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Abstract In large areas of low and locally variable rainfall in East Africa, pas-
toralism is the only viable activity, and cattle are at risk of reduced milk out-
put and even death in dry periods. The herders were nomadic, but following the
Kenyan government’s scheme of giving titles to group ranches, they are evolving
reciprocity arrangements where a group suffering a dry period can send some of
its cattle to graze on lands of another group that has better weather. We model
such institutions using a repeated game framework. As these contracts are infor-
mal, we characterize schemes that are optimal subject to a self-enforcement or
dynamic incentive compatibility condition. Where the actual arrangements differ
from the predicted optima, we discuss possible reasons for the discrepancy, and
suggest avenues for further research.
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1 Introduction

Public-good and common-pool resource problems are fundamental to sustainabil-
ity, and ineluctable features at the interface between ecological and socio-economic
systems (Ostrom 1990; Sethi and Somanathan 1996; Weissing and Ostrom 1993;
Dasgupta 1997). More generally, the challenges addressed in dealing with such
problems are also widely found in biological systems even in the absence of hu-
mans: bacteria produce extracellular polymers that provide benefits to others,
plants fix nitrogen, collective foraging and defense are widespread, and indeed the
prudent use of common resources emerges in a number of different contexts. Thus,
not only can approaches for dealing with human-environment interactions help
manage these situations, but such approaches also can help to elucidate analogous
problems throughout ecology and evolutionary biology. This paper chooses as an
example collective insurance arrangements in herder systems, but the hope is that
the framework developed will serve as a starting point for dealing with a much
wider set of phenomena.

Pastoral herding appeared thousands of years ago when hunter-gatherers do-
mesticated wildlife, selectively breeding livestock that could convert inedible vege-
tation of previously underutilized arid and semi-arid lands into useable foodstuffs
such as milk and meat. The lands are characterized by rainfall that has a low
average, but high spatial and temporal variation. Pastoral herders coped with the
resulting uncertainty in rangeland productivity by migrating large distances fol-
lowing the rains. Since productive areas were often controlled by resident tribes,
the mobility of wandering tribes was constrained. Warrior-enforced encroachment,
tempered by informal rules of land tenure as well as wife exchange among tribes,
created a variety of mechanisms that fostered short-term sharing by the occu-
piers of productive lands with those whose land was currently, but temporarily,
unproductive (Homewood 2008).

Generally, the drier the region, the more pastoral herders subsist on foodstuffs
derived from livestock. Some of the purest pastoralists — the Maasai, the Samburu,
the Turkana and the Boran — live in East Africa where annual rainfall is less than
400 mm. Traditionally, families in these tribes survived mostly on milk from their
herds. Milk is virtually a perfect food supplying protein, calories and vitamins. But
sufficient production to sustain families depends on herds consuming vegetation
from pastures not degraded by excessive livestock grazing and browsing.

Even though no tribe can control enough rangeland to sufficiently reduce the
effects of rainfall variability, the pressure to control as large a tract as possible
results in rangelands being managed as a common-pool resource. Since the costs
of excluding groups arriving from unproductive land are likely to be greater than
the gains of defending productive land, rules based on reciprocity and kinship often
develop to reduce violence and foster long-term gains of wandering and defending
groups. But such relationships are prone to cheating. If reneging for short term
gain limits future movement, then staying put during ‘bad times’ with large herds
that were appropriate when times were good is likely to lead to degradation of the
land, unless Hardin’s idea of ‘mutual coercion, mutually agreed upon’ is practiced.
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The Kenya Government’s new land tenure policy during the 1970s (see ILRI
1995) compounded the problem of limited movement and resulting land degrada-
tion. When communities received title deeds to exclusive areas, pastoral herders
that had relied on transhumance for thousands of years were essentially sedenta-
rized, living on parcels of land that became known as ‘group ranches’ and which
averaged 15,000 hectares (37,000 acres or 60 square miles) in size, much too small
to average out rainfall variability within, or even among neighboring clusters of,
communities.

Consequently, new methods of organizing livestock movements from areas of
low rainfall to high rainfall had to be developed. In theory herders with cash
could buy grazing rights on more productive land, a practice that is common in
Australia and other areas of the world. Renting land for transferred herds is known
as Agistment and relies on trust since receivers of herds are expected to care for
them well and senders of the herds are expected to send only easy-to-manage
animals (McAllister et al. 2006). But incomes among pastoral herders in East
Africa rarely exceed $1 per day, so Agistment practices are rare. Instead, pastoral
herders are developing reciprocity arrangements with other communities so that
when conditions are poor for one community a fraction of that community’s herds
can be moved to the more productive lands of the distant partnering community.
Unlike arrangements under the Agistment system, transferred livestock by African
pastoralists are managed by their owners. For this system to be stable, when the
conditions are reversed, communities that previously received herds should be able
to send a similar fraction of their herds to the former sending communities. But if
the former sending communities renege on their agreement or have not managed
their lands well by setting enough rangeland aside to sustain their own returning
herds as well as herds of former receivers that will be expected in the future, the
payoffs will not be equal and offsetting, and reciprocity arrangements will collapse.

In this paper we consider the viability of such arrangements. For this initial
exploration, we use a very simple model. We assume that the groups are sym-
metric except for the weather realizations: they have the same production and
cost functions, and the same marginal probability distributions of weather realiza-
tions. When we consider self-enforcing cooperation in Section 5, we will assume
that identical periods of this kind repeat indefinitely, ignoring serial correlation of
weather and ignoring the dynamics of cattle population through birth and death,
and that of land quality through gradual degradation or restoration. While this
model serves to yield some useful results and insights, we will later list many di-
mensions along which it can be generalized; these generalizations are part of our
ongoing work.

