Health, income, and inequality over the life-cycle

Angus Deaton
Christina Paxson

Research Program in Development Studies
Princeton University

First Draft, April 3 1997
This version, July 26, 1997

We are grateful to Sudhir Anand, David Meltzer, Amartya Sen, Burt Singer, and Jim Smith for helpful discussions during the preparation of this paper. Research assistance was ably provided by Shelley Clark. We gratefully acknowledge financial support from the National Institute of Aging and from the John D. and Catherine T. MacArthur Foundation. Errors, omissions, and incompleteness are the responsibility of Benjamin Paxson Gabinet, born March 25th, 1997.
1. Introduction

In previous work, Deaton and Paxson (1994, 1997), we used data from the United States, Great Britain, Taiwan, and Thailand to document that inequality increases within cohorts with age, for consumption, income, and earnings. In this paper, we extend the analysis to two health-relevant measures, the body-mass index (BMI) and self-reported health status (SRHS). We use data on more than 500,000 adults in the United States to track birth cohorts over time and to document the evolution of the two measures with age, looking at both cohort means and intra-cohort dispersion. We also consider the life-cycle profile of dispersion in income and health jointly, presenting evidence separately for men and women, and for blacks and whites.

Our original work on consumption and income inequality was motivated by the prediction of the standard theory of autarkic intertemporal choice that within-cohort inequality in consumption and income (although not necessarily earnings) should increase with cohort age, at least up to the date of retirement. Although the theory has no immediate extension to processes other than income and consumption, there are a number of reasons to extend the analysis to health status.

First, we wish to investigate the generality of the proposition that dispersion increases with age. For the four countries where we have looked, it is true of income, consumption, and earnings. We are curious as to whether the proposition is true for other state variables, such as weight, the body-mass index, self-reported health status, dexterity, intelligence, or ability to complete specified tasks.

Second, while health status is interesting as an example, it is also important in its own right. Inequalities in income and consumption are of concern because they are important components of welfare. But as we move from a narrow, economic measure of well-being towards broader definitions, health status has the most immediate claim on our attention. Nor is health status independ-
Deaton and Paxson, *Health, income and inequality over the life-cycle*, page 2

tent of economic status; indeed, there is a well-documented but poorly understood “gradient”
linking socioeconomic status to a wide range of health outcomes, Adler et al (1994), as well as
changes in wealth and changes in health among the elderly, Smith (1995). Income or its correlates
(smoking, obesity, social status, and various types of behaviors) may directly affect health and,
where health care is expensive, the ability to pay may give access to superior health services.
There are also mechanisms that operate in the opposite direction; health status affects the ability
to work and, among the elderly, the timing of retirement. There is also a literature linking health
status to relative deprivation, or to the income distribution: Wilkinson (1994, p. 61) goes so far as
to claim that “Mortality rates in the developed world are no longer related to per capita economic
growth, but are related instead to the scale of income inequality in each society” (1994, p. 61).
Yet there has been no research of which we are aware that tracks these relationships over the life-
cycle, or looks at the life-cycle patterns for clues to directions of causality.

Third, it is plausible that the theoretical reasons that cause consumption, income, and earnings
processes to disperse also apply to health status. This requires a little explanation. In Deaton and
Paxson (1994), we started from the implication of (some) theories of intertemporal choice that
individual consumption should follow a martingale process; under appropriate assumptions, Hall
(1978) showed that consumption is the cumulative sum of uncorrelated increments. The same will
be true of earnings if employers pay workers their expected marginal product, see Farber and
Gibbons (1996). It is also plausible that, at least in part, health status should be a cumulative
process, determined by the “piling up of adverse life experiences” (Singer and Ryff, undated)
offset by recuperative processes. Although some health shocks will have only temporary effects,
others will leave a permanent residue, so that even if this residue is a small component of the
original shock, the resulting health status will be non-stationary. Because most of the effects of
most health shocks wear off over time, there is no reason to suppose that health status is a
martingale; on the contrary, health status of individuals will generally revert to its individual trend
after positive or negative shocks. But the trend will itself be stochastic since it is the cumulative
sum of the permanent residues of a lifetime of shocks. If so, and provided the shocks to different
individuals are not perfectly correlated, the health of members of a cohort will disperse over time,
just as do their incomes, consumptions, and earnings.

We use data from the National Health Interview Survey for the twelve years 1983 through
1994. This survey collects data on around 50,000 freshly-drawn adults every year (as well as data
on children), from which we use information on income, on a ordinal self-reported health status
(SRHS) measure that ranges from 1 (excellent) to 5 (poor), on body-mass index (BMI), typically
defined as weight in kilograms divided by the square of height in (square) meters, on race
(black/white) and on sex. The arguments for using the SRHS and BMI as measures of health-
status are discussed in the next section, and a more detailed description of the data are given in an
Appendix. Our procedure is the same as in Deaton and Paxson (1994, 1997); we create cohort
data by following birth cohorts through the members of the cohorts that are randomly drawn into
each year’s surveys. For each year and for each cohort of men or women, black or white, we
select income and health status information, from which we can create measures of central
tendency, of dispersion, and of correlation for each cohort in each year. We present these data,
typically as plots against age, with each cohort shown separately. We also decompose the plots
into age and cohort effects, so as to isolate the trend effects that operate from one cohort to the
next, from age effects that are common to all cohorts as they age. A major focus is how these age
patterns differ by race and by sex.

2. Self-reported health status and the body-mass index

It is difficult to define and measure a state variable that adequately captures health status during the life-cycle. Much of the work on health status and income has focussed on mortality, which is perhaps the only well-defined and straightforward measure, but which is useless for our purposes. Self-reported “days of illness” or “doctor visits,” are themselves conditioned by socio-economic status, and often show perverse correlations with income, with better-off people apparently perceiving and treating their illnesses more seriously. Direct measures of function, ADLs and IADLs, have been used to overcome these problems, and provide a possible alternative to the measures used here. We start with a brief literature review that documents the links between the self-reported measures we use and other health outcomes. We conclude the section with a brief discussion on what is meant by inequality in health outcomes, and on the relevance of inequality measures derived from SRHS and BMI.

