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I Introduction

Consider the single-regressor, single excluded instrumental variable (IV) (just-identified) model,
with outcome Y , regressor X and instrument Z,

Y = bX +u(1)

C (u,Z) = 0,C (Z,X) 6= 0

where X can always be decomposed as X = pZ + v, and p ⌘ C(X ,Z)
V (Z) is the population first-stage

coefficient and v is the population least squares residual. This model1 has seen use across a wide
range of empirical disciplines.2

It has long been recognized that without any further assumptions, conventional t-ratio based
inference – using the standard 2SLS point estimator and standard errors and the ±1.96 critical
values – produces invalid inference for the parameter b in model (1).3 Put simply, even in large
repeated samples, the t-ratio approximately follows a non-normal distribution (with known func-
tional form), with departures from normality especially stark when the true (and unknown) value of
C (Z,X) is small. Due to the the weak-instrument asymptotic approximation of Staiger and Stock
(1997), it is possible to quantify how anti-conservative the usual ±1.96 procedure would be under
different specific scenarios.

This inferential problem is the starting point for a great deal of work in the econometrics litera-
ture and is, at least implicitly, acknowledged in applied research: the current “industry standard” –
highlighted in popular econometrics textbooks (e.g., Angrist and Pischke (2009), Stock and Watson
(2019), Wooldridge (2019), Hansen (2022)), and provided by default in popular software packages
(e.g., see Baum, Schaffer and Stillman (2003))– is to additionally report the observed first-stage
F-statistic as a diagnostic guide to whether the usual t-ratio inference is problematic. The reporting
of the first-stage F-statistic has intuitive appeal to researchers because observing a large F is more
likely if the instrument is truly strong. As an example of its proper application, the F-threshold of
16.38 from Stock and Yogo (2005) for the just-identified case is derived so that the following is

1Covariates, including a constant, are easily accommodated by viewing X ,Y,Z as residuals from regressing the
original variables on the covariates and a constant. More generally, it is straightforward to accommodate covariates
throughout the findings of this paper.

2The estimand b can be interpreted as the local average treatment effect (LATE) (Imbens and Angrist (1994)).
This IV model is also employed to implement simple versions of fuzzy regression discontinuity or kink designs (Hahn,
Todd and der Klaauw (2001), Lee and Lemieux (2010), and Card et al. (2015)).

3See, for example, Bound, Jaeger and Baker (1995), Dufour (1997), Nelson and Startz (1990), and Staiger and
Stock (1997). For a recent survey of the econometric literature on weak instruments, see Andrews, Stock and Sun
(2019).
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true under the null hypothesis:

(2) Pr [{F > 16.38}\{|t|> 1.96}] 0.15

That is, the procedure of rejecting the null only when both the first stage F is larger than 16.38 and
the t-ratio is larger than 1.96 in absolute value can be interpreted as a test at the 15 percent level of
significance.4

Equivalently, this means that the use of the interval b̂ ± 1.96 · ŝe(b̂ ) when F > 16.38 (and
setting the confidence set to include all values on the real line when F < 16.38) is to be viewed as
an 85 percent confidence interval.5 The use of the F-statistic in this way, therefore, dramatically
improves confidence levels since the use of b̂ ±1.96 · ŝe(b̂ ) (ignoring F) has 0 percent confidence
level, as established by Dufour (1997). The analogous first-stage F threshold to obtain 5/95 percent
significance/confidence is a somewhat higher value of 104.67 (Lee et al. (2022)). Lee et al. (2022)
(henceforth, LMMP (2022)) further refine the method of Stock and Yogo (2005) (henceforth, SY
(2005)) so that even if F < 104.67, and indeed even if F is lower than 16.38 (or the commonly-
cited value of 10) – as long as F is larger than 1.962 – valid and bounded confidence intervals are
still possible by changing the 1.96 scaling of standard errors in the usual confidence intervals to a
scaling that is a smooth function of the first-stage F , which is presented in LMMP (2022).6

In this paper, we extend the F-based approach of SY (2005) and its tF refinement (LMMP
(2022)) to its logical conclusion, resulting in a new t-ratio-based procedure, which we call VtF
(because tF of LMMP (2022) is a special case of VtF , with a "V " to indicate it is using variance
information, as explained below). VtF not only eliminates the possibility of over-rejection – the
first order problem with IV inference; it also eliminates an underappreciated property of the usual
±1.96 critical values – they also have the potential to lead to excessively conservative inferences.

4It is important to note here that the unconditional probability in (2) is distinct from the conditional probability
Pr [{|t|> 1.96}|F > 16.38]. The unconditional rejection probability in (2) is the standard focus of the weak-IV liter-
ature, and in particular the focus of Stock and Yogo (2005) for calculating the relevant critical values for F , as well
as the focus of Staiger and Stock (1997) in their discussion of how the F-statistic can be incorporated into inference.
Accordingly the scope of this paper follows this standard. By contrast, the conditional probability describes the rejec-
tion probability under a process in which decisions about acceptance or rejection are made only for those realizations
where F is at least 16.38 for example (and otherwise the data is discarded and hence no inference is made). This
"screening" phenomenon is discussed in Andrews, Stock and Sun (2019) and more recently explored in Angrist and
Kolesár (2023), who find that if one commits to discarding the data based on the sign of the first-stage coefficient
(i.e., focus on the conditional probability Pr [{|t|> 1.96}|p̂ > 0]), the possible risk of over-rejection, compared to the
original (untruncated) inferential problem, does not change very much. Separately, Angrist and Kolesár (2023) also
contains an analysis of the standard unconditional problem, which we discuss in greater detail below.

5The significance/confidence level given here is based on a Bonferroni bounding approach discussed in Staiger
and Stock (1997). A precise calculation (using the formulas in Lee et al. (2020)) shows that the significance/confidence
associated with the 16.38 threshold is 9.33/90.67 percent.

6See http://www.princeton.edu/⇠davidlee/wp/SupplementarytF.html for STATA code that provides
tF critical values from LMMP (2022). For STATA code that provides VtF critical values, see
http://www.princeton.edu/⇠davidlee/wp/SupplementVtF.html
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The implementation of VtF is simple: use the usual 2SLS point estimate and standard error, and
hence the usual t-ratio, and instead of ±1.96 use the new critical values we present. These critical
values depend on the first-stage F-statistic – just as in SY (2005) and LMMP (2022). But in
addition, the critical values depend on another easily computable quantity, the sample correlation
of the main equation and first-stage residuals, while imposing the null b = b0, denoted r̂(b0). We
construct the new critical value function

q
c
�
r̂(b0), F̂

�
to have the desired property that when the

null is true,

lim
N!•

Pr

|t̂|>

q
c
�
r̂(b0), F̂

��
= 0.05.7

This statement is true whether the instrument is strong or arbitrarily weak. All test procedures nec-
essarily lead to a corresponding confidence set procedure (e.g. the usual t-ratio test

��� b̂�b0
ŝe(b̂ )

���> 1.96

leads to the usual confidence intervals b̂ ±1.96 · ŝe(b̂ )). In this case, we show that the correspond-
ing confidence set will be contained by a simple-to-compute interval of the form

(3)
h
b̂ � k�

�
r̂, F̂

�
· ŝe(b̂ ), b̂ + k+

�
r̂, F̂

�
· ŝe(b̂ )

i

where r̂ is the sample correlation between the main equation and first-stage residuals (from using
b̂ ), and k�(·, ·) and k+(·, ·) are functions that we derive and present below.8

Our development of the VtF procedure and investigation of its properties leads to the following
contributions, which should be of interest to both applied researchers and econometricians who are
invested in the just-identified instrumental variable model.

First, like LMMP (2022) and SY (2005) before it, VtF critical values cater to practitioners’
apparent preference for the familiar ±1.96 confidence interval construction. But it extends the
justification of the use of the usual ±1.96 intervals, and reduces the frequency with which further
adjustment is needed to ensure the intended 95% confidence level. Instead of requiring F̂ > 104.67
(LMMP (2022)), an expanded and simple rule of thumb F̂ > 10+100 · r̂ is sufficient for relying on
the ±1.96 intervals for 95% confidence (LMMP (2022)). This is made possible because when this

7Throughout the paper, we focus on the case of 5% significance or 95% confidence levels, but we also provide
the critical values and confidence interval adjustment factors for the 1/99 percent significance/confidence levels. Note
also that our approach accommodates the commonly-employed departures from i.i.d. errors, as long as the appropriate
heteroskedasticity-consistent, clustered, or time series variance estimators are used.

8More precisely, r̂ =
r̂RF�b̂

r
ŝ22
ŝ11s

1�2r̂RF b̂
r

ŝ22
ŝ11

+

✓
b̂
r

ŝ22
ŝ11

◆2 , where b̂ is the 2SLS estimator, and ŝ11, ŝ22, and r̂RF constitute

the consistent, robust (to e.g. heteroskedasticity, clustered errors) variances and correlation of the reduced-form and
first-stage coefficients. This is essentially equation 6, after replacing b with b̂ and replacing s11,s22, and rRF with
ŝ11, ŝ22, and r̂RF . It can be shown that when these reduced-form variances are the homoskedasticity-only version,
r̂ simplifies to the sample correlation between û and v̂. Under the heteroskedasticity-consistent variance estimator,
r̂ simplifies to the sample correlation between Zû and Zv̂. Under the clustered-error-consistent variance estimator, r̂
simplifies to the sample correlation across cluster groups of the summation of Zû, Zv̂ within groups.
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condition is satisfied, VtF intervals in (3) are entirely contained within the usual ±1.96 intervals
– notably something that the AR statistic of Anderson and Rubin (1949) never achieves. And even
when the rule of thumb is not satisfied – F̂ could be as low as 1.962 = 3.84 – VtF produces usable
confidence intervals while maintaining 95 percent confidence.

Second, we compare the performance of VtF to other valid 95% confidence procedures (AR
and tF) as applied to 89 just-identified IV regressions from a sample of empirical studies recently
published in five general interest economics journals (American Economic Review, Econometrica,
Journal of Political Economy, Quarterly Journal of Economics, and the Review of Economic Stud-
ies). The results are clear-cut. In all 89 specifications, VtF yields shorter confidence intervals than
both AR and tF intervals, often by a substantial margin. Furthermore, we document that in this
sample, VtF is the most successful in producing statistically significant results.

Third, even under the restricted conditions that justify the usual ±1.96 procedure, VtF delivers
more precise inferences. Specifically, these conditions (see Angrist and Kolesár (2023)) are 1)
b0 lies in a particular, bounded "valid zone" (which is different across datasets), or 2) a priori
knowledge is used to bound b and those bounds are contained within the "valid zone". We show
that under either of these conditions the VtF critical values and inflation factors, compared to the
usual ±1.96 procedure, will more frequently detect departures from the null, and will produce
shorter confidence intervals. Thus, VtF not only allows valid inferences when the usual procedure
cannot, but even in the situations in which the usual procedure is valid, VtF leads to more precise
inferences.

