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Abstract
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the treatement e¤ect of a binary treatment and establish their asymptotic distributions. We
point out the possible failure of the standard bootstrap with the same sample size and apply the
fewer-than-n bootstrap to making inferences on these bounds. The �nite sample performance
of the proposed estimators and the fewer-than-n bootstrap con�dence intervals is investigated
via a simulation study. Finally we establish sharp bounds on the treatment e¤ect distribution
when covariates are available.
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1 Introduction

Evaluating the e¤ect of a treatment or a program is important in diverse disciplines including

social sciences and medical sciences. In medical sciences, randomized clinical trials are often used

to evaluate the e¢ cacy of a drug or a procedure in the treatment or prevention of disease. The

central problem in the evaluation of a treatment is that any potential outcome that program

participants would have received without the treatment is not observed. Because of this missing

data problem, most work in the treatment e¤ect literature has focused on the evaluation of various

average treatment e¤ects such as the mean of the treatment e¤ect, see the recent book by Lee

(2005) for discussion and references. However, empirical evidence strongly suggests that treatment

e¤ect heterogeneity prevails in many experiments and various interesting e¤ects of the treatment

are missed by the average treatment e¤ects alone, see Djebbari and Smith (2004) who studied

heterogeneous program impacts in social experiments such as PROGRESA; Black, Smith, Berger,

and Noel (2003) who evaluated the Worker Pro�ling and Reemployment Services system; and

Bitler, Gelbach, and Hoynes (2006) who studied Welfare Reform experiments. Other work focusing

on treatment e¤ect heterogeneity includes Heckman and Robb (1985), Manski (1990), Imbens and

Rubin (1997), Lalonde (1995), Dehejia (1997), Heckman and Smith (1993), Heckman, Smith, and

Clements (1997), Lechner (1999), Abadie, Angrist, and Imbens (2002).

When responses to treatment di¤er among otherwise observationally equivalent subjects, the

entire distribution of the treatment e¤ect or other features of the treatment e¤ect than its mean

may be of interest. Two approaches have been proposed in the literature to study the distribution

of the treatment e¤ect. The �rst one is the bounding approach originated in Manski (1997a).

Assuming monotone treatment response, Manski (1997a) developed sharp bounds on the distribu-

tion of the treatment e¤ect. In the second approach, restrictions are imposed on the dependence

structure between the potential outcomes such that their joint distribution and the distribution of

the treatment e¤ect are identi�ed, see, e.g., Heckman, Smith, and Clements (1997), Biddle, Boden,

and Reville (2003), Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil (2003),

among others.

In this paper, we take the bounding approach and study the estimation and inference on sharp

bounds on the distribution of the treatment e¤ect, which are potentially useful when treatment

e¤ect is heterogeneous. Unlike Manski (1997a), we do not assume monotone treatment response.

Instead, we assume the marginal distributions of the potential outcomes are identi�ed, but their

dependence structure is not. One prominent example of this is provided by ideal randomized

experiments. In an ideal randomized experiment, participants of the experiment are randomly

assigned to a treatment group and a control group. Because of random assignment, observations on

the outcome of participants in the treatment group identify the distribution of the potential outcome
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with treatment and observations on the outcome of participants in the control group identify the

distribution of the potential outcome without treatment, but the two independent random samples

do not have any information on the dependence structure between the two potential outcomes. As a

result, neither the joint distribution of the potential outcomes nor the distribution of the treatment

e¤ect (de�ned as the di¤erence between the two potential outcomes) is identi�ed.

Sharp bounds on the joint distribution of the potential outcomes with identi�ed marginals

are given by the Frechet-Hoe¤ding lower and upper bound distributions, see Heckman and Smith

(1993), Heckman, Smith, and Clements (1997), and Manski (1997b) for their applications in pro-

gram evaluation. For randomized experiments, Heckman, Smith, and Clements (1997) proposed

nonparametric estimates of the Fréchet-Hoe¤ding distribution bounds and developed a test for the

�common e¤ect�model by testing the lower bound of the variance of the treatment e¤ect. They

also suggested an alternative test based on the di¤erence between the quantile functions of the mar-

ginal distributions of the potential outcomes referred to as the quantile treatment e¤ect (QTE),

see Firpo (2005) or Section 2 for more references.

Sharp bounds on the distribution of the treatment e¤ect� the di¤erence between two potential

outcomes with identi�ed marginals� are known in the probability literature. A.N. Kolmogorov

posed the question of �nding sharp bounds on the distribution of a sum of two random variables with

�xed marginal distributions. It was �rst solved by Makarov (1981) and later by Rüschendorf (1982)

and Frank, Nelsen, and Schweizer (1987) using di¤erent techniques. Frank, Nelsen, and Schweizer

(1987) showed that their proof based on copulas can be extended to more general functions than

the sum. Sharp bounds on the respective distributions of a di¤erence, a product, and a quotient

of two random variables with �xed marginals can be found in Williamson and Downs (1990).

More recently, Denuit, Genest, and Marceau (1999) extended the bounds for the sum to arbitrary

dimensions and provided some applications in �nance and risk management, see Embrechts, Hoeing,

and Juri (2003) and McNeil, Frey, and Embrechts (2005) for more discussions and additional

references.