2 The basic model

Label the two groups 1 and 2. Initially we will introduce variables for either group
generically without group labels; then we will bring the groups together and intro-
duce the labels as subscripts. Each group collectively (using its internal structure
of governance by the elders or a managing committee) chooses two inputs: the
number of cattle z, and the quality of land z. Each input has a cost, either di-
rectly monetary, or in terms of some other opportunity foregone. The cost function
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is

C(z,2) = te(z+2)°. (1)
The motivation for this specification is as follows. The cost function should meet
several desiderata:

1) It should be an increasing function of each argument: the partial derivatives
0C'/0z and 0C/0z should both be positive. It is more costly to farm more animals
(including both direct costs and those of any land degradation that has to be
restored so z can be increased while keeping z constant) and it is more costly to
maintain higher quality while raising a given number of animals.

2) The second-order own partials 9>C'/9z% and 8%D/dz? should both be posi-
tive, i.e. the incremental or marginal costs of keeping more cattle should be increas-
ing as an increasing number of them crowd more on the given amount of land, and
the marginal or incremental cost of sustaining higher land quality should be also be
increasing as the desired quality increases, because the cheapest quality-increasing
measures will be undertaken first, and successive steps to improve quality further
will require resort to successively more costly methods.

3) The second-order cross-partial 9?C /8282 should be positive: the more cattle
on the land, the harder it is to make any incremental improvement in land quality.
Then the quadratic we use is the simplest function that meets these requirements
while combining flexibility and parsimony: it employs just one free parameter c. We
could make the cost proportional to (ax + bz)2 where a and b are free parameters,
but that is redundant because we can choose units of = and z to make a = b= 1.

The output, in the form of milk or blood or meat, resulting from these inputs
is specified as

F(z,2) = Aa® 2P, (2)
where a and 3 are positive, and satisfy a condition that will emerge in the course
of the analysis. This form of production function, called Cobb-Douglas after its
discoverers in the 1940s, is widely used in economics, and again offers a good first
approximation combining flexibility and parsimony.! In out context we expect
a < 1, as increasing the number of cattle on a given piece and quality of land will
suffer from diminishing returns and therefore will not produce proportionately
more output. Some idea about the magnitudes of these parameters will emerge
from comparisons of the results of the model with reality.

The output generates consumption Y for the group. If the group does not have
any reciprocity arrangements with another group, the consumption simply equals
output. With such arrangements, Y will denote the group’s share of the total out-
put as stipulated in the implicit contract with the other group. The consumption

yields utility
lflp Yyi=rifp£1
Uy)=

. 3)
In(Y) ifp=1

where p > 0 is the Arrow-Pratt coefficient of relative risk-aversion.?

1 See http://en.wikipedia.org/wiki/Cobb-Douglas_production_function, for a summary,
and Douglas 1976 for a survey.

2 This can be interpreted as follows: to induce an individual to agree to a bet where he/she
may win or lose a fraction f of his/her wealth, the probability of winning would have to be
% + %p. See Arrow 1971, p. 95. When p = 0 the group is risk-neutral and willing to take a fair
bet. When p > 0, the bigger it is, the more risk-averse the group, and demands better odds to
be induced to take the bet.
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The multiplicative constant A depends on the weather conditions. There are
two possible conditions, H (good weather) and L (a dry spell). The corresponding
values of A are Ag > Ar. Let (i,5) denote the state or outcome where group 1
gets weather condition ¢ and group 2 gets weather condition j, for 4, j = H, L. We
denote by p2 the probability of state (H, H) (both groups get good weather), by
po the probability of state (L, L) (both get bad weather), and by p; that of each
of the states (H, L) and (L, H) (group 1 gets good weather while group 2 gets bad
weather, and the other way round). Then

p2+2p1 +po=1,;

the marginal probability for any one group of getting good weather is py = p2+p1,
and that of bad weather is pr, = p1 + po.

The two groups’ weather outcomes are perfectly positively correlated if p; = 0;
in this case reciprocal arrangements will not help. The opposite case of perfect
negative correlation corresponds to ps = pp = 0 and p1 = %; this is when reciprocal
arrangements have the greatest potential. The case of independent outcomes (zero
correlation) requires p1 = py pr = (p2 +p1) (p1 +po), which then simplifies further
t0 p1 = /Po P2

The inputs z and z must be chosen before the weather realization is known.
The group’s objective is its expected utility

EU =py U(Yy) +pr U(YL) — Se(x+2)? (4)

in obvious notation.

3 One group’s optimum

First consider the case where each group is on its own. We assume initially that
p # 1; that case can be treated similarly, as we discuss later. We omit group labels,
and consider the choice of x and z to maximize expected utility, which in this case
becomes

1 1—p 1—p
EU:prp (AHJJO‘ZB) +pr (Aanzﬁ) —%c(a:—i—z)Q

1—
1

=7 — [PH A}lq—p + pr, Ai_p] (=P B0=p) —% c(m—i—z)Z (5)

The first-order conditions for an optimum are

T o AR e AL a1 ) 27079 0D ey ) =
1 - 5 lpr AP +prL ApP] 207 81— p) LU (4 2) =0

or

[P A"+ pn AL0] a @707 PO < (a4 2)
[PH A};" +pL Ai*p] 2(1=p) ﬁzﬁ(l—p)—l =c(z+2)
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when p # 1. Dividing the second of these by the first yields
x/a=z/B =N, say. (6)
Substituting this into the first-order condition with respect to x yields
[par AP 4 py, ALP] @ 020971 G300 NEHDI=IT _ (o L )N, (7)
and therefore
a®(1=p) gh1=p)
c(a+p)

This yields NV in terms of the exogenous variables of the problem, and substituting
the solution for N into (6) gives the optimal values of z and z.

These solution expressions remain valid for the case p = 1, as can be seen
by working explicitly with that case when utility is logarithmic. We omit these
derivations to save space.