Fourth, to assess whether or not the above results are driven by the idiosyncracies of our sample,
we introduce a new way to exhaustively and transparently characterize relative confidence interval
performance (and implicitly, relative power) across all procedures. Inference methods are typically
analyzed using power curves, which yield “on average” comparisons of the methods for particular
data generating processes. We provide a much finer comparison that involves no commitment to a
data generating model, averages, or any kind of approximation, and instead we compare confidence
sets (up to a shared location and scale normalization) for any data set. In particular, we show
that the relative confidence interval lengths (and relative positions) of all the methods for any
dataset depend on only two statistics, F̂ and |r̂|. This dimension reduction allows us to present
a comparison of confidence interval lengths using a two-dimensional heat map. From this heat
map, it is easy to see why VtF may very frequently outperform AR in practice, as it does in our
sample: the subset of (F̂ , r̂) values such that AR intervals are shorter than VtF is relatively small.
The heatmap also helps us to determine, for example, that there exists no dataset that will produce
a VtF 95% confidence interval that is more than 8.8 percent longer than the 95% AR interval. By
contrast, there is no bound to how much longer AR intervals can be, relative to VtF intervals. As
expected, VtF confidence intervals are always shorter than that of tF from LMMP (2022).
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And for relatively small F-statistics, tF intervals are substantially longer than VtF intervals and
roughly speaking, AR intervals are longer than VtF intervals by the same degree that tF intervals
(which do not use r̂) are longer than AR intervals (which do implicitly use r̂). An immediate
implication of these findings for applied work is that IV inferences that only rely on the F-statistic
can be made substantially more precise through reporting of one additional statistic, r̂, something
that is easy to do – and recoverable from reporting the point estimates and standard errors from
three regressions (2SLS, reduced-form, first-stage)9 – and yet only done in a minority of recent
published studies that use IV.

Fifth, since our findings run counter to the conventional econometric “folk wisdom” that ap-
plied research should abandon t-ratio based inference and instead employ Anderson-Rubin (AR),
we also present a traditional power comparison of methods to reconcile the VtF performance
shown here with the previous econometrics literature.10 After noting that VtF is outside the class
of tests within which AR is uniformly most powerful, we show that, generally, across various
specifications the relative power advantages of VtF and AR appear roughly balanced. This ap-
pearance of balance diminishes as the correlation between the main equation and first stage error
decreases, and VtF’s advantage over AR becomes more apparent. When the correlation is exactly
zero, VtF is more powerful than AR over all departures of b from the null b0. There appears
to be no design for which the reverse is true. More importantly, we observe that the traditional
power analysis averages power when realizations of the data lead to unbounded confidence sets
with power when realizations of the data lead to bounded confidence sets. When we decompose
the power curves to the separate cases of unbounded and bounded confidence sets, we find that AR
is relatively more powerful in the event of obtaining statistically insignificant first-stage F values
(when the confidence sets are unbounded). On the other hand, VtF generally possesses a decided
power advantage in the event of statistically significant first-stage F values (when confidence sets
are bounded). This enhanced power curve analysis isolates the sources of our earlier findings on
VtF’s superior confidence set length.

The paper is organized as follows. Section II provides a high-level summary of existing pro-
cedures that accommodate small values of F , and also illustrates the relative performance of VtF

9Footnote 8 shows how r̂ is computed using b̂ and r̂RF and ŝ22
ŝ11

. It can also be shown that, given r̂, the

consistent estimators of r̂RF and ŝ22
ŝ11

can be recovered through r̂RF =
b̂ |p̂|

p
ŝ22p

Nŝe(b̂)
+r̂

s
ŝ22

(
p

Nŝe(b̂))2 p̂2b̂ 2+2r̂b̂ |p̂|
p

ŝ22p
Nŝe(b̂)

+1
and ŝ22

ŝ11
=

ŝ22

(
p

Nŝe(b̂))2 p̂2

ŝ22

(
p

Nŝe(b̂))2 p̂2b̂ 2+2r̂|p̂|
p

ŝ22p
Nŝe(b̂)

b̂+1
.

10See Andrews, Stock and Sun (2019) for a recent comprehensive survey of the econometrics literature on this
topic.
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using our sample of empirical studies. Section III defines and describes the VtF procedure for
hypothesis testing and confidence intervals and presents our main theoretical results. Section IV
presents a power analysis to help explain why VtF outperforms AR and also how our findings can
be reconciled with results from the previous econometric literature. Section V concludes.

II VtF: Motivation and Summary of Performance in Practice

In this section, we provide a high-level motivation for the new critical values that we compute
(henceforth, VtF critical values), and a summary of their impact and performance in practice,
comparing VtF to alternative available approaches. We do so by applying all of the inference
procedures to a sample of IV specifications drawn from recently published articles in economics.
We go beyond this applied perspective and provide a more formal discussion in Sections III and
IV.

We now describe our sample: it contains reported statistics from every single-variable just-
identified IV specification appearing in articles published in the American Economic Review,
Econometrica, the Journal of Political Economy, the Quarterly Journal of Economics, and the
Review of Economic Studies in the year 2021. A “specification” refers to a unique combination of
dependent variable, endogenous regressor of interest, set of covariates, and single excluded instru-
ment. There are a total of 418 published articles (excluding comments and replies) in these five
journals during 2021. 89 of them are classified as having used “instrumental variables”. Of these,
69 were identified as containing at least one just-identified specification. And from this group,
fourteen studies were identified as reporting the equivalent of the following statistics from three
regressions:

1. The 2SLS point estimate b̂ and standard error ŝe(b̂ )
2. The first-stage estimate p̂ and standard error ŝe(p̂)
3. The reduced-form point estimate cpb and standard error ŝe(cpb )

With these statistics in hand, we are able to compute the VtF critical values and implement
alternative inference methods for comparison without access to the complete data sets. It is most
common for researchers to report statistics from regressions 1) and 2), and less common for re-
searchers to report statistics from all three regressions, even though they are easily computable.11

In summarizing these data, throughout our analysis, we describe the data at the level of the spec-
ification, using weighted proportions, means, and percentiles, where the weights for each specifi-

11In the sample of LMMP (2022), about one-third of the specifications report statistics from regressions 1) and 2),
and one-quarter report statistics from all three regressions.
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cation is the reciprocal of the number of specifications within a particular study, so as to give each
study equal weight.

In the full sample of 109 specifications from these fourteen studies, the (weighted) median
first-stage F statistic for the 109 specifications is about 47, while the 25th and 75th percentiles are
about 15 and 190, respectively.12 We focus on two main subsamples from these 109 specifications
in this paper. First, in the next two subsections, for discussing alternative options for when the
F-statistic is too small for single-threshold rules (e.g. SY (2005)) to be informative, we focus on
the 62 specifications (drawn from eight distinct studies) for which the F-statistic is less than 18.
Later, in Section III, when we comprehensively document confidence length comparisons between
various procedures, we focus on the the 89 specifications (drawn from 10 distinct studies) for
which the F-statistic is between 3.84 and 104.67, since the practitioner using either tF or VtF can
revert to the usual ±1.96 intervals when F exceeds 104.67.

II.A Current Options for IV inference when F is “small”

The most commonly employed approach to IV inference in applied research is to consider whether
the first-stage F-statistic is sufficiently high, say, greater than some threshold F̄ . Although SY
(2005) introduce thresholds F̄ for the first-stage F for the purpose of formally testing the null
hypothesis that “the instrument is weak”, the thresholds can also be used, in conjunction with the
argument put forth in Staiger and Stock (1997), to modify the IV t-ratio procedure so that it delivers
inference at a known level of significance/confidence. Specifically, the proposal there, applied to
the thresholds in SY (2005) leads the researcher to the current de facto industry standard: use the
usual confidence interval b̂ ± 1.96 · ŝe(b̂ ) if F̂ > F̄ , and accept all possible values of b if F̂ < F̄
(i.e., the confidence set is the whole real line if F̂ < F̄). The choice of the threshold F̄ determines
the confidence level of the interval. If F̄ = 10 the confidence interval has 88.6 percent confidence
level, while for F̄ = 16.38, the confidence level is 90.6. As shown in LMMP (2022), a 95 percent
confidence level requires F̄ = 104.67.

The main limitation to the single-threshold approach is that “relatively small" F-statistics are
a common occurrence in practice. For example, in our sample, 35 percent of the F-statistics
are below 18. Consider a researcher who observes a t-statistic for the first stage around 3 or
4 (i.e., a first-stage F around the range of 9 to 16); this would typically be viewed as strong
evidence of the existence of a first stage relationship. Despite this, the use of F̄ = 16.38 or F̄ =

104.67 would lead them to accept that they cannot learn anything from the instrumental variable
strategy. It would be desirable to be able to make informative inferences in these circumstances:

12We note that the LMMP (2022) sample is not restricted to those reporting statistics from all three regressions.
The 25th, 50th, 75th percentiles of the first-stage F from that sample are 14.23, 45.84, and 225, respectively.
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when F̂ indicates a statistically significant first-stage, but is not large enough to achieve intended
significance/confidence levels.

Table 1 summarizes three existing and very different inference approaches that accommodate
small F-statistics. We describe each below, and also draw attention to each of their key limitations.
The first option, summarized in the first row of Table 1 is the procedure of Anderson and Rubin
(1949), which rejects the null hypothesis if the AR statistic is greater than 1.962. In the just-
identified model, the AR statistic is equivalent to the score/Lagrange multiplier and the likelihood
ratio statistic for the hypothesis b = b0. When F̂ > 1.962, the AR confidence set is an interval and
can be written as h

b̂ � k�AR
�
r̂, F̂

�
· ŝe(b̂ ), b̂ + k+AR

�
r̂, F̂

�
· ŝe(b̂ )

i

where k+AR(·, ·) and k�AR(·, ·) are known functions of the observed statistics r̂, F̂ .13 This approach is
rarely used in practice (LMMP (2022)), even though it is fully robust to any degree of instrument
strength and has some optimality properties, a point that we discuss and qualify in greater detail
in Section IV. One important practical difference between AR and the "F-based" approach of
Stock/Yogo, is that the former does not collapse to the familiar ±1.96 confidence intervals under
any circumstances, even when the F-statistic is very large.14

A second approach that can also accommodate F̂ values as low as 1.962, is the tF procedure
(LMMP (2022)), summarized in the second row in Table 1. Essentially, tF is a refinement of
the original Stock-Yogo F-based approach. Any given hypothesis b0 is rejected at the 5 percent
level if and only if |t̂| >

q
ctF

�
F̂ ;0.05

�
and the 95 percent confidence interval is given by b̂ ±

q
ctF

�
F̂ ;0.05

�
· ŝe

⇣
b̂
⌘

, where
q

ctF
�
F̂ ;0.05

�
is a continuous decreasing function of F̂ , with

values reported in LMMP (2022) (and available as STATA code). As with AR, confidence sets are
unbounded when F̂  1.962 (when the first-stage coefficient is statistically insignificant), but are
otherwise bounded intervals. Unlike AR, tF can be viewed as an extension of the familiar ±1.96
procedure in the spirit of SY (2005): as long as F̂ exceeds 104.67, use ±1.96 critical values, and
otherwise use as critical values ±

q
ctF

�
F̂ ;0.05

�
. On the other hand, tF shares with the SY (2005)

method an inherent conservatism: validity necessitates that it remains valid even under the “worst
case”/extreme scenario that the correlation r ⌘Corr (Zv,Zu) has a value of ±1. To the extent that
the true r is relatively small, the test procedure will be conservative (i.e., reject strictly less than 5
percent of the time, under the null) or equivalently, produce excessively long confidence intervals