By making use of the expressions in Williamson and Downs (1990), we propose nonparametric

estimators of sharp bounds on the distribution of the treatment e¤ect for randomized experiments

and establish their asymptotic properties. More importantly, we develop asymptotically valid sta-

tistical methodologies for making inference on these bounds. We point out that the �rst order

asymptotics and the standard bootstrap with the same sample size may not always be asymptot-

ically valid. Instead, we apply the fewer-than-n bootstrap (Bickel, Götze, and Zwet (1997) and

Bickel and Sakov (2005)) to constructing con�dence intervals for these sharp bounds. The �nite

sample performances of the �rst order asymptotics, the standard bootstrap with the same sample

size, and the fewer-than-n bootstrap are compared in a simulation study. Our results reveal that

(i) when the coverage rate of asymptotic con�dence intervals is low, both the standard bootstrap
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and the fewer-than-n bootstrap correct for the low coverage rate and lead to con�dence intervals

with more accurate coverage rates; (ii) when the coverage rate of the standard bootstrap con�-

dence intervals is low, the fewer-than-n bootstrap corrects for the low coverage rate; (iii) when the

coverage rate of the standard bootstrap is high, the fewer-than-n bootstrap performs similarly to

the standard bootstrap; (iv) overall the nonparametric estimators of the sharp bounds are very

accurate, although the estimator of the lower bound tends to have a positive bias and the estimator

of the upper bound tends to have a negative bias.

Given sharp bounds on the distribution of the treatment e¤ect, we obtain bounds on the class of

D-parameters introduced in Manski (1997a). One example of a D-parameter is any quantile of the

treatment e¤ect distribution. In addition, we obtain bounds on the class of D2-parameters of the

treatment e¤ect distribution, see Stoye (2005) or Section 2 for the de�nition of a D2-parameter. As

pointed out in Stoye (2005), many inequality and risk measures are D2-parameters. These results

shed light on the relation and distinction between QTE and the quantile of the treatment e¤ect

distribution.

As an initial investigation of a uni�ed approach to bounding or partially identifying the dis-

tribution of the treatment e¤ect, this paper has focused on randomized experiments. Numerous

extensions of the methodologies developed in this paper are possible and worthwhile. Of imme-

diate concern is the incorporation of covariates into the analysis. We extend sharp bounds in

Williamson and Downs (1990) to take into account the presence of covariates under the selection-

on-observables assumption commonly used in the treatment e¤ect literature, see, e.g., Rosenbaum

and Rubin (1983a, b), Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998), Dehejia and

Wahba (1999), among others.

The rest of this paper is organized as follows. In Section 2, we review sharp bounds on the

distribution of a di¤erence of two random variables and provide bounds on parameters of the treat-

ment e¤ect distribution that respect either �rst or second order stochastic dominance.1 In Section

3, we propose nonparametric estimators of the distribution bounds and establish their asymptotic

properties. Section 4 describes the fewer-than-n bootstrap procedure we use to construct con�-

dence intervals for the distribution bounds. Results from a detailed simulation study are provided

in Section 5. In Section 6, we summarize the asymptotic properties of nonparametric estimators

of the distribution of a ratio of two random variables, a measure of the relative treatment e¤ect.

Section 7 provides sharp bounds on the treatment e¤ect distribution when covariates are available.

Section 8 concludes. Proofs are collected in Appendix A. Appendix B presents expressions for the

sharp bounds on the distribution of the treatment e¤ect for certain known marginal distributions.

Throughout the paper, we use =) to denote weak convergence. All the limits are taken as the

1Horowitz and Manski (1995) �rst used the concept of �respect stochastic dominance�. Manski (1997a) referred
to parameters that respect �rst order stochastic dominance as D-parameters.
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sample size goes to 1.

2 Sharp Bounds on the Distribution of the Treatment E¤ect and
its D-Parameters

The notation in this paper follows the convention in the treatment e¤ect literature. We consider a

binary treatment and use Y1 to denote the potential outcome from receiving treatment and Y0 the

outcome without treatment. Let F (y1; y0) denote the joint distribution of Y1; Y0 with marginals

F1(�) and F0(�) respectively.
The characterization theorem of Sklar (1959) implies that there exists a copula2 C(u; v): (u; v) 2

[0; 1]2 such that F (y1; y0) = C(F1(y1); F0(y0)) for all y1; y0. Conversely, for any marginal distri-

butions F1(�); F0(�) and any copula function C, the function C(F1(y1); F0(y0)) is a bivariate dis-
tribution function with given marginal distributions F1; F0. This theorem provides the theoretical

foundation for the widespread use of the copula approach in generating multivariate distributions

from univariate distributions. For reviews, see Joe (1997) and Nelsen (1999). Since copulas connect

multivariate distributions to marginal distributions, the copula approach provides a natural way to

study the joint distribution of potential outcomes and the distribution of the treatment e¤ect.

For (u; v) 2 [0; 1]2, let CL(u; v) = max(u + v � 1; 0) and CU (u; v) = min(u; v) denote the

Fréchet-Hoe¤ding lower and upper bounds for a copula, i.e., CL(u; v) � C(u; v) � CU (u; v). Then
for any (y1; y0), the following inequality holds:

CL(F1(y1); F0(y0)) � F (y1; y0) � CU (F1(y1); F0(y0)): (1)

The bivariate distribution functions CL(F1(y1); F0(y0)) and CU (F1(y1); F0(y0)) are referred to as

the Fréchet-Hoe¤ding lower and upper bounds for bivariate distribution functions with �xed mar-

ginal distributions F1 and F0. They are distributions of perfectly negatively dependent and perfectly

positively dependent random variables respectively, see Nelsen (1999) for more discussions.

