a factor of 32 (25). For technical reasons,

however, it would be preferable to undersmooth by shrinkingthe bandwidth at a faster rate requiring that

h ∝ N−δ with 1/5 < δ < 2/5, in order to eliminate an asymptotic bias that would remainwhenδ = 1/5. In

the presence of this bias, the usual formula for the varianceof a standard least square estimator would be

invalid.31

In practice however, knowing at what rate the bandwidth should shrink in the limit does not really

help since only one actual sample with a given number of observations is available. The importance of

undersmoothing only has to do with a thought experiment of how much the bandwidth should shrink if the

sample size were larger so that one obtains asymptotically correct standard errors, and does not help one

choose a particular bandwidth in a particular sample.32

In the econometrics and statistics literature, two procedures are generally considered for choosing band-

widths. The first procedure consists of characterizing the optimal bandwidth in terms of the unknown joint

distribution of all variables. The relevant components of this distribution can then be estimated and plugged

into the optimal bandwidth function.33 In the context of local linear regressions, Fan and Gijbels (1996)

show this involves estimating a number of parameters including the curvature of the regression function. In

practice, this can be done in two steps. In step one, a rule-of-thumb (ROT) bandwidth is estimated over the

whole relevant data range. In step two, the ROT bandwidth is used to estimate the optimal bandwidth right

31See Hahn et al. (2001) and Imbens and Lemieux (2008) for more details.
32The main purpose of asymptotic theory is to use the large sample properties of estimators to approximate the distribution of

an estimator in the real sample being considered. The issue is a little more delicate in a non-parametric setting where one also has
to think about how fast the bandwidth should shrink when the sample size approaches infinity. The point about undersmoothing is
simply that one unpleasant property of the optimal bandwidth is that it does not yield the convenient least squares variance formula.
But this can be fixed by shrinking the bandwidth a little faster as the sample size goes to infinity. Strictly speaking, thisis only
a technical issue with how to perform the thought experiment(what happens when the sample size goes to infinity?) required for
using asymptotics to approximate the variance of the RD estimator in the actual sample. This does not say anything about what
bandwidth should be chosen in the actual sample available for implementing the RD design.

33A well known example of this procedure is the “rule-of-thumb” bandwidth selection formula in kernel density estimation
where an estimate of the dispersion in the variable (standard deviation or the interquartile range),σ̂ , is plugged into the formula
0.9 · σ̂ ·N−1/5. Silverman (1986) shows that this formula is the closed formsolution for the optimal bandwidth choice problem
when both the actual density and the kernel are Gaussian. Seealso Imbens and Kalyanaraman (2009), who derive an optimal
bandwidth for this RD setting, and propose a data-dependentmethod for choosing the bandwidth.
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at the cutoff point. For the rectangular kernel, the ROT bandwidth is given by:

hROT = 2.702·

(
σ̃2R

∑N
i=1{m̃′′(xi)}

2

)1/5

,

wherem̃′′(·) is the second derivative (curvature) of an estimated regression ofY on X, σ̃ is the estimated

standard error of the regression,R is the range of the assignment variable over which the regression is

estimated, and the constant 2.702 is a number specific to the rectangular kernel. A similar formula can

be used for the optimal bandwidth, except both the regression standard error and the average curvature of

the regression function are estimated locally around the cutoff point. For the sake of simplicity, we only

compute the ROT bandwidth in our empirical example. Following the common practice in studies using

these bandwidth selection methods, we also use a quartic specification for the regression function.34

The second approach is based on a cross-validation procedure. In the case considered here, Ludwig and

Miller (2007) and Imbens and Lemieux (2008) have proposed a “leave one out” procedure aimed specifically

at estimating the regression function at the boundary. The basic idea behind this procedure is the following.

Consider an observationi. To see how well a linear regression with a bandwidthh fits the data, we run a

regression with observationi left out and use the estimates to predict the value ofY at X = Xi. In order

to mimic the fact that RD estimates are based on regression estimates at the boundary, the regression is

estimated using only observations with values ofX on the left ofXi (Xi −h≤ X < Xi) for observations on

the left of the cutoff point (Xi < c). For observations on the right of the cutoff point (Xi ≥ c), the regression

is estimated using only observations with values ofX on the right ofXi (Xi < X ≤ Xi +h).

Repeating the exercise for each and every observation, we get a whole set of predicted values ofY that

can be compared to the actual values ofY. The optimal bandwidth can be picked by choosing the value ofh

that minimizes the mean square of the difference between thepredicted and actual value ofY.

More formally, letŶ(Xi) represent the predicted value of Y obtained using the regressions described

above. The cross-validation criterion is defined as

CVY(h) =
1
N

N

∑
i=1

(
Yi −Ŷ(Xi)

)2
, (9)

34See McCrary and Royer (2003) for an example where the bandwidth is selected using the ROT procedure (with a triangular ker-
nel), and McCall and Desjardins (2008) for an example where the second step optimal bandwidth is computed (for the Epanechnikov
kernel). Both papers use a quartic regression functionm(x) = β0+β1x+ ...+β4x4, which means thatm′′(x) = 2β2+6β3x+12β4x2.
Note that the quartic regressions are estimated separatelyon both sides of the cutoff.
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with the corresponding cross-validation choice for the bandwidth

hopt
CV = argmin

h
CVY(h).

Imbens and Lemieux (2008) discuss this procedure in more detail and point out that since we are primarily

interested in what happens around the cutoff, it may be advisable to only compute CVY(h) for a subset

of observations with values ofX close enough to the cutoff point. For instance, only observations with

values ofX between the median value ofX to the left and right of the cutoff could be used to perform the

cross-validation.

The second rows of Tables 2a and 2b show the local linear regression estimates of the treatment effect

for the two outcome variables (share of vote and winning the next election). We show the estimates for a

wide range of bandwidths going from the entire data range (bandwidth of 1 on each side of the cutoff) to

a very small bandwidth of 0.01 (winning margins of one percent or less). As expected, the precision of

the estimates declines quickly as we approach smaller and smaller bandwidths. Notice also that estimates

based on very wide bandwidths (0.5 or 1) are systematically larger than those for the smaller bandwidths

(in the 0.05 to 0.25 range) that are still large enough for theestimates to be reasonably precise. A closer

examination of Figures 6 and 7 also suggests that the estimates for very wide bandwidths are larger than

what the graphical evidence would suggest.35 This is consistent with a substantial bias for these estimates

linked to the fact that the linear approximation does not hold over a wide data range. This is particularly

clear in the case of winning the next election where Figure 7 shows some clear curvature in the regression

function.

Table 3 shows the optimal bandwidth obtained using the ROT and cross-validation procedure. Consistent

with the above discussion, the suggested bandwidth ranges from 0.14 to 0.28, which is large enough to get

precise estimates, but narrow enough to minimize the bias. Two interesting patterns can be observed in

Table 3. First, the bandwidth chosen by cross-validation tends to be a bit larger than the one based on the

rule-of-thumb. Second, the bandwidth is generally smallerfor winning the next election (second column)

than for the vote share (first column). This is particularly clear when the optimal bandwidth is constrained

to be the same on both sides of the cutoff point. This is consistent with the graphical evidence showing more

35In the case of the vote share, the quartic regression shown inFigure 6 implies a treatment effect of 0.066, which is substantially
smaller than the local linear regression estimates with a bandwidth of 0.5 (0.090) or 1 (0.118). Similarly, the quartic regression
shown in Figure 7 for winning the next election implies a treatment effect of 0.375, which is again smaller than the local linear
regression estimates with a bandwidth of 0.5 (0.566) or 1 (0.689).
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curvature for winning the next election than the vote share,which calls for a smaller bandwidth to reduce

the estimation bias linked to the linear approximation.

Figures A3 and A4 plot the value of the cross-validation function over a wide range of bandwidths.

In the case of the vote share where the linearity assumption appears more accurate (Figure 6), the cross-

validation function is fairly flat over a sizable range of values for the bandwidth (from about 0.16 to 0.29).

This range includes the optimal bandwidth suggested by cross-validation (0.282) at the upper end, and the

ROT bandwidth (0.180) at the lower end. In the case of winningthe next election (Figure A4), the cross-

validation procedure yields a sharper suggestion of optimal bandwidth around 0.15, which is quite close to

both the optimal cross-validation bandwidth (0.172) and the ROT bandwidth (0.141).

The main difference between the two outcome variables is that larger bandwidths start getting penalized

more quickly in the case of winning the election (Figure A4) than in the case of the vote share (Figure

A3). This is consistent with the graphical evidence in Figures 6 and 7. Since the regression function

looks fairly linear for the vote share, using larger bandwidths does not get penalized as much since they

improve efficiency without generating much of a bias. But in the case of winning the election where the

regression function exhibits quite a bit of curvature, larger bandwidths are quickly penalized for introducing

an estimation bias. Since there is a real trade off between precision and bias, the cross-validation procedure

is quite informative. By contrast, there is not much of a trade off when the regression function is more or

less linear, which explains why the optimal bandwidth is larger in the case of the vote share.

This example also illustrates the importance of first graphing the data before running regressions and

trying to choose the optimal bandwidth. When the graph showsa more or less linear relationship, it is

natural to expect different bandwidths to yield similar results and the bandwidth selection procedure not to

be terribly informative. But when the graph shows substantial curvature, it is natural to expect the results

to be more sensitive to the choice of bandwidth and that bandwidth selection procedures will play a more

important role in selecting an appropriate empirical specification.

4.3.2 Order of Polynomial in Local Polynomial Modeling

In the case of polynomial regressions, the equivalent to bandwidth choice is the choice of the order of the

polynomial regressions. As in the case of local linear regressions, it is advisable to try and report a number

of specifications to see to what extent the results are sensitive to the order of the polynomial. For the same

reason mentioned earlier, it is also preferable to estimateseparate regressions on the two sides of the cutoff
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point.

The simplest way of implementing polynomial regressions and computing standard errors is to run a

pooled regression. For example, in the case of a third order polynomial regression, we would have

Y = αl + τ ·D+ βl1 · (X−c)+ βl2 · (X−c)2+ βl3 · (X−c)3

+(βr1−βl1) ·D · (X−c)+ (βr2−βl2) ·D · (X−c)2 +(βr3−βl3) ·D · (X−c)3 + ε .