13See footnote 8.
14As noted in Angrist and Kolesár (2023), AR intervals are always longer than the usual ±1.96 intervals. Although

it would be tempting to adopt the procedure of the usual ±1.96 intervals when F̂ is large enough, and otherwise use
AR, LMMP (2022) show that this “hybrid" test also does not achieve the intended 5 percent; any such hybrid will have
a higher level of distortion than the usual Stock-Yogo approach given the same threshold F̄ .
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Table 1: Alternatives for Valid IV Inference accommodating small F statistics

Testing H0 : b = b0 Confidence Interval

Method
(Add. Stats Used)

Limitation
on b0

Test procedure:
Reject iff

Additional
Assumptions

Interval

AR
(ŝe( ˆpb ) or r̂)

None AR > 1.962 None
⇥
b̂ � k�AR

�
r̂, F̂

�
· ŝe(b̂ ),

b̂ + k+AR
�
r̂, F̂

�
· ŝe(b̂ )

⇤

tF
(None)

None |t̂|>
q

ctF
�
F̂
�

None b̂ ±
q

ctF
�
F̂
�
· ŝe(b̂ )

"Limited" t
(ŝe( ˆpb ) or r̂)
(see Angrist and
Kolesár (2023))

Test valid
only for
b0 2⇥
r̂�1 (.565) ,

r̂�1 (�.565)
⇤

|t̂|> 1.96 Need a priori
bounds blower
and bupper with
r̂�1 (.565) 
blower, bupper 
r̂�1 (�.565)

⇥
b̂ �1.96ŝe(b̂ ),

b̂ +1.96ŝe(b̂ )
⇤

\
⇥
blower,bupper

⇤

VtF
(ŝe( ˆpb ) or r̂)

None |t̂|>
q

c
�
r̂ (b0) , F̂

�
None

⇥
b̂ � k�

�
r̂, F̂

�
· ŝe(b̂ ),

b̂ + k+
�
r̂, F̂

�
· ŝe(b̂ )

⇤

Note: All methods require at least b̂ , ŝe(b̂ ), p̂ , and ŝe(p̂), and additional statistics needed for each approach are
indicated in the first column. Given b̂ , ŝe(b̂ ), p̂ , and ŝe(p̂), one can recover r̂ from ŝe( ˆpb ) and vice versa.

(i.e., cover the true parameter more than 95 percent of the time).15

Summarized in the third row of Table 1, a third, novel approach, recently introduced by Angrist
and Kolesár (2023), finds a different way to adhere to the usual ±1.96 critical values whenever
possible. It involves abandoning the use of the F-statistic altogether and instead focuses on the
fact that, for any given problem, there is a specific subset values for b such that the usual |t̂|> 1.96
procedure does not over-reject.16

More specifically, they leverage a subtle, and under-appreciated fact: there exists a one-to-one
relation between r and b that is fully determined by the variance-covariance matrix of the first-
stage and reduced form estimators. Denoting this one-to-one mapping as r(b ), this means that any
hypothesized value b0 necessarily implies a hypothesized correlation r(b0). This function, and its
inverse, are consistently estimable and denoted as r̂(·) and r̂�1(·).17

Angrist and Kolesár (2023) use the fact that the test |t̂|> 1.96 properly rejects no more than 5
percent of the time as long as |r| .565.18 Thus, as long as the hypothesis of interest b0 lies in the

15That tF is conservative relative to AR is pointed out in Angrist and Kolesár (2023) and Keane and Neal (2023).
16In a separate point about how to consider inference conditional on discarding the data when the F-statistic is

too small (i.e. truncated/screened inference), Angrist and Kolesár (2023) discuss the use of the sign of the first stage
coefficient in this context. See footnote 4.

17The functional form of r(·) is given below in equation (6), and the functional form of r̂(·) follows by replacing
the covariance parameters in (6) with corresponding sample estimates.

18Both LMMP (2022) and Angrist and Kolesár (2023) use the same formulas from SY (2005) and independently
confirmed the .565 number for the 5 percent level of significance.
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interval
⇥
r̂�1(.565), r̂�1(�.565)

⇤
, then no modification to the usual ±1.96 procedure is needed

for tests at the 5 percent level of significance.
There are two limitations to this approach to inference. First, only certain values of b0 can be

tested. That is, the hypothesis of interest may not lie in the “valid zone" of [r̂�1 (.565) , r̂�1 (�.565)].
As an example, the hypothesis b0 = 0 is quite commonly a hypothesis of interest; in our subsample
of 62 specifications, for 29 percent of them, zero lies outside the interval [r̂�1 (.565) , r̂�1 (�.565)],
which thus leads to an invalid test. More frequently, for 52 percent of the specifications in our sam-
ple, the null hypothesis of 0 lies outside the [r̂�1 (.435) , r̂�1 (�.435)], which invalidates the more
stringent test at the 1 percent level of significance using the usual ±2.58 critical values.19 Using
a completely different sample of published studies (from the American Economic Review, LMMP
(2022) report similar frequencies with which this approach would not be possible for testing the
null that b = 0.20

The second limitation to this approach is that the corresponding confidence interval procedure
would require imposing additional assumptions beyond the standard model (1). Specifically, it
would be necessary to restrict the values of b to lie within an interval blower  b  bupper, perhaps
based on theory or findings from other empirical studies (as was done in Angrist and Kolesár
(2023)). Next, to ensure validity, it would be necessary for those bounds to satisfy r̂�1 (.565) 
blower and bupper  r̂�1 (�.565). Under these conditions, the valid confidence interval is given by

h
b̂ �1.96 · ŝe

⇣
b̂
⌘
, b̂ +1.96 · ŝe

⇣
b̂
⌘i

\ [blower,bupper]

where there is a possibility that the usual data-based interval is truncated by the a priori bounds
[blower,bupper]. The practitioner might hope that these bounds would be wide enough so that the
confidence intervals are determined by the data, and not by the a priori bounds. This does not
appear to be true for many studies in our sample. Figure 1 displays the lower and upper endpoints
of the usual ±1.96 confidence intervals for all 62 specifications.21 Most of them are truncated by
the "valid zone", given by the range [r̂�1(.565), r̂�1(�.565)].22,23

19LMMP (2022), using the same formulas as used by LMMP (2022) and Angrist and Kolesár (2023) to compute
the .565 number, report .435 as the analogous number for the 1 percent level, noting that the range of r for which the
usual procedure remains valid depends on the desired level of statistical significance.

20Section A.8.2. of the Online Appendix reports that for 30 percent of the studies, the hypothesis b = 0 would lie
outside the "valid zone" for the 5 percent test, with 42 percent lying outside the "valid zone" for the 1 percent test.

21We normalize the units of the confidence interval endpoints according to the linear transformation b ⇤ =

b
r

ŝ22
ŝ11

�r̂RF
p

1�r̂2
RF

, which then leads to the simplification that r =� b ⇤p
1+b ⇤2

and b ⇤ =� rp
1�r2

.
2210 out of the 62 specifications (8.8 (weighted) percent) produce a ±1.96 confidence interval that is not truncated

by the “valid zone". Thus, we do find some examples of cases, like the three examples in Angrist and Kolesár (2023),
where the confidence interval is not truncated by the "valid zone" for the 95% level. All of the usual 99% confidence
intervals are truncated by the corresponding 99% “valid zone".

23A simple fix that would avoid the need to impose a priori bounds would be to switch to tF for the unavoidable

10



Figure 1: ± 1.96 Confidence Intervals vs A Priori Bounds

Note: All confidence bounds are normalized to units of b ⇤. Specifications are in order of the value of the lower bound
of the usual ±1.96 confidence interval. Circles indicate the endpoints of the confidence interval, and the size of the
circles are proportional to the inverse of the number of specifications in each study. Horizontal dotted lines indicate
the a priori bounds blower and bupper required to justify the validity of the usual ±1.96 confidence intervals.

The limitations of these three approaches motivate the development of VtF : we seek to 1)
extend and enhance the original SY (2005) and LMMP (2022) approach of an F-dependent crit-
ical value function to accommodate both small F-statistics and the possibility of reverting to the
usual ±1.96 intervals when possible, 2) eliminate the inherent conservatism of these F-based ap-
proaches, which do not utilize all of the statistics of the model, while 3) accommodate hypothesis
tests of any value of b , and avoid the need to specify a priori bounds on the parameter of interest.

In this paper, we derive a test, which we call VtF (summarized in the final row of Table 1):
essentially, the procedure is the t-ratio inference based on corrected critical values. Specifically,
we show that for any given hypothesis b0 and associated r̂(b0) there exists an F-dependent critical
value function for the t-ratio that delivers rejection at the intended significance level for all possible
values of the parameters of the model.24 The test rejects if and only if |t̂| >

q
c
�
r̂ (b0) , F̂

�
,

with values of the function
q

c
�
r̂ (b0) , F̂

�
provided in Appendix Table A3; the confidence set is

subset of b0 values that would land outside the “valid zone". This approach to inversion for confidence intervals would
also be a valid procedure. We thank Michal Kolesár for this observation; it captures the spirit and intuition of VtF .

24Section D.1 provides a precise description of the VtF critical value function uniqueness.
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bounded when F̂ > 1.962 and is contained by the interval

h
b̂ � k�

�
r̂, F̂

�
· ŝe(b̂ ), b̂ + k+

�
r̂, F̂

�
· ŝe(b̂ )

i

where the functions k�(·, ·) and k+(·, ·) are provided in Appendix Table A5. Critical values and
the confidence interval inflation factors for any values of F̂ , r̂(b0), and r̂ are available via STATA
code provided at http://www.princeton.edu/⇠davidlee/wp/SupplementVtF.html.

We note here that the above confidence interval, like the AR interval, need not be symmetric
around b̂ ; as we discuss in more detail in Section III.C, it is easy to conservatively accommodate
a preference for reporting a symmetric interval for both AR or VtF .

II.B Impact and Performance of VtF in Practice

The remaining sections of the paper provide a systematic treatment of the properties of VtF , but in
this subsection we demonstrate a main finding of the paper by applying the procedure to our sample
of IV specifications. As in our theoretical analysis below, we find in our sample of studies that VtF
is more powerful than the above three existing valid alternatives. That is, VtF is more likely to
result in statistically significant results, and its confidence intervals are considerably shorter as
well.

Table 2 reports the frequency with which the null hypothesis that b0 = 0 is rejected at the 5 per-
cent level of significance using AR, tF, and VtF . In order to include the usual ±1.96 procedure in
the comparison, for this exercise, we further restrict the sample to those 51 specifications for which
the usual test would be valid (i.e., the specifications for which 0 2

⇥
r̂�1 (.565) , r̂�1 (�.565)

⇤
).

The first column focuses on the 38 specifications drawn across 7 studies for which the null
hypothesis was rejected by the ±1.96 rule. Among these, AR also rejected the null for almost all
of them. tF , on the other hand, rejected about 59 percent of the time. VtF rejects the null 100
percent of the time for these studies, and the substantial difference between tF and VtF rejection
rates clearly demonstrates the latter’s power advantage in practice.

