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Notation

There are n principals indexed by i, and an agent. The agent’s effort is a vector x ∈ Rk; the
outcome is a vector y ∈ Rm; the two are linked by

y = F x+ � (A-1)

where F is an m-by-k matrix, and � is an m-dimensional random error vector, normally
distributed with mean 0 and variance-covariance matrix Ω.
If the i-th principal pays the agent zi, that principal’s expected utility is

ui = E [− exp {−ri (b0i y − zi) } ] (A-2)

and the agent’s expected utility is

ua = E [− exp {−ra (b0a y + Σi zi − 1
2
x0Cx) } ] . (A-3)

The agent’s opportunity utility level is ua; thus his participation constraint is ua ≥ ua.
Thus all players have constant absolute risk aversion, ri for principal i and ra for the

agent. All value outputs linearly; the vectors bi and ba are their unit valuations. The
quadratic form 1

2
x0Cx is the agent’s disutility of effort, and C is a k-by-k positive definite

matrix.
The unit valuations bi and ba, the risk aversion parameters ri and ra, the agent’s outside

utility ua, and the matrices F , C and Ω, are all common knowledge.

First-Best Risk Sharing

As a hypothetical ideal standard, consider the situation where the agent’s effort x and the
outcome y are directly observable and verifiable. Then the agent’s effort can be stipulated
as a part of the contract, � can be inferred, and the payments zi can be conditioned on it.
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The principals’ Pareto optimum will be found by maximizingX
i

θi ui + λ ua =
X
i

θi E[− exp{−ri [b0i (Fx+ �)− zi(�)] } ]

+λ E[− exp{−ra [b0a(Fx+ �) + Σi zi(�)− 1
2
x0Cx] } ] .

Here θi are the weights attached to the principals’ utilities (which could be implicitly de-
termined as the Lagrange multipliers on the problem of maximizing the utility of one of
them subject to all the others achieving specified minimum levels), and λ is the Lagrange
multiplier on the agent’s participation constraint.
The first-order condition for x is

Σi θi ui ri F
0 bi + λ ua ra (F

0ba − Cx) = 0 .

The conditions for the zi(�) are

−θi exp{−ri [b0i (Fx+ �)− zi(�)] } ri
+λ exp{−ra [b0a(Fx+ �) + Σi zi(�)− 1

2
x0Cx] } ra = 0.

Multiplying these by F 0 bi, taking expectations over � and adding over i, we get

−Σi θi ui ri F
0 bi + λ ua ra F

0 b0 = 0 ,

where b0 = Σi bi is the principals’ aggregate unit valuation vector. Substituting into the
condition for x and simplifying, we find

C x = F 0 (b0 + ba) ,

or
x = C−1 F 0 (b0 + ba) . (A-4)

The first-best optimal effort is independent of all parties’ risk-aversion parameters; this is
due to the assumption of constant absolute risk-aversion.
Now let z(�) = Σi zi(�). Taking logs in the first-order condition for zi(�), we find

ri [b
0
i �− zi(�)] = ra [b

0
a �+ z(�)] + Ti ,

where in this context the symbol T is used as generic notation to indicate terms independent
of �. Dividing by ri, adding over i, and rearranging terms, we get

z(�) =
r0 b

0
0 − ra b

0
a

r0 + ra
�+ T ,

where r0 is defined by
1/r0 = Σi (1/ri) . (A-5)

In other words, the principals act like a single entity with an aggregate risk-tolerance
(reciprocal of risk-aversion) equal to the sum of their individual risk-tolerances. Then each
party’s exposure to risk, [b0i � − zi(�)] for the principals and [b

0
a � + z(�)] for the agent, is

proportional to his individual risk-tolerance. This is a standard result in the general the-
ory of optimal risk-bearing, especially in the context of financial markets; see Huang and
Litzenberger (1988, pp. 134—5).
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Constrained Optimal Incentives

From now on I assume that the agent’s effort x is not observable by the principals or verifiable.
Unless explicitly stated, the outcome y is observable by all players and verifiable.
I restrict the principals’ payments to linear functions

zi = α0i y + βi ; (A-6)

leading to an aggregate payment
z = α0 y + β , (A-7)

where α = Σi αi and β = Σi βi.
With a single principal, restriction to linear schemes can be rigorously justified if the

model is the reduced form of a dynamic one where the agent controls the drift of a Brownian
motion; see Holmström and Milgrom (1987). However, such a formulation is used in appli-
cations without explicitly invoking the dynamic model, because the optimal linear strategies
are easily computable and yield useful insights; see Holmström and Milgrom (1991) and Dixit
(1996, appendix). When I consider a non-cooperative game among several principals, if in
the corresponding dynamic game all the other principals are using linear strategies, then the
optimal response of any one principal can be achieved by using a linear strategy. Thus there
is an equilibrium in which strategies are linear, but there may be other equilibria involving
complex and nonlinear history-dependent strategies. Again, the linear equilibrium is useful
because of its tractability and intuitive results; see Dixit (1996, Appendix) for a similar and
less general model.
Using the i-th principal’s linear payment function (A-6) in his expected utility function