Heckman and Smith (1993), Heckman, Smith, and Clements (1997), and Manski (1997b) ap-

plied (1) in the context of program evaluation. Lee (2002) applied (1) to bound correlation co-

e¢ cients in sample selection models. Fan (2006) developed valid statistical inference procedures

for CL(F1(y1); F0(y0)) and CU (F1(y1); F0(y0)) based on two independent random samples from

F1(y1); F0(y0) respectively.

2.1 Sharp Bounds on the Distribution of the Treatment E¤ect

Let � = Y1 � Y0 denote the treatment e¤ect or outcome gain and F�(�) its distribution function.
Given the marginals F1 and F0, sharp bounds on the distribution of � can be found in Williamson

and Downs (1990).

2A copula is a bivariate distribution with uniform marginal distributions on [0; 1].
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Lemma 2.1 Let FL(�) = supymax(F1(y)�F0(y� �); 0) and FU (�) = 1+ infymin(F1(y)�F0(y�
�); 0). Then FL(�) � F�(�) � FU (�).

We note the following alternative expressions for FL(�) and FU (�) :

FL(�) = max(sup
y
fF1(y)� F0(y � �)g ; 0); (2)

FU (�) = 1 +min(inf
y
fF1(y)� F0(y � �)g ; 0): (3)

At any given value of �, the bounds (FL(�); FU (�)) are informative on the value of F�(�) as long

as [FL(�); FU (�)] � [0; 1]. Viewed as an inequality among all possible distribution functions, the

sharp bounds FL(�) and FU (�) cannot be improved, because it is easy to show that if either F1 or

F0 is the degenerate distribution at a �nite value, then for all �; we have FL(�) = F�(�) = FU (�).

In fact, given any pair of distribution functions F1 and F0; the inequality: FL(�) � F�(�) � FU (�)
cannot be improved, that is, the bounds FL(�) and FU (�) for F�(�) are point-wise best-possible,

see Frank, Nelsen, and Schweizer (1987) for a proof of this for a sum of random variables and

Williamson and Downs (1990) for a general operation on two random variables.

Lemma 2.1 implies that the treatment e¤ect distribution F� �rst order stochastically dominates

FU and is �rst order stochastically dominated by FL. Let %FSD denote the �rst order stochastic
dominance relation. Then

FL %FSD F� %FSD FU :

We note that unlike sharp bounds on the joint distribution of Y1; Y0, sharp bounds on the distrib-

ution of � are not reached at the Fréchet-Hoe¤ding lower and upper bounds for the distribution

of Y1; Y0.

Let Y 01 ; Y
0
0 be perfectly positively dependent and have the same marginal distributions as Y1; Y0

respectively. Let �0 = Y 01 � Y 00 . Then the distribution of �0 is given by

F�0 (�) = E1fY 01 � Y 00 � �g =
Z 1

0
1fF�11 (u)� F�10 (u) � �gdu;

where 1 f�g is the indicator function the value of which is 1 if the argument is true, 0 otherwise.
Similarly, let Y 001 ; Y

00
0 be perfectly negatively dependent and have the same marginal distributions

as Y1; Y0 respectively. Let �00 = Y 001 � Y 000 . Then the distribution of �00 is given by

F�00 (�) = E1fY 001 � Y 000 � �g =
Z 1

0
1fF�11 (u)� F�10 (1� u) � �gdu:

Interestingly, we show in the next lemma that there exists a second order stochastic dominance

relation among the three distributions F�; F�0 ; F�00 . Let %SSD denote the second order stochastic
dominance relation.
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Lemma 2.2 Let F�; F�0 ; F�00 be de�ned as above. Then

F�0 %SSD F� %SSD F�00 :

Theorem 1 in Stoye (2005) shows that F�0 %SSD F� is equivalent to E [U(�0)] � E [U(�)] or
E [U(Y 01 � Y 00)] � E [U(Y1 � Y0)] for every convex real-valued function U . Corollary 2.3 in Tchen
(1980) implies the conclusion of Lemma 2.2, see also Cambanis, Simons, and Stout (1976).

2.2 Bounds on D-Parameters

The sharp bounds on the treatment e¤ect distribution implies bounds on the class of �D-parameters�

introduced in Manski (1997a), see also Manski (2003). One example of a �D-parameter� is any

quantile of the distribution. Stoye (2005) introduced another class of parameters which measure

the dispersion of a distribution, including the variance of the distribution. In this section, we show

that sharp bounds can be placed on any dispersion or spread parameter of the treatment e¤ect

distribution in this class. For convenience, we restate the de�nitions of both classes of parameters

from Stoye (2005). He refers to the class of �D-parameters�as the class of �D1-parameters�.

De�nition 2.1 A population statistic � is a D1-parameter if it increases weakly with �rst-order

stochastic dominance, that is,

F %FSD G implies �(F ) � �(G):

Obviously if � is a D1-parameter, then Lemma 2.1 implies:

�(FL) � �(F�) � �(FU ):

For example, taking � as a quantile of the treatment e¤ect distribution, we obtain immediately its

sharp bounds from Lemma 2.1. In the following, we will useG�1(u) to denote the generalized inverse

of a nondecreasing function G, that is, G�1(u) = inf fxjG(x) � ug : Then Lemma 2.1 implies: for
0 � q � 1,

(FU )�1(q) � F�1� (q) � (FL)�1(q).