The second column focuses on the performance of the three alternatives among the 13 spec-
ifications (drawn from 4 distinct studies) for which the coefficient was statistically insignificant
via the usual t procedure. Neither AR nor tF is able to reject the null in any of those cases. By
contrast, among these cases VtF rejects the null for about 22 percent of these cases. Overall, in
this restricted sample of specifications for which the usual t procedure, AR, and tF are all valid,
VtF emerges as the most successful in yielding statistically significant results. The final column
in Table 2 also shows that in the subset of 62 specifications (with F-statistics less than 18) from
Figure 1, about 18 percent of the time the VtF intervals are shorter than the usual ±1.96 intervals.

In our sample of specifications, VtF confidence intervals outperform that of tF and AR, the

12
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Table 2: Frequency of Statistical Significance and Confidence Interval Length:
t, AR, tF , VtF

Procedure Reject CI Is Shorter
(Proportion) (Proportion)

|t|> 1.96 |t|< 1.96
AR 0.984 0.000 0.000
tF 0.588 0.000 0.000
VtF 1.000 0.223 0.179

N 38 13 62
(# of Studies) 7 4 8
% (Weighted)
of Studies

78.7 21.3

Note: All proportions weighted by the inverse of the number
of specifications in each study. (# of Studies) indicates how
many distinct studies provide specifications within each column.
Specifications restricted to those with F-statistics less than 18.
First two columns are further restricted to specifications where
the usual t-ratio is valid because 0 is contained in the interval
[r̂�1(.565), r̂�1(�.565)].

other two procedures that are valid without imposing any additional a priori bounds. For each spec-
ification, we can compute the difference in lengths of the various confidence intervals: ln(lengthAR)

� ln(lengthVtF) and ln(lengthtF)� ln(lengthVtF).
This distribution across the 62 specifications is shown in Figure 2, which plots the (weighted)

histogram of these difference measures. It is expected that VtF intervals will be shorter than that of
tF due to the use of an additional statistic from the data. That gain in precision is quite substantial.
For 79 percent of the specifications, tF confidence intervals are longer than those of VtF by more
than 30 log points.

Finally, Figure 2 depicts the distribution of the AR-VtF differences in lengths across the 62
specifications. We find that VtF’s confidence interval lengths are always shorter than AR interval
lengths. For the AR�VtF difference, the mode of this distribution is 15 to 30 log points with the
difference being greater than 30 log points in about 20 percent of the specifications. As a basis
of comparison, standard 95 percent confidence intervals are longer than 90 percent confidence
intervals by about ln

� 1.96
1.645

�
⇡ .18 and 99 percent confidence intervals are longer than 95 percent

confidence intervals by about ln
�2.58

1.96
�
⇡ .27.

Although one must be cautious about making broad conclusions about the "representative IV
analysis" from a small sample of published studies – which potentially over-samples studies with
strong first-stage F-statistics or statistically significant results – the data nevertheless provides
some evidence that in practice, when F-statistics are as small as they are in this sample, VtF
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Figure 2: Frequency Distributions of ln( lengthtF
lengthVtF

), ln( lengthAR
lengthVtF
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Note: Uses the 62 specifications for which the first-stage F-statistic is smaller than 18. Frequencies are weighted by the inverse of the number of
specifications in each study. Each bar denotes a frequency within an interval of difference in log-length of 0.15.

inferences will be materially different and more precise, with a higher likelihood of statistically
rejecting null effects, compared to AR, tF , and even to the usual ±1.96 procedure (when focusing
on cases when the latter is valid). In section III.D, we present a systematic and extensive compar-
ison of VtF to other procedures across a broad range of possible realizations of the data in the IV
setting; the findings are quite consistent with the patterns we find in this small sample of empirical
studies.

III Overview of VtF: Background, Definition, Confidence In-
terval Performance

In this section, we provide a high-level, non-technical summary of our main theoretical results. We
provide context for the VtF procedure, and define and describe the test procedure and associated
confidence set procedures in more detail. The section concludes with a systematic comparison of
VtF , AR, and tF confidence interval performance. Details of the derivation of the VtF critical
values and confidence intervals can be found in Appendix D.
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III.A Context: the inferential problem with t-ratio inference and existing
approaches

As has been understood for over two decades, the potential for weak instruments renders the con-
ventional 2SLS t-ratio-based hypothesis test invalid, meaning the t-ratio can reject the null hypoth-
esis far more than the intended significance level. That is, even when the null is true, and even in
large samples, the test that rejects the null when |t̂| > 1.96 can reject more than 5 percent of the
time. The extent of over-rejection will depend on the true strength of the first-stage and the degree
of endogeneity of the regressor X , both of which are unknown to the researcher, but the rejection
rate can be arbitrarily close to 100 percent.

To see this more concretely, under the now-standard weak instrument asymptotics of Staiger
and Stock (1997), the usual t-ratio t̂ converges in distribution to a random variable which we will
denote t, and the first-stage F-statistic, F̂ analogously converges in distribution to a random vari-
able which we will denote F . The random variable t (which can be characterized as a function of
a bivariate normal vector) has a non-normal distribution that depends on two unknown quantities:
the correlation of the main equation and first-stage errors, r , and the unit-free normalization of the
first-stage coefficient, f0.25 These nuisance parameters r and f0, in turn, determine the asymptotic
rejection rate of the t-ratio under the null:

(4) and
Prr, f0 [|t|> 1.96] 0.05 8(r, f0) 2 A,

Prr, f0 [|t|> 1.96]> 0.05 8(r, f0) /2 A,

where A is defined to be the set of r, f0 values such that the usual t-ratio procedure will reject no
more than the intended 5 percent of the time under the null hypothesis. The weak instrument over-
rejection problem is encapsulated by the fact that A does not contain all r, f0 values. The exact
form of the set A directly follows from Staiger and Stock (1997) and SY (2005) and is recently
visualized in both Angrist and Kolesár (2023) and Lee et al. (2020), and is replicated from the
latter as the gray area in Figure 3 with E[F ] = f0

2 + 1. It is important to note that in addition to
the anti-conservativeness that causes invalidity, the usual procedure can also be conservative. For
r, f0 values in the interior of the set A, the rejection rates are strictly lower than 0.05 (for a detailed
contour plot, see Angrist and Kolesár (2023)).

The approach to just identified IV inference advocated in the econometric literature (see An-
drews, Stock and Sun (2019), Keane and Neal (2023), Andrews, Moreira and Stock (2006)) is the
AR test. This procedure avoids both the conservativeness and the anti-conservativeness of the usual

25Specifically, under the weak IV asymptotics of Staiger and Stock (1997), f0 ⌘
p

NpNps22
where pN shrinks to zero at

rate 1p
N

, and s22 is the asymptotic variance of the first-stage coefficient estimator.
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Figure 3: Values for r and E[F ] for which |t|> 1.96 is valid
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t-test by achieving a rejection rate that matches the intended significance level for all values of the
parameters r, f0. AR uses information from the reduced-form residual covariance matrix to obtain
estimates of s11, s22, and rRF where

p
N

 
cpb �pNb

p̂ �pN

!
d! N

  
0
0

!
,

 
s11 rRF

ps11s22

rRF
ps11s22 s22

!!
.

Here estimates of s11,s22, and rRF could incorporate the use of a robust variance estimator (e.g.
clustered, Newey-West, etc.) to match departures from homoskedasticity in the reduced-form
errors. These estimates can then used to obtain the “t-ratio form" of the AR statistic:

t̂AR ⌘
p̂
⇣

b̂ �b0

⌘

1p
N

q
ŝ11 �2b0r̂RF

p
ŝ11ŝ22 +b 2

0 ŝ22

.

Under weak instrument asymptotics, t̂AR converges in distribution to a random variable tAR, which
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has a standard normal distribution under the null. As a result, the AR test is asymptotically similar:

Prr, f0 [|tAR|> 1.96] = 0.05 8(r, f0) .

Given the AR procedure’s ability to achieve correct size regardless of the value of (r , f0), it is
considered to be “robust” to weak instruments and hence valid.

In practice, applied researchers typically do not employ AR.26 Instead, as covered in numerous
textbooks and surveys of the literature (e.g., Angrist and Pischke (2009), Stock and Watson (2019),
Wooldridge (2019), or Hansen (2022)), they explicitly or implicitly recognize the problem of weak
instruments by reporting the first-stage F-statistic with the typical motivation that the larger the
F-statistic, the less concern they have with possible inferential distortions that arise from using
the 1.96 rule. This standard practice in applied work is reflected in the over 9500 citations to SY
(2005), which provides first-stage F-statistic thresholds to reduce inferential distortions.

When researchers take this approach, they are implicitly making inferences about b using the
following rule: reject the null hypothesis if t̂2 > 1.962 and F̂ > F̄ , and otherwise accept the null
hypothesis.27 As before, weak instrument asymptotics will provide the limit distribution for (t̂, F̂)

which we will denote by (t,F). Let aF̄ = supr, f0 Prr, f0 [{|t|> 1.96}\{F > F̄}] denote the
asymptotic size of this procedure for a given threshold F̄ . Typical implementations reduce the size
distortion of the t-test but do not achieve the intended significance level associated, for example,
with the value 1.96, i.e. aF̄ > .05. These tests translate to confidence intervals that take the form
of b̂ ±1.96 · ŝe

⇣
b̂
⌘

when F̂ > F̄ , and otherwise the whole real line, when F̂  F̄ . These intervals
have confidence levels equal to 1�aF̄ , e.g. 88.6, 90.6, and 95 percent, for F̄ equal to 10, 16.38,
and 104.67, respectively. While convenient to implement, this approach can limit the applicability
of instrumental variables, even when the first-stage might be considered to be quite strong but still
below the threshold F̄ .

To achieve a 5/95 percent level of significance/confidence, while maintaining informative in-
ference even when F̂ is low, LMMP (2022) derive a refinement to this F-based approach: rather
than a single-threshold rule, a smooth critical value function ctF (F) is used satisfying

(5) Prr, f0

h
|t|>

p
ctF (F)

i
 0.05 8(r, f0) .

The function ctF (F) plateaus when F > 104.67 and asymptotes to infinity as F approaches 1.962

from above. LMMP (2022) shows that that there does not exist another critical value function

26LMMP (2022) report that it is used less than 4 percent of the time in their sample of AER articles.
27SY (2005) develop various thresholds in the context of testing the null hypothesis of the presence of weak

instruments. Staiger and Stock (1997) discuss how to incorporate such a test for instrument weakness into inference
on b .
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uniformly below ctF (F) that also satisfies the condition for intended significance level (5).
While the tF procedure addresses the anti-conservativeness of the usual t-ratio approach, it

does not address its conservativeness. As documented in LMMP (2022) and emphasized in Keane
and Neal (2023), when the true r is small, it can have very low power for local alternatives,
compared to AR, for example. This occurs because tF , like any test that achieves an intended
significance level (e.g., the original Stock-Yogo approach), must accommodate all possible values
of the parameters, including the worst-case/least-favorable scenario for rejection probabilities. In
the case of this IV model, the worst-case is when r takes on extreme values such as ±1.