We need the condition

N2 (a+B)(1-p) _ [prr Ay ” +pr A7 "] . (8)

(a+8)(1-p)<2. (9)

This condition ensures that the objective of the maximization (utility) is a concave
function of the choice variables (z and z). If it fails, the left hand side of (7) becomes
an increasing function of N, so the second-order condition for optimization fails.
Also, as (8) shows, the condition yields an economically meaningful solution; for
example an increase in the cost parameter ¢ reduces N and therefore the optimal
z and z.
Substituting from(6) into (5)and using (8), we find the maximized expected
utility of each group in isolation:
EUisol _ 1
1-p
1
= T cla+pB) NQ—% cla+p3)% N?
_2-(a+B)(1—p)
2(1-p)

c(la+ B) N?

4 The full or first-best optimum

The two groups together can achieve better outcomes. If one has the good weather
realization H and the other has the bad weather realization L, the total output can
be raised by transferring some cattle to graze on the land that is more productive
in this weather realization. We emphasize that the “transfer” is not a change of
ownership, it is merely a temporary move to better grazing grounds. Some people
from the home group travel with the cattle to manage them, and at the end of
the season the cattle will return to the home ranch. No net cost to transport is
assumed since the cows graze while walking between sites. Also, the fortunate
group, which enjoys more favorable weather, can share some of the output of its
own cattle with the unfortunate group. The good and bad weather conditions
fluctuate probabilistically, so these are mutual insurance arrangements and not
one-way gifts.

[pH A}{—P +pr A};—P] a@(1=p) 65(1*9) N(at+B)(1-p) 7% C(Cl—f—ﬁ)Q

N2

(10)
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In state (7,7), where the multiplicative constant in group 1’s production func-
tion is A; and that in group 2’s is A;, denote the number of cattle transferred
from group 2’s land to group 1’s land by m;;; a negative value of m;; indicates a
transfer in the opposite direction. Then the total output is

Qij = A (w1 +mig)® 2 + A5 (w2 —miyg)™ 24 (11)
Suppose this is split between the groups according to
Yiij + Ya,ij = Qij (12)

in obvious notation. Then expected utilities of the two groups will be

EU, = 1%;) [m (Yl,HH)17p+p1 (Yl,HL)17p+p1 (YI,LH)17p+pO (YI,LL)lip]
—3 ¢l +21)° (13)
EU; = %p [p2 (Yo,mm)' ™" +p1 (Ya,om)' ™" +p1 (Vo) ™" +po (YVion)' "]
—5 c(v2 +22)° (14)

In our symmetric setting, the efficient arrangement will maximize the sum of the
groups’ expected utilities.® This is as if a benevolent social planner maximizes
social welfare treating the groups equally; therefore we will call the sum of expected
utilities social welfare SW. The choice variables in this maximization are the two
groups’ inputs z4 and z4 chosen before the realization of the weather pattern, and
the transfers m;; and the output splits Yy ;; in each weather state.

The implementation of the optimum may be problematic. A group that has a
good weather realization may be tempted to renege on its agreement and refuse
to accept cattle from the other group that has had a bad weather realization,
instead using its greener land for its own herd. And it may be tempted to refuse
to share output with the other. If the social planner has enforcement power, or
if a formal enforceable contract can be written by the groups, the problem can
be solved. We will call this a full or first-best optimum, and characterize it in the
rest of this section. But if enforcement power is lacking, the arrangement has to
be self-sustaining, based on repeated relationship where the lucky group realizes
that some time in the future it may need a return of the favor, and therefore
that its short-run gain from reneging has a long-run cost. We will take up this
self-enforcing or second-best optimum in the next section.

In the full optimum, 1, x2, 21, 22, and the m;;, Y1 ;; and Yo ;; for i, j = H, L
are to be chosen to maximize

SW = EU;, + EUs

where the various entities are ultimately defined in terms of the choice variables
by (13), (14), (12) and (11). Although the problem looks formidable, it can be
solved quite easily in three steps:

3 More generally, the (Pareto) efficient frontier of negotiation between the two groups will
maximize the expected utility of one group for each given level of the expected utility of
the other, and the location of the chosen point on this frontier will depend on the relative
bargaining strengths of the two.
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Step 1: In each state (i,7), the transfer m;; should be chosen to maximize
total output @;;. The first-order condition for this is

a A; (:1’1 +mij)a—1zf - OéAj (1’2 — mij)a—l Zg =0,

i.e. the marginal productivities of cattle on the two plots of land should be equal-
ized. The second-order condition is

a<l, (15)

i.e. the marginal products should be decreasing. Then the first-order condition
yields
1+ my; _ T2 — Mij
(A )70~ (45 7=

so each of these fractions equals the sum of the numerators divided by the sum of
the denominators:

T1+ X2
(A; Zlﬁ)l/(l—a) + (4, 25)1/(1—‘&) .

Then +
gy = (4 250 Sl :
T1 T My (Ai 27) (A; Z?)1/(1—a) + (Aj Zg)l/(l—a)
and 1+
(4. B/ () L
To —my;; = (A; 2 ’
2 ij = (A5 2z3) (A; 216)1/(1—a) + (4 Zg)l/(l—a)
Therefore

(Ai Z,13)1/(1—a) _ (Aj Zg)l/(l—a)
(4; 201/ =) 4 (4, 2B/ a-)

mi; = % (z1 + x2) — % (1 —x2) . (16)

and .
Qij = (w1 +22)” | (4 216)1/(176“) + (4 25)1/“*“) . (17)

Observe that m;;, the number of cattle of group 2 moved to graze on group 1’s
land in state (4,7), is higher if (1) A; is high relative to A;, (2) 21 is high relative
to z2, and (3) z2 is high relative to x1. The first of these serves the purpose of
the reciprocity arrangement: to insure or smooth out fluctuations in income. But
the other two can create moral hazard. Each group may be tempted to allow its
land to degrade (lower z) and stock more cattle (raise z) beyond the optimum,
and then transfer some cattle to benefit from the other’s better and less-intensively
grazed land. With both groups so tempted, this will turn into a prisoners’ dilemma.
Since z; and z; must be committed before the weather condition is realized, if the
two magnitudes are publicly observable, the ability to send cattle can be made
contingent on the group having adhered to the optimum, and the moral hazard
of cheating on x; and z; can be thus overcome. We will throughout assume this
to be the case, and in the next section where we consider implementation of the
optimum, will focus only on the moral hazard of refusing to accept the other
group’s cattle (m;;). In the symmetric solution we consider below, the two z’s will
be equal, as will the two z’s, and optimal transfers will depend only on the weather
conditions. But in asymmetric situations, monitoring moral hazard will be more
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problematic. In addition, the issue of allowing transfers to disadvantaged groups
for redistributive reasons will have to be considered.