While it is important to report a number of specifications to illustrate the robustness of the results, it is often

useful to have some more formal guidance on the choice of the order of the polynomial. Starting with Van

der Klaauw (2002), one approach has been to use a generalizedcross-validation procedure suggested in the

literature on non-parametric series estimators .36 One special case of generalized cross-validation (used by

Black et al. (2007a), for example), which we also use in our empirical example, is the well known Akaike

information criterion (AIC) of model selection. In a regression context, the AIC is given by

AIC = N ln(σ̂2)+2p,

whereσ̂2 is the mean squared error of the regression, andp is the number of parameters in the regression

model (order of the polynomial plus one for the intercept).

One drawback of this approach is that it does not provide a very good sense of how a particular para-

metric model (say a cubic model) compares relative to a more general non-parametric alternative. In the

context of the RD design, a natural non-parametric alternative is the set of unrestricted means of the out-

come variable by bin used to graphically depict the data in Section 4.1. Since one virtue of polynomial

regressions is that they provide a smoothed version of the graph, it is natural to ask how well the polynomial

model fits the unrestricted graph. A simple way of implementing the test is to add the set of bin dummies

to the polynomial regression and jointly test the significance of the bin dummies. For example, in a first

order polynomial model (linear regression), the test can becomputed by includingK −2 bin dummiesBk,

for k = 2 toK −1, in the model

Y = αl + τ ·D+ βl1 · (X−c)+ (βr1−βl1) ·D · (X−c)+
K−1

∑
k=2

φkBk + ε ,

36See Blundell and Duncan (1998) for a more general discussionof series estimators.
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and testing the null hypothesis thatφ2 = φ3 = ... = φK−1 = 0. Note that two of the dummies are excluded

because of collinearity with the constant and the treatmentdummy,D.37 In terms of specification choice

procedure, the idea is to add a higher order term to the polynomial until the bin dummies are no longer

jointly significant.

Another major advantage of this procedure is that testing whether the bin dummies are significant turns

out to be a test for the presence of discontinuities in the regression function at points other than the cutoff

point. In that sense, it provides a falsification test of the RD design by examining whether there are other

unexpected discontinuities in the regression function at randomly chosen points (the bin thresholds) . To see

this, rewrite∑K
k=1φkBk as

K

∑
k=1

φkBk = φ1 +
K

∑
k=2

(φk−φk−1)B
+
k ,

whereB+
k = ∑K

j=kB j is a dummy variable indicating that the observation is in bink or above, i.e. that the

assignment variableX is above the bin cutoffbk. Testing whether all theφk − φk−1 are equal to zero is

equivalent to testing that all theφk are the same (the above test), which amounts to testing that the regression

line does not jump at the bin thresholdsbk.

Table 2a and 2b show the estimates of the treatment effect forthe voting example. For the sake of

completeness, a wide range of bandwidths and specificationsare presented, along with the corresponding

p-values for the goodness-of fit test discussed above (a bandwidth of 0.01 is used for the bins used to

construct the test). We also indicate at the bottom of the tables the order of the polynomial selected for each

bandwidth using the AIC. Note that the estimates of the treatment effect for the “order zero” polynomials

are just comparisons of means on the two sides of the cutoff point, while the estimates for the “order one”

polynomials are based on (local) linear regressions.

Broadly speaking, the goodness-of-fit tests do a very good job ruling out clearly misspecified models,

like the zero order polynomials with large bandwidths that yield upward biased estimates of the treatment

effect. Estimates from models that pass the goodness-of-fittest mostly fall in the 0.05-0.10 range for the vote

share (Table 2a) and 0.37-0.57 for the probability of winning (Table 2b). One set of models the goodness-

of-fit test does not rule out, however, is higher order polynomial models with small bandwidths that tend to

be imprecisely estimated as they “overfit” the data.

37While excluding dummies for the two bins next to the cutoff point yields more interpretable results (τ remains the treatment
effect), the test is invariant to the excluded bin dummies, provided that one excluded dummy is on the left of the cutoff point and
the other one on the right (something standard regression packages will automatically do if allK dummies are included in the
regression).
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Looking informally at both the fit of the model (goodness-of-fit test) and the precision of the estimates

(standard errors) suggests the following strategy: use higher order polynomials for large bandwidths of 0.50

and more, lower order polynomials for bandwidths between 0.05 and 0.50, and zero order polynomials

(comparisons of means) for bandwidths of less than 0.05, since the latter specification passes the goodness-

of-fit test for these very small bandwidths. Interestingly,this informal approach more or less corresponds

to what is suggested by the AIC. In this specific example, it seems that given a specific bandwidth, the AIC

provides reasonable suggestions on which order of the polynomial to use.

4.3.3 Estimation in the Fuzzy RD Design

As discussed earlier, in both the “sharp” and the “fuzzy” RD designs, the probability of treatment jumps

discontinuously at the cutoff point. Unlike the case of the sharp RD where the probability of treatment

jumps from 0 to 1 at the cutoff, in the fuzzy RD case, the probability jumps by less than one. In other words,

treatment is not solely determined by the strict cutoff rulein the fuzzy RD design. For example, even if

eligibility for a treatment solely depends on a cutoff rule,not all the eligibles may get the treatment because

of imperfect compliance. Similarly, program eligibility may be extended in some cases even when the cutoff

rule is not satisfied. For example, while Medicare eligibility is mostly determined by a cutoff rule (age 65

or older), some disabled individuals under the age of 65 are also eligible.

Since we have already discussed the interpretation of estimates of the treatment effect in a fuzzy RD

design in Section 3.4.1, here we just focus on estimation andimplementation issues . The key message to

remember from the earlier discussion is that, as in a standard IV framework, the estimated treatment effect

can be interpreted as a local average treatment effect, provided monotonicity holds.

In the fuzzy RD design, we can write the probability of treatment as

Pr(D = 1|X = x) = γ + δT +g(x−c),

whereT = 1[X ≥ c] indicates whether the assignment variable exceeds the eligibility thresholdc.38 Note

that the sharp RD is a special case whereγ = 0, g(·) = 0, andδ = 1. It is advisable to draw a graph for

the treatment dummy D as a function of the assignment variable X using the same procedure discussed in

38Although the probability of treatment is modeled as a linearprobability model here, this does not impose any restrictions on
the probability model sinceg(x−c) is unrestricted on both sides of the cutoffc, while T is a dummy variable. So there is no need
to write the model using a probit or logit formulation.
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Section 4.1. This provides an informal way of seeing how large the jump in the treatment probabilityδ is at

the cutoff point, and what the functional formg(·) looks like.

SinceD = Pr(D = 1|X = x)+ν , whereν is an error term independent ofX, the fuzzy RD design can be

described by the two equation system:

Y = α + τD+ f (X−c)+ ε , (10)

D = γ + δT +g(X−c)+ ν . (11)

Looking at these equations suggests estimating the treatment effectτ by instrumenting the treatment dummy

D with T. Note also that substituting the treatment determining equation into the outcome equation yields

the reduced form

Y = αr + τrT + fr (X−c)+ εr , (12)

whereτr = τ ·δ . In this setting,τr can be interpreted as an “intent-to-treat” effect.

Estimation in the fuzzy RD design can be performed using either the local linear regression approach or

polynomial regressions. Since the model is exactly identified, 2SLS estimates are numerically identical to

the ratio of reduced form coefficientsτr/δ , provided that the same bandwidth is used for equations (11)and

(12) in the local linear regression case, and that the same order of polynomial is used forg(·) and f (·) in

the polynomial regression case.

In the case of the local linear regression, Imbens and Lemieux (2008) recommend using the same band-

width in the treatment and outcome regression. When we are close to a sharp RD design, the functiong(·) is

expected to be very flat and the optimal bandwidth to be very wide. In contrast, there is no particular reason

to expect the functionf (·) in the outcome equation to be flat or linear, which suggests the optimal band-

width would likely be less than the one for the treatment equation. As a result, Imbens and Lemieux (2008)

suggest focusing on the outcome equation for selecting bandwidth, and then using the same bandwidth for

the treatment equation.

While using a wider bandwidth for the treatment equation maybe advisable on efficiency grounds,

there are two practical reasons that suggest not doing so. First, using different bandwidths complicates

the computation of standard errors since the outcome and treatment samples used for the estimation are no

longer the same, meaning the usual 2SLS standard errors are no longer valid. Second, since it is advisable
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to explore the sensitivity of results to changes in the bandwidth, “trying out” separate bandwidths for each

of the two equations would lead to a large and difficult-to-interpret number of specifications.

The same broad arguments can be used in the case of local polynomial regressions. In principle, a

lower order of polynomial could be used for the treatment equation (11) than for the outcome equation (12).

In practice, however, it is simpler to use the same order of polynomial and just run 2SLS (and use 2SLS

standard errors).

4.3.4 How to compute standard errors?

As discussed above, for inference in the sharp RD case we can use standard least squares methods. As usual,

it is recommended to use heteroskedasticity-robust standard errors (White, 1980) instead of standard least

squares standard errors. One additional reason for doing soin the RD case is to ensure the standard error of

the treatment effect is the same when either a pooled regression or two separate regressions on each side of

the cutoff are used to compute the standard errors. As we justdiscussed, it is also straightforward to compute

standard errors in the fuzzy RD case using 2SLS methods, although robust standard errors should also be

used in this case. Imbens and Lemieux (2008) propose an alternative way of computing standard errors

in the fuzzy RD case, but nonetheless suggest using 2SLS standard errors readily available in econometric

software packages.

One small complication that arises in the non-parametric case of local linear regressions is that the usual

(robust) standard errors from least squares are only valid provided thath ∝ N−δ with 1/5 < δ < 2/5. As we

mentioned earlier, this is not a very important point in practice, and the usual standard errors can be used

with local linear regressions.

4.4 Implementing Empirical Tests of RD Validity and Using Covariates

In this part of the section, we describe how to implement tests of the validity of the RD design and how to

incorporate covariates in the analysis.

4.4.1 Inspection of the Histogram of the Assignment Variable

Recall that the underlying assumption that generates the local random assignment result is that each indi-

vidual has imprecise control over the assignment variable,as defined in Section 3.1.1. We cannot test this
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directly (since we will only observe one observation on the assignment variable per individual at a given

point in time), but an intuitive test of this assumption is whether theaggregatedistribution of the assign-

ment variable is discontinuous, since a mixture of individual-level continuous densities is itself a continuous

density.