More recently, Angrist and Kolesár (2023) introduce a novel strategy to justify the usual ±1.96
t-ratio procedure. Instead of relying on the information contained in F̂ , they leverage the features
of the set A defined by (4) and shown in Figure 3. They point out that there may be some situations
in which it is reasonable to simply rule out, a priori, values of the parameters outside of the set A
for which the usual t-test with critical value 1.96 is valid. Specifically, they use the fact that r is a
one-to-one transformation of b via

(6) r(b ) =
rRF �b

q
s22
s11r

1�2rRFb
q

s22
s11

+
⇣

b
q

s22
s11

⌘2
.

This transformation can effectively be treated as a known function, since ŝ11, ŝ22, and r̂RF are
all consistent estimators of s11, s22, and rRF , respectively, even under weak-IV asymptotics. We
write r̂(·) when consistent estimators of the covariance parameters are used in (6). 28

Angrist and Kolesár (2023) emphasize the fact that any hypothesis about b is thus equivalent
to a specific hypothesis about r and vice versa, and inference about b maps directly to inference
about r . Thus, if one is comfortable providing a priori bounds for a range of reasonable values of
b , this implies corresponding bounds on r . If those bounds imply |r| is less than .565, then (r, f0)
will be in the set A and the usual ±1.96 intervals will remain valid at the 95 percent confidence
level. Analogously, making assumptions about b such that |r| is always less than .435 would allow
the usual ±2.58 intervals to be valid at the 99 percent confidence level. Angrist and Kolesár (2023)
find that in three prominent empirical examples, their bounds for b would imply values of |r| less
than .565, establishing that conventional t-ratio inference is justified in those three cases.

The main limitation to this approach is that it requires the researcher to 1) rule out some values
of b on a priori grounds, leading to b 2 [blower,bupper], 2) ensure that the remaining allowable
values of b 2 [blower,bupper] are contained within a region such that |r̂(b )|  .565, and 3) be
willing to report confidence sets of the form [b̂ ± 1.96 · ŝe(b̂ )]\ [blower,bupper] (i.e., the usual

28Note that under any null hypothesis that b = b0, r̂(b0) is a consistent estimator of r .
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confidence interval that is truncated by the a priori bounds blower or bupper; or possibly the empty
set).

This paper proposes a procedure aimed at achieving a common goal of both the strategies
of SY (2005) and Angrist and Kolesár (2023): to allow the researcher to use the usual ±1.96
confidence intervals – whenever possible. It does so, by further enhancing the standard F-based
critical value function approach of Stock-Yogo, addressing the anti-conservativeness of the usual
±1.96 procedure, while also addressing the conservativeness of tF . In doing so, we provide a
confidence interval procedure that does not require imposing assumptions about the parameter b ,
and more generally a test procedure for any hypothesized value of b , applicable to any dataset.

We are motivated by a desire to offer an improvement that resembles already-prevailing practice
("t-ratio plus F-statistic" inference), and so a natural question is what price in terms of power
one must pay for that convenience and resemblance with existing practice. As we show below
in Section III.D, our comparisons of VtF confidence intervals to that of AR reveal that there is
apparently virtually no price to pay. To the contrary, VtF confidence intervals generally outperform
those of tF , AR, and in some realizations of the data, even the usual (and invalid) ±1.96 intervals.

III.B Description of VtF test procedure

As discussed in the previous section, we seek a test procedure that: 1) uses the conventional and
familiar 2SLS t-ratio 2) uses a critical value function that, given a fixed null value of b0 (and hence
fixed null value of r̂(b0) via the sample version of Equation (6)), depends only on the first stage
F̂-statistic, and thus 3) avoids conservativeness, by adapting to the correlation parameter implied
by the null.

Assuming, for the moment, the existence of such a critical value function, these properties
could be formally expressed as a test that rejects if and only if

|t̂|>
q

c
�
r̂(b0), F̂ ;a

�

where the critical value function c(·, ·;a) satisfies the condition:

(7) Prr, f0

h
|t|>

p
c(r(b0),F ;a)

i
= a, 8r, f0

under the null.29 In our discussion, we focus on the case of a = 0.05, but, to be clear, VtF can
accommodate any size a (e.g., a = 0.01).

29Note that under the null, r(b0) = r(b ) = r . A statement equivalent to (7) that explicitly
acknowledges the one-to-one relation between b and r given the reduced-form covariance matrix is
Prb0, f0,s11,s22,rRF

h
|t|>

p
c(r(b0),F ;0.05)

i
= 0.05 8b0, f0,s11,s22,rRF .

19



Note that the equal sign in (7) requires that the test not only controls size, but that it is also a
similar test (so that it avoids being overly conservative for any parameter values).

While the statement in Equation (7) is simple, establishing whether such a function c(·, ·;a)

exists is not. In Appendix D, we establish that such a function c(·, ·;a) exists and also establish
that it is unique (within a class of candidate functions).

Figure 4: VtF Critical Value function
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We now illustrate in Figure 4 the VtF critical value function
q

c
�
r̂(b0), F̂ ;a

�
for selected

values of r̂(b0) and for a = 0.05, noting the following features:

1. For any value of r̂(b0), as F increases, the critical value function
q

c
�
r̂(b0), F̂

�
tends to the

usual standard normal critical value of 1.96.

2. When the null value implies a high degree of endogeneity, i.e., |r̂ (b0)| is far enough from
zero, the critical value function is decreasing in F̂ . As |r̂ (b0)| approaches 1, it approaches
the tF critical value function of LMMP (2022), which is strictly decreasing in F̂ .

3. By contrast, when the null value implies a low degree of endogeneity, the critical value
function is increasing in F̂ . As |r̂ (b0)| approaches zero, c

�
r̂(b0), F̂

�
converges to 1.962

1+1.962/F̂ ,

which is strictly increasing in F̂ . Moreover, when the null corresponds to r̂ (b0) = 0, the VtF
test is identical to the AR test. See Appendix D for details on both of these points.

4. When |r̂ (b0)| 0.543, the critical value function is entirely below the value 1.96.
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5. For any null with |r̂ (b0)| < 1, VtF may reject the null even when the first stage coeffi-
cient is statistically insignificant (i.e., F̂ < 1.962). However, it can be shown that whenever
F̂ < 1.962, it is impossible to reject the null that b0 = ±•, i.e., VtF confidence sets are
unbounded. This condition for an unbounded confidence set is identical to that of AR.

6. For each value of r̂(b0), the critical value function c(r̂(b0), ·) is drawn in Figure 4 to start at
the point

⇣
r̂2(b0)1.962, r̂2(b0)1.962

1�r̂2(b0)

⌘
. At this point, the critical value function intersects the

function F̂
1�r̂2(b0)

which is an upper bound of t̂2 for r̂(b0). For F̂ 2 [0, r̂2(b0)), the VtF test
will always accept, which can be achieved by setting the critical value function c to any value
above the upper bound, e.g. for F̂ 2 [0, r̂2(b0)), c

�
r̂(b0), F̂

�
= • or r̂2(b0)(1.96)2

1�r̂2(b0)
. Since any

function above the upper bound F̂
1�r̂2(b0)

will equivalently lead to the same test, we do not
draw in this part of the critical value function.

Appendix Table A3 provides tables of VtF critical values for selected values of r̂ (b0) and for
a = 0.05 and a = 0.01. For intermediate values of F̂ and r̂(b0), linear interpolation using these
tables can provide a rough guide; critical values for any values of F̂ and r̂(b0) can be obtained
via STATA code provided at http://www.princeton.edu/⇠davidlee/wp/SupplementVtF.html. Since
these critical values are a function of only two variables (F̂ and r̂(b0)), with an appropriate flexible
functional form, one could potentially compactly represent a good approximation to the critical
value function using those two variables and a relatively small number of parameters.

Remark. There are two immediate and important implications of the fourth point above, which
notes when the VtF critical value function lies below 1.96. Since the critical value function is
constructed to produce a probability of rejection of 0.05 under the null, the first consequence of
Point 4 is that for any for any value b0 such that |r(b0)|  0.543, the null rejection probability
for the usual ±1.96 test must be lower than 0.05. Thus, since power (rejection probability under
alternative values) is continuous in the parameters of the model for both procedures, it must be
true that VtF will be more powerful than the ±1.96 procedure for any "local" alternative value of
b . Also note that the condition |r(b0)|  .543 is close to the "valid zone" |r(b0)|  .565 shown
in Figure 3. This means that when we restrict attention to hypotheses for which the usual ±1.96
procedure is valid (as we describe in Section II; see Angrist and Kolesár (2023)), we would expect
VtF to be more powerful in the above sense. This expectation is consistent with our findings that
VtF was more successful than the usual ±1.96 procedure at statistically detecting null effects in
our sample of studies as reported in Section II. Notably, by contrast, both single-threshold F-based
procedures and tF , for these restricted null values, have inferior power compared to the ±1.96
procedure.

Second, the same principle applies to the confidence interval, which is by definition the set of
hypothesized values that are accepted by the corresponding test procedure, for a given realization of
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the data. Under the same conditions necessary to justify the validity of the usual ±1.96 intervals,
VtF confidence intervals will tend to be shorter. Suppose, for example, one were comfortable
imposing a condition that would ensure validity of ±1.96 intervals – that all b within the interval
[blower,bupper] satisfied |r̂ (b )|  0.543. Due to Point 4 above, any such hypothesized value that
is rejected by the rule |t̂|> 1.96 will always be rejected by the VtF critical value, but the converse
statement is not true. Thus, in this case, VtF confidence intervals will be entirely contained within
the ±1.96 intervals for this range of b .

In sum, although VtF does not require any restriction on the range of hypotheses allowable
to test, imposing those restrictions will, in any case, result in more precise inferences than what
would be produced by the usual ±1.96 procedure.

III.C VtF Confidence Intervals

A confidence set can be defined as the set of hypothesized values that would be accepted by a given
test procedure. In Appendix D, noting that the function r̂(·) is determined by ŝ11, ŝ11, and r̂RF ,
we are able to show VtF confidence set can be written as the set-valued function that depends on
the quantities b̂ , ŝe(b̂ ), r̂, F̂ :

CS
⇣

b̂ , ŝe(b̂ ), r̂, F̂
⌘
=

(
b0

���� �
q

c
�
r̂(b0), F̂

�
 b̂ �b0

ŝe(b̂ )

q

c
�
r̂(b0), F̂

�
)

where r̂ = r̂(b̂ ). This confidence set has the property that

liminf Prr(b ), f0

h
b 2CS

⇣
b̂ , ŝe

⇣
b̂
⌘
, r̂, F̂

⌘i
= .95

and therefore has correct confidence level and is also never conservative meaning the liminf in the
above equation could be replaced by limsup and the same equality would still hold.