2.1 Self-reported health status and health outcomes

There is a large literature that examines the relationship between SRHS and subsequent mortality. The earliest papers use data from Canada, Mossey and Shapiro (1982) and California, Kaplan and Camacho (1983). Subsequently, there have been similar studies for a variety of countries, work surveyed in Idler and Kasl (1995). Virtually all of these studies support the idea that reports of poor health are significantly related to a higher risk of mortality. Furthermore, the risk of mortality is higher for a substantial period of time (i.e., 6-year and even 9-year mortality). There has been some dispute over whether self-reported health is associated with mortality in elderly populations,
Deaton and Paxson, Health, income and inequality over the life-cycle, page 5

with the majority of researchers finding a strong association.

The standard approach in the literature has been to start by establishing the positive correlation between SRHS and mortality. Researchers then examine whether this correlation disappears on the introduction of controls for other variables, such as socio-economic status (often quite crudely defined), as well as “objective” measures of health status and life-style factors. Appels, Bosma, et. al. (1995) summarize as follows:

Most authors are mainly concerned with the possibility that the observed associations [between self-rated health and mortality] are spurious. Eaker, for example, suggests that the female participants in the Framingham study who perceived their health as poor may have based their evaluation on their knowledge of family history of disease. Others suggest that the rating of one’s health as poor may reflect a still subclinical disease and/or an unhealthy life-style.

Appels, Bosma, et al then go on to suggest an “alternative explanation,” that people who think of themselves as healthy build up more positive self-images which positively affect health. The fact that self-reported health status is still typically correlated with mortality even when after controlling for other health and life-style factors is often taken as support for these more psycho-sociological explanations, although an obvious alternative reading is that the controls are not fully effective, and that people have private information about their health. For our current purposes, it is the raw correlations between self-rated health and mortality (possibly age-adjusted) that are of interest, since we are trying to identify a variable that can serve as a single summary measure of health status.

The methods and results of the various studies are generally consistent, although the estimates
of the size of the “effect” of poor health on mortality vary across studies, which is hardly surprising given that the groups under study often have very different characteristics. For example, in a study of people aged 70 and older, the relative risk of dying within 36 months of the initial survey was 3.5 times greater for women who reported themselves in poor health relative to those in excellent/good health, and 2.5 times greater for men, Grant, Piotrowski and Chappell (1995). Adding controls for age, education, race, marital status, ADL difficulties, and other health measures reduces the increase in relative risk to 1.5 for women in poor health, and eliminates the increase in relative risk for men in poor health. A study of Lithuanian and Dutch middle-aged men indicates that, controlling for age only, those that report their health status as “poor” have a 23 percent to 80 percent increase in the risk of mortality (over 10 years) relative to those who reported good health, Appels, Bosma, et. al. (1996.)

In addition to the work on SRHS and mortality, there is a growing interest in the relationship between SRHS and other health measures. Idler and Kasl (1995) finds that the elderly with poor SRHS are more likely to develop ADL difficulties. Marmot, Feeney, Shipley, North and Syme (1995) use the British Whitehall Study II to examine whether British civil servants who report poor health miss more work. They find that people with poor SRHS have significantly more and longer absences from work than those who report themselves in good health.

Overall, the literature research supports the conclusion that SRHS is a useful health measure, in that it is correlated with and predicts health outcomes such as illness, disability, and death.

2.2 Health outcomes and the body-mass index

The literature on BMI and health status focusses almost exclusively on the relationship with mortality. There is less consensus here than in the literature on self-reported health and mortality.
Deaton and Paxson, Health, income and inequality over the life-cycle, page 7

Some work shows strong relationships between weight and mortality, other work shows none, or relationships only for certain groups (i.e. white women and black men, but not black women or white men, see Stevens, Keil, et. al. 1992a, 1992b.) Many of the studies suffer from small sample sizes (which yield very few deaths) or from the use of non-random samples (i.e. members of a particular insurance plan or coronary heart disease study.)

Our own reading of the literature is that the most convincing studies find significant effects on mortality of both very high and very low BMI's, especially for men, but that once the investigators eliminate subjects who died shortly after the survey started, or who were smokers at the time of the initial survey, the relationship between low body mass and subsequent mortality either disappears or is substantially weakened. This general result is supported by Troisno et al (1996), which contains a literature review and “meta analysis” of the relationship. Two specific studies that support this conclusion are Seidell, Vershuren, Van Leer and Kromhout (1996) and Lee, Mason, et. al. (1993). The first studies a random sample of over 48,000 Dutch adults, aged 30 to 54 at the baseline, who were tracked for 12 years. (Note that because the sample is fairly young, there are still only 1,300 deaths.) The second uses a sample of over 19,000 (male) Harvard graduates for whom self-reported health information was collected between 1962 and 1966, and who were tracked until 1988. The second of these samples is obviously not representative of the overall population, but the study appears to be carefully-done and uses a large sample.

The Dutch study indicates that very overweight men (defined as those with BMI greater than 30) had significantly higher rates of all-cause mortality, controlling for age. For example, those with a BMI in excess of 30 were 46 percent more likely to die than those with a BMI of between 18.5 and 25 (defined to be the “baseline” group.). The raw data also indicate that very under-
weight men are more likely to die; the relative risk of mortality for those with a BMI of less than 18.5 is 2.6. However, among a sample of non-smokers who did not die within 5 years of the initial period, the low-weight men do not have higher mortality. (Most of the mortality among smokers in the first 5 years of the survey is from lung cancer.) The Dutch results for women were not clear-cut. Overweight women had a significantly higher risk of mortality from coronary heart disease and cardiovascular disease, but did not have a significantly higher risk of all-cause mortality. A potential problem here may be that relatively few—only 500—women died, so that nothing is estimated very precisely. The Harvard study finds that, using the full sample and controlling for age only, underweight and overweight were at significantly greater risk of mortality than other groups. For example, with the “baseline” defined to be thin men with BMI’s of less than 22.5, the relative risk of mortality first falls as weight rises, to 0.92 for those with BMI between 23.5 and 24.5, and then rises to 1.12 for overweight men with BMI’s in excess of 26.0. When the sample is limited to those who never smoked and who did not die in the first 5 years, the age-adjusted relative risk of mortality increased monotonically with age, and is 67 percent higher for the group with the highest BMI relative to the group with the lowest.