McCrary (2008) proposes a simple two-step procedure for testing whether there is a discontinuity in

the density of the assignment variable. In the first step, theassignment variable is partitioned into equally

spaced bins and frequencies are computed within those bins.The second step treats the frequency counts

as a dependent variable in a local linear regression. See McCrary (2008), who adopts the non-parametric

framework for asymptotics, for details on this procedure for inference.

As McCrary (2008) points out, this test can fail to detect a violation of the RD identification condition

if for some individuals there is a “jump” up in the density, offset by jumps “down” for others, making the

aggregate density continuous at the threshold. McCrary (2008) also notes it is possible the RD estimate

could remain unbiased, even when there is important manipulation of the assignment variable causing a

jump in the density. It should be noted, however, that in order to rely upon the RD estimate as unbiased, one

needs to invoke other identifying assumptions and cannot rely upon the mild conditions we focus on in this

article.39

One of the examples McCrary uses for his test is the voting model of Lee (2008) that we used in the

earlier empirical examples. Figure 8 shows a graph of the rawdensities computed over bins with a bandwidth

of 0.005 (200 bins in the graph), along with a smooth second order polynomial model. Consistent with

McCrary (2008), the graph shows no evidence of discontinuity at the cutoff. McCrary also shows that a

formal test fails to reject the null hypothesis of no discontinuity in the density at the cutoff.

4.4.2 Inspecting Baseline Covariates

An alternative approach for testing the validity of the RD design is to examine whether the observed baseline

covariates are “locally” balanced on either side of the threshold, which should be the case if the treatment

indicator is locally randomized.

A natural thing to do is conduct both a graphical RD analysis and a formal estimation, replacing the

dependent variable with each of the observed baseline covariates inW. A discontinuity would indicate a

39McCrary (2008) discusses an example where students who barely fail a test are given extra points so that they barely pass.The
RD estimator can remain unbiased if one assumes that those who are given extra points were chosen randomly from those who
barely failed.
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violation in the underlying assumption that predicts localrandom assignment. Intuitively, if the RD design

is valid, weknowthat the treatment variable cannot influence variables determined prior to the realization of

the assignment variable and treatment assignment; if we observe it does, something is wrong in the design.

If there are many covariates inW, even abstracting from the possibility of misspecificationof the func-

tional form, some discontinuities will be statistically significant by random chance. It is thus useful to

combine the multiple tests into a single test statistic to see if the data are consistent with no discontinuities

for any of the observed covariates. A simple way to do this is with a Seemingly Unrelated Regression (SUR)

where each equation represents a different baseline covariate, and then perform aχ2 test for the discontinu-

ity gaps in all questions being zero. For example, supposingthe underlying functional form is linear, one

would estimate the system

w1 = α1 +Dβ1+Xγ1+ ε1

...
...
...

wK = αK +DβK +XγK + εK

and test the hypothesis thatβ1, . . . ,βK are jointly equal to zero, where we allow theε ’s to be correlated

across theK equations. Alternatively, one can simply use the OLS estimates ofβ1, . . . ,βK obtained from a

“stacked” regression where all the equations for each covariate are pooled together, whileD andX are fully

interacted with a set ofK dummy variables (one for each covariatewk). Correlation in the error terms can

then be captured by clustering the standard errors on individual observations (which appear in the stacked

datasetK times). Under the null hypothesis of no discontinuities, the Wald test statisticNβ̂ ′V̂−1β̂ (whereβ̂

is the vector of estimates ofβ1, . . . ,βK , andV̂ is the cluster-and-heteroskedasticity consistent estimate of the

asymptotic variance of̂β ) converges in distribution to aχ2 with K degrees of freedom.

Of course, the importance of functional form for RD analysismeans a rejection of the null hypothe-

sis tells us either that the underlying assumptions for the RD design are invalid, or that at least some of

the equations are sufficiently misspecified and too restrictive, so that nonzero discontinuities are being es-

timated, even though they do not exist in the population. Onecould use the parametric specification tests

discussed earlier for each of the individual equations to see if misspecification of the functional form is

an important problem. Alternatively, the test could be performed only for observations within a narrower

window around the cutoff point, such as the one suggested by the bandwidth selection procedures discussed
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in Section 4.3.1.

Figure 9 shows the RD graph for a baseline covariate, the Democratic vote share in the election prior

to the one used for the assignment variable (four years priorto the current election). Consistent with Lee

(2008), there is no indication of a discontinuity at the cutoff. The actual RD estimate using a quartic model

is -0.004 with a standard error of 0.014. Very similar results are obtained using winning the election as

outcome variable instead (RD estimate of -0.003 with a standard error of 0.017).

4.5 Incorporating Covariates in Estimation

If the RD design is valid, the other use for the baseline covariates is to reduce the sampling variability in the

RD estimates. We discuss two simple ways to do this. First, one can “residualize” the dependent variable –

subtract fromY a prediction ofY based on the baseline covariatesW – and then conduct an RD analysis on

the residuals. Intuitively, this procedure nets out the portion of the variation inY we could have predicted

using the pre-determined characteristics, making the question whether the treatment variable can explain the

remaining residual variation inY. The important thing to keep in mind is that if the RD design isvalid, this

procedure provides a consistent estimate of the same RD parameter of interest. Indeed, any combination of

covariates can be used, and abstracting from functional form issues, the estimator will be consistent for the

same parameter, as discussed above in equation (4). Importantly, this two-step approach also allows one to

perform a graphical analysis of the residual.

To see this more formally in the parametric case, suppose oneis willing to assume that the expectation

of Y as a function ofX is a polynomial, and the expectation of each element ofW is also a polynomial

function ofX. This implies

Y = Dτ + X̃γ̃ + ε (13)

W = X̃δ +u

whereX̃ is a vector of polynomial terms inX, δ andu are of conformable dimension, andε andu are by
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construction orthogonal toD andX̃. It follows that

Y−Wπ = Dτ + X̃γ̃ −Wπ + ε (14)

= Dτ + X̃ (γ̃ −δπ)−uπ + ε

= Dτ + X̃γ −uπ + ε

This makes clear that a regression ofY−Wπ on D and X̃ will give consistent estimates ofτ andγ . This

is true no matter the value ofπ. Furthermore, as long as the specification in Equation (13) is correct,

in computing estimated standard errors in the second step, one can ignore the fact that the first step was

estimated.40

The second approach – which uses the same assumptions implicit in Equation (13) – is to simply add

W to the regression. While this may seem to impose linearity inhowW affectsY, it can be shown that the

inclusion of these regressors will not affect the consistency of the estimator forτ .41 The advantage of this

second approach is that under these functional form assumptions and with homoskedasticity, the estimator

for τ is guaranteed to have a lower asymptotic variance.42 By contrast, the “residualizing” approach can in

some casesraisestandard errors.43

The disadvantage of solely relying upon this second approach, however, is that it does not help distin-

40The two-step procedure solves the sample analogue to the following set of moment equations:

E

[(
D
X̃

)(
Y−Wπ0−Dτ − X̃γ

)]
= 0

E [W (Y−Wπ0)] = 0

As noted above, the second-step estimator forτ is consistent for any value ofπ. Letting θ ≡

(
τ
γ

)
, and using the notation of

Newey and McFadden (1994), this means that the first row of∇π θ (π0) =−G−1
θ Gπ is a row of zeros. It follows from their Theorem

6.1, with the 1,1 element ofV being the asymptotic variance of the estimator forτ, that the 1,1 element ofV is equal to the 1,1
element ofG−1

θ E
[
g(z)g(z)′

]
G−1′

θ , which is the asymptotic covariance matrix of the second stage estimator ignoring estimation in
the first step.

41To see this, re-write Equation (13) asY = Dτ + X̃γ̃ +Da+ X̃b+Wc+ µ, wherea,b,c, andµ are linear projection coefficients
and the residual from a population regressionε on D, X̃, andW. If a = 0, then addingW will not affect the coefficient onD.
This will be true – applying the Frisch-Waugh theorem – when the covariance betweenε andD− X̃d−We (whered ande are
coefficients from projectingD on X̃ andW) is zero. This will be true whene= 0, becauseε is by assumption orthogonal to bothD
andX̃. Applying the Frisch-Waugh theorem again,e is the coefficient obtained by regressingD onW− X̃δ ≡ u; by assumptionu
andD are uncorrelated, soe= 0.

42The asymptotic variance for the least squares estimator (without includingW) of τ is given by the ratioV (ε)/V
(
D̃
)

whereD̃ is
the residual from the population regression ofD on X̃. If W is included, then the least squares estimator has asymptotic variance of
σ2/V

(
D− X̃d−We

)
, whereσ2 is the variance of the error whenW is included, andd ande are coefficients from projectingD on

X̃ andW. σ2 cannot exceedV (ε), and as shown in the footnote above,e= 0, and thusD− X̃d= D̃, implying that the denominator
in the ratio does not change whenW is included.

43From Equation (14), the regression error variance will increase ifV (ε −uπ) > V (ε) ⇐⇒V (uπ)−2C(ε,uπ) > 0, which will
hold when, for example, whenε is orthogonal tou andπ is nonzero.
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guish between an inappropriate functional form, and discontinuities inW, as both could potentially cause the

estimates ofτ to change significantly whenW is included.44 On the other hand, the “residualizing” approach

allows one to examine how well the residuals fit the assumed order of polynomial (using, for example, the

methods described in Subsection 4.3.2). If it does not fit well, then it suggests that the use of that order of

polynomial with the second approach is not justified. Overall, one sensible approach is to directly enter the

covariates, but then to use the “residualizing” approach asan additional diagnostic check on whether the

assumed order of the polynomial is justified.

As discussed earlier, an alternative approach to estimating the discontinuity involves limiting the estima-

tion to a window of data around the threshold and using a linear specification within that window.45 We note

that as the neighborhood shrinks, the true expectation ofW conditional onX will become closer to being

linear, and so Equation (13) (with̃X containing only the linear term) will become a better approximation.

For the voting example used throughout this paper, Lee (2008) shows that adding a set of covariates

essentially has no impact on the RD estimates in the model where the outcome variable is winning the next

election. Doing so does not have a large impact on the standard errors either, at least up to the third decimal.