As we explain in greater detail in Appendix D, when it is bounded, the confidence set can
always be contained by a single interval conveniently represented as

(8)
h
b̂ � k�

�
r̂, F̂

�
· ŝe

⇣
b̂
⌘
, b̂ + k+

�
r̂, F̂

�
· ŝe

⇣
b̂
⌘i

where k�(·, ·) and k+(·, ·) are functions used to construct the endpoints of the confidence interval.
Recall that the usual (and invalid) approach to confidence intervals for the IV parameter is to inflate
the standard error by 1.96. The VtF approach to confidence interval construction is to replace 1.96
with the data-dependent factors k�(·, ·) and k+(·, ·) that lead to correct coverage rates. These data-
dependent factors can be greater or less than 1.96. To economize on notation, and hopefully at no
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risk of confusion, we write k� in place of k�(·, ·) and k+ in place of k+(·, ·).
It is important to note that because the factors k� and k+ are not the same, VtF confidence

intervals will generally be asymmetric, so that the length of the upper segment (the upper bound
minus b̂ ) will be different from that of the lower segment (b̂ minus the lower bound). Which
segment is longer turns out to depend on the sign of r̂. In particular, if r̂ is positive, then the upper
segment of the confidence interval will be shorter than the lower segment; and if r̂ is negative, then
the upper segment of the confidence interval will be longer.

Remark. Practitioners are most familiar with reporting two numbers, the 2SLS point estimate
and standard error, with the latter displayed right below the former. From these numbers, it is easy
for the reader to instantly approximate the usual ±1.96 confidence intervals. If this reporting con-
venience is important, it would be straightforward to report a (conservative) "adjusted" standard
error, by multiplying max[k+(r̂,F̂ ;0.05),k�(r̂,F̂ ;0.05)]

1.96 by ŝe(b̂ ). This could be reported as a "symmetric
VtF 0.05 standard error".30 Note that this reporting practice would lead to conservative inferences
and the resulting symmetric-around-b̂ interval would be unnecessarily longer than the unsym-
metrized interval, achieving coverage that exceeds e.g. 95 percent. An alternative – just as in the
case for AR – is to simply report the VtF interval (8) in addition to b̂ and ŝe(b̂ ). Presuming that the
F̂-statistic is already reported, the additional reporting of r̂ would then provide full transparency,
and give any reader the ability to re-construct intervals for any of the methods mentioned in this
paper.

Appendix Table A5 presents k� and k+ for selected values of |r̂| and F̂ . The tables reveal
the following broad patterns: 1) There is a wide range of possible inflation factors, ranging from
values of k+ and k� that are smaller than the usual inflation factor of 1.96, to values larger than 5;
2) irrespective of the value of |r̂|, k+ and k� tend to 1.96 as F̂ increases; 3) k+ and k� are generally
decreasing in F̂ , but there are some regions where they are slightly increasing in F̂ , for example
when k+,k� < 1.96; and 4) for any fixed F̂ and r̂ > 0, k� is monotonically increasing in r̂ > 0
while k+ is non-monotonic in r̂ > 0 (and the symmetric relationships apply when r̂ < 0).

Finally, the entries where both k+ and k� are below 1.96 are shaded in gray in Appendix Table
A5. For these values of F̂ and |r̂|, the practitioner could elect to forgo the smaller VtF interval and
simply use the conventional t-ratio confidence intervals and still obtain valid (even if conservative)
inference. The pattern of shaded entries shows that even when first-stage F-statistics are relatively
low (e.g., F̂ of 20), one could adopt the usual ±1.96 intervals provided |r̂| is sufficiently low.
Otherwise, the practitioner can simply use the inflation factors k+ and k�. A simple (conservative)
rule of thumb for this region, in which one can revert to the usual ±1.96 intervals is given by the
condition F̂ > 10+100 |r̂|.

30Analogously, max[k+(r̂,F̂ ;0.01),k�(r̂,F̂ ;0.01)
2.58 · ŝe(b̂ ) with the analogous k+,k� factors for the 99 percent levels, could

be reported as the "symmetric VtF 0.01 standard error".
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We again note that for intermediate values of F̂ and r̂, linear interpolation using these appendix
tables can provide a rough guide; inflation factors for any values of F̂ and r̂ can be obtained
via STATA code provided at http://www.princeton.edu/⇠davidlee/wp/SupplementVtF.html. Since
these inflation factors are a function of only two variables (F̂ and r̂), with an appropriate flexible
functional form, one could potentially compactly represent a good approximation to the inflation
factors using those two variables and a relatively small number of parameters.

III.D Confidence Interval Length Performance: VtF versus t, tF and AR

In Section II, VtF confidence intervals were compared to other confidence interval methods for a
collection of empirical studies. In this subsection, we supplement that presentation with a compre-
hensive and systematic comparison that is not tied to any particular sample of empirical studies.
We find that VtF produces significantly shorter confidence intervals than that of tF , which demon-
strates that there is considerable value in using the information contained in the statistic r̂. We also
find that VtF intervals are generally shorter than those of AR – roughly shorter to about the same
extent that AR is shorter than tF ; this superior performance necessarily must stem from the struc-
ture of the test (VtF is a Wald-based test, while AR is a Lagrange Multiplier or Likelihood Ratio
test), since both the VtF and AR tests use the same information: cpb , p̂, ŝ11, ŝ22, r̂RF . We also sys-
tematically document the possibility that VtF intervals can be shorter than the conventional (and
invalid) ±1.96 intervals, even when the VtF intervals are not entirely contained within the ±1.96
intervals. By contrast, AR intervals are never shorter than the usual ±1.96 confidence intervals
(and therefore could never be entirely contained within the usual confidence intervals).

Before proceeding, it is important to note exactly what is entailed in the comparisons made here
and described above. Typically statistical procedures are compared by looking at features of their
outcome distributions, e.g., bias, variance, and power. This kind of comparison is typically made
for specific data generating processes. We provide this more standard power analysis, as well as an
analysis of the distribution of confidence interval lengths for 16 different data generating processes,
corresponding to r = 0,0.5,0.8,0.9 and f0 = 1,3,6,9 in Section IV, and Appendices C.1 and C.2.

By contrast, the comparison in this section does not involve distributions, expectations, or data
generating processes and is instead done at the much finer level of data realizations. Above we
noted that the VtF inflation factors k� and k+ depend on the data only through the values of r̂ and
F̂ . We denote the analogous inflation factors for AR and tF by k�AR, k+AR, k�tF and k+tF . Since these
inflation factors also depend on the data only through r̂ and F̂ , we can make a complete set of
relative length comparisons for all possible data realizations by considering just the comparisons
for each r̂ and F̂ . Any statement about the distribution of lengths in repeated samples for a given
data generating process would be driven by the implied distribution of (r̂, F̂).
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Figure 5: Confidence Interval Factors, VtF , tF , AR, t

(a) r̂ = 0

(b) r̂ =�0.5
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Figure 5a plots the inflation factors k� to k+ at a finer level of resolution than the corresponding
table in Appendix Table A5 for the case that r̂ = 0. In addition, we overlay the analogous inflation
factors for tF and AR, where we focus on the region where F̂ < 10. The VtF intervals are clearly
much shorter than those of tF , unsurprising since, compared to VtF or AR, the tF procedure
essentially ignores the information in r̂.

The VtF confidence intervals are also clearly shorter than (and contained within) that of AR,
whose inflation factors are roughly midway between those of VtF and tF .

Figure 5b plots the inflation factors for the case that r̂ = �0.5. The figure shows how both
VtF and AR produce asymmetric intervals around b̂ , and are longer on the upper segment when
r̂ is negative. Again, VtF and AR intervals substantially improve on the (symmetric) tF intervals,
particularly on the lower segment of the interval. The lower bound of the VtF and AR intervals
are quite similar and also above �1.96. As for the upper segment of the interval, we see again that
VtF outperforms AR to a similar extent that AR outperforms tF .

Figures 6a-c provide another visualization of relative lengths for the all of the procedures for
the range F̂ 2 (1.962,104.67), and 0  |r̂|  1. In all of the figures, we additionally overlay the
realizations of F̂ and r̂ from the 89 specifications such that F̂ 2 (3.84,104.67) and use a (units-free)
difference in the logs of length measure, for example,

ln
✓

lengthtF
lengthVtF

◆
= ln

�
k+tF + k�tF

�
� ln

�
k++ k�

�
.

Figure 6a depicts four different ranges for the difference in log of lengths, ln
⇣ lengthtF

lengthVtF

⌘
:

(0, .1], (.1, .25], (.25, .5], and > .5; and the values of (|r̂| , F̂) that lead to these lengths. Since
VtF intervals are always shorter than tF intervals the difference in log lengths is always positive.
The figure illustrates that in general as the first-stage F becomes smaller, VtF intervals become
shorter than those of tF , and this is generally true for values of |r̂| less than 0.7. Above 0.7, the
overall advantage of VtF relative to tF is still present but diminishes.

Figure 6b is analogous to Figure 6a, but represents the ranges of values for ln
⇣ lengthAR

lengthVtF

⌘
,

adding a fifth category, when ln
⇣ lengthAR

lengthVtF

⌘
< 0. Overall, for most of this space, AR intervals are

longer than VtF intervals, and the pattern of how relative length varies with F̂ and |r̂| is similar to
that depicted in Figure 6a, but it is clear that the VtF advantage over AR is not as great as the VtF
advantage over tF . There is a relatively small region on the right side of the graph that represents
realizations for which AR intervals are shorter. In probabilistic terms, this region on the far right
of the graph is generally small. In Appendix C.1, under the 16 designs considered, the probability
that the AR interval is shorter than the VtF interval is never greater than three percent.

Figure 6c provides another depiction of the comparison between VtF and AR intervals, using
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Figure 6: Confidence Interval Lengths

(a) VtF versus tF
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Note: Circles represent 89 specifications for which first-stage F-statistics are between 1.962 and 104.67,
with the size of circle proportional to the inverse of the number of specifications in each study. The degree
of shading indicates the difference in the log(CI lengths) (tF minus VtF). The vertical axis is a log-scale.
The range of |r̂| is [0,0.995].

the following mutually exclusive categories: 1) [�k�,k+]✓
⇥
�k�AR,k

+
AR
⇤

(and hence ln
⇣ lengthAR

lengthVtF

⌘
>

0); 2) ln
⇣ lengthAR

lengthVtF

⌘
> 0 and [�k�,k+]*

⇥
�k�AR,k

+
AR
⇤
; and 3) ln

⇣ lengthAR
lengthVtF

⌘
< 0 and [�k�,k+]+

⇥
�k�AR,k

+
AR
⇤
; there were no realizations for which [�k�,k+] ◆

⇥
�k�AR,k

+
AR
⇤
. For a substantial re-

gion (the left side of the graph), VtF intervals are entirely contained within AR intervals. Most of
the remaining region represents data realizations for which VtF intervals are not entirely contained
within AR intervals, but are nevertheless shorter.

Finally, Figure 6d is an analogous figure, comparing VtF and the conventional ±1.96 intervals.
Even though the ±1.96 interval procedure does not have correct confidence level, we make the
comparison to illustrate when it will be the case that VtF intervals are shorter than the usual ±1.96
intervals, and in particular, when it would be clear that simply reverting to the ±1.96 intervals
would not affect the validity of the inference.