2.3 Inequality in health outcomes

Although the literature provides a firm basis for the relevance of SRHS and BMI as indicators of health status, it is not sufficient by itself to justify their use in the investigation of inequalities in health status. Although we may be curious to know whether or not BMIs become more dispersed with age—or since height varies very little, whether weight becomes more dispersed with age—we are a good deal more interested in health outcomes, so that we need to know what dispersion in BMI tells us about dispersion in health. By this token, SRHS is of more direct interest than
BMI, since it contains direct information about individual welfare. Even so, there are serious
difficulties in interpreting the dispersion of both measures.

Consider first a seemingly technical difficulty. When we look to see whether or not distribu-
tions (of income or health) are dispersing over time, the ideal criterion is that of (second-order)
stochastic dominance. If distribution F_1 stochastically dominates distribution F_2, then it will be
measured as more equal by any inequality measure that satisfies the principle of transfers,
effectively by any sensible inequality measure. But stochastic dominance is not preserved under
monotone transformations, and our measure of SRHS is an ordinal one, so that unless we can
somehow restrict allowable transforms of the 1 to 5 scale, we have no non-arbitrary basis for
making statements about changes in inequality. The problem for BMI is less immediate, but is just
as serious. Because BMI is a cardinal measure, we can make well-defined statements about
changes in its dispersion, or about changes in the dispersion of body weights. But since the
relationship between BMI and health status is almost certainly nonlinear and possibly non-mono-
tonic, statements about changing dispersion in BMI have no obvious implications for changes in
the dispersion of health status. One interpretation of the literature is that BMI is irrelevant for
health status up to some cutoff, say 30, after which mortality risk increases monotonically with
BMI. Given such a relationship, there is no reason to suppose that statements about changes in
the dispersion of BMI, well-defined though they are, will have any implications for changes in
mortality risk.

More serious than the problems associated with our specific measures is the general problem
of what we mean when we talk about inequality in health status, and what sort of indexes might
adequately capture that meaning. The possibilities are addressed by Anand and Sen (1996) with
generally pessimistic conclusions. The natural (money) cardinalizations of income and consumption that permit the development of index numbers of inequality are not applicable to other concepts, such as range of functional capabilities associated with health status. Some of literature on health inequality has focussed on inequality in life-expectancy—see Wilkinson (1986) for British evidence—but life expectancy, important although it is, does not capture many aspects of health status, particularly the quality of life.

If we were to accept the limited goal of looking at the mean and dispersion of life expectancy, then one avenue of progress if to subject our indicators to the transformation that best predicts life-expectancy, thus translating our measures into that metric. But the empirical literature, impressive although it is, is hardly adequate to establish the appropriate functional form. Even the correlations are subject to some dispute, and we are still some way from definitive conclusions about functional form, see in particular the debate on whether BMI is or is not even monotonically related to mortality. However, if we can establish that, conditional on age, life expectancy is a concave and monotone increasing function of health status as measured, and if we are concerned with average life expectancy, or with the average of any concave function of life-expectancy, then an increase in the dispersion of health status is a bad thing. This is the same argument for being concerned with the distribution of income because we weight increases in income more highly the poorer is the recipient. Although the point is hardly established, our reading of the literature is consistent with the view that changes in SRHS along the five point scale have larger implications for mortality when health status is poor than when it is good or excellent. If so, increasing the dispersion of SRHS as reported here will lower average life expectancy, and lower any measure based on life expectancy that values increases in life-expectancy more at lower starting points. A
similar argument can be constructed for BMI, at least provided that we dismiss the evidence that low BMI is associated with increased mortality. For example, if we were to construct a measure such as $z = \ln(50) - \ln(BMI)$, life expectancy is a monotone increasing function of z, and increases rapidly with increases in z at low levels—i.e. among those with high BMI—becoming relatively flat thereafter. Once again, increased dispersion of z generates lower life expectancy or lower welfare if we care more about increases in life expectancy among those who have shorter life spans.

3 Empirical results

3.1 Preliminaries

Most of our empirical results will be presented graphically, and most are straightforward transformations of the data from the 12 years of the NHIS. These surveys collect an enormous amount of information on health and on medical conditions, but very little on the economic status of individuals. In particular, there is a single family-income question, the answers to which are presented in bracketed form. The brackets are sufficiently detailed for our purposes, but have the serious deficiency that they are constant in nominal terms, and that the top of the highest bracket is $\$50,000, again with no change for inflation over the period from 1983 to 1994. In order to use these data, we first allocate to each individual the family income of the household in which he or she resides, using the mid-point of the bracketed range, and then convert to logarithms. Our procedures for handling the topcoding and for measuring variances are described below.

We use individuals aged 20 to 70, inclusive. Cohorts are typically defined by the exact year of birth, although for some of the analysis that follows we define cohorts using (non-overlapping)
five-year birth intervals and we identify cohorts by the mid-point of their age in a specified year. When we use exact year of age, there are 62 cohorts and 612 cohort-year cells. Not all cohorts are observed in all years because their ages must be between 19 and 71. When we use 5-year age bands there are 11 cohorts and 120 cohort-year pairs. For each cohort, sex and, for some of the analysis, race group in each of the twelve survey years, we assemble (individual) data on the logarithm of family income, SRHS, and the logarithm of BMI. (We actually define BMI in units of pounds per inches squared rather than kilograms per meters squared, so the log of the BMI differs from the conventional measure by a constant.) From these raw data we calculate the various quantiles in the usual way on a cell by cell basis. In some of what follows we examine the joint distributions of health and income. To obtain means and variances of the log of income, and the covariance between income and health, taking into account the topcoding of family income, we assume bivariate normality for the pairs (log income, log BMI) or (log income, SRHS). We then fit the distributions to the data for each cohort-year cell, taking account of the censoring of log income at the log of $50,000. This is conveniently done by fitting a Tobit model containing a constant and either SRHS or the logarithm of BMI on the right-hand-side, and computing moments and co-moments using standard formulae for conditional normal distributions.