Using the procedure based on residuals instead actually slightly increases the second step standard errors -

a possibility mentioned above. Therefore in this particular example, the main advantage of using baseline

covariates is to help establish the validity of the RD design, as opposed to improving the efficiency of the

estimators.

4.6 A Recommended “Checklist” for Implementation

Below is a brief summary of our recommendations for the analysis, presentation, and estimation of RD

designs.

1. To assess the possibility of manipulation of the assignmentvariable, show its distribution. The

most straightforward thing to do is to present a histogram ofthe assignment variable, using a fixed

number of bins. The bin widths should as small as possible, without compromising the ability to

visually see the overall shape of the distribution. For an example, see Figure 8. The bin-to-bin jumps

44If the true equation forW contains more polynomial terms thanX̃, thene, as defined in the preceeding footnotes (the coefficient
obtained by regressingD on the residual from projectingW on X̃), will not be zero. This implies that includingW will generally
lead to inconsistent estimates ofτ, and may cause the asymptotic variance to increase (sinceV

(
D− X̃d−We

)
≤V

(
D̃
)
).

45And we have noted that one can justify this by assuming that inthat specified neighborhood, the underlying function is in fact
linear, and make standard parametric inferences. Or one canconduct non-parametric inference approach by making assumptions
about the rate at which the bandwidth shrinks as the sample size grows.
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in the frequencies can provide a sense in which any jump at thethreshold is “unusual”. For this

reason, we recommendagainstplotting a smooth function comprised of kernel density estimates. A

more formal test of a discontinuity in the density can be found in McCrary (2008).

2. Present the main RD graph using binned local averages.As with the histogram, we recommend

using a fixed number of non-overlapping bins, as described inSubsection 4.1. For examples, see

Figures 6 and 7. The non-overlapping nature of the bins for the local averages is important; we

recommend against simply presenting a continuum of nonparametric estimates (with a single break at

the threshold), as this will naturally tend to give the impression of a discontinuity even if there does not

exist one in the population. We recommend reporting binwidths implied by cross-validation, as well

as the range of widths that are not statistically rejected infavor of strictly less restrictive alternatives

(for an example, see Table 1). We recommend generally “undersmoothing”, while at the same time

avoiding “too narrow” bins that produce a scatter of data points, from which it is difficult to see the

shape of the underlying function. Indeed, we recommend against simply plotting the raw data without

a minimal amount of local averaging.

3. Graph a benchmark polynomial specification. Super-impose onto the graph the predicted values

from a low-order polynomial specification (see Figures 6 and7). One can often informally assess

by comparing the two functions whether a simple polynomial specification is an adequate summary

of the data. If the local averages represent the most flexible“non-parametric” representation of the

function, the polynomial represents a “best case” scenarioin terms of the variance of the RD estimate,

since if the polynomial specification is correct, under certain conditions, the least squares estimator is

efficient.

4. Explore the sensitivity of the results to a range of bandwidths, and a range of orders to the

polynomial. For an example, see Table 2. The table should be supplementedwith information on

the implied rule-of-thumb bandwidth and cross-validationbandwidths for local linear regression (as

in Table 3), as well as the AIC-implied optimal order of the polynomial. The specification tests

that involve adding bin dummies to the polynomial specifications can help rule out overly-restrictive

specifications. Among all the specifications that are not rejected by the bin-dummy tests, and among

the polynomial orders recommended by the AIC, and the estimates given by both rule of thumb and

CV bandwidths, report a “typical” point estimate and a rangeof point estimates. A useful graphical
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device for illustrating the sensitivity of the results to bandwidths is to plot the local linear discontinuity

estimate against a continuum of bandwidths (within a range of bandwidths that are not ruled out by

the above specification tests). For an example of such a presentation, see the online appendix to Card

et al. (2009b), and Appendix Figure B1.

5. Conduct a parallel RD analysis on the baseline covariates.As discussed earlier, if the assumption

that there is no precise manipulation or sorting of the assignment variable is valid, then there should be

no discontinuities in variables that are determined prior to the assignment. See Figure 9, for example.

6. Explore the sensitivity of the results to the inclusion of baseline covariates.As discussed above,

the inclusion of baseline covariates – no matter how highly correlated they are with the outcome –

should not affect the estimated discontinuity, if the no-manipulation assumption holds. If the estimates

do change in an important way, it may indicate a potential sorting of the assignment variable that may

be reflected in a discontinuity in one or more of the baseline covariates. In terms of implementation,

in Subsection 4.5, we suggest simply including the covariates directly, after choosing a suitable order

of polynomial. Significant changes in the estimated effect or increases in the standard errors may

be an indication of a mis-specified functional form. Anothercheck is to perform the “residualizing”

procedure suggested there, to see if that same order of polynomial provides a good fit for the residuals,

using the specification tests from point 4.

We recognize that due to space limitations, researchers maybe unable to present every permutation of pre-

sentation (e.g. points 2-4 for every one of 20 baseline covariates) within a published article. Nevertheless,

we do believe that documenting the sensitivity of the results to these array of tests and alternative speci-

fications – even if they only appear in unpublished, online appendices – is an important component of a

thorough RD analysis.

5 Special Cases

In this section, we discuss how the RD design can be implemented in a number of specific cases beyond the

one considered up to this point (that of a single cross-section with a continuous assignment variable).
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5.1 Discrete Assignment Variable and Specification Errors

Up until now, we have assumed the assignment variable was continuous. In practice, however,X is often

discrete. For example, age or date of birth are often only available at a monthly, quarterly, or annual fre-

quency level. Studies relying on an age-based cutoff thus typically rely on discrete values of the age variable

when implementing an RD design.

Lee and Card (2008) study this case in detail and make a numberof important points. First, with a

discrete assignment variable, it is not possible to compareoutcomes in very narrow bins just to the right and

left of the cutoff point. Consequently, one must use regressions to estimate the conditional expectation of

the outcome variable at the cutoff point by extrapolation. As discussed in Section 4, however, in practice

we always extrapolate to some extent, even in the case of a continuous assignment variable. So the fact we

must do so in the case of a discrete assignment variable does not introduce particular complications from an

econometric point of view, provided the discrete variable is not too coarsely distributed.

Additionally, the various estimation and graphing techniques discussed in Section 4 can readily be used

in the case of a discrete assignment variable. For instance,as with a continuous assignment variable, either

local linear regressions or polynomial regressions can be used to estimate the jump in the regression function

at the cutoff point. Furthermore, the discreteness of the assignment variable simplifies the problem of

bandwidth choice when graphing the data, since in most casesone can simply compute and graph the mean

of the outcome variable for each value of the discrete assignment variable. The fact the variable is discrete

also provides a natural way of testing whether the regression model is well specified by comparing the fitted

model to the raw dispersion in mean outcomes at each value of the assignment variable. Lee and Card

(2008) show that, when errors are homoskedastic, the model specification can be tested using the standard

goodness-of-fit statistic

G≡
(ESSR−ESSUR)/(J−K)

ESSUR/(N−J)

whereESSR is the estimated sum of squares of the restricted model (e.g.low order polynomial), while

ESSUR is the estimated sum of squares of the unrestricted model where a full set of dummies (for each value

of the assignment variable) are included. In this unrestricted model, the fitted regression corresponds to the

mean outcome in each cell.G follows aF(J−K,N−J) distribution whereJ is the number of values taken

by the assignment variables andK is the number of parameters of the restricted model.

This test is similar to the test in Section 4 where we suggested including a full set of bin dummies in
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the regression model and testing whether the bin dummies were jointly significant. The procedure is even

simpler here, as bin dummies are replaced by dummies for eachvalue of the discrete assignment variable.

In the presence of heteroskedasticity, the goodness-of-fittest can be computed by estimating the model and

testing whether a set of dummies for each value of the discrete assignment variable are jointly significant.

In that setting, the test statistic follows a chi-square distribution withJ−K degrees of freedom.

In Lee and Card (2008), the difference between the true conditional expectationE[Y|X = x] and the

estimated regression function forming the basis of the goodness-of-fit test is interpreted as a random spec-

ification error that introduces a group structure in the standard errors. One way of correcting the standard

errors for group structure is to run the model on cell means.46 Another way is to “cluster” the standard

errors. Note that in this setting, the goodness-of-fit test can also be interpreted as a test of whether standard

errors should be adjusted for the group structure. In practice, it is nonetheless advisable to either group the

data or cluster the standard errors in micro-data models irrespective of the results of the goodness-of-fit test.

The main purpose of the test should be to help choose a reasonably accurate regression model.

Lee and Card (2008) also discuss a number of issues includingwhat to do when specification errors

under treatment and control are correlated, and how to possibly adjust the RD estimates in the presence of

specification errors. Since these issues are beyond the scope of this paper, interested readers should consult

Lee and Card (2008) for more detail.

5.2 Panel Data and Fixed Effects

In some situations, the RD design will be embedded in a panel context, whereby period by period, the

treatment variable is determined according to the realization of the assignment variableX. Again, it seems

natural to propose the model

Yit = Dit τ + f (Xit ;γ)+ai + εit

(wherei andt denote the individuals and time, respectively), and simplyestimate a fixed effects regression

by including individual dummy variables to capture the unit-specific error component,ai . It is important to

note, however, that including fixed effects is unnecessary for identification in an RD design. This sharply

contrasts with a more traditional panel data setting where the error componentai is allowed to be correlated

46When the discrete assignment variable –and the “treatment”dummy solely dependent on this variable– is the only variable used
in the regression model, standard OLS estimates will be numerically equivalent to those obtained by running a weighted regression
on the cell means, where the weights are the number of observations (or the sum of individual weights) in each cell.
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with the observed covariates, including the treatment variableDit , in which case including fixed effects is

essential for consistently estimating the treatment effect τ .

An alternative is to simply conduct the RD analysis for the entire pooled-cross-section dataset, taking

care to account for within-individual correlation of the errors over time using clustered standard errors.

The source of identification is a comparison between those just below and above the threshold, and can be

carried out with a single cross-section. Therefore, imposing a specific dynamic structure introduces more

restrictions without any gain in identification.

Time dummies can also be treated like any other baseline covariate. This is apparent by applying the

main RD identification result: conditional on what period itis, we are assuming the density ofX is continu-

ous at the threshold, and hence, conditional onX, the probability of an individual observation coming from

a particular period is also continuous.