(A-2), we find

ui = E[− exp{−ri [(bi − αi)
0 y − βi] } ]

= E[− exp{−ri [(bi − αi)
0 (Fx+ �)− βi] } ]

= − exp{−ri [(bi − αi)
0 Fx− 1

2
ri (bi − αi)

0Ω (bi − αi)− βi] } ,
where the last step uses the standard formula for the expectation of an exponential (the
moment generating function) of a multidimensional normal variate; see Billingsley (1986,
p. 286). Principal i’s choice problem therefore simplifies to that of maximizing the “certainty-
equivalent income”

CEi = (bi − αi)
0 Fx− 1

2
ri (bi − αi)

0Ω (bi − αi)− βi (A-8)

Likewise, substituting the aggregate linear payment function (A-7) into the agent’s ex-
pected utility function (A-3) and simplifying, the agent’s problem reduces to maximizing
his certainty-equivalent income

CEa = (ba + α)0 F x− 1
2
ra (ba + α)0Ω (ba + α)− 1

2
x0C x+ β . (A-9)

Given the aggregate incentive scheme (A-7), the agent chooses x to maximize his own
certainty-equivalent income defined by (A-9). The first-order condition for this is

F 0 (ba + α)− C x = 0 ,
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yielding
x = C−1 F 0 (ba + α) . (A-10)

Using this, we get the “indirect” forms of utility functions for the principals and the
agent can. The corresponding certainty-equivalent incomes are

CEi = (bi − αi)
0G (ba + α)− 1

2
ri (bi − αi)

0Ω (bi − αi)− βi , (A-11)

CEa =
1
2
(ba + α)0G (ba + α)− 1

2
ra (ba + α)0Ω (ba + α) + β , (A-12)

where
G = F C−1 F 0 (A-13)

is an m-by-m positive definite matrix.

Colluding Principals

Suppose the principals collusively choose the parameters αi, βi of their linear schemes, to
achieve a Pareto optimum subject to the agent’s participation constraint.
The principals can change the βi by offsetting amounts to achieve lump-sum transfers

among themselves without affecting the agent’s participation or incentives. Similarly, the
aggregate β serves to achieve transfers between the principals and the agent, and thereby to
meet the agent’s participation constraint. Therefore the optimum should maximize the sum
of the certainty-equivalent incomes of all players, and the aggregate α is the crucial choice
variable that controls the agent’s incentive to make effort. Thus the principals’ problem
becomes to maximize

(b0−α)0G (ba+α)+ 1
2
(ba+α)

0G (ba+α)− 1
2

X
i

ri (bi−αi)
0Ω (bi−αi)− 1

2
ra (ba+α)

0Ω (ba+α) .

The first-order condition for αi is

0 = G (b0 − α)−G (ba + α) +G (ba + α) + riΩ (bi − αi)− raΩ (ba + α)

= G (b0 − α) + riΩ (bi − αi)− ra Ω (ba + α) .

Divide this by ri and add over i. Using the definition (A-5) of the principals’ aggregate
risk-aversion r0, we have

(1/r0)G (b0 − α) + Ω (b0 − α)− (ra/r0)Ω (ba + α) = 0.

Finally, writing aj for the incentive payment vector in the principals’ joint optimum, we
have

[G+ (r0 + ra)Ω] (ba + αj) = [G+ r0Ω] (b0 + ba) . (A-14)

This is equation (4) in the text.
The αi of the individual principals can, if desired, be retrieved by using this in the

separate first-order conditions for each i.
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The equation can be solved explicitly for α, but the form above is more informative. The
vector on the right-hand side, (b0 + ba), is the sum of everyone’s unit valuations, while the
vector on the left-hand side is the agent’s overall benefit from the marginal output — his own
valuation vector ba plus the payment vector α offered by the principals — and it determines
his effort. Thus we see how the overall valuation affects the effort and the outcomes. We
have

x = C−1 F [G+ (r0 + ra)Ω]
−1 [G+ r0Ω] (b0 + ba) ,

and the resulting expected output is

E[y] = G [G+ (r0 + ra)Ω]
−1 [G + r0 Ω] (b0 + ba) .

The economic interpretation and some implications of (A-14) are discussed in the text.
Here I briefly note some further points: [1] The principals pool their risks and have a large
risk-tolerance (low risk-aversion). [2] The principals recognize the agent’s own concern for
output, and partially offset their incentive payments.

Competing Principals

Next let principals act non-cooperatively. Consider the Nash equilibrium of their choices
of αi and βi, taking into account the agent’s optimum response, given by (A-10) to the
aggregate incentives he faces.
First we determine one principal’s best response to given strategies of others. We ask what

would happen if this principal were not to offer any incentives, compare that to what happens
when he does, and thereby calculate the surplus that is due to the bilateral interaction
between him and the agent. Then his α1 is chosen to maximize this surplus, and β1 to
divide it between him and the agent so as to meet the latter’s participation constraint. This
procedure follows Holmström and Milgrom (1991).
Fix on say principal 1, and denote the parameters of the aggregate schemes of the rest

by
A1 =

X
i6=1

αi, B1 =
X
i6=1

βi .