The figure shows that there is a substantial region where VtF intervals are longer (shades of
red) than the ±1.96 intervals. We know such a region must exist due to the under-coverage of
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Figure 6: Confidence Interval Lengths

(b) VtF versus AR
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Note: Circles represent 89 specifications for which first-stage F-statistics are between 1.962 and 104.67,
with the size of circle proportional to the inverse of the number of specifications in each study. The degree
of shading indicates the difference in the log(CI lengths) (AR minus VtF). The vertical axis is a log-scale.
The range of |r̂| is [0,0.995].

the ±1.96 intervals. At the same time, the figure shows that there is a substantial region of larger
F̂ and/or small |r̂| for which the VtF intervals will be shorter (shades of blue). Among the 89
specifications from our sample of studies, 32 percent fall within this region. Within that region,
there exists a substantial region for which the VtF intervals are entirely contained within the ±1.96
interval (category 1). It is this last region that is conservatively approximated by the rule of thumb
F̂ > 10+ 100 |r̂|, which is also depicted in the figure. The researcher can simply use the usual
±1.96 intervals whenever F̂ > 10+ 100 |r̂|, and otherwise use the VtF intervals via Appendix
Table A5, and be assured that the confidence level of 95 percent is uncompromised. It is important
to note that a similar strategy cannot be used with AR intervals, which are always longer than the
±1.96 intervals.

Not reported here (but available upon request) we produced a parallel set of heatmaps that
compare the performance of a (conservative) symmetric version of the VtF interval formed by
b̂ ±max[k+,k�] · ŝe(b̂ ), to tF , an analogously symmetrized AR, and the usual ±1.96 intervals.
The patterns are qualitatively similar, with the main difference being that the symmetrized AR
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Figure 6: Confidence Interval Lengths

(c) VtF versus AR
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with the size of circle proportional to the inverse of the number of specifications in each study. The shading
indicates whether the VtF intervals contains/are contained by AR intervals, and if not, which interval is
longer. The vertical axis is a log-scale. The range of |r̂| is [0,0.995].

intervals are longer than the symmetrized VtF intervals for all realizations of the data.

IV Power Comparisons with existing Methods

In previous sections, we presented a comprehensive comparison of VtF , AR, and tF procedures in
terms of confidence interval lengths through a data realization by data realization evaluation. In
our sample of empirical studies, VtF confidence intervals are shorter than both AR and tF intervals
in 100 percent of the specifications. The heatmaps in Figure 6 provide a more systematic summary
of confidence interval lengths for each possible data realization and confirm the broad scope of
VtF’s advantage.

We now conduct a more standard power analysis of these different testing procedures. Given
the confidence interval length findings, we should expect to find that VtF has some power advan-
tages relative to AR and tF . Any observed advantage may be somewhat surprising or appear to be
at odds with two types of well established optimality results for AR in the case of the just-identified
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Figure 6: Confidence Interval Lengths

(d) VtF versus t
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interval is longer. The vertical axis is a log-scale. The range of |r̂| is [0,0.995].

IV model: a) AR is uniformly most powerful within a class of tests; and b) AR is an admissible
procedure.31 Below we present the power of these tests with the further aim of reconciling our
findings with the optimality results from the previous literature. Additionally, we provide a new
decomposition of power that clarifies how VtF focuses power differently, compared to AR, to
achieve shorter confidence intervals.

IV.A The Weak IV Probability Model

To derive the VtF procedure (see Appendix D) and to conduct the power analysis, we use the
now standard IV asymptotic framework of Staiger and Stock (1997), which provides accurate
approximations regardless of the quality of the instrument. Using the same notation as in the

31See Andrews, Stock and Sun (2019) for a discussion of the literature’s optimality findings on AR with respect to
the just-identified model.
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Online Appendix to LMMP (2022), t̂AR (b0) and f̂ converge jointly in distribution to
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where D(b0) =

p
V (Zv)p
V (Zu)

(b �b0) , r (b0) =
r +D(b0)p

1+2rD(b0)+D2 (b0)

and r is the true population correlation between Zu and Zv. Equations (6) and (9) provide equiv-
alent expressions for r(b0).32 Equation (6) can be used to map any hypothesized value b0 to the
implied correlation between Zv and Zu under that hypothesis. From (9), r(b0) can alternatively be
written as a function of the true population r and the departure of the true b from the hypothesized
value b0, denoted D(b0). Whereas Equation (6) is directly used for hypothesis testing via r̂(b0),
a consistent estimator of r(b0), the representation of r(b0) in (9) is used in the analysis of power
below. When the null is true, b = b0, D(b0) equals zero; the mean of tAR (b0) equals zero; and the
correlation between tAR (b0) and f simplifies to r .

Given the following algebraic expression for the square of the t-ratio,
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+
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the continuous mapping theorem yields
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.

This distribution will be important to the power analysis that follows.

IV.B Power curve analysis: VtF, tF,AR

We start with a standard power curve analysis comparing the performance of the three tests VtF ,
tF , and AR.

32Specifically, it is straightforward to derive that rRF =
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� , and substitute these expressions into Equation (6).
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The (asymptotic) critical region R(tAR (b0) , f ,r (b0)) for each of these tests is given by

�
t2 > c(r (b0) ,F ;a)

 
for VtF

�
t2
AR > q1�a

 
for AR

�
t2 > ctF (F ;a)

 
for tF ,

where the critical region is expressed as depending on tAR (b0), f , and r (b0) since t2 is a function
of these same arguments by (10). But, the joint distribution of (tAR (b0) , f ) and the value of r (b0)

in turn depend on the values of D(b0), r , and f0 as given in (9). Hence, the relevant data generating
process for these tests can be indexed by D(b0), r , and f0. And, the power of each test can then
be computed as the probability of rejection for each data generating process and hypothesized
null value: PrD(b0),r, f0 [R (tAR (b0) , f ,r (b0))], which yields a power surface defined on a three-
dimensional domain defined by the variables D(b0) ,r , and f0.

How one decides to “slice” this power surface into presentable two-dimensional curves has
been carefully considered in previous work. Andrews, Marmer and Yu (2019) and Van de Sijpe
and Windmeijer (2023) note that there are at least three different "slices" that could be considered.
First, one could keep the reduced-form error covariance matrix and the null value b0 constant while
varying the true b (resulting in changes in the structural error covariance matrix33 as true b varies
over alternative values). Second, one could keep the structural error covariance matrix and the null
b0 constant and vary the true parameter b (causing the reduced-form error covariance matrix to
vary with the alternative). A third possibility is to keep the true b , reduced-form and structural
error covariance matrices constant while varying the hypothesized value b0. As pointed out in
LMMP (2022), in the context of the just-identified IV model, the second and third approaches
produce identical power curves, and will differ from the curves using the first way of "slicing" the
power surface.

While the interpretation and perspective provided by an individual power curve slice can vary
from approach to approach, the collective information content of each approach is identical. That
is, the collection of power curves of any of the three approaches described above simply summa-
rizes the power surface given by PrD(b0),r, f0 [R (tAR (b0) , f ,r (b0))].

We adopt the second (equivalently, the third) approach to displaying power because these power
curve slices are connected to the expected length of confidence sets and thus are the most closely
associated with our results on confidence intervals discussed in previous sections. As shown by
Pratt (1961), the integral of 1 minus the power (type II error), integrated across all values of b0

33The structural errors referred to here are (u,v), see (1). The structural error covariance matrix can be obtained

from the reduced form error matrix by pre- and post-multiplication by
✓

1 �b
0 1

◆
and its transpose.
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while keeping b fixed, is equal to the expected length of the confidence set in repeated samples.
The measure of length used is the usual Lebesgue measure. Pratt (1961) points out that expected
length, which is easily recognizable from an applied perspective, has two interpretations: it rep-
resents both the average “size” of the set of false values that will be contained in the confidence
set, as well as the average probability of the confidence set containing each false value (uniformly
averaging across false values). By displaying power curves for each procedure across a wide range
of b0 values, we expect to gain insight into relative lengths, with the area between the curves
specifically representing the expected difference in lengths. We also anticipate the curves to ex-
hibit infinite areas between the power curve and the value 1. This is due to Dufour (1997) who
shows that, in this weakly identified setting, any valid confidence set has infinite expected length.
The correspondence of these areas above and between curves to expected length does not hold for
the first approach (fixed reduced-form variance) to visualizing a "slice" of the power surface.

Figure 7: VtF Power Curves: r = 0, f0 = 1

Figure 7 Panel A shows the second/third approach to visualizing power for VtF, tF, and AR
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Figure 8: VtF Power Curves: r = 0.5, f0 = 3

for the case where r = 0 and f0 = 1. As a reminder that the reduced-form covariance matrix
must necessarily change as b � b0 varies, Panel B plots the corresponding values of

q
s22
s11

and
rRF . Panel A clearly shows uniform dominance of VtF over tF across the range of parameter
values b �b0. tF is conservative in this case, as we would expect, since it must control rejection
probabilities for the case of r = ±1 even if the true r is zero. Figure 7 Panel A also shows that
VtF uniformly dominates AR over the same range.

Figure 8 Panel A displays the case of r = 0.5 and f0 = 3. Once again, VtF uniformly dominates
tF , but neither VtF nor AR uniformly dominate each other. The visual impression is that the area
between the curves when VtF is higher is roughly similar to the area between the curves when AR
is higher.

To consider how these power results fit with established AR optimality results, it is useful to
first recall more precisely what these optimality results entail. For the just-identified IV model, AR
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has been formally established as uniformly most powerful among unbiased tests (Moreira (2002,
2009)) and among invariant similar tests (Andrews, Moreira and Stock (2006)).34. From Figure 8
Panel A, we can see that neither tF nor VtF is unbiased. Though the bias of VtF is relatively
small in this graph, it is sufficient to place VtF (and tF) outside the class of tests in which AR
is uniformly most powerful. It is straightforward to show that VtF and tF also lie outside the
invariant class of tests. So there is no contradiction between the power results of Figures 7 and 8
Panel A and the optimality of AR within unbiased or invariant similar classes of tests.

The uniformly most powerful invariant similar property implies admissibility of AR within
the class of all valid tests (Andrews, Moreira and Stock (2006)), which would include VtF . In
fact, the uniformly most powerful invariant similar property has been established pointwise in the
reduced form error variance, so that admissibility of AR also holds for each fixed reduced form error
variance and null. This means AR cannot be uniformly dominated along any power curves drawn
according to the first approach which fixes the reduced form error variance and null. This result is
entirely consistent with Figure 7 Panel A, which displays power via the second/third approach and
not the first approach. For each value of b � b0 there exists a completely different power curve
that fixes the reduced form parameters

q
s22
s11

and rRF as given by Panel B. And on that particular
slice (the first approach/slice, not pictured here), the admissibility result says that it can never be
true that AR is uniformly dominated. Hence, the uniform dominance of VtF in Figure 7 Panel A is
not at odds with the literature’s existing admissibility result for AR.35

For completeness, in Appendix C.2, we provide the power curves for a range of different sce-
narios, covering f0 = 1,3,6,9, and r = 0, .5, .8, .9. In most cases, a visual inspection of the two
curves suggests that VtF possesses higher power for some values of b � b0 to about the same
extent as AR has higher power for other values of b �b0. However, the closer r is to zero, VtFs
advantage over AR becomes more apparent.