Step 2: In each state, the total output @Q;; should be split between the two
groups according to (12). When p > 0, the relevant part of the objective function,

namely
1

1-p
is strictly increasing, strictly concave, and symmetric. Therefore equal division

[ (Y1,ij)" 77 + (Ya,i5)' 7 ]

_ 1
Yiij =Y =5 Qij

is optimal. If p = 0 (risk-neutrality), the division is indeterminate but also irrele-
vant, so equal division can be chosen without loss of generality. Therefore

11—«
Y17HH — Y2,HH — 1 AH (xl +x2)0t |:Z1ﬁ/(1—01) +226/(1—CK):| ,

]

11—«
Yl,LL — YZ,LL — % AL (-Tl + mZ)a |:Zlﬁ/(1—(x) 4 Zg/(l—a):| )

11—«

Yigr =Your =3 (x1+2)" [ (Ag VA=) (4, 50— }
and
11—«
Yl,LH _ YQ,LH _ % (-Tl _,_332)04 |: (AL 2,13)1/(1—04) + (AH Zg)l/(l—a) :|

Step 3: Using the results of steps 1 and 2, social welfare can be expressed in
terms of the choice variables x1, x2, 21, 22:

2 B/(—a) | B/a—ay] = 177
SW:fp P2 {%AH (1 + z2)” [21 + 25 } }

1/(1 Br1/(1 (1=a) | 177
+p1 {%(ml—l—aﬁz)a [(AHzlﬂ) /A=) 4 (ay )M 70‘)} }

. i (1—a) (1—p)
+p1 {% (z1 + 22)° [(AL zlﬁ)l/( —) +(AHZ§) /( _a)} }

8/(—a) , pf1—ay] = |77
+PO {é AL (131 +12)a |:Zl +2’2 ] }

—%c(:m +z1)2 — %c(mg +z2)2

2° _
= . (1 +x2)(’(1 »)

1—

B oy (—a)(1-p)
“m AL gy AL {Zlﬁ/(l @ B/ a)}

. ) (=) (1-p)
+p1 {(AH )V (A )0 }

. 0
+p1 {(ALZf)l/(l Vo (Ag )V )} }

—%C(CK1 +z1)2—%0($2+Z2)2 (18)
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The first-order conditions are

oOSW _ op a(l—p)—1
5. 2° o (w1 + x2)
_ _ . IRRNCERDICE)
[(m Ay o AY0) {10 4 ga)
Y IRRNCERDICE)
o1 { (A )0 g a0
. IRRNCERDICE)
o { (A )07 4 (4 100 ) }
—c(z1+21)=0
aSW

— 9P a(l—p)
o1 (z1 4+ x2)

(e o R C R ) M F
+p1 {(AH )07 4 (Ap ) O }(1_0‘)(1_”)_1 A=) g pla-a)-1
+p1 { (A Z{i)l/(l—a) ¥ (A Z§)1/(1_a) }(1,(1)(1,,))71 AlL/(l—a) 5 Zlﬁ/(l_a)_l
—c(z1+21)=0

and similarly with respect to z2, z2.

In view of the symmetry, we look for a symmetric solution where x1 = z9 = x
and z1 = z2 = z. Then the zi-condition simplifies to

2 o (22)*(1=P)~1 {(m ALP 4y Alpr) 9(1l=a)(1=p) ,B(1—p)
(1—a)(1—p)
+2p; PP {A}{/(l_a) +Ai/(1_a)} ] =c(z+2)

or

AL/(=e) | 41/(1=a) Y (=)
@171 BO=p) |, AP +po AP +2m { i 2 L } = c(z+2)

Using the abbreviation

_ —ay ) (1)
Al/(l ) Al/(l @)
AM{ L AL (19)

2
write this as

ama(l_p)_l Zﬁ(l—ﬂ) [p2 A};p+2p1 A}\;P + po Ai*ﬂ] :C($+Z). (20)
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The z1-condition simplifies to
2 (22)*(1=P) [ (p2 AL7 4 po ALP) 9l—a)(1=p)=1 B(1-p)=B/(1-a) g B/(1-a)-1

b { A0 4 gl }““’)“"’)‘1 R O R e ]
=c(z+2)
and, using the abbreviation introduced above, it becomes
Br1=p) Bl=p)—1 [pg A};p +2p A}V;p + po Alpr] =c(z+2). (21)
Dividing (20) by (21) yields
z/a=z/B =M, say. (22)
Substituting this in either of the above equations and simplifying, we find

a®(1=p) gB1=p)

12— (@B (1=p) _
cla+pB)

[ p2 AP +2p1 Ay + po Alpr] - (23)

This yields M in terms of the exogenous variables of the problem, and substituting
the solution for M into (22) gives the optimal values of z and z.

The expected utility EU of each group in the symmetric solution is %SW.
Using (18), we have

9P
1-p
_ _ (1—a)(1—p)
+2 p1 {A;{(l a)—i—AlL/(l a)} LB0=p) —%C(I+Z)2

EU =1

(22)*(1=) [(m AL 4po ALY 9(1—a)(1=p) ,B(1—p)

Simplifying this and using (22) and (23) gives the expected utility of each group
in the full optimum:

pufullopt _ — i ; [p2 AL +2p1 ALTP 4 pg AL7P] @@(=P) gBU=p) platH(=p)

f% c(a+ﬁ)2 M2

1

_2-(+pd-p) 2
= 21— p) (a+pB) M (24)

ipc(a—l—ﬁ) MQf%c(az—i-ﬂ)2 M?