For the quantile function of a distribution of a sum of two random variables, expressions for its

sharp bounds in terms of quantile functions of the marginal distributions are �rst established in

Makarov (1981). They can also be established via the duality theorem, see Schweizer and Sklar

(1983). Using the same tool, one can establish the following expressions for sharp bounds on the

quantile function of the distribution of the treatment e¤ect, see Williamson and Downs (1990).
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Lemma 2.3 For 0 � q � 1, (FU )�1(q) � F�1� (q) � (FL)�1(q), where

(FL)�1(q) =

�
infu2[q;1][F

�1
1 (u)� F�10 (u� q)] if q 6= 0

F�11 (0)� F�10 (1) if q = 0;

(FU )�1(q) =

�
supu2[0;q][F

�1
1 (u)� F�10 (1 + u� q)] if q 6= 1

F�11 (1)� F�10 (0) if q = 1:

Like bounds on the distribution of the treatment e¤ect, bounds on the quantile function of � are

not reached at the Fréchet-Hoe¤ding bounds for the distribution of (Y1; Y0). The following lemma

provides simple expressions for the quantile functions of the treatment e¤ect when the potential

outcomes are either perfectly positively dependent or perfectly negatively dependent.

Lemma 2.4 For q 2 [0; 1], we have (i) F�1�0 (q) =
�
F�11 (q)� F�10 (q)

�
if
�
F�11 (q)� F�10 (q)

�
is an

increasing function of q; (ii) F�1�00 (q) =
�
F�11 (q)� F�10 (1� q)

�
.

The proof of Lemma 2.4 follows that of Proposition 3.1 in Embrechts, Hoeing, and Juri (2003).

In particular, they showed that for a real valued random variable Z and a function ' increasing

and left continuous on the range of Z, it holds that the quantile of '(Z) at quantile level q is

given by '
�
F�1Z (q)

�
, where FZ is the distribution function of Z. For (i), we note that F

�1
�0 (q)

equals the quantile of
�
F�11 (U)� F�10 (U)

�
, where U is a uniform random variable on [0; 1]. Let

'(U) = F�11 (U) � F�10 (U). Then F�1�0 (q) = '(q) = F�11 (q) � F�10 (q) provided that '(U) is an

increasing function of U . For (ii), let '(U) = F�11 (U) � F�10 (1 � U). Then F�1�00 (q) equals the
quantile of '(U). Since '(U) is always increasing in this case, we get F�1�00 (q) = '(q).

Note that the condition in (i) is a necessary condition; without this condition,
�
F�11 (q)� F�10 (q)

�
can fail to be a quantile function. Doksum (1974) and Lehmann (1974) used

�
F�11 (F0(y0))� y0

�
to measure treatment e¤ect. Recently,

�
F�11 (q)� F�10 (q)

�
has been used to study treatment e¤ect

heterogeneity and is referred to as the quantile treatment e¤ect (QTE), see e.g., Heckman, Smith,

and Clements (1997), Abadie, Angrist, and Imbens (2002), Chen, Hong, and Tarozzi (2004), Cher-

nozhukov and Hansen (2005), Firpo (2005), Imbens and Newey (2005), among others, for more

discussion and references on the estimation of QTE. Manski (1997a) referred to QTE as �D-

parameters and the quantile of the treatment e¤ect distribution as D�-parameters. Assuming

monotone treatment response, Manski (1997a) provided sharp bounds on the quantile of the treat-

ment e¤ect distribution.

It is interesting to note that Lemma 2.4 (i) shows that QTE equals the quantile function of

the treatment e¤ect only when the two potential outcomes are perfectly positively dependent AND

QTE is increasing in q. Example 1 below illustrates a case where QTE is decreasing in q and

hence is not the same as the quantile function of the treatment e¤ect even when the potential

outcomes are perfectly positively dependent. In contrast to QTE, the quantile of the treatment

e¤ect distribution is not identi�ed, but can be bounded, see Lemma 2.3. At any given quantile
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level q, the lower quantile bound (FU )�1(q) is the minimum outcome gain (worst case) of at least

100 � q percent of the population regardless of the dependence structure between the potential
outcomes and should be useful to policy makers. For example, (FU )�1(0:5) is the minimum gain

of at least half of the population.

De�nition 2.2 A population statistic � is a D2-parameter if it increases weakly with second order

stochastic dominance, i.e.

F %SSD G implies �(F ) � �(G):

If � is a D2-parameter, then Lemma 2.2 implies

�(F�0) � �(F�) � �(F�00):

Stoye (2005) de�ned the class of D2-parameters in terms of mean-preserving spread. Since the

mean of � is identi�ed in our context, the two de�nitions lead to the same class of D2-parameters.

In contrast to D1-parameters of the treatment e¤ect distribution, bounds on D2-parameters of the

treatment e¤ect distribution are reached when the potential outcomes are perfectly dependent on

each other. One example of a D2-parameter is the variance of the treatment e¤ect �. Using results

in Cambanis, Simons, and Stout (1976), Heckman, Smith, and Clements (1997) provided bounds

on the variance of � and proposed a test for the common e¤ect model by testing the value of the

lower bound on the variance of �. Stoye (2005) presents many other examples of D2-parameters,

including many well-known inequality and risk measures.