We note that it becomes a little bit more awkward to use the justification proposed in Sub-section 4.5

for directly including dummies for individuals and time periods on the right hand side of the regression.

This is because the assumption would have to be that the probability that an observation belonged to each

individual (or the probability that an observation belonged to each time period) is a polynomial function in

X, and strictly speaking, nontrivial polynomials are not bounded between 0 and 1.

A more practical concern is that inclusion of individual dummy variables may lead to anincreasein the

variance of the RD estimator for another reason. If there is little “within-unit” variability in treatment status,

then the variation in the main variable of interest (treatment after partialling out the individual heterogeneity)

may be quite small. Indeed, seeing standard errors rise whenincluding fixed effects may be an indication of

a mis-specified functional form.47

Overall, since the RD design is still valid ignoring individual or time effects, then the only rationale

for including them is to reduce sampling variance. But thereare other ways to reduce sampling variance

by exploiting the structure of panel data. For instance, we can treat the lagged dependent variableYit−1 as

simply another baseline covariate in periodt. In cases whereYit is highly persistent over time,Yit−1 may

well be a very good predictor and has a very good chance of reducing the sampling error. As we have also

discussed earlier, looking at possible discontinuities inbaseline covariates is an important test of the validity

of the RD design. In this particular case, sinceYit can be highly correlated withYit−1, finding a discontinuity

in Yit but not inYit−1 would be a strong piece of evidence supporting the validity of the RD design.

47See discussion in Section 4.5.
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In summary, one can utilize the panel nature of the data by conducting an RD analysis on the entire

dataset, using lagged variables as baseline covariates forinclusion as described in Subsection 4.5. The

primary caution in doing this is to ensure that for each period, the included covariates are the variables

determinedprior to the present period’s realization ofXit .

6 Applications of RD Designs in Economics

In what areas has the RD design been applied in economic research? Where do discontinuous rules come

from and where might we expect to find them? In this section, weprovide some answers to these ques-

tions by providing a survey of the areas of applied economic research that have employed the RD design.

Furthermore, we highlight some examples from the literature that illustrate what we believe to be the most

important elements of a compelling, “state-of-the-art” implementation of RD.

6.1 Areas of Research Using RD

As we suggested in the introduction, the notion that the RD design has limited applicability to a few specific

topics is inconsistent with our reading of existing appliedresearch in economics. Table 4 summarizes our

survey of empirical studies on economic topics that have utilized the RD design. In compiling this list, we

searched economics journals as well as listings of working papers from economists, and chose any study

that recognized the potential use of an RD design in their given setting. We also included some papers from

non-economists when the research was closely related to economic work.

Even with our undoubtedly incomplete compilation of over 60studies, Table 4 illustrates that RD designs

have been applied in many different contexts. Table 4 summarizes the context of the study, the outcome

variable, the treatment of interest, and the assignment variable employed.

While the categorization of the various studies into broad areas is rough and somewhat arbitrary, it

does appear that a large share come from the area of education, where the outcome of interest is often an

achievement test score and the assignment variable is also atest score, either at the individual or group

(school) level. The second clearly identifiable group are studies that deal with labor market issues and

outcomes. This probably reflects that, within economics, the RD design has so far primarily been used by

labor economists, and that the use of quasi-experiments andprogram evaluation methods in documenting

causal relationships is more prevalent in labor economics research.
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There is, of course, nothing in the structure of the RD designtying it specifically to labor economics

applications. Indeed, as the rest of the table shows, the remaining half of the studies are in the areas of

political economy, health, crime, environment, and other areas.
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Table 4: Regression Discontinuity Applications in Economics

Study

Context Outcome(s) Treatment(s) Assignment variable(s)

Education

Angrist and Lavy (1999) Public Schools (Grades

3-5), Israel

Test scores Class size Student Enrollment

Asadullah (2005) Secondary

Schools,Bangladesh

Examination Pass Rate Class size Student Enrollment

Bayer et al. (2007) Valuation of schools and

neighborhoods, Northern

California

Housing prices, school test

scores, demographic

characteristics

Inclusion in school

attendance region

Geographic location

Black (1999) Valuation of school quality,

Massachusetts

Housing prices Inclusion in school

attendance region

Geographic location

Canton and Blom (2004) Higher Education, Mexico University enrollment,

GPA, Part-time

Employment, Career choice

Student Loan Receipt Economic need index

Cascio and Lewis (2006) Teenagers, United States AFQT test scores Age at school entry Birthdate

Chay et al. (2005) Elementary Schools, Chile Test scores Improved infrastructure,

more resources

School averages of test

scores

Chiang (2009) School accountability,

Florida

Test scores, education

quality

Threat of sanctions School’s assessment score

Ding and Lehrer (2007) Secondary school students,

China

Academic achievement

(Test scores)

School assignment Entrance examination

scores

Figlio and Kenny (2009) Elementary and middle

schools, Florida

Private donations to school D or F grade in school

performance measure

Grading points

Goodman (2008) College enrollment,

Massachusetts

School choice Scholarship offer Test scores
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Goolsbee and Guryan

(2006)

Public schools, California Internet access in

classrooms, test scores

E-Rate subsidy amount Proportion of students

eligible for lunch program

Guryan (2001) State-level equalization:

Elementary, Middle

Schools, Massachusetts

Spending on schools, test

scores

State education aid Relative average property

values

Hoxby (2000) Elementary Schools,

Connecticut

Test scores Class size Student Enrollment

Kane (2003) Higher Education,

California

College attendance Financial aid receipt Income, Assets, GPA

Lavy (2002) Secondary Schools, Israel Test scores, drop out rates Performance based

incentives for teachers

Frequency of school type in

community

Lavy (2004) Secondary Schools, Israel Test scores Pay-for-performance

incentives

School matriculation rates

Lavy (2006) Secondary Schools, Tel

Aviv

Dropout rates, test scores School choice Geographic location

Jacob and Lefgren (2004a) Elementary Schools,

Chicago

Test scores Teacher training School averages on test

scores

Jacob and Lefgren (2004) Elementary Schools,

Chicago

Test scores Summer school attendance,

grade retention

Standardized test scores

Leuven et al. (Forthcoming) Primary Schools,

Netherlands

Test scores Extra funding Percent disadvantaged

minority pupils

Matsudaira (2008) Elementary Schools,

Northeastern United States

Test scores Summer school, grade

promotion

Test scores

Urquiola (2006) Elementary Schools,

Bolivia

Test scores Class size Student Enrollment

Urquiola and Verhoogen

(2009)

Class size sorting- RD

violations, Chile

Test scores Class size Student Enrollment
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Van der Klaauw (2002,

1997)

College enrollment, East

Coast College

Enrollment Financial Aid Offer SAT scores, GPA

Van der Klaauw (2008a) Elementary/Middle

Schools, New York City

Test scores, student

attendance

Title I federal funding Poverty rates

Labor Market

Battistin and Rettore (2002) Job Training,Italy Employment Rates Training program

(computer skills)

Attitudinal test score

Behaghel et al. (2008) Labor laws, France Hiring among age groups Tax exemption for hiring

firm

Age of worker

Black et al. (2003, 2007b) UI Claimants, Kentucky Earnings, Benefit

receipt/duration

Mandatory reemployment

services (job search

assistance)

Profiling score (expected

benefit duration)

Card et al. (2007) Unemployment Benefits,

Austria

Unemployment duration Lump-sum severance pay,

extended UI benefits

Months employed, job

tenure

Chen and van der Klaauw

(2008)

Disability Insurance

Beneficiaries, United States

Labor force participation Disability insurance

benefits

Age at disability decision

De Giorgi (2005) Welfare-to-work program,

United Kingdom

Re-employment probability Job search assistance,

training, education

Age at end of

unemployment spell

DiNardo and Lee (2004) Unionization, United States Wages, Employment,

Output

Union victory in NLRB

election

Vote share

Dobkin and Ferreira (2009) Individuals, California and

Texas

Educational Attainment,

Wages

Age at school entry Birthdate

Edmonds (2004) Child labor supply and

school attendance, South

Africa

Child labor supply, school

attendance

Pension receipt of oldest

family member

Age

Hahn et al. (1999) Discrimination, United

States

Minority employment Coverage of federal

antidiscrimination law

Number of employees at

firm
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Lalive (2008) Unemployment Benefits,

Austria

Unemployment duration Maximum benefit duration Age at start of

unemployment spell,

geographic location

Lalive (2007) Unemployment, Austria Unemployment duration,

duration of job search,

quality of

post-unemployment jobs

Benefits duration Age at start of

unemployment spell

Lalive et al. (2006) Unemployment, Austria Unemployment duration Benefit replacement rate,

potential benefit duration

Pre-unemployment income,

age

Leuven and Oosterbeek

(2004)

Employers, Netherlands Training, Wages Business tax deduction,

training

Age of employee

Lemieux and Milligan

(2008)

Welfare, Canada Employment, marital status,

living arrangements

Cash benefit Age

Oreopoulos (2006) Returns to Education, UK Earnings Coverage of compulsory

schooling law

Birth year

Political Economy

Albouy (2009) Congress, United States Federal Expenditures Party control of seat Vote share in election

Albouy (2008) Senate, United States Roll call votes Incumbency Initial vote share

Ferreira and Gyourko

(2009)

Mayoral Elections, United

States

Local Expenditures Incumbency Initial vote share

Lee (2008, 2001) Congressional elections,

United States

Vote share in next election Incumbency Initial vote share

Lee et al. (2004) House of Representatives,

United States

Roll call votes Incumbency Initial vote share

McCrary (2008) House of Representatives,

United States

N/A Passing of resolution Share of roll call vote

“Yeay”

Pettersson-Lidbom (2006) Local Governments,

Sweden and Finland

Expenditures, Tax

Revenues

Number of council seats Population
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Pettersson-Lidbom (2008) Local Governments,

Sweden

Expenditures, Tax

Revenues

Left-, right-wing bloc Left-wing parties’ share

Health

Card and Shore-Sheppard

(2004)

Medicaid, United States Overall insurance coverage Medicaid Eligibility Birthdate

Card et al. (2009a) Medicare, United States Health care utilization Coverage under Medicare Age