4.1 Gains from reciprocity arrangement
We can compare (10) from Section 3 with (24) above, to show the gains from the
reciprocity arrangement to transfer cattle when one group has good weather and

the other has bad weather. Consider the case p < 1. Then

EUfullopt > EUisol if and only if M?% > NZ, (%)
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i.e. if and only if M2~ (@B (A=p) 5 N2=(a+B8)1=p) ¢

p2 A P+ 2p1 Ay P 4 po AP > o Ay P o AP
= (p2 +p1) A};p + (p1 + po) Alpr7

i.e.
AP Al
P1 A}w”—% >0.

If p1 = 0, then the left hand side of this expression is identically zero, so the
two expected utilities are equal. Thus no gains from the reciprocal arrangement are
possible if weather conditions for the two groups are perfectly positively correlated.
If p1 > 0, using (19) the inequality becomes

1— 1—
{A}—I/(l—a)_FAi/(l—a)}( a)(1-p) . A}—I_p—i_Ai_p

2 2

Since p < 1, this is equivalent to

- ey (1m) _ ) Vp)
A/(A=a) | 41/(1=a) Al=P 4 q1p
{ H_ A Sl Ar AL ' ()

2 2

Since o < 1, we have

1
s 1>1-—
1—a e P
therefore (**) is true by Jensen’s inequality.
If p > 1, each of the two steps leading to (*) and (**) reverses the direction of
the inequality. With this even number of reversals, the same final result remains
valid.

4.2 Other properties of the full optimum

When weather outcomes of the two groups are different, let m denote the number
of cattle transferred from a group with the L weather condition, to graze on the
land of the group with the H condition. Using (16) in the symmetric optimum, we
have an expression for the fraction of the herd transferred:

m (AH/AL)l/(l_a) -1
m_ . (25)
x (AH/AL)l/(lfa) +1

Remarkably, this is independent of other parameters: the exponent 3 of land qual-
ity and the degree of risk aversion p (although the result does depend on these
entities being constants, that is, on the Cobb-Douglas production function and
constant relative risk-aversion).

Table 1 shows the values of m/x corresponding to different combinations of
Ap/Ar and «. This fraction rises with A /A, which is quite intuitive since
bigger productivity difference between good and bad weather lands should trigger
a larger transfer. It also rises with «; the explanation is that a higher @ means that
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Table 1 Fraction of herd transferred to better-weather land

[e%

Ap/Ap | 01 | 03 | 05 | 07 | 09
L5 | 0222 | 0.282 | 0.385 | 0.589 | 0.966
2.0 | 0.367 | 0.458 | 0.600 | 0.820 | 0.998
50 | 0.713 | 0.818 | 0.923 | 0.991 | 1.000
10.0 | 0.856 | 0.928 | 0.980 | 0.991 | 1.000

diminishing returns set in more slowly to cattle grazing on a given piece of land,
so more can be transferred without lowering the marginal product too much.

In reality we typically find around 90% of herds moved in bad weather condi-
tions.* Therefore the combinations Ay /A =2, a = 0.7, and Ay /A =5, a = 0.5,
seem reasonable. This will guide our numerical calculations in what follows.

Does the reciprocal arrangement, by reducing the risk of large losses, enable
each group to maintain a larger herd size? Does it lead to higher land quality?
Answers to these questions are likely to be of interest, not only to the herders
themselves, but also (and perhaps more so) to policy-makers in the country and
worldwide. As (22) shows, z and z are always in the same ratio z/z = «/f3, so the
answers to the two questions go hand-in-hand. It turns out that the joint answer
depends on the degree of risk-aversion. From (22), (6), (23) and (8), we have

- - _, V2= (a+B)(1-p)]
LLullopt M| A;I P4 2p A%\/[p+p0 AIL p

i - - - 1—
yisol N pu Ay " +pL A

Table 2 shows this ratio for various Ay /A and p. Again remarkably, the qual-
itative behavior of the ratio is largely independent of other parameters like the
probabilities and «, 3. (The numbers shown are for the equiprobable, uncorre-
lated case po = p1 = p2 = 0.25, and for a = 0.75, 3 = 0.25.)

Table 2 Ratio of herd size in full optimum to that in isolation

P
Ag/Ap | 00 | 05 | 10 | 1.5 | 20 | 20
15 1.028 | 1.011 | 1.000 | 0.992 | 0.985 | 0.968
2.0 1.069 | 1.027 | 1.000 | 0.979 | 0.962 | 0.968
5.0 1.201 | 1.087 | 1.000 | 0.931 | 0.887 | 0.968
10.0 | 1.265 | 1.127 | 1.000 | 0.897 | 0.847 | 0.968

We see that if p < 1 (low risk-aversion) the ratio is > 1 and rises with Ay /Ay,
and if p > 1 (high risk-aversion) the ratio is < 1 and falls as Ay /Ay rises. This
numerical finding can be proved rigorously using some complicated algebra. The
result goes against the intuition stated above: optimum herd sizes under the re-
ciprocal arrangement are smaller, not larger, when traders are highly risk-averse.
Also, the ratio is not monotonic in p at high end, but the intuition for that is
unclear.

4 Daniel Letoiye, Westgate Conservancy Manager, personal communication.
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4.3 When is the full optimum self-enforcing?