If principal 1 were to offer nothing, the agent would choose

x = C−1 F 0 (ba +A1) .

Using this in the formulas (A-11) and (A-12) above, principal 1’s certainty-equivalent income
would be

b1G (ba +A1)− 1
2
r1 b

0
1Ω b1 ,

and the agent’s,

1
2
(ba +A1)

0G (ba +A1)− 1
2
ra (ba +A1)

0Ω (ba +A1) +B1 .

When principal 1 does offer a payment scheme z1 = α1 y + β1, the expressions (A-11) and
(A-12) apply, with the aggregate parameters α = α1 +A1 and β = β1 +B1.
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Subtracting, we find the expression for the bilateral surplus,

b01Gα1 − 1
2
α01Gα1 + r1 b

0
1Ωα1 − 1

2
r1 α

0
1Ωα1 − ra (ba +A1)

0Ωα1 − 1
2
ra α

0
1Ωα1 .

To maximize this, the first-order condition for α1 is

Gb1 −Gα1 + r1Ω b1 − r1Ωα1 − raΩ (ba +A1)− raΩα1 = 0 .

Using A1 = α− α1, this can be written

[G+ r1Ω]α1 = [G+ r1Ω] b1 − raΩ (ba + α) .

There are similar equations for each principal. Multiply the i-th by [G + riΩ]
−1, and add

across i, to get

X
i

αi =
X
i

bi −
( X

i

[G+ r + iΩ]−1
)

raΩ (ba + α) .

Finally, denote the aggregate incentive parameter α in this Nash equilibrium where the
principals act separately by αs, to distinguish it from the αj above where the principals act
jointly. Then (

I + ra
X
i

[G+ riΩ]
−1 Ω

)
(ba + αs) = b0 + ba . (A-15)

If all principals have the equal risk-aversion, this takes the special form

[G+ n (r0 + ra)Ω ] (ba + αs) = [G+ n r0Ω ] (b0 + ba) , (A-16)

which is equation (5) in the text. The economic implications are discussed in the text.
Most importantly, if we let n go to infinity holding risk-aversions of all individual players

fixed, n r0 has a positive finite limit while n ra goes to ∞. Then (A-15) or (A-16) reduce to
ba + αs = 0.
The annihilation of incentives with a large number of principals arises because of their

interaction. This is most easily seen in the case where the number of outputs m equals the
number of principals n, and each principal cares for only one dimension of the output, so
only the i-th component of bi is positive and all others are zero. But the αi have negative
components for j 6= i. Thus principal i pays the agent more when output of j is less; in
other words, the principal offers insurance to the agent for risks associated with outputs
j 6= i. Since principal i does not care about these outputs, he is not concerned about the
resulting moral hazard, namely the agent’s diminution of effort in those dimensions. The
other principals bear this cost. This negative externality is as usual oversupplied in the non-
cooperative Nash equilibrium of the principals. The existence of these negative incentives
for j 6= i also reduces the benefit that principals j stand to get by offering positive incentives
for the dimensions j that concern them. The result is that incentives are weak all round.
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Restricted Contracts

The above discussion suggests that power of incentives might be restored if each principal
were restricted to schemes that depended only on the dimension of output that is of most
concern to him. This might be done by restricting observability (each principal is prohibited
from seeing the outputs that concern the other principals), or by not allowing them to make
use of these observations (constraining contracts).
Continue the assumption at the end of the last section, namely that each principal is

concerned with only one dimension of the outcome: bij = 0 for i, j = 1, 2, . . . n, i 6= j.
Add the restriction that each αi can have only the i-th component αii non-zero, the bilateral
surplus between principal 1 and the agent becomes1

b11G11 α11 − 1
2
G11 (α11)

2 + r1 b11Ω11 α11 − 1
2
(r1 + ra)Ω11 (α11)

2

−ra
nX

j=1

baj Ωj1 α11 − ra
nX

j=2

A1j Ωj1 α11 ,

leading to the first-order condition

[G11 + (r1 + ra)Ω11] α11 = [G11 + r1Ω11] b11 − ra
nX

j=1

baj Ωj1 − ra
nX

j=2

A1j Ωj1 .

The most important new feature is the absence of the factor n multiplying the risk-
aversion parameters. This is most easily seen if the error variance-covariance matrix Ω is
diagonal, when the first-order condition immediately yields a solution for α11:

[G11 + (r1 + ra)Ω11] α11 = [G11 + r1Ω11] b11 − ra Ω11 ba1 .

Now, if the different dimensions of effort are close substitutes in the agent’s utility function,
the matrix C is nearly singular and G11 is large. The solution is α11 ≈ b11: the principal offers
the agent full-powered incentives, with a bonus coefficient almost equal to the principal’s
own marginal valuation of the outcome. If the agent does not value outcomes directly, this
approximates the first-best.
This is another instance of the general theory of the second best: the externality arising

from the principals’ non-cooperation may be partially offset by worsening another problem,
namely that of asymmetric observability of effort. Of course the risk-sharing is not first-best,
so the full optimum is not replicated.

1I thank Mr. Xinshuai Guo of the University of Science and Technology of China for pointing out an
error in the original version of this formula.
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