Card et al. (2009b) Medicare, California Insurance coverage, Health

services, Mortality

Medicare coverage Age

Carpenter and Dobkin

(2009)

Alcohol and Mortality,

United States

Mortality Attaining Minimum Legal

Drinking Age

Age

Ludwig and Miller (2007) Head Start, United States Child mortality, educational

attainment

Head Start funding County poverty rates

McCrary and Royer (2003) Maternal Education, United

States, California and Texas

Infant health, fertility

timing

Age of school entry Birthdate

Snyder and Evans (2006) Social Security recipients,

United States

Mortality Social security payments

($)

Birthdate

Crime

Berk and DeLeeuw (1999) Prisoner behavior in

California

Inmate misconduct Prison security levels Classification score

Berk and Rauma (1983) Ex-prisoners recidivism,

California

Arrest, parole violation Unemployment insurance

benefit

Reported hours of work

Chen and Shapiro (2004) Ex-prisoners recidivism,

United States

Arrest rates Prison security levels Classification score

Lee and McCrary (2005) Criminal Offenders, Florida Arrest rates Severity of Sanctions Age at arrest

Hjalmarsson (2009) Juvenile Offenders,

Washington State

Recidivism Sentence length Criminal history score

Environment
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Chay and Greenstone

(2003)

Health Effects of Pollution,

United States

Infant Mortality Regulatory status Pollution levels

Chay and Greenstone

(2005)

Valuation of Air Quality,

United States

Housing prices Regulatory status Pollution levels

Davis (2008) Restricted driving policy,

Mexico

Hourly air pollutant

measures

Restricted automobile use Time

Greenstone and Gallagher

(2008)

Hazardous Waste, United

States

Housing prices Superfund clean-up status Ranking of level of hazard

Other

Battistin and Rettore (2008) Mexican anti-poverty

program (PROGRESA)

School Attendance Cash grants Pre-assigned probability of

being poor

Baum-Snow and Marion

(2009)

Housing subsidies, United

States

Residents’ characteristics,

new housing construction

Increased subsidies Percentage of eligible

households in area

Buddelmeyer and Skoufias

(2004)

Mexican anti-poverty

program (PROGRESA)

Child Labor and School

Attendance

Cash grants Pre-assigned probability of

being poor

Buettner (2006) Fiscal Equalization across

municipalities, Germany

Business tax rate Implicit marginal tax rate

on grants to localities

Tax base

Card et al. (2008) Racial segregation, United

States

Changes in census tract

racial composition

Minority share exceeding

“tipping” point

Initial minority share

Cole (2009) Bank nationalization, India Share of credit granted by

public banks

Nationalization of private

banks

Size of bank

Edmonds et al. (2005) Household structure, South

Africa

Household composition Pension receipt of oldest

family member

Age

Ferreira (2007) Residential Mobility,

California

Household mobility Coverage of tax benefit Age

Pence (2006) Mortgage credit, United

States

Size of Loan State mortgage credit laws Geographical location
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Pitt and Khandker (1998) Poor Households,

Bangladesh

Labor supply, children

school enrollment

Group-based credit program Acreage of land

Pitt et al. (1999) Poor Households,

Bangladesh

Contraceptive Use,

Childbirth

Group-based credit program

Acreage of land

6.2 Sources of Discontinuous Rules

Where do discontinuous rules come from, and in what situations would we expect to encounter them? As

Table 4 shows, there is a wide variety of contexts where discontinuous rules determine treatments of interest.

There are, nevertheless, some patterns that emerge. We organize the various discontinuous rules below.

Before doing so, we emphasize that a good RD analysis – as withany other approach to program

evaluation – is careful in clearly spelling out exactly whatthe treatment is, and whether it is of any real

salience, independent of whatever effect it might have on the outcome. For example, when a pre-test score

is the assignment variable, we could always define a “treatment” as being “having passed the exam” (with a

test score of 50 percent or higher), but this is not a very interesting “treatment” to examine, since it seems

nothing more than an arbitrary label. On the other hand, if failing the exam meant not being able to advance

to the next grade in school, the actual experience of treatedand control individuals is observably different,

no matter how large or small the impact on the outcome.

As another example, in the U.S. Congress, a Democrat obtaining the most votes in an election means

something real – the Democratic candidate becomes a representative in Congress; otherwise, the Democrat

has no official role in the government. But in a three-way electoral race, the treatment of the Democrat

receiving thesecond-mostnumber of votes (versus receiving the lowest number) is not likely a treatment

of interest: only the first-place candidate is given any legislative authority. In principle, stories could be

concocted about the psychological effect of placing second, rather than third in an election, but this would

be an example where the salience of the treatment is more speculative than when treatment is a concrete and

observable event (e.g. a candidate becoming the sole representative of a constituency).

69



6.2.1 Necessary Discretization

Many discontinuous rules come about because resources cannot, for all practical purposes, be provided in a

continuous manner. For example, a school can only have a whole number of classes per grade. For a fixed

level of enrollment, the moment a school adds a single class,the average class size drops. As long as the

number of classes is an increasing function of enrollment, there will be discontinuities at enrollments where

a teacher is added. If there is a mandated maximum for the student to teacher ratio, this means that these

discontinuities will be expected at enrollments that are exact multiples of the maximum. This is the essence

of the discontinuous rules used in the analyses of Angrist and Lavy (1999), Asadullah (2005), Hoxby (2000),

Urquiola (2006), and Urquiola and Verhoogen (2007).

Another example of necessary discretization arises when children begin their schooling years. Although

there are certainly exceptions, school districts typically follow a guideline that aims to group children to-

gether by age, leading to a grouping of children born in year-long intervals, determined by a single calendar

date (e.g. Sept. 1). This means children who are essentiallyof the same age (e.g. those born on Aug. 31

and Sept. 1), start school one year apart. This allocation ofstudents to grade cohorts is used in Cascio and

Lewis (2006), Dobkin and Ferreira (2009), and McCrary and Royer (2003).

Choosing a single representative by way of an election is yetanother example. When the law or consti-

tution calls for a single representative of some constituency and there are many competing candidates, the

choice can be made via a “first-past-the-post” or “winner-take-all” election. This is the typical system for

electing government officials at the local, state, and federal level in the United States. The resulting discon-

tinuous relationship between win/loss status and the vote share is used in the context of the U.S. Congress

in Lee (2001, 2008), Lee et al. (2004), Albouy (2009), Albouy(2008), and in the context of mayoral elec-

tions in Ferreira and Gyourko (2009). The same idea is used inexamining the impacts of union recognition,

which is also decided by a secret ballot election (DiNardo and Lee, 2004).

6.2.2 Intentional Discretization

Sometimes resources could potentially be allocated on a continuous scale, but in practice are instead done

in discrete levels. Among the studies we surveyed, we identified three broad motivations behind the use of

these discontinuous rules.

First, a number of rules seem driven by a compensatory or equalizing motive. For example, in Chay
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et al. (2005), Leuven et al. (Forthcoming), and Van der Klaauw (2008a), extra resources for schools were

allocated to the neediest communities, either on the basis of school-average test scores, disadvantaged mi-

nority proportions, or poverty rates. Similarly, Ludwig and Miller (2007), Battistin and Rettore (2008), and

Buddelmeyer and Skoufias (2004) study programs designed to help poor communities, where the eligibility

of a community is based on poverty rates. In each of these cases, one could imagine providing the most

resources to the neediest and gradually phasing them out as the need index declines, but in practice this is

not done, perhaps because it was impractical to provide verysmall levels of the treatment, given the fixed

costs in administering the program.

A second motivation for having a discontinuous rule is to allocate treatments on the basis of some

measure of merit. This was the motivation behind the merit award from the analysis of Thistlethwaite and

Campbell (1960), as well as recent studies of the effect of financial aid awards on college enrollment, where

the assignment variable is some measure of student achievement or test score, as in Kane (2003) and Van

der Klaauw (2002).

Finally, we have observed that a number of discontinuous rules are motivated by the need to most

effectively target the treatment. For example, environmental regulations or clean-up efforts naturally will

focus on the most polluted areas, as in Chay and Greenstone (2003), Chay and Greenstone (2005), and

Greenstone and Gallagher (2008). In the context of criminalbehavior, prison security levels are often

assigned based on an underlying score that quantifies potential security risks, and such rules were used in

Berk and DeLeeuw (1999) and Chen and Shapiro (2004).

6.3 Non-randomized Discontinuity Designs

Throughout this article, we have focused on regression discontinuity designs that follow a certain structure

and timing in the assignment of treatment. First, individuals or communities – potentially in anticipation

of the assignment of treatment – make decisions and act, potentially altering their probability of receiving

treatment. Second, there is a stochastic shock due to “nature,” reflecting that the units have incomplete

control over the assignment variable. And finally, the treatment (or the intention to treat) is assigned on the

basis of the assignment variable.

We have focused on this structure because in practice most RDanalyses can be viewed along these

lines, and also because of the similarity to the structure ofa randomized experiment. That is, subjects of

a randomized experiment may or may not make decisions in anticipation to participating in a randomized
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controlled trial (although their actions will ultimately have no influence on the probability of receiving

treatment). Then the stochastic shock is realized (the randomization). Finally, the treatment is administered

to one of the groups.

A number of the studies we surveyed though, did not seem to fit the spirit or essence of a randomized

experiment. Since it is difficult to think of the treatment asbeing locally randomized in these cases, we will

refer to the two research designs we identified in this category as “non-randomized” discontinuity designs.

6.3.1 Discontinuities in Age with Inevitable Treatment

Sometimes program status is turned on when an individual reaches a certain age. Receipt of pension benefits

is typically tied to reaching a particular age (see Edmonds (2004); Edmonds et al. (2005)), and in the United

States eligibility for the Medicare program begins at age 65(see Card et al. (2009a)), and young adults reach

the legal drinking age at 21 (see Carpenter and Dobkin (2009)). Similarly, one is subject to the less punitive

juvenile justice system until the age of majority (typically, eighteen) (see Lee and McCrary (2005)).

These cases stand apart from the typical RD designs discussed above because here assignment to treat-

ment is essentially inevitable, as all subjects will eventually age into the program (or, conversely, age out of

the program). One cannot, therefore, draw any parallels with a randomized experiment, which necessarily

involves some ex ante uncertainty about whether a unit ultimately receives treatment (or the intent to treat).