Suppose group 1 gets the good weather realization Ay while group 2 has the bad
one Ay. Group 1 may refuse to accept the assigned transfer of cattle myy, and
consume its own output Agy z¢ zf instead of its assigned share Y; gy, in the joint
output, where all these quantities are for the full optimum. It will thereby gain
utility
Aprenege _ 1 A S B t=r v, 1-p
1, ( Hﬂflzl) ( 1,HL)

This reneging will have long-term costs. Make the usual trigger strategy assump-
tion that the reciprocity arrangement will collapse after any incident of cheating.
Then the expected utility cost for each subsequent period is

EUfullopt _ guisol

Suppose r is the rate of time-discounting.® Therefore a low r indicates higher
concern for future costs and benefits, or a high r indicates more impatience. Then
the condition for the full optimum to be self-enforcing is that the one-period utility
gain not exceed the capitalized value of the subsequent flow of expected utility
costs, that is,

1—p _ .
1ip [ (AHLE?Zlﬁ) _ (Yl,HL)l p:| S% [EUfullopt_EUlsol}

or

>0. (26)

. 1—p —
EUfullopt _EUlsol_ 1ip [ (AHx'f zf) — (Y1,HL)1 ?

This condition places an upper bound 7 on the time-discount rate (on the degree
of impatience) for which the full optimum is self-enforcing. In other words, the full
optimum is self-sustaining if the actual time-discount rate r is in the range (0,7).
The larger is the critical 7, the greater the likelihood of a self-sustaining optimum.

Table 3 presents numerical calculations of this threshold for plausible param-
eter values. We fix ¢ = 1 and Ay, = 1 without loss of generality; among the cost
parameters only the ratio Ay /A, matters. Consistent with the observation above
about the fraction of herds moved, we consider two cases. (1) o = 0.75, 3 = 0.25
and Ag = 2, (2) a = 0.5, 8 = 0.5 and Ay = 5. For the probabilities, we take
p2 = 0.5, p1 = 0.2 and pp = 0.1. Then the probabilities for any one group are
pg = 0.7 and py, = 0.3. This is roughly consistent with the recent observation that
each group suffers a dry year about once every three years. (The frequency of dry
seasons has increased in recent years, possibly because of global climate change.)
Also, p1 = py pr,, so the weather outcomes are approximately uncorrelated across
groups, which is the roughly neutral case for achieving gains from reciprocity.

The full optimal degree of reciprocity is self-enforcing if the actual time-
discountt rate of the groups is below this upper bound 7. We see that as risk
aversion increases, the bound increases, increasing the chances of the condition
being fulfilled; this accords with intuition.

5 For those unfamiliar with this usage in economics, it means that a unit of utility accruing
one period later is worth only 1/(1 4 ) of a unit accruing in the immediate or current period.
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Table 3 Upper bound on r for self-enforcement of full optimum

Case (1) Case (2)
p | a=075,8=025Ag =2 | a=05 =05 Ag =5
T T
0.0 0.2771 0.1685
0.5 0.3687 0.3299
1.0 0.4767 0.5845
2.0 0.7505 1.5560
5.0 2.3637 30.4185

The reciprocal arrangement has two outcomes. One is pure efficiency — the
transfer of cattle maximizes the total output at any time by moving some cattle
from less productive to more productive areas. This effect occurs even if there is
no risk-aversion. Because a < 1, there are diminishing returns to moving cattle
such that output of milk increases less than proportionally with the number of
cattle moved. This is illustrated by diminishing returns of critical 7 against Ag
for p =0 in Figure 1. But when p is positive (the groups are risk-averse), a second
effect favoring reciprocity emerges, namely insurance. The benefit from insurance
is greater when the discrepancy between good and bad times (Ag) is large. This
second effect counters that of diminishing returns, reducing the concavity of critical
7T against Ay in Figure 1. It turns out that the overall effect is nearly linear for
large p.

/ it
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1 /
08 /
f
/
_ 06
e
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02 / " :
. 0=
0 / //
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rho 1
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Fig. 1 Critical 7 as a function of p and Ay

However, the numerical results present an ambiguous picture about the likeli-
hood of it being met in reality. A rough proxy for the groups’ time-discount rate is
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the interest rate at which they can borrow or lend. We have some evidence about
the magnitude of the actual interest rates r for these herders. In principle, they
can borrow from cooperatives and banks at rates in the range of 12 to 20 percent
per year.® But the availability of such loans is quite constrained, so the implied
or shadow interest rates are significantly higher. Second, there is some anecdotal
evidence that farmers in neighboring areas borrow to buy equipment only if the
loans pay back in one season, suggesting a rate of around 100%. (But this may
contain an option value component.) Thus the likely range of actual values of
interest rates overlaps with the range of upper bounds we have calculated.

Africa represents an area that is likely to be particularly vulnerable to climate
change. What rain falls tends to run off rather than infiltrate the soil fostering
vegetation growth. Unfortunately, projections of how rainfall in East Africa will
respond to increases in global climate are contradictory. Moisture is likely to in-
crease in the warming air over the Indian Ocean. But whether it will be driven by
monsoonal winds over the land thus increasing rainfall as is supported by paleo-
environmental data (Christensen et. al. 2007; Wolfe et. al. 2011), or whether it
will fall over the ocean, leaving the land parched, as has occurred over the last
few decades (Ritchie 2008; Williams and Funk, 2011), is unclear. If the current
pattern extends into the near future, then it is likely that Ay relative to Ay, will
increase and, as Figure 2 shows, critical 7 increases with Ap, thus stabilizing re-
ciprocal trading. Most models do not explicitly address how widespread patterns
of rainfall are likely to become as global temperatures increase. Rainfall patchiness
is the current norm, with areas only separated by tens of kilometers experiencing
very different intensities. If global warming accentuates spatial heterogeneity (p1
in our model), critical r will increase, thus favoring reciprocal trading. Moreover,
the figure shows that increases in p; reduce the effect of diminishing returns in the
dependence of critical r on Ag.