In some of the figures we show not the raw data, but age effects. These are constructed by regressing the cohort/year means, variances (constructed as above), medians, or quantiles on a set of age, cohort, and year dummies. Since age is equal to the calendar year minus the year of birth, these effects must be restricted in some way. Most often this is done by omitting either year or cohort effects, and we shall explain in each case the procedures that were adopted, and their influence on the results.
3.2 Univariate analysis of SRHS, BMI, and income

Figures 1, 2 and 3 describe the univariate life-cycle behavior of our three measures, separately for males and females, but pooled over all races. Figure 1 plots the profiles in the 5th, 25th, 50th, 75th, and 95th percentiles of SRHS, by males and by females, for all those covered in the sample and for only those present at the time of the survey. This last distinction is to allow for the possibility that reports made on behalf of others may be less reliable or systematically biased. In fact, the right and left-sides of the figure are very similar, and we do not make further reference to this division of the sample. The age effects shown here were obtained by forming the percentiles for each cohort/year/sex cell, and then regressing each on a set of age and year dummies; the plots show the coefficients on the age dummies. The year effects show little statistical significance, and the age effects are little affected if year dummies are replaced by cohort dummies; all of the systematic variance in these data are in the age effects, and there is little change over time at any given age.

Figure 1 shows that SRHS deteriorates with age—recall that 1 is “excellent” and 5 is “poor”—and that, as the initial hypothesis predicts, dispersion increases with age, see the difference between the 25th and 75th percentiles, or between the 5th and 95th percentiles. The age-profiles for men and women are broadly similar, although SRHS is both worse and more variable among young women than among young men. We imagine that some of this difference is associated with pregnancy, which is not recorded in the surveys. That SRHS worsens with age is perhaps not surprising, but it implies that when people report their health status, they do not “norm” their answers with respect to the experience of those at the same age, or at least that they only do in part. That some norming takes place is supported by the lack of cohort (or time) effects. In spite
of actual health improvements over time that differentially favor the younger cohorts, there are no detectable cohort effects in self-reported health status, either because people norm their answers over time, or because the period of observation here is not long enough.

Figure 2 shows the corresponding age-profiles of the same percentiles for the logarithm of BMI. The top panels—for males and females—are the coefficients of the age dummies in regressions on age and cohort dummies. Unlike SRHS, there are strong cohort effects in BMI, with younger cohorts consistently heavier than their elders. Given that BMI is continuously measured, these graphs are much smoother than those for SRHS, and they also trend upward with age. At the median BMI, these graphs correspond to a weight gain of about 0.3 lbs per year of age for men and of 0.45 lbs per year of age for women. Women have lower BMIs than men, but have greater dispersion—note the different scales on the right and left of the figure.

As does SRHS, BMI becomes more dispersed with age. This can be seen directly from a comparison of percentiles in the top half of the figure, but is more clearly seen in the lower two panels, which are constructed from the top panels by shifting the age profiles vertically so that all are zero at age 20. The more rapid dispersion of BMI for women is then very clear in the bottom right-hand panel. But recall from Section 2 that the links between BMI and mortality are likely much weaker for women than for men, so that their greater rate of weight dispersion may have only very limited consequences for the dispersion of health status.

Figure 3 plots the data on the means and variances of the logarithm of (nominal) family income, obtained from fitting the censored log-normal distributions. These figures show the raw data for each cohort, and the connected lines follow the experience of a single cohort observed year by year as it ages. The logarithm of income rises over time for each cohort, and is higher for
later cohorts than for younger cohorts at the same age. The top panels also show the slower rate of growth of cohort family income in the later years, a rate of growth that actually turns negative for the oldest cohorts. Note too that family incomes are lower for women than for men, a finding that does not come from distinguishing men’s and women’s incomes within each family—all members of a family are attributed the same family income—but rather reflects the fact that there are more women in families with lower incomes. Note finally that incomes have not been deflated for price inflation, so that the growth within and between cohorts is nominal, not necessarily real.

The bottom panels plot the estimated within-cohort variances of the logarithm of income, again on a cohort by cohort basis. (Unlike the levels, these variances are unaffected by inflation.) As in our previous work, which used a household rather than an individual basis, the variance of logarithms rises with age after age 25 or so until around the age of retirement, after which the variance ceases to rise or falls. The rapid falls in variance at very young ages reflect no more than the process of family formation. There are also distinct cohort effects reflecting the well-documented increases in income inequality among American families over this period.

We present this figure, less for its own interest—since it contains no information about health status—but to confirm that the income information in the NHIS, in spite of its (increasingly severe) topcoding problems and the marginality of income in the survey, can be used to reproduce the same patterns of cohort and age inequality that we obtain from higher quality income surveys, such as the Consumer Expenditure Survey and (especially) the Current Population Survey, as used in our previous work.

3.3 Bivariate analysis of health measures and income

Figure 4 shows cohort level plots for the mean and variance of SRHS, and for its correlation
Deaton and Paxson, Health, income and inequality over the life-cycle, page 16

coefficient with the logarithm of family income. The top two panels replicate in different form the
age profiles in means and variances that we have seen in the percentile plots in Figure 1. They also
show the lack of cohort effects in either mean or variance; the cohort lines are not separated, but
lie along the age profiles. Most interesting here are the two bottom plots, which document the
negative correlations between SRHS and income; people with higher incomes consistently report
that they are in better health. Moreover, this correlation is different at different ages; it is quite
weak among those in their early 20s, but becomes steadily larger (in absolute value), reaching a
peak value of around –0.4 between ages 50 and 60. There are only slight differences between men
and women—the correlation goes on increasing for men until age 60, whereas for women there is
a plateau from around 45 to 60—but in both cases the correlation weakens after age 60 as SRHS
deteriorates in general. This is not simply a matter of all the elderly having poor health status. As
the top panels show, health status deteriorates with age, but the middle panels show only a slight
decrease in the variance after age 60. It is more that, after age 60, differences in SRHS are much
less well-predicted by income.