2.3 An Illustrative Example: Example 1

In this subsection, we provide explicit expressions for sharp bounds on the distribution of the

treatment e¤ect and its quantiles when Y1 � N
�
�1; �

2
1

�
and Y0 � N

�
�0; �

2
0

�
. In addition, we

provide explicit expressions for the distribution of the treatment e¤ect and its quantiles when

the potential outcomes are perfectly positively dependent, perfectly negatively dependent, and

independent.

2.3.1 Distribution Bounds

Explicit expressions for bounds on the distribution of a sum of two random variables are available

for the case where both random variables have the same distribution which includes the uniform, the

normal, the Cauchy, and the exponential families, see Alsina (1981), Frank, Nelsen, and Schweizer

(1987), and Denuit, Genest, and Marceau (1999). Using the alternative expressions in (2), we now

derive sharp bounds on the distribution of � = Y1 � Y0.
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First consider the case �1 = �0 = �. Let �(�) denote the distribution function of the standard
normal distribution. Simple algebra shows

sup
y
fF1(y)� F0(y � �)g = 2�

�
� � (�1 � �0)

2�

�
� 1 for � > �1 � �0;

inf
y
fF1(y)� F0(y � �)g = 2�

�
� � (�1 � �0)

2�

�
� 1 for � < �1 � �0:

Hence,

FL (�) =

(
0; if � < �1 � �0
2�
�
��(�1��0)

2�

�
� 1; if � � �1 � �0

; (4)

FU (�) =

(
2�
�
��(�1��0)

2�

�
; if � < �1 � �0

1; if � � �1 � �0
: (5)

When3 �1 6= �0, we get

sup
y
fF1(y)� F0(y � �)g = �

�
�1s� �0t
�21 � �20

�
+�

�
�1t� �0s
�21 � �20

�
� 1;

inf
y
fF1(y)� F0(y � �)g = �

�
�1s+ �0t

�21 � �20

�
� �

�
�1t+ �0s

�21 � �20

�
+ 1;

where s = � � (�1 � �0) and t =
r
s2 +

�
�21 � �20

�
ln
�
�21
�20

�
. For any �, one can show that

supy fF1(y)� F0(y � �)g > 0 and infy fF1(y)� F0(y � �)g < 0. As a result,

FL (�) = �

�
�1s� �0t
�21 � �20

�
+�

�
�1t� �0s
�21 � �20

�
� 1;

FU (�) = �

�
�1s+ �0t

�21 � �20

�
� �

�
�1t+ �0s

�21 � �20

�
+ 1:

For comparison purposes, we provide expressions for the distribution F� in three special cases.

Case I. Perfect positive dependence. In this case, Y0 and Y1 satisfy Y0 = �0 +
�0
�1
Y1 �

�0
�1
�1:Therefore,

� =

( �
�1��0
�1

�
Y1 +

�
�0
�1
�1 � �0

�
; if �1 6= �0

�1 � �0; if �1 = �0:

If �1 = �0, then

F� (�) =

�
0 and � < �1 � �0
1 and �1 � �0 � �

: (6)

3Frank, Nelsen, and Schweizer (1987) provided expressions for the sharp bounds on the distribution of a sum
of two normal random variables. We believe there are typos in their expressions, as a direct application of their
expressions to our case would lead to di¤erent expressions from ours. They are:

FL (�) = �

�
��1s� �0t
�20 � �21

�
+�

�
�0s� �1t
�20 � �21

�
� 1;

FU (�) = �

�
��1s+ �0t
�20 � �21

�
+�

�
�0s+ �1t

�20 � �21

�
:
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If �1 6= �0, then

F� (�) = �

�
� � (�1 � �0)
j�1 � �0j

�
:

Case II. Perfect negative dependence. In this case, we have Y0 = �0 � �0
�1
Y1 +

�0
�1
�1.

Hence,

� =
�1 + �0
�1

Y1 �
�
�0
�1
�1 + �0

�
;

F� (�) = �

�
� � (�1 � �0)
�1 + �0

�
:

Case III. Independence. This yields

F� (�) = �

 
� � (�1 � �0)p

�21 + �
2
0

!
: (7)

Figure 1 below plots the bounds on the distribution F� (denoted by F_L and F_U) and the

distribution F� corresponding to perfect positive dependence, perfect negative dependence, and

independence (denoted by F_PPD, F_PND, and F_IND respectively) of potential outcomes for

the case Y1 � N(2; 2) and Y0 � N(1; 1). For notational compactness, we use (F1; F0) to signify

Y1 � F1 and Y0 � F0 throughout the rest of this paper.

F_L

F_U

F_PPD

F_IND

F_PND

-6 -4 -2 2 4 6 8

0.2

0.4

0.6

0.8

1

delta

F

Figure 1. Bounds on the Distribution of the Treatment E¤ect:
(N (2; 2) ; N (1; 1))
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First we observe from Figure 1 that the bounds in this case are informative at all values of �

and are more informative in the tails of the distribution F� than in the middle. In addition, Figure

1 indicates that the distribution of the treatment e¤ect for perfectly positively dependent potential

outcomes is most concentrated around its mean 1 implied by the second order stochastic relation

F_PPD %SSDF_IND %SSDF_PND. In terms of the corresponding quantile functions, this implies
that the quantile function corresponding to the perfectly positively dependent potential outcomes is

�atter than the quantile functions corresponding to perfectly negatively dependent and independent

potential outcomes, see Figure 2 below.