If the condition (26) is not met, fully optimal reciprocity cannot be sustained
on the basis of the groups’ long-run self-interest. More limited reciprocity can be
sustained, and we will examine such constrained or second-best solutions in the
next section. But the groups may also attempt to sustain the full optimum by
cultivating ties such as intermarriage that lead them to take the other group’s
welfare directly into account in their own benefit-cost calculation. Such ties do
exist, and it will be interesting to see whether they are selectively more prominent
in situations where (26) is less likely to be fulfilled.

5 Self-enforcing second-best

If the full optimum is not automatically self-enforcing, we can find the second-best
optimum that explicitly imposes constraints on the choice variables to ensure that
neither group wants to renege on its obligation to accept transferred cattle on
its land when it gets good weather and the other group gets bad weather. The
constraints are just like (26) above, except that instead of the expected utility in
the full optimum EU fullopt’ we must use the expression for expected utility as a
function of the variables being chosen. Therefore the problem is to maximize the
sum of expected utilities

6 Tuni Mburu, Mpala Research Center, personal communication.
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Fig. 2 Critical 7 as a function of Ay and p;

SW = EU, 4+ EUs (27)
1

=1-, [p2 (YLHH)l_p +p1 (Yl,HL)l_p +p1 (Yl,LH)l_p + po (Yl,LL)l_p}
1 _ _ _ _
+ i, [pz Yo urm)' ™" +m (YQ,LH)l P+ p1 (Yomr)' ™ +po(Yirp)' ”]
—% clzr +21)° — % c(a2 + 22)° (28)

subject to the constraints that no more can be given to the two groups than the
total available output in each of the four states:

Ai (w1 4+ mg)® 2] + Ay (w2 = mag)™ 25 > Y15+ Yo (29)

for i,j = H, L, and the two conditions ruling out reneging:
1 _ _ _ _ isol
— [Pz Yiga) " +p (Yimr)' " +p1 (Yioe)' " +po (Y1,LL)1 p] — BEU™°

I-p
r o g\ 1-p
(AH x7 2y ) - (Vi,u1) >0, (30)

_ T
and

1 _ _ _ _ .
—— [p2(Vo,mm)' " +p1 (Yoom)' " +p1 (Viur) ™" +po (Vior)' "] — gyl

I—p
r a g\ 1-p
(AH{EQ Z2) 7(Y2,LH) 20 (31)

_ T

Observe that the only place m;; appear is on the left hand side of (29), and
it is obviously optimal to choose them to make that side, namely total output in
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that state, as large as possible. This is exactly as in Step 1 of the work on the full
optimum in Section 4. Therefore the transfer rules (16) and the output expression
(17) derived there remain valid, and (29) becomes

11—«
(@1 +a)® [0 (DY ] e ey (32)

The fact that the transfer rule is not affected by the imposition of the self-
enforceability constraint has a useful implication. Our earlier result (25) on the
fraction of herds transferred in the full optimum remains valid for the constrained
optimum. Therefore so does our inference about the plausible values of o, Ay etc.
based on observations for the fractions transferred in reality.

Substituting the outcome of Step 1, we are left with the choice of x1, 21, =2,
z2 and the Y ;; for groups g = 1, 2 and states i,j = H, L. This a Kuhn-Tucker
nonlinear programming problem with inequality constraints. Form its Lagrangian

1 _ _ _ _
L= i, [ p2 Vi) ™" +p (Yimr) " +p1 (Yizw)' " +po (Yiro)' 7]

1 _ _ _ _
+ T, [p2 (Yo,mm)' ™" +p1 Yo,rm)' ™" +p1 Yo,ur)' ™" +p0 (YiLr)' "]

—Lc(m+ 21)? — Le(za+ 2z9)?

e
+ 5 a {rer [D 0y 0 | v vy

i,j=H,L

1 _ _ _ _ .
+i1 {1[) [p2(Yi,am)' ™"+ 01 (Viun) ™"+ 01 Viem)' ™" +po (YVior)' ™" ] -~ gyl

r 1-p 1-p |
=, (AHJJ?Z?) —(vimn) }

+h2 { — [ (Yorm) " +p1 Yorm) " +p1 Yomr) " +po (YQ,LL)PP]

r [ P 1-p |
— 1_p (AHz‘(QXZQB) —(ngLH) r }

The first-order conditions for the Y, ;; are

oL)OYy pw = (1 +p1)p2 Yi,5m) " —Aagr =0
oLV g = [(L+p1)pr+rp] YVign) ” —Agr =0
oL/ 1w = 14+ p1)pr Vi) " —Apw =0
0L/0Yy = (1 4+p1)po (Ya,or) ” — AL =0

for group 1, and similarly for group 2. In the symmetric solution we will have
M1 = H2 = [ and )‘HL = ALH = )\M, say. Also

Yiur=Yoru =Y, YiLmw=Yur=Y, say.
Then

Y [(1+’“‘)p1+’"’“‘}1/p>1. (33)

Y (14 p)p1

_ EUisol
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Thus the lucky group is allowed to keep a fraction of total output greater than
the 50% it would get in the full optimum, just enough to offset its temptation to
renege.

Other than this general result, algebraic calculations do not provide much
insight about the solution of the constrained optimum problem. Therefore we
present a table of typical numerical calculations. These are for the same set of
parameters as for Case (1) of Table 3, namely a = 0.75, 8 = 0.25, p = 0.5,
p2 = 0.5, p1 = 0.2 and pg = 0.1. Table 4 shows the results.

Table 4 Sample numerical solution for constrained optimum

r ‘ 0.3687 ‘ 0.4000 ‘ 0.6000 ‘ 0.8000 ‘ 1.0000

m 0.00000 | 0.00656 | 0.02299 | 0.02469 | 0.02339
Y/(Y+Y) | 05000 | 0.5065 | 0.5326 | 0.5459 | 0.5539
x 0.7519 | 0.7518 | 0.7515 | 0.7514 | 0.7513

EU 1.5077 | 1.5077 | 1.5073 | 1.5069 | 1.5066

The first column is for the value of r exactly at the upper bound that is
consistent with the full optimum being self-enforcing. Therefore the multiplier
on the self-enforcement constraint is zero. For higher values of r the constraint
does affect the solution, but remarkably little. Even when r is substantially above
the upper bound, the Lagrange multiplier on the constraint is quite small. (In
fact u decreases slightly as r increases to very high levels, but as (33) shows, the
product r u has an independent influence that keeps substantive magnitudes like
the output share monotonic.) Only a little more than 50% of the output suffices to
keep the lucky group in line. The size of the herd decreases very slightly, as does
the expected utility.