These patterns of correlations between health status and income at different ages hold some
cues for possible causal mechanisms. That the negative correlation should have the same age-
profile as the level of income (or earnings) is what would be predicted if health shocks cause
income changes through participation effects or ability to work. The same health shock will have a
larger effect on earnings when earnings are high, which is in the middle period of the life-cycle.
Against this story is the similarity of the age-profile of the health-income correlation between men
and women, in spite of the lower level of labor force participation among the latter.

Figure 5 (for males) and Figure 6 (for females) present the correlations between SRHS and
income in a way that permits us to map variance and correlation simultaneously, as well as to track different cohorts as they age. The ellipses in these figures are computed from the variance covariance matrices of log income and SRHS as follows. For each cohort/year/sex cell, we estimate the variance covariance matrix V from fitting the censored bivariate logarithmic distribution to the individual data. If z is the vector $(y, x)'$, where y is log income, and x SRHS, then the points on each ellipse satisfy

$$z'V^{-1}z = 1.$$

The ellipse cuts the x-axis at (plus and minus) the standard deviation of SRHS, and cuts the y-axis at (plus and minus) the standard deviation of the logarithm of income. The distance from the origin to the ellipse along a ray can be interpreted as the standard deviation of the corresponding linear combination of x and y. The ellipses are negatively sloped—as here—when health status and income are negatively correlated, and would be positively sloped if they were positively correlated. The ellipses can also be thought of as representing the direction and width of the joint scatter of x and y.

In both Figures 5 and 6 the ellipses replicate the negative correlations in the bottom panel of Figure 4. Each diagram shows two ellipses for the same birth cohort, one for 1983 and one for 1994, and there are diagrams for each of seven cohorts, with the youngest cohorts at the top left, and the oldest at the bottom. For the older cohorts, the ellipses are narrower and more elongated, which shows again that SRHS and income are more negatively correlated at higher ages. But within each cohort, the later (1994) ellipse—the heavier line—is typically outside the earlier (1983) ellipse as well as being more elongated. The joint distribution of income and health status becomes more negatively correlated and more (jointly) dispersed with age. This finding of
Deaton and Paxson, *Health, income and inequality over the life-cycle*, page 18

bivariate spreading generalizes and strengthens the earlier univariate findings in Figures 1 and 2. Note finally that, as in these earlier findings, the rate of increase of joint dispersion diminishes with age so that, for the oldest cohorts, the earlier and later ellipses are essentially superimposed on one another.

Figures 7, 8 and 9 repeat the analysis with the logarithm of BMI replacing SRHS. The finding of increasing joint dispersion is replicated, but the age-profiles and other patterns are otherwise quite different for the two measures. The top panels of Figure 7 complement Figure 2 by showing the raw cohort data for means and variance, and repeat (with some variations) the patterns that we have already seen. Weight increases with age, and there are pronounced cohort effects with younger cohorts having higher BMIs. The age-cohort profiles of variances of the logarithm of BMI also display cohort effects; younger cohorts are not only heavier relative to height, but also more variably heavy. These cohort effects obscure the positive age effects for both men and women in these middle panels, but note the generally positive slope of each cohort segment. As was the case for the interpercentile ranges in Figure 2, the variances of logs show dispersion increasing with age, with much faster dispersion from a higher base among women.

The correlations between the logarithms of BMI and income are quite different from those between SRHS and log income. The bottom panels of Figure 7 show that there is essentially no correlation between income and BMI for men at any age or for any cohort, while for women, the correlation is negative, and becomes more so with age until around 40, at which age it reaches its largest (negative) value. We strongly suspect that these differences between men and women have little to do with different relationships between income and health status by sex, but reflect rather the different social consequences of greater than normal weight for men and women.
In the absence of a correlation between BMI and income, the ellipses for men in Figure 8 lie flat and, as before, move outward with age, at least among the middle-aged cohorts. Those for women in Figure 9 are negatively inclined, and show evidence of increasing joint dispersion with age among the young and middle-age cohorts.

3.4 Race, health status, and income

In this final subsection, we turn to differences in health status by race, and with the role of income in accounting for these differences. Table 1 presents the raw data on SRHS by race, age and sex. The table shows, for all years taken together, the fractions of people at each age in each of the five self-reported health categories; the numbers add to one across the rows for each sex and age. For both races, and both sexes, there is a gradual deterioration in SRHS with age. However, black males and black females are more concentrated on the left of the table than are white males and white females. At all ages, and for both sexes, there are higher fractions of whites in the “excellent” and “very good” columns, and higher fractions of blacks in the “good”, “fair” and “poor” columns. That these differences are significant is confirmed by the very large χ^2 statistics in the final column.

The corresponding evidence for incomes is reported in Table 2, although instead of showing fractions in each group by age, we show the fractions for five cohorts at two ages, ten years apart, for each. The patterns are very much the same as for SRHS in Table 1; blacks are consistently and significantly more heavily represented in the lower income groups.

The graphical analysis of these data begins in Figure 10 which plots the age-profiles of the percentiles of the SRHS distribution for whites and blacks by sex. Within races, we see the same
patterns as before, with the (negative) levels and dispersions of health status increasing with age. But there are also differences by race, with the black distributions worse and more variable, even at early ages. Among whites aged from 20 to 30, the median SRHS is "very good;" among the same age-group of blacks, it is only "good." Increasing dispersion—or what is close to the same thing, increasing incidence of poor health—starts at much earlier ages for blacks than for whites. A quarter of white men report themselves in excellent health until their late 50s, and a quarter of white women until their early 50s. Among blacks, the same points are reached before 40 among females, and in the 20s for females.