Another important difference is that the tests of smoothness in baseline characteristics will generally

be uninformative. Indeed, if one follows a single cohort over time, all characteristics determined prior to

reaching the relevant age threshold areby constructionidentical just before and after the cutoff.48 Note that

in this case,time is the assignment variable, and therefore cannot be manipulated.

This design and the standard RD share the necessity of interpreting the discontinuity as the combined

effect ofall factors that switch on at the threshold. In the example of Thistlethwaite and Campbell (1960), if

passing a scholarship exam provides the symbolic honor of passing the examas well asa monetary award,

the true treatment is a package of the two components, and onecannot attribute any effect to only one of the

two. Similarly, when considering an age-activated treatment, one must consider the possibility that the age

of interest is causing eligibility for potentially many other programs, which could affect the outcome.

48There are exceptions to this. There could be attrition over time, so that in principle, the number of observations could dis-
continuously drop at the threshold, changing the composition of the remaining observations. Alternatively, when examining a
cross-section of different birth cohorts at a given point intime, it is possible to have sharp changes in the characteristics of individ-
uals with respect to birthdate.
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There are at least two new issues that are irrelevant for the standard RD, but are important for the analysis

of age discontinuities. First, even if there is truly an effect on the outcome, if the effect is not immediate,

it generally will not generate a discontinuity in the outcome. For example, suppose the receipt of Social

Security benefits has no immediate impact, but does have a long-run impact on labor force participation.

Examining the labor force behavior as a function of age will not yield a discontinuity at age 67 (the full

retirement age for those born after 1960), even though theremay be a long-run effect. It is infeasible to

estimate long-run effects because by the time we examine outcomes five years after receiving the treatment,

for example, those individuals who were initially just below and just above age 67 will be exposed to

essentially the same length of time of treatment (e.g. five years).49

The second important issue is that because treatment is inevitable with the passage of time, individu-

als may fully anticipate the change in the regime, and therefore they may behave in certain ways prior to

the time when treatment is turned on. Optimizing behavior inanticipation of a sharp regime change may

either accentuate or mute observed effects. For example, simple life-cycle theories, assuming no liquidity

constraints, suggest that the path of consumption will exhibit no discontinuity at age 67, when Social Se-

curity benefits commence payment. On the other hand, some medical procedures are too expensive for an

under-65-year-old, but would be covered under Medicare upon turning 65. In this case, individuals’ greater

awareness of such a predicament will tend toincreasethe size of the discontinuity in utilization of medical

procedures with respect to age (e.g. see Card et al. (2009a)).

At this time we are unable to provide any more specific guidelines for analyzing these age/time disconti-

nuities, since it seems that how one models expectations, information, and behavior in anticipation of sharp

changes in regimes will be highly context-dependent. But itdoes seem important to recognize these designs

as being distinct from the standard RD design.

We conclude by emphasizing that when distinguishing between age-triggered treatments and a standard

RD design, the involvement of age as an assignment variable is not as important as whether the receipt of

treatment – or analogously, entering the control state – is inevitable. For example, on the surface, the analysis

of the Medicaid expansions in Card and Shore-Sheppard (2004) appears to be an age-based discontinuity,

since effective July 1991, U.S. law requires states to coverchildren born after September 30, 1983, implying

a discontinuous relationship between coverage and age, where the discontinuity in July 1991 was around

49By contrast, there is no such limitation with the standard RDdesign. One can examine outcomes defined at an arbitrarily long
time period after the assignment to treatment.
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8 years of age. This design, however, actually fits quite easily into the standard RD framework we have

discussed throughout this paper.

First, note that treatment receipt isnot inevitable for those individuals born near the September 30, 1983

threshold. Those born strictly after that date were coveredfrom July 1991 until their 18th birthday, while

those born on or before the date received no such coverage. Second, the data generating process does follow

the structure discussed above. Parents do have some influence regarding when their children are born, but

with only imprecise control over the exact date (and at any rate, it seems implausible that parents would have

anticipated that such a Medicaid expansion would have occurred 8 years in the future, with the particular

birthdate cutoff chosen). Thus the treatment is assigned based on the assignment variable, which is the

birthdate in this context.

Examples of other age-based discontinuities where neitherthe treatment nor control state is guaranteed

with the passage of time that can also be viewed within the standard RD framework include studies by

Cascio and Lewis (2006), McCrary and Royer (2003), Dobkin and Ferreira (2009), and Oreopoulos (2006).

6.3.2 Discontinuities in Geography

Another “non-randomized” RD design is one involving the location of residences, where the discontinuity

threshold is a boundary that demarcates regions. Black (1999) and Bayer et al. (2007) examine housing

prices on either side of school attendance boundaries to estimate the implicit valuation of different schools.

Lavy (2006) examines adjacent neighborhoods in different cities, and therefore subject to different rules

regarding student busing. Lalive (2008) compares unemployment duration in regions in Austria receiving

extended benefits to adjacent control regions. Pence (2006)examines census tracts along state borders to

examine the impact of more borrower-friendly laws on mortgage loan sizes.

In each of these cases, it is awkward to view either houses or families as locally randomly assigned.

Indeed this is a case where economic agents have quite precise control over where to place a house or where

to live. The location of houses will be planned in response togeographic features (rivers, lakes, hills) and in

conjunction with the planning of streets, parks, commercial development, etc. In order for this to resemble

a more standard RD design, one would have to imagine the relevant boundaries being set in a “random”

way, so that it would be simply luck determining whether a house ended up on either side of the boundary.

The concern over the endogeneity of boundaries is clearly recognized by Black (1999), who “...[b]ecause

of concerns about neighborhood differences on opposite sides of an attendance district boundary, .... was
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careful to omit boundaries from [her] sample if the two attendance districts were divided in ways that seemed

to clearly divide neighborhoods; attendance districts divided by large rivers, parks, golf courses, or any large

stretch of land were excluded.” As one could imagine, the selection of which boundaries to include could

quickly turn into more of an art than a science.

We have no uniform advice on how to analyze geographic discontinuities, because it seems that the best

approach would be particularly context-specific. It does, however, seem prudent for the analyst, in assessing

the internal validity of the research design, to carefully consider three sets of questions. First, what is the

process that led to the location of the boundaries? Which came first: the houses or the boundaries? Were

the boundaries a response to some pre-existing geographical or political constraint? Second, how might

sorting of families or the endogenous location of houses affect the analysis? And third, what are all the

things differing between the two regionsother than the treatment of interest?An exemplary analysis and

discussion of these latter two issues in the context of school attendance zones is found in Bayer et al. (2007).

7 Concluding Remarks on RD Designs in Economics: Progress and Prospects

Our reading of the existing and active literature is that – after being largely ignored by economists for

almost 40 years – there have been significant inroads made in understanding the properties, limitations,

interpretability, and perhaps most importantly, in the useful application of RD designs to a wide variety of

empirical questions in economics. These developments havefor the most part occurred within a short period

of time, beginning in the late 1990s.

Here we highlight what we believe are the most significant recent contributions of the economics lit-

erature to the understanding and application of RD designs.We believe these are helpful developments

in guiding applied researchers who seek to implement RD designs, and we also illustrate them with a few

examples from the literature.

• Sorting and Manipulation of the Assignment Variable: Economists consider how self-interested

individuals or optimizing organizations may behave in response to rules that allocate resources. It is

therefore unsurprising that the discussion of how endogenous sorting around the discontinuity thresh-

old can invalidatethe RD design has been found (to our knowledge, exclusively)in the economics

literature. By contrast, textbook treatments outside economics on RD do not discuss this sorting or

manipulation, and give the impression that the knowledge ofthe assignment rule is sufficient for the
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validity of the RD.50

We believe a “state-of-the-art” RD analysis today will consider carefully the possibility of endoge-

nous sorting. A recent analysis that illustrates this standard is that of Urquiola and Verhoogen (2007),

who examine the class size cap RD design pioneered by Angristand Lavy (1999) in the context of

Chile’s highly liberalized market for primary schools. In acertain segment of the private market,

schools receive a fixed payment per student from the government . However, each school faces a very

high marginal cost (hiring one extra teacher) for crossing amultiple of the class size cap. Perhaps

unsurprisingly, they find striking discontinuities in thehistogramof the assignment variable (total en-

rollment in the grade), with an undeniable “stacking” of schools at the relevant class size cap cutoffs.

They also provide evidence that those families in schools just to the left and right of the thresholds are

systematically different in family income, suggesting some degree of sorting. For this reason, they

conclude that an RD analysis in this particular context is most likely inappropriate.51

This study, as well as the analysis of Bayer et al. (2007) reflects a heightened awareness of a sorting

issue recognized since the beginning of the recent wave of RDapplications in economics.52 From

a practitioner’s perspective, an important recent development is the notion that we can empirically

examine the degree of sorting, and one way of doing so is suggested in McCrary (2008).

• RD Designs as Locally Randomized Experiments:Economists are hesitant to apply methods that

have not been rigorously formalized within an econometric framework, and where crucial identifying

assumptions have not been clearly specified. This is perhapsone of the reasons why RD designs

were under-utilized by economists for so long, since it is only relatively recently that the underlying

assumptions needed for the RD were formalized.53 In the recent literature, RD designs were initially

50For example, Trochim (1984) characterizes the three central assumptions of the RD design as: 1) perfect adherence to thecutoff
rule, 2) having the correct functional form, and 3) no other factors (other than the program of interest) cause the discontinuity. More
recently, Shadish et al. (2002) claim on page 243 that the proof of the unbiasedness of RD primarily follows from the fact that
treatment is known perfectly once the assignment variable is known. They go on to argue that this deterministic rule implies
omitted variables will not pose a problem. But Hahn et al. (2001) make it clear that the existence of a deterministic rule for the
assignment of treatment isnot sufficient for unbiasedness, and it is necessary toassumethe influence of all other factors (omitted
variables) are the same on either side of the discontinuity threshold (i.e. their continuity assumption).

51Urquiola and Verhoogen (2007) emphasize the sorting issuesmay well be specific to the liberalized nature of the Chilean
primary school market, and that they may or may not be presentin other countries.