IV.C Conditional power curve analysis: VtF, tF,AR

There is an important aspect of these traditional power curves that masks the relative performance
of VtF and AR confidence intervals. The power curves show the probability of rejecting the hy-
pothesis b0 6= b regardless of whether F > q1�a . The condition F > q1�a is crucial, because,
the confidence sets for VtF , AR, and tF are bounded if and only if F̂ > q1�a , and our results on
confidence interval performance, motivated by the notion that bounded intervals are the objects of

34These optimality results are generalized to the cases of heteroskedastic, clustered, and/or autocorrelated errors in
Moreira and Moreira (2019)

35Moreira, Sharifvaghefi and Ridder (2021) show AR is optimal within a invariant similar class that allows the
reduced form error covariance matrix to change and note a corresponding admissibility result. Not surprisingly, the
VtF power results are also not contradictory to these findings.
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interest to practitioners, focuses exclusively on the bounded confidence set region F̂ > q1�a .
To connect the results on power to the superior VtF confidence interval performance (shown

in previous sections), it is illuminating to decompose the power curves into the asymptotic analogs
of the unbounded and bounded confidence set conditions, F  q1�a and F > q1�a :

PrD(b0),r, f0 [R (tAR (b0) , f ,r (b0)) |F  q1�a ] ·PrD(b0),r, f0 [F  q1�a ]

and
PrD(b0),r, f0 [R (tAR (b0) , f ,r (b0)) |F > q1�a ] ·PrD(b0),r, f0 [F > q1�a ]

where the two conditional power terms weighted by the unbounded and bounded confidence set
probabilities sum to the unconditional power curves displayed in panel A of Figures 7 and 8.
This allows us to decompose, for each alternative value of b �b0, the extent to which the null is
rejected when F  q1�a (first-stage is statistically insignificant; confidence set unbounded) and
when F > q1�a (first-stage is statistically significant; confidence set bounded). In the weak instru-
ment context, this decomposition is especially useful, because the region of unbounded confidence
intervals is non-trivial and includes varying behavior among these methods.

The insight of Pratt (1961) can again be applied here so that

E [lengthR |F > q1�a ] =
Z �

1�PrD(b0),r, f0 [R (tAR (b0) , f ,r (b0)) |F > q1�a ]
�

dD(b0)

where lengthR is the length of the confidence set that corresponds to the decision rule to reject
given by the test with critical region R. The average length of the confidence set when it is
bounded has the interpretation of the type II error – conditional on F > q1�a – averaged over all
false values b0. It is worth noting that once we are comparing the conditional power of the various
test procedures, we will be altogether removed from the original setting in which AR possessed the
optimal power properties previously discussed.

Panels C and D of Figures 7 and 8 decompose the power curves of panel A. Panel C shows
power for F < q1�a corresponding to unbounded confidence sets. In this unbounded confidence set
case, AR appears to have a significant advantage over VtF over a wide range of alternatives. Since
the two components of conditional power must add to the unconditional power curves, we there-
fore would anticipate VtF to correspondingly have a more apparent advantage for the F > q1�a ,
and this is what is shown in panel D for both figures. In the case of r = 0, f0 = 1, the uniform
dominance of VtF over AR is even more pronounced when focusing on F > q1�a , the bounded
confidence set region. In the case of r = 0.5, f0 = 3, any power advantage of AR in the uncondi-
tional power curve (left side of panel A) essentially disappears, when focusing on just F > q1�a .
For completeness, we show these graphs for other designs in Appendix C.2. Figure A2 reveals a
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similar pattern: even though AR and VtF appear roughly balanced in terms of unconditional power
across many designs, AR’s power is more driven by rejecting when F  q1�a (Panel B in Appendix
C.2) and VtF’s power is more driven by rejecting when F > q1�a (Panel C in Appendix C.2).

The power curve comparisons with F > q1�a correspond to our earlier results on confidence
interval lengths. The power curves with F  q1�a give insight into the power expended by these
methods that goes toward forming unbounded confidence sets. For tF , unbounded confidence sets
are always the entire real line, leading to zero power in this region. AR and VtF produce two types
of unbounded confidence sets: the whole real line; and the real line excluding a bounded set of
values; in the case of AR, it is a single bounded interval (often referred to as the “donut”). All of
these unbounded confidence sets are two-sided, meaning that they will be incapable of rejecting the
null hypotheses that b0 = • or b0 =�•. While it may be possible that there are applied contexts
where the ability to rule out intermediate values of the parameter while being unable to statistically
rule out ±• (and generally extremely large positive and negative effects) is valuable, it is likely
more common that researchers are interested in being able to statistically rule out large magnitudes
in either direction, which is not possible with confidence sets that include ±•.

We believe that it is informative to decompose power in this way to see whether the advantages
of a given method derive from its unbounded or bounded confidence set behavior. Panel C of Fig-
ures 7 and 8 imply that AR’s “donut holes" are generally larger than that of VtF , therefore leading
to a power advantage in the unbounded confidence interval region. But AR’s power advantage with
unbounded confidence intervals comes at a power cost relative to VtF in the bounded confidence
interval region. We find that VtF has a clear power advantage conditional on the bounded confi-
dence region, which accords with our earlier findings from the data-realization by data-realization
perspective.

For completeness, we also provide a comparison of distributions of confidence set lengths in
Appendix C.1, see Table A7. The results shown there are not unexpected, given the findings in this
section and section III.D. Table A7 produces quantiles of confidence interval length distributions
across 16 designs for all of the methods considered here. The distribution of the differences in log
lengths from Figures 6a-c are also shown here across these designs. All of these results reinforce
VtF’s confidence interval length advantage (see Appendix C.1 for additional details).

V Conclusion and Implications

The development of VtF is motivated by two aspects of the spirit of the work of Staiger and
Stock (1997) and SY (2005), which has become the de facto industry standard for just-identified
IV inference in the applied research community: 1) practitioners overwhelmingly use the t-ratio
based on the 2SLS estimator along with a robust standard error, and would prefer to default to the
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±1.96 confidence intervals whenever possible; and 2) practitioners implicitly already use a data-
dependent t-ratio critical value, by relying on a minimum threshold for the first stage F-statistic,
which itself is an intuitive measure of instrument strength or weakness. VtF is designed on the
basis of these two features, while also using the information provided by all the statistics of the
model to try to obtain confidence intervals that are neither conservative nor anti-conservative, even
when the first stage F-statistic is small.

After solving for the VtF critical value function, we assess whether the additional use of the
statistic r̂ leads to a meaningful gain in precision, by comparing its confidence interval performance
to that of tF , which only uses F̂ . It does. As we comprehensively document in the heatmap
in Figure 6a, and illustrate with our sample of empirical studies, VtF confidence intervals are
considerably shorter than those of tF over a wide range of commonly-observed magnitudes of F̂ .

We recognize that our sample of specifications is an inherently selected one. For example, it is
possible that the editorial process may be implicitly selecting on large F-statistics or statistically
significant results. Furthermore, our sample represents only a small minority of IV studies: only 14
out of a possible 69 IV studies had reported the equivalent of the three regressions needed (2SLS,
first-stage, reduced form) to compute r̂. Therefore, it is an open question as to how results and
conclusions might change for those remaining 55 out of 69 studies, if access to the micro-data
were available. Assuming that r̂ will not eventually be computed for those studies, we are unaware
of any more powerful alternative to tF for drawing correct IV inferences when only b̂ , ŝe(b̂ ) and
the F-statistic is available.

However, moving forward, there is little reason to settle for tF when VtF is available. A clear
implication of our findings for prevailing practice is that there are potentially substantial gains in
precision that come along with reporting one additional and easy-to-compute statistic, r̂.

Since VtF is entirely motivated from a practical perspective, we assessed the performance cost
of tailoring a procedure to practitioner preferences; the findings are, in our view, unexpected. First,
while seeking to characterize a region where the usual ±1.96 confidence intervals can be validly
used, we do find a substantial region of realizations of the data where VtF confidence sets are
completely contained within the ±1.96 confidence intervals. Since AR and tF confidence sets are
always longer than ±1.96 confidence intervals, this finding was at the outset unforeseen. As a
result, one can use a simple rule of thumb F̂ > 10+ 100 · r̂ for using the usual ±1.96 confidence
intervals (and otherwise use VtF intervals), and maintain valid inference.

Second, when we compare the performance of VtF to the AR procedure, which is the stan-
dard recommendation from the econometric literature, we found that in all 89 specifications from
our empirical studies, VtF produced shorter confidence intervals than AR. VtF’s interval length
advantage does not appear to be specific to our particular sample of specifications: this general
advantage is also apparent in a comprehensive examination of all possible data realizations with
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1.962 < F̂  104.67.
On their face, these findings appear to run counter to the conventional wisdom that AR is best

for robust inference for just-identified IV. But we have been able to reconcile our findings with this
conventional wisdom through two key points made in a power analysis of different procedures.
The first point is that VtF just does not belong to the class of tests in which AR is uniformly most
powerful. For instance, we show (Figure 8) that VtF is not an unbiased test. Unbiasedness of a
test (i.e. the power curve never falling below the null rejection rate) is arguably desirable all other
things equal. However, in this case, the requirement of unbiasedness of the test appears to be
excluding procedures, that when inverted, deliver shorter confidence intervals.

We have also considered whether VtF’s adherence to F-based t-ratio inference leads to a per-
formance loss relative to the only other biased similar test for just-identified IV of which we are
aware – the Conditional Wald test of Moreira (2003). In the Appendix, we show that there is
no substantial performance loss of VtF , relative to Conditional Wald. Indeed Conditional Wald’s
power and confidence interval performance is quite similar to that of VtF ; it, too, has similar power
advantages over AR with generally shorter confidence sets. This constitutes further evidence that
runs counter to the recommendation to use AR.36 This additional finding on Conditional Wald
suggests that if one seeks to find an even better-performing confidence interval procedure, by be-
ing willing to abandon the practitioner-friendly features of the F-based approach of SY (2005), as
embodied in VtF , or abandon the t-ratio statistic entirely, then it seems prudent to include biased
test procedures in any such search.

A second point is that confidence interval length comparisons in this weakly identified con-
text are challenged by Dufour (1997)’s result that necessitates that all valid procedures produce
unbounded confidence sets with positive probability. We speculate that applied researchers care
very little about the distinction between confidence sets that are the whole real line and those that
are unbounded but rule out a bounded set, since in both cases, either +• or �• cannot be ruled
out. Moreover, typical unconditional power analyses essentially puts the size of the donut hole in
an unbounded confidence set on equal footing with the length of a bounded confidence interval.
To distinguish between these two cases, we introduce a corresponding decompositional analysis of
power in the direction of bounded and unbounded confidence sets. These power decompositions
provide an intuitive viewpoint on power curves for weakly identified sets and could be a useful
consideration for attempts at identifying a procedure with optimal confidence set length proper-
ties.

36This finding on just-identified Conditional Wald is along the same lines as the that reported in Van de Sijpe
and Windmeijer (2023), who present simulation evidence showing that, in the over-identified, homoskedastic case,
Conditional Wald appears to outperform the Conditional Likelihood Ratio test of Moreira (2003).
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