Given that income and SRHS are negatively correlated, and given that blacks have lower incomes than whites, it is interesting to investigate how much of the differences in SRHS can be attributed to income, holding constant the distribution of health status conditional on income. To examine this question, we follow the analysis in Dinardo, Fortin, and Lemieux (1996), and reweight whites according to the black income distribution. The idea here is to recalculate what would have been the distribution of SRHS among whites using the actual conditional distribution of SRHS given income for whites, but with the black income distribution. Formally, if $p^w(h=i)$ is the proportion of whites whose SRHS (h) is in category i, we can write

$$p^w(h=i) = \sum_j p^w(h=i|y=j) \pi^w(y=j)$$

where $\pi^w(y=j)$ is the fraction of whites in income (y) class j, and $p^w(h=i|y=j)$ is the distribution of health among whites conditional on income. The counterfactual that we want to create uses the white conditional distribution and the black marginal to give

$$\hat{p}^w(h=i) = \sum_j p^w(h=i|y=j) \pi^b(y=j).$$

By comparing (2) and (3), we can rewrite (3) to give
\[\bar{p}^w(h=i) = \sum_i p_c^w(h=i|y=j) \pi^w(y=j) \pi^o(y=j) / \pi^w(v=n) \]

so that, finally, we have

\[\bar{p}^w(h=i) = \sum_j p_c^w(h=i, y=j) \omega(j) \]

where \(\omega(j) \) is a reweighting function equal to the ratio of the black to white marginal of income.

Figures 11, 12 and 13 show the age profiles of the 5th and 25th, 50th and 75th, and 95th percentiles of the distributions of whites, of blacks, and of whites with the counterfactual black income distribution. The general result is that income takes us a good deal of the way, but not all of the way to explaining the difference between the two distributions of SRHS. Among those in good health—Figure 11—the 25th percentile of the counterfactual white distribution is about half way between the 25th percentiles of the black and white distributions for men, but only a small way for women. Much the same is true for the 50th percentile in Figure 12; a much larger fraction of the difference between blacks and white men is accounted for by income differences than is the case for women, particularly young women. At the 95th percentile in Figure 13, among those reporting poor health, the reweighting of the white age-profile takes us most of the way to the black age-profile.

The calculations for BMI are shown in Figures 14 through 17. The age-profiles of the percentiles of the BMI distribution are not very different between black and white men, except that the heaviest black men are a good deal heavier than the heaviest white men. In all cases, a substantial fraction of the difference vanishes when we reweight the whites to give them the black income distribution. For women, the situation is quite different. The percentiles of the black BMI distribution are at higher values of BMI at all ages for women, and only a small fraction of the difference is eliminated by conditioning on income.
4. Summary and conclusions

We have presented evidence on life-cycle patterns of two health-related indicators, self-reported health status and the body-mass index, as well on their relationship with income. We regard this work as exploratory; we have tried to generate stylized facts that are relevant to debates about health status, income, and inequality, even if, at this stage, there is no clear framework within which these facts should be fit. We believe it is important to explore differences between people in their health, even in the absence of an agreed methodology for thinking about inequality in health status, or even about health status itself. But by the same token, it is important to be cautious about attributing causality to any of our findings. Income and our measures of health status are linked in many different ways, through ability to pay for health, through education that is correlated with income, through life-style choices—such as whether to smoke and what to eat—that are conditioned by income, race, and sex.

From our findings, the following are worth highlighting:

- There is ample evidence for the proposition with which we began, that our two measures become more widely dispersed within any given birth cohort as that cohort ages. We view this as evidence in favor of a cumulative random model of health status.

- SRHS worsens with age, so that people do not report their health relative to the average health of their age group, but does not improve among younger cohorts, so that people may raise their standards of normal health status over time.

- The rate of dispersion with age of BMI, but nor SRHS, is much more rapid for women than for men. BMI is more variable among women to start with. SRHS is more variable among young women than among young men, possibly reflecting pregnancy.
Health status (positively measured) is positively correlated with income within cohort/year/sex cells. The correlation is lowest for the young, increases until age 50 to 60, and then diminishes. BMI is uncorrelated with incomes for men, but negatively correlated with incomes among women. This correlation is highest in middle age. These patterns are consistent with the hypothesis that those with lower health status earning less.

The joint distribution of SRHS and income, and the joint distribution of BMI and income, jointly “fan out” with age.

Blacks consistently report lower health status than do whites. Some fraction—but not all—of this difference can be attributed for by the lower incomes of blacks. Less of the difference is explained by incomes among women than among men, a result that is even more pronounced for BMI.
Deaton and Paxson, *Health, income and inequality over the life-cycle, page 24*

mortality: a 27-year follow-up of middle-aged men,” *Journal of the American Medical
Association* (May) 271(17):1320-1.

status and functioning: from the UK Whitehall II study,” *Journal of Epidemiology and

underweight, and mortality. A prospective study of 48,287 men and women,” *Archives of
Internal Medicine* (May) 156(9): 958-63.

Singer, Burton and Carol D. Ryff, 1997, “Racial and ethnic inequalities in health: environmental,
psychosocial and physiological pathways,” Office of Population Research, Princeton
University, processed.

Stevens, J., J. E. Keil. P. F. Rust, et. al. (1992), “Body mass index and body girths as
predictors of mortality in black and white men,” *American Journal of Epidemiology*
(May) 135(10): 1137-46.

——— 1992, “Body mass index and body girths as predictors of mortality in black and white
women,” *Archives of Internal Medicine* (June) 152(6): 1257-62.
Deaton and Paxson, Health, income and inequality over the life-cycle, page 26

Table 1: Fractions of people with various self-reported health measures, by age, race and sex, plus chi-squares for equality of distributions across racial groups, selected age groups