In our context, giving a larger share of output to the hosting group may need
to be managed in subtle ways. The herds are transferred over large distances, as
much as 100 kilometers. It is impractical to send any of the milk back to the
owner group’s home ranch. Some members of that group have traveled with the
herd to manage it, and they can consume the milk. They can also sell some milk
locally on the host groups’ land, but probably have to do so at an unfavorable
price. Thus the hosting group may de facto get a large share of the milk. That
may overfulfill the host group’s no-reneging condition, but may call into question
the owner group’s incentive to send animals. In fact there are other dimensions
of output, namely blood, meat, and any calves born during the stay at the host
ranch. Herders from the owner group that have traveled with the herd to manage
it can decide whether to draw blood and how much, and how many cattle (if any)
to kill for meat, so they can ensure that more goes back to the owner group with
the cattle at the end of the dry spell. Also, the owner group retains rights to calves.
Then a suitable combination of these four dimensions of output can be constructed
to meet the relevant no-reneging condition (30) or (31) with equality, even though
the single dimension of milk may not be capable of being split up in just the right
proportions.
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Another and perhaps stronger reason for sending to a ranch with better rainfall
may be to improve the prospects for survival of the animals themselves. A proper
treatment of that aspect requires a richer dynamic model; that is a part of our
future research plans.

6 Concluding comments

We have developed a model of the reciprocal arrangements that enable Kenyan
cattle herders to cope with weather fluctuations across their group ranches. The
key mechanism is repeated interaction - the short term gains from reneging on
your promise to take in a less-fortunate partner group’s cattle must be weighed
against the long term costs from collapse of the mutual insurance arrangement. We
made many special assumptions to simplify or ignore other aspects of the situation
and to produce a tractable model. Even this extremely simple model yields some
insights. Some key parameters can be calibrated by comparing the results with
observations. Then it appears that the degree of patience required for successful
self-sustaining reciprocity is right in the range of the rates of time discounting that
the herders face. Therefore we should expect to see success in some instances and
not others. In the latter cases the groups may create supplementary supporting
mechanisms such as intermarriage to improve the prospects of cooperation, or
they may modify the scheme to reduce the temptation to renege. We find that the
optimal modification is to give the host group a larger share of the milk produced
by the transferred cattle, and argued that this may happen naturally because of
the difficulty of transporting milk back for consumption by the owner group.

Thus the model appears to be a promising start, but many features must be
added for better and deeper understanding. These are among our plans for future
work.

Dynamics

Successive periods in our simple model are linked only by the repeated game. In
reality there are many other links. The quantity of cattle is not a matter of totally
independent choice each period, but evolves as a state variable. New purchases
and births add to the stock, and sales and deaths reduce the stock. The births
and deaths can be functions of the quantity and quality of land in relation to
the size of the herd, and also the weather outcome. The quality of land is also a
state variable, increased by better maintenance effort and degraded by grazing,
which depends on the size of the herd that grazes on the land. Weather can also
be correlated over time. These modifications will turn our repeated game into a
dynamic game, which is far harder to analyze.

Unequal sizes

We assumed the two groups to be identical (except of course in the actual real-
izations of weather outcomes in any one period), and found symmetric solutions.
In reality, land endowments of groups differ widely. Recognition of these asymme-
tries will alter the analysis in several ways. Smaller groups generally have bigger
incentives to renege, making self-enforcement harder. If one group has land of
naturally better quality or permanently better weather conditions than the other,
we will have to consider ethical issues of whether the unfortunate group should
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somehow be given a redistributive transfer from the fortunate group’s output, and
if so, the practical policy issues of how such transfers can be implemented.

Multiple groups

We considered only two groups. In reality the region has several groups and
group ranches. Each has ties with many other groups and can in principle have
multiple reciprocity agreements in place. This can however make it harder to sus-
tain any one such agreement. If group A can renege on promise to accept B’s
cattle, but then use a separate arrangement with C when the need arises, this
threatens the viability of the arrangement with B. The system needs multilateral
punishments whereby C will refuse to deal with A if A has previously reneged on
its arrangement with B. Theoretical analyses as well as case studies of such ar-
rangements exist, for example Kandori (1992), Greif (1993), and Dixit (2004), but
Kenyan herders may not have the necessary multilateral communication, norms,
and sanctions to sustain them.

Other insurance

In recent years, international organizations have developed and experimented
with more formal insurance schemes, based on objective indexes of weather and
rangeland conditions, to cover ranchers against livestock mortality caused by
droughts (Mude, 2010). In future research we will study how these relate to the
relation-based informal and self-enforcing arrangements examined here.

Empirical research and evidence

This work has already involved some useful interaction between theoretical
modeling and empirical evidence, for example the evidence concerning the actual
fraction of herds transferred helped us pin down the plausible ranges of the pa-
rameters « and Ay, and the theoretical results on the fraction of output that had
to be given to the host group allowed us to infer the likelihood of survival of the
reciprocal arrangement. More links of this kind can be exploited to improve our
understanding and analysis, and this is one line of our continuing research on this
topic. Our plans for such research include the following:

(1) Conducting questionnaire and experimental studies to estimate r, p etc.

(2) Gathering data for systematic statistical estimation of «, 8, Ay, Af,

(3) Relating the success or failure of such arrangements of individual groups or
pairs to their specific circumstances including the interest rates they face, whether
they have made supporting arrangements like intermarriage, etc.
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