52See, for example, footnote 23 in Van der Klaauw (1997) and page 549 in Angrist and Lavy (1999)
53An example of how economists’/econometricians’ notion of aproof differs from that in other disciplines is found in Cook

(2008), who views the discussion in Goldberger (1972a) and Goldberger (1972b) as the first “proof of the basic design”, quoting
the following passage in Goldberger (1972a) (brackets fromCook (2008)): “The explanation for this serendipitous result [no bias
when selection is on an observed pretest score] is not hard tolocate. Recall thatz [a binary variable representing the treatment
contrast at the cutoff] is completely determined by pretestscorex [an obtained ability score]. It cannot contain any information
aboutx∗ [true ability] that is not contained withinx . Consequently, when we control onx as in the multiple regression,z has no
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viewed as a special case of matching (Heckman et al., 1999), or alternatively as a special case of

IV (Angrist and Krueger, 1999), and these perspectives may have provided empirical researchers

a familiar econometric framework within which identifyingassumptions could be more carefully

discussed.

Today, RD is increasingly recognized in applied research asa distinct design that is a close relative to

a randomized experiment. Formally shown in (Lee, 2008), even when individuals have some control

over the assignment variable, as long as this control is imprecise – that is, the ex ante density of the

assignment variable is continuous – the consequence will belocal randomization of the treatment. So

in a number of non-experimental contexts where resources are allocated based on a sharp cutoff rule,

there may indeed be a hidden randomized experiment to utilize. And furthermore, as in a randomized

experiment, this implies that all observable baseline covariates will locally have the same distribution

on either side of the discontinuity threshold – an empirically testable proposition.

We view the testing of the continuity of the baseline covariates as an important part of assessing the

validity of any RD design – particularly in light of the incentives that can potentially generate sorting

– and as something that truly sets RD apart from other evaluation strategies. Examples of this kind

of testing of the RD design include, Matsudaira (2008), Cardet al. (2007), DiNardo and Lee (2004),

Lee et al. (2004), McCrary and Royer (2003), Greenstone and Gallagher (2008), and Urquiola and

Verhoogen (2007).

• Graphical Analysis and Presentation:The graphical presentation of an RD analysis is not a contri-

bution of economists,54 but it is safe to say that the body of work produced by economists has led to

a kind of “industry standard” that the transparent identification strategy of the RD be accompanied by

an equally transparent graph showing the empirical relation between the outcome and the assignment

variable. Graphical presentations of RD are so prevalent inapplied research, it is tempting to guess

that studies not including the graphical evidence are ones where the graphs are not compelling or

explanatory power with respect toy [the outcome measured with error]. More formally, the partial correlation ofy andzcontrolling
onx vanishes although the simple correlation ofy andz is nonzero”.

After reading the article, an econometrician will recognize the discussion above not as a proof of the validity of the RD,but
rather as a re-statement of the consequence ofz being an indicator variable determined by an observed variable x, in a specific
parametrized example. Today we know the existence of such a rule isnot sufficientfor a valid RD design, and a crucial necessary
assumption is the continuity of the influence of all other factors, as shown in Hahn et al. (2001). In Goldberger (1972a), the role of
the continuity of omitted factors was not mentioned (although it is implicitly assumed in the stylized model of test scores involving
normally distributed and independent errors). Indeed, apparently Goldberger himself later clarified that he did not set out to propose
the RD design, and was instead interested in the issues related to selection on observables and unobservables (Cook, 2008).

54Indeed the original article of Thistlethwaite and Campbell(1960) included a graphical analysis of the data.
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well-behaved.

In an RD analysis, the graph is indispensable because it can summarize a great deal of information

in one picture. It can give a rough sense of the range of the both the assignment variable and the

outcome variable, as well as the overall shape of the relationship between the two, thus indicating

what functional forms are likely to make sense. It can also alert the researcher to potential outliers in

both the assignment and outcome variables. A graph of the rawmeans – in non-overlapping intervals,

as discussed in Section 4.1 – also gives a rough sense of the likely sampling variability of the RD gap

estimate itself, since one can compare the size of the jump atthe discontinuity to natural “bumpiness”

in the graph away from the discontinuity.

Our reading of the literature is that the most informative graphs are ones that simultaneously allow

the raw data “to speak for themselves” in revealing a discontinuity if there is one, yet at the same time

treat data near the threshold the same as data away from the threshold.55 There are many examples

that follow this general principle; recent ones include Matsudaira (2008), Card et al. (2007), Card et

al. (2009a), McCrary and Royer (2003), Lee (2008), and Ferreira and Gyourko (2009).

• Applicability: Soon after the introduction of RD, in a chapter in a book on research methods, Camp-

bell and Stanley (1963) wrote that the RD design was “very limited in range of possible applications”.

The emerging body of research produced by economists in recent years has proven quite the opposite.

Our survey of the literature suggests that there are many kinds of discontinuous rules that can help

answer important questions in economics and related areas.Indeed, one may go so far as to guess

that whenever a scarce resource is rationed for individual entities, if the political climate demands a

transparent way of distributing that resource, it is a good bet there is an RD design lurking in the back-

ground. In addition, it seems that the approach of using changes in laws that disqualify older birth

cohorts based on their date of birth (as in Card and Shore-Sheppard (2004) or Oreopoulos (2006))

may well have much wider applicability.

One way to understand both the applicability and limitations of the RD design is to recognize its re-

lation to a standard econometric policy evaluation framework, where the main variable of interest is a

potentially endogenous binary treatment variable (as considered in Heckman (1978), or more recently

discussed in Heckman and Vytlacil (2005)). This selection model applies to a great deal of economic

55For example, graphing a smooth conditional expectation function everywhereexceptat the discontinuity threshold violates this
principle.
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problems. As we pointed out in Section 3, the RD design describes a situation where you are able

to observethe latent variable that determines treatment. As long as the density of that variable is

continuous for each individual, the benefit of observing thelatent index is that one neither needs to

make exclusion restrictions nor assume any variable (i.e. an instrument) is independent of errors in

the outcome equation.

From this perspective, for the class of problems that fit intothe standard treatment evaluation problem,

RD designs can be seen as a subset since there is an institutional, index-based rule playing a role in

determining treatment. Among this subset, the binding constraint of RD lies in obtaining the neces-

sary data: readily available public-use household survey data, for example, will often only contain

variables that are correlated with the true assignment variable (e.g. reported income in a survey, as

opposed to the income used for allocation of benefits), or aremeasured too coarsely (e.g. years rather

than months or weeks) to detect a discontinuity in the presence of a regression function with signif-

icant curvature. This is where there can be a significant payoff to investing in securing high quality

data, which is evident in most of the studies listed in Table 4.

7.1 Extensions

We conclude by discussing two natural directions in which the RD approach can be extended. First, we have

discussed the “fuzzy” RD design as an important departure from the “classic” RD design where treatment is

a deterministic function of the assignment variable, but there are other departures that could be practically

relevant but not as well understood. For example, even if there is perfect compliance of the discontinuous

rule, it may be that the researcher does not directly observethe assignment variable, but instead possesses

and a slightly noisy measure of the variable. Understandingthe effects of this kind of measurement error

could further expand the applicability of RD. In addition, there may be situations where the researcher both

suspects and statistically detects some degree of precise sorting around the threshold, but that the sorting

may appear to be relatively minor, even if statistically significant (based on observing discontinuities in

baseline characteristics). The challenge, then, is to specify under what conditions one can correct for small

amounts of this kind of contamination.

Second, so far we have discussed the sorting or manipulationissue as a potential problem or nuisance

to the general program evaluation problem. But there is another way of viewing this sorting issue. The

observed sorting may well be evidence of economic agents responding to incentives, and may help identify
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economically interesting phenomena. That is, economic behavior may be what is driving discontinuities in

the frequency distribution of grade enrollment (as in Urquiola and Verhoogen (2007)), or in the distribution

of roll call votes (as in McCrary (2008)), or in the distribution of age at offense (as in Lee and McCrary

(2005)), and those behavioral responses may be of interest.

These cases, as well as the age/time and boundary discontinuities discussed above, do not fit into the

“standard” RD framework, but nevertheless can tell us something important about behavior, and further

expand the kinds of questions that can be addressed by exploiting discontinuous rules to identify meaningful

economic parameters of interest.
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A. Optimal bandwidth selected by cross-validation

Side of cutoff

  Left
  Right
  Both 

B. P-values of tests for the numbers of bins in RD graph

No. of bins Bandwidth Bin test Regr. test Bin test Regr. test

10 0.100 0.000 0.000 0.001 0.000
20 0.050 0.000 0.000 0.026 0.049
30 0.033 0.163 0.390 0.670 0.129
40 0.025 0.157 0.296 0.024 0.020
50 0.020 0.957 0.721 0.477 0.552
60 0.017 0.159 0.367 0.247 0.131
70 0.014 0.596 0.130 0.630 0.743
80 0.013 0.526 0.740 0.516 0.222
90 0.011 0.815 0.503 0.806 0.803

100 0.010 0.787 0.976 0.752 0.883

Notes: Estimated over the range of the forcing variable (Democrat to 
Republican difference in the share of vote in the previous election)
ranging between -0.5 and 0.5. The "bin test" is computed by comparing
the fit of a model with the number of bins indicated in the table to an
alternative where each bin is split in 2. The "regression test" is a joint 
test of significance of bin-specific regression estimates of the outcome  
variable on the share of vote in the previous election.

Table 1: Choice of Bandwidth in Graph for Voting Example

Share of vote Win next election

0.021 0.049
0.021
0.049

Share of vote Win next election

0.026
0.021
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Share of vote Win next election

A. Rule-of-thumb bandwidth

  Left 0.162 0.164
  Right 0.208 0.130
  Both 0.180 0.141

B. Optimal bandwidth selected by cross-validation

  Left 0.192 0.247
  Right 0.282 0.141
  Both 0.282 0.172

Notes: Estimated over the range of the forcing variable (Democrat to 
Republican difference in the share of vote in the previous election)
ranging between -0.5 and 0.5. See the text for a description of the
rule-of-thumb and cross-validation procedures for choosing the
optimal bandwidth.

Table 3: Optimal Bandwidth for Local Linear Regressions, Voting Example
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Figure 5.  Treatment, Observables, and Unobservables in four research designs. 
 
 

A. Randomized Experiment  
 

 
 

B. Regression Discontinuity Design  

 
 

C. Matching on Observables 
 

      
 
 
 

D. Instrumental Variables  
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