<table>
<thead>
<tr>
<th>age</th>
<th>health=excellent whites</th>
<th>health=excellent blacks</th>
<th>health=very good whites</th>
<th>health=very good blacks</th>
<th>health=good whites</th>
<th>health=good blacks</th>
<th>health=fair whites</th>
<th>health=fair blacks</th>
<th>health=poor whites</th>
<th>health=poor blacks</th>
<th>$\chi^2(4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.522</td>
<td>0.424</td>
<td>0.293</td>
<td>0.245</td>
<td>0.158</td>
<td>0.272</td>
<td>0.023</td>
<td>0.053</td>
<td>0.005</td>
<td>0.007</td>
<td>124.9</td>
</tr>
<tr>
<td>25</td>
<td>0.514</td>
<td>0.441</td>
<td>0.304</td>
<td>0.260</td>
<td>0.152</td>
<td>0.245</td>
<td>0.025</td>
<td>0.049</td>
<td>0.006</td>
<td>0.004</td>
<td>86.0</td>
</tr>
<tr>
<td>30</td>
<td>0.491</td>
<td>0.393</td>
<td>0.305</td>
<td>0.281</td>
<td>0.160</td>
<td>0.248</td>
<td>0.036</td>
<td>0.059</td>
<td>0.007</td>
<td>0.014</td>
<td>85.8</td>
</tr>
<tr>
<td>35</td>
<td>0.481</td>
<td>0.359</td>
<td>0.300</td>
<td>0.259</td>
<td>0.172</td>
<td>0.253</td>
<td>0.037</td>
<td>0.099</td>
<td>0.010</td>
<td>0.030</td>
<td>173.0</td>
</tr>
<tr>
<td>40</td>
<td>0.427</td>
<td>0.321</td>
<td>0.306</td>
<td>0.276</td>
<td>0.198</td>
<td>0.287</td>
<td>0.052</td>
<td>0.076</td>
<td>0.016</td>
<td>0.040</td>
<td>106.7</td>
</tr>
<tr>
<td>45</td>
<td>0.408</td>
<td>0.266</td>
<td>0.300</td>
<td>0.252</td>
<td>0.198</td>
<td>0.299</td>
<td>0.070</td>
<td>0.139</td>
<td>0.024</td>
<td>0.045</td>
<td>132.6</td>
</tr>
<tr>
<td>50</td>
<td>0.367</td>
<td>0.199</td>
<td>0.282</td>
<td>0.229</td>
<td>0.235</td>
<td>0.341</td>
<td>0.077</td>
<td>0.146</td>
<td>0.039</td>
<td>0.085</td>
<td>122.6</td>
</tr>
<tr>
<td>55</td>
<td>0.307</td>
<td>0.222</td>
<td>0.276</td>
<td>0.218</td>
<td>0.265</td>
<td>0.282</td>
<td>0.096</td>
<td>0.188</td>
<td>0.056</td>
<td>0.091</td>
<td>80.0</td>
</tr>
<tr>
<td>60</td>
<td>0.263</td>
<td>0.156</td>
<td>0.250</td>
<td>0.182</td>
<td>0.281</td>
<td>0.288</td>
<td>0.116</td>
<td>0.229</td>
<td>0.090</td>
<td>0.146</td>
<td>79.3</td>
</tr>
<tr>
<td>65</td>
<td>0.219</td>
<td>0.115</td>
<td>0.231</td>
<td>0.184</td>
<td>0.306</td>
<td>0.276</td>
<td>0.161</td>
<td>0.240</td>
<td>0.083</td>
<td>0.186</td>
<td>73.7</td>
</tr>
<tr>
<td>70</td>
<td>0.192</td>
<td>0.103</td>
<td>0.225</td>
<td>0.172</td>
<td>0.318</td>
<td>0.266</td>
<td>0.179</td>
<td>0.301</td>
<td>0.085</td>
<td>0.157</td>
<td>56.5</td>
</tr>
</tbody>
</table>

Females

age	health=excellent whites	health=excellent blacks	health=very good whites	health=very good blacks	health=good whites	health=good blacks	health=fair whites	health=fair blacks	health=poor whites	health=poor blacks	$\chi^2(4)$
-----	-------------------------	-------------------------	-------------------------	-------------------------							
20	0.400	0.301	0.328	0.305	0.224	0.303	0.042	0.079	0.006	0.013	112.6
25	0.407	0.325	0.338	0.306	0.212	0.285	0.037	0.074	0.007	0.010	119.9
30	0.414	0.309	0.336	0.253	0.197	0.321	0.044	0.103	0.008	0.015	286.5
35	0.403	0.275	0.323	0.261	0.212	0.308	0.049	0.125	0.012	0.030	256.5
40	0.382	0.223	0.312	0.239	0.234	0.347	0.056	0.146	0.015	0.040	341.9
45	0.360	0.186	0.293	0.242	0.251	0.313	0.073	0.197	0.023	0.062	261.8
50	0.331	0.174	0.279	0.227	0.266	0.292	0.088	0.204	0.037	0.104	246.3
55	0.265	0.127	0.258	0.187	0.312	0.343	0.118	0.239	0.046	0.104	164.5
60	0.224	0.106	0.249	0.166	0.325	0.333	0.139	0.240	0.062	0.154	142.8
65	0.185	0.086	0.242	0.168	0.337	0.299	0.168	0.292	0.067	0.154	125.0
70	0.167	0.102	0.231	0.185	0.342	0.284	0.183	0.272	0.076	0.158	71.2
Table 2: Fractions of people in different (nominal) family income categories, by age, race and sex, plus chi-squares for equality of distributions across racial groups, for selected age groups and years.

| Age | $0-9999 whites | $0-9999 blacks | $10000-$19999 whites | $10000-$19999 blacks | $20000-$29999 whites | $20000-$29999 blacks | $30000-$40000 whites | $30000-$40000 blacks | $40000-$50000 whites | $40000-$50000 blacks | $50000 or more whites | $50000 or more blacks | $\chi^2(5)$ |
|-------|----------------|----------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|----------------------|---------|
| 25 in 1983 | 0.176 | 0.221 | 0.296 | 0.351 | 0.260 | 0.322 | 0.157 | 0.057 | 0.065 | 0.037 | 0.046 | 0.013 | 11.2 |
| 35 in 1983 | 0.033 | 0.073 | 0.115 | 0.272 | 0.185 | 0.226 | 0.221 | 0.123 | 0.177 | 0.141 | 0.270 | 0.165 | 24.5 |
| 45 in 1983 | 0.070 | 0.259 | 0.190 | 0.292 | 0.289 | 0.236 | 0.244 | 0.101 | 0.108 | 0.094 | 0.099 | 0.018 | 31.6 |
| 45 in 1993 | 0.047 | 0.219 | 0.081 | 0.203 | 0.126 | 0.138 | 0.165 | 0.097 | 0.136 | 0.039 | 0.445 | 0.305 | 42.0 |
| 45 in 1993 | 0.068 | 0.191 | 0.174 | 0.367 | 0.243 | 0.295 | 0.219 | 0.048 | 0.131 | 0.040 | 0.165 | 0.060 | 26.5 |
| 55 in 1993 | 0.053 | 0.071 | 0.126 | 0.235 | 0.120 | 0.261 | 0.114 | 0.148 | 0.144 | 0.028 | 0.442 | 0.257 | 17.1 |
| 55 in 1983 | 0.102 | 0.237 | 0.190 | 0.349 | 0.240 | 0.171 | 0.196 | 0.133 | 0.127 | 0.071 | 0.145 | 0.040 | 7.6 |
| 65 in 1993 | 0.051 | 0.238 | 0.207 | 0.489 | 0.226 | 0.117 | 0.185 | 0.117 | 0.090 | 0.000 | 0.241 | 0.039 | 38.4 |