2.3.2 Quantile Bounds

By inverting (4) and (5), we obtain the quantile bounds for the case �1 = �0 = �:

(FL)�1 (q) =

8<: any value in (�1; �1 � �0] for q = 0;

(�1 � �0) + 2���1
�
1 + q

2

�
otherwise;

(FU )�1 (q) =

(
(�1 � �0) + 2���1

�q
2

�
for q 2 [0; 1) ;

any value in [�1 � �0;1) for q = 1:

When �1 6= �0; there is no closed-form expression for the quantile bounds. But they can be

computed numerically by either inverting the distribution bounds or using Lemma 2.3. We now

derive the quantile function for the three special cases.

Case I. Perfect positive dependence. If �1 = �0; we get

F�1� (q) =

8<:
any value in (�1; �1 � �0) for q = 0;
any value in [�1 � �0;1) for q = 1;
unde�ned for q 2 (0; 1) :

When �1 6= �0; we get

F�1� (q) = (�1 � �0) + j�1 � �0j��1 (q) for q 2 [0; 1] :

Note that by de�nition, QTE is given by

F�11 (q)� F�10 (q) = (�1 � �0) + (�1 � �0)��1 (q)

which equals F�1� (q) only if �1 > �0, i.e., only if the condition of Lemma 2.4 (i) holds. If �1 < �0,�
F�11 (q)� F�10 (q)

�
is a decreasing function of q and hence can not be a quantile function.

Case II. Perfect negative dependence.

F�1� (q) = (�1 � �0) + (�1 + �0) ��1 (q) for q 2 [0; 1] :

Case III. Independence.

F�1� (q) = (�1 � �0) +
q
�21 + �

2
0�

�1 (q) for q 2 [0; 1] :

11



In Figure 2 below, we plot the quantile bounds for� (FL^{-1} and FU^{-1}) when Y1 � N(2; 2)
and Y0 � N(1; 1) and the quantile functions of� when Y1 and Y0 are perfectly positively dependent,
perfectly negatively dependent, and independent (F_PPD^{-1}, F_PND^{-1}, and F_IND^{-1}

respectively).

FL^{-1}

FU^{-1}

F_PPD^{-1}

F_IND^{-1}

F_PND^{-1}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6

-4

-2

2

4

6

8

q

F^{-1}

Figure 2. Bounds on the Quantile Function of the Treatment
E¤ect: (N (2; 2) ; N (1; 1))

Again, Figure 2 reveals the fact that the quantile function of � corresponding to the case that

Y1 and Y0 are perfectly positively dependent is �atter than that corresponding to all the other

cases. Keeping in mind that in this case, �1 > �0, we conclude that the quantile function of �

in the perfect positive dependence case is the same as QTE. Figure 2 leads to the conclusion that

QTE is a conservative measure of the degree of heterogeneity of the treatment e¤ect distribution.

3 Nonparametric Estimators and Their Asymptotic Properties

Suppose random samples fY1ign1i=1 � F1 and fY0ign0i=1 � F0 are available. Let Y1 and Y0 denote
respectively the supports of F1 and F0. Note that the bounds in Lemma 2.1 can be written as

FL(�) = sup
y2R

fF1(y)� F0(y � �)g ; FU (�) = 1 + inf
y2R

fF1(y)� F0(y � �)g ; (8)

since for any two distributions F1 and F0, it is always true that supy2R fF1(y)� F0(y � �)g � 0

and infy2R fF1(y)� F0(y � �)g � 0.

12



When Y1 = Y0 = R, (8) suggests the following plug-in estimators of FL(�) and FU (�):

FLn (�) = sup
y2R

fF1n(y)� F0n(y � �)g, FUn (�) = 1 + inf
y2R

fF1n(y)� F0n(y � �)g; (9)

where F1n(�) and F0n(�) are the empirical distributions de�ned as

Fkn (y) =
1

nk

nkP
i=1
1 fYki � yg ; k = 1; 0.

When either Y1 or Y0 is not the whole real line, we derive alternative expressions for FL(�)
and FU (�) which turn out to be convenient for both computational purposes and for asymptotic

analysis. For illustration, we look at the case: Y1 = Y0 = [0; 1] in detail and provide results for the
general case afterwards.

Suppose Y1 = Y0 = [0; 1]. If 1 � � � 0, then (8) implies

FL(�)

= max

(
sup
y2[�;1]

fF1(y)� F0(y � �)g ; sup
y2(�1;�)

fF1(y)� F0(y � �)g ; sup
y2(1;1)

fF1(y)� F0(y � �)g
)

= max

(
sup
y2[�;1]

fF1(y)� F0(y � �)g ; sup
y2(�1;�)

F1(y); sup
y2(1;1)

f1� F0(y � �)g
)

= max

(
sup
y2[�;1]

fF1(y)� F0(y � �)g ; F1(�); 1� F0(1� �)
)

= sup
y2[�;1]

fF1(y)� F0(y � �)g ; (10)

and

FU (�)

= 1 +min

�
inf

y2[�;1]
fF1(y)� F0(y � �)g ; inf

y2(�1;�)
fF1(y)� F0(y � �)g ; inf

y2(1;1)
fF1(y)� F0(y � �)g

�
= 1 +min

�
inf

y2[�;1]
fF1(y)� F0(y � �)g ; inf

y2(�1;�)
F1(y); inf

y2(1;1)
f1� F0(y � �)g

�
= 1 +min

�
inf

y2[�;1]
fF1(y)� F0(y � �)g ; 0

�
;

If �1 � � < 0, then

FL(�)

= max

(
sup

y2[0;1+�]
fF1(y)� F0(y � �)g ; sup

y2(�1;0)
fF1(y)� F0(y � �)g ; sup

y2(1+�;1)
fF1(y)� F0(y � �)g

)

= max

(
sup

y2[0;1+�]
fF1(y)� F0(y � �)g ; sup

y2(�1;0)
f�F0(y � �)g ; sup

y2(1+�;1)
fF1(y)� 1g

)

= max

(
sup

y2[0;1+�]
fF1(y)� F0(y � �)g ; 0

)
; (11)
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and

FU (�)

= 1 +min

�
inf

y2[0;1+�]
fF1(y)� F0(y � �)g ; inf

y2(�1;0)
fF1(y)� F0(y � �)g ; inf

y2(1+�;1)
fF1(y)� F0(y � �)g

�
= 1 +min

�
inf

y2[0;1+�]
fF1(y)� F0(y � �)g ; inf

y2(�1;0)
f�F0(y � �)g ; inf

y2(1+�;1)
fF1(y)� 1g

�
= 1 + inf

y2[0;1+�]
fF1(y)� F0(y � �)g :

Based on (10) and (11), we propose the following estimator of FL(�) :

FLn (�) =

(
supy2[�;1] fF1n(y)� F0n(y � �)g ; if 1 � � � 0;
max

n
supy2[0;1+�] fF1n(y)� F0n(y � �)g ; 0

o
; if �1 � � < 0:

Similarly, we propose the following estimator for FU (�) :

FUn (�) =

�
1 + min

�
infy2[�;1] fF1n(y)� F0n(y � �)g ; 0

	
; if 1 � � � 0;

1 + infy2[0;1+�] fF1n(y)� F0n(y � �)g : if �1 � � < 0:

We now summarize the results for general supports Y1 and Y0. Suppose Y1 = [a; b] and Y0 =
[c; d] for a; b; c; d 2 R � R[f�1;+1g ; a < b; c < d with F1 (a) = F0 (c) = 0 and F1 (b) = F0 (d) =
1. It is easy to see that

FL(�) = FU (�) = 0; if � � a� d and

FL(�) = FU (�) = 1; if � � b� c:

For any � 2 [a� d; b� c]
T
R; let Y� = [a; b]

T
[c+ �; d+ �]. A similar derivation to the case

Y1 = Y0 = [0; 1] leads to

FL(�) = max

(
sup
y2Y�

fF1(y)� F0(y � �)g ; 0
)
;

FU (�) = 1 +min

�
inf
y2Y�

fF1(y)� F0(y � �)g ; 0
�
;

which suggest the following plug-in estimators of FL(�) and FU (�):

FLn (�) = max

(
sup
y2Y�

fF1n(y)� F0n(y � �)g ; 0
)
;

FUn (�) = 1 +min

�
inf
y2Y�

fF1n(y)� F0n(y � �)g ; 0
�
:

For any �xed �, the consistency of FLn (�) and F
U
n (�) is straightforward. In the rest of this section,

we will establish the asymptotic distributions of
p
n1
�
FLn (�)� FL(�)

�
and

p
n1
�
FUn (�)� FU (�)

�
.

By using FLn (�) and F
U
n (�), we can provide bounds on e¤ects of interest other than the average

treatment e¤ect including the proportion of people receiving the treatment who bene�t from it, see

Heckman, Smith, and Clements (1997) for discussion on some of these e¤ects.
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3.1 Asymptotic Distributions

De�ne

ysup;� = arg sup
y2Y�

fF1(y)� F0(y � �)g , yinf;� = arg inf
y2Y�

fF1(y)� F0(y � �)g ;

M(�) = sup
y2Y�

fF1(y)� F0(y � �)g ; m(�) = inf
y2Y�

fF1(y)� F0(y � �)g ;

Mn(�) = sup
y2Y�

fF1n(y)� F0n(y � �)g ; mn(�) = inf
y2Y�

fF1n(y)� F0n(y � �)g :

Then

FLn (�) = max fMn(�); 0g ; FUn (�) = 1 +min fmn(�); 0g :

We make the following assumptions.

(A1) (i) The two samples fY1ign1i=1 and fY0ig
n0
i=1 are each i.i.d. and are independent of each other;

(ii) n1=n0 ! � as n1 !1 with 0 < � <1.

(A2) The distribution functions F1 and F0 are twice di¤erentiable with bounded density functions

f1 and f0 on their supports.

(A3) (i) For every � > 0, supy2Y� :jy�ysup;�j�� fF1(y)� F0(y � �)g < fF1(ysup;�)� F0(ysup;� � �)g;
(ii) f1 (ysup;�)� f0 (ysup;� � �) = 0 and f 01 (ysup;�)� f 00 (ysup;� � �) < 0.

(A4) (i) For every � > 0, infy2Y� :jy�yinf;�j�� fF1(y)� F0(y � �)g > fF1(yinf;�)� F0(yinf;� � �)g;

(ii) f1 (yinf;�)� f0 (yinf;� � �) = 0 and f 01 (yinf;�)� f 00 (yinf;� � �) > 0.

The independence assumption of the two samples in (A1) is satis�ed by data from ideal random-

ized experiments. (A2) imposes smoothness assumptions on the marginal distribution functions.

(A3) and (A4) are identi�ability assumptions. For a �xed � 2 [a� d; b� c]
T
R, (A3) requires the

function y 7�! fF1(y)� F0(y � �)g to have a well-separated interior maximum at ysup;� on Y�, while
(A4) requires the function y 7�! fF1(y)� F0(y � �)g to have a well-separated interior minimum at

yinf;� on Y�. If Y� is compact, then (A3) and (A4) are implied by (A2) and the assumption that
the function y 7�! fF1(y)� F0(y � �)g have a unique maximum at ysup;� and a unique minimum

at yinf;� in the interior of Y�.
We �rst establish the asymptotic distributions of Mn(�) and mn(�).

Proposition 3.1 Suppose (A1) and (A2) hold. For a given �, let

�2L = F1(ysup;�) [1� F1(ysup;�)] + �F0(ysup;� � �) [1� F0(ysup;� � �)] and

�2U = F1(yinf;�) [1� F1(yinf;�)] + �F0(yinf;� � �) [1� F0(yinf;� � �)] :

Then (i) if (A3) also holds, then
p
n1[Mn(�) �M(�)] =) N(0; �2L); (ii) if (A4) also holds, thenp

n1[mn(�)�m(�)] =) N(0; �2U ):
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Following Fan (2006), we obtain immediately Theorem 3.2 below by using Proposition 3.1.

THEOREM 3.2 (i) Suppose (A1)-(A3) hold. De�ne1�1 =1. For any � 2 [a� d; b� c]
T
R,

if min fa� c; b� dg < �, thenpn1[FLn (�)� FL(�)] =) N(0; �2L); otherwise

p
n1[F

L
n (�)� FL(�)] =)

�
N(0; �2L); if M(�) > 0;
max

�
N(0; �2L); 0

	
if M(�) = 0;

and Pr
�
FLn (�) = 0

�
! 1 if M(�) < 0:

(ii) Suppose (A1), (A2), and (A4) hold. De�ne 1�1 = �1. For any � 2 [a� d; b� c]
T
R, if

� < max fa� c; b� dg, thenpn1[FUn (�)� FU (�)] =) N(0; �2U ); otherwise

p
n1[F

U
n (�)� FU (�)] =)

�
N(0; �2U ); if m(�) < 0;
min

�
N(0; �2U ); 0

	
if m(�) = 0;

and Pr
�
FUn (�) = 1

�
! 1 if m(�) > 0:

Theorem 3.2 shows that the asymptotic distribution of FLn (�) (F
U
n (�)) depends on the value

of M(�) (m(�)). For example, if � is such that M(�) > 0 (m(�) < 0), then FLn (�) (F
U
n (�)) is

asymptotically normally distributed and inference on FL(�) (FU (�)) is standard in the sense that

both asymptotic normal theory and standard bootstrap with the same sample size are valid. On

the other hand, if � is such that M(�) = 0 (m(�) = 0), then the asymptotic distribution of FLn (�)

(FUn (�)) is truncated normal. Similar to Andrews (2000) and Fan (2006), it is straightforward to

show that the standard bootstrap does not work in this case.

We point out that Theorem 3.2 presents the asymptotic distributions of FLn (�) (F
U
n (�)) when

ysup;� (yinf;�) is a unique interior solution. As we demonstrate in Example 2 in the next subsection,

when the supports of F1 and F0 are compact, there are often boundary solutions, i.e., ysup;� or

yinf;� lie on the boundary of Y�. Moreover, it is also possible to have multiple values for ysup;�

and yinf;�, some in the interior and some on the boundary. It would be interesting and important

to see if one can establish the asymptotic distributions of FLn (�) and F
U
n (�) to accommodate these

possibilities. We�ll explore this issue in future work. The following theorem, however, presents the

rate of convergence of FLn (�) and F
U
n (�) in the general case. It follows from Sherman (2003).

THEOREM 3.3 Suppose the supports of F1 and F0 are compact. If (A1) holds and F1 and F0 are

continuous on their supports, then jFLn (�)�FL(�)j = Op(n
�1=2
1 ) and jFUn (�)�FU (�)j = Op(n

�1=2
1 ).

In practice, the supports of F1 and F0 may be unknown, but can be estimated by using the

corresponding univariate order statistics in the usual way.

3.2 Two Examples

We present two examples to illustrate the various possibilities in Theorem 3.2. For the �rst example,

the asymptotic distribution of FLn (�) (F
U
n (�)) is normal for all �. For the second example, the
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asymptotic distribution of FLn (�) (F
U
n (�)) is normal for some � and non-normal for some other �.

More examples can be found in Appendix B.

Example 1 (Continued). Let Yj � N
�
�j ; �

2
j

�
for j = 0; 1 with �21 6= �20: As shown in Section

2.3, M(�) > 0 and m(�) < 0 for all � 2 R: Moreover,

ysup;� =
�21s+ �1�0t

�21 � �20
+ �1 and yinf;� =

�21s� �1