Females

<table>
<thead>
<tr>
<th>Age</th>
<th>$0-9999 whites</th>
<th>$0-9999 blacks</th>
<th>$10000-$19999 whites</th>
<th>$10000-$19999 blacks</th>
<th>$20000-$29999 whites</th>
<th>$20000-$29999 blacks</th>
<th>$30000-$40000 whites</th>
<th>$30000-$40000 blacks</th>
<th>$40000-$50000 whites</th>
<th>$40000-$50000 blacks</th>
<th>$50000 or more whites</th>
<th>$50000 or more blacks</th>
<th>$\chi^2(5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 in 1983</td>
<td>0.163</td>
<td>0.403</td>
<td>0.306</td>
<td>0.390</td>
<td>0.281</td>
<td>0.151</td>
<td>0.141</td>
<td>0.037</td>
<td>0.063</td>
<td>0.020</td>
<td>0.045</td>
<td>0.000</td>
<td>41.2</td>
</tr>
<tr>
<td>35 in 1983</td>
<td>0.074</td>
<td>0.214</td>
<td>0.113</td>
<td>0.188</td>
<td>0.186</td>
<td>0.185</td>
<td>0.180</td>
<td>0.131</td>
<td>0.182</td>
<td>0.082</td>
<td>0.265</td>
<td>0.200</td>
<td>44.4</td>
</tr>
<tr>
<td>35 in 1983</td>
<td>0.129</td>
<td>0.325</td>
<td>0.187</td>
<td>0.278</td>
<td>0.256</td>
<td>0.151</td>
<td>0.226</td>
<td>0.092</td>
<td>0.109</td>
<td>0.089</td>
<td>0.094</td>
<td>0.065</td>
<td>29.2</td>
</tr>
<tr>
<td>45 in 1993</td>
<td>0.041</td>
<td>0.216</td>
<td>0.108</td>
<td>0.200</td>
<td>0.127</td>
<td>0.169</td>
<td>0.127</td>
<td>0.101</td>
<td>0.154</td>
<td>0.088</td>
<td>0.443</td>
<td>0.225</td>
<td>57.7</td>
</tr>
<tr>
<td>45 in 1993</td>
<td>0.093</td>
<td>0.327</td>
<td>0.218</td>
<td>0.291</td>
<td>0.234</td>
<td>0.236</td>
<td>0.195</td>
<td>0.085</td>
<td>0.130</td>
<td>0.044</td>
<td>0.130</td>
<td>0.016</td>
<td>35.6</td>
</tr>
<tr>
<td>55 in 1993</td>
<td>0.039</td>
<td>0.209</td>
<td>0.154</td>
<td>0.206</td>
<td>0.171</td>
<td>0.145</td>
<td>0.179</td>
<td>0.143</td>
<td>0.121</td>
<td>0.132</td>
<td>0.337</td>
<td>0.165</td>
<td>44.6</td>
</tr>
<tr>
<td>55 in 1983</td>
<td>0.121</td>
<td>0.346</td>
<td>0.295</td>
<td>0.286</td>
<td>0.255</td>
<td>0.267</td>
<td>0.127</td>
<td>0.069</td>
<td>0.123</td>
<td>0.032</td>
<td>0.079</td>
<td>0.000</td>
<td>17.4</td>
</tr>
<tr>
<td>65 in 1993</td>
<td>0.110</td>
<td>0.221</td>
<td>0.266</td>
<td>0.417</td>
<td>0.206</td>
<td>0.139</td>
<td>0.166</td>
<td>0.123</td>
<td>0.103</td>
<td>0.012</td>
<td>0.150</td>
<td>0.089</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Figure 1: Percentiles of health status by age (1=excellent health, 5=poor health)
Figure 3: Mean and variance of ln(family income) by age, for birth cohorts
Figure 4: Mean and variance of health status and correlation of income and health by age, for birth cohorts.
Males, ln income (y-axis) and health status (x-axis)

Figure 5: Males, correlation of income and health by birth cohort for 1983 and 1994
Females, income (y-axis) and health status (x-axis)

Figure 6: Females, correlation of income and health by birth cohort for 1983 and 1994
Figure 7: Mean and variance of ln(body mass index) and correlation of income and body mass by age, for birth cohorts
Males, in income (y-axis) and ln body mass index (x-axis)

Figure 8: Males, correlation of income and body mass by birth cohort for 1983 and 1994
Females, ln income (y-axis) and ln body mass index (x-axis)

Figure 9: Females, correlation of income and body mass by birth cohort for 1983 and 1994
Figure 10: Percentiles of health status by age for blacks and whites
Figure 11: Percentiles of health status for blacks and whites, with and without adjusting for differences in income distributions.
Figure 12: Percentiles of health status for blacks and whites, with and without adjusting for differences in income distributions.
Figure 13: Percentiles of health status for blacks and whites, with and without adjusting for differences in income distributions.
Figure 14: Percentiles of ln(body mass index) by age for blacks and whites
Figure 15: Percentiles of body mass for blacks and whites, with and without adjusting for differences in income distributions.
Figure 16: Percentiles of body mass for blacks and whites, with and without adjusting for differences in income distributions.
Figure 17: Percentiles of body mass for blacks and whites, with and without adjusting for differences in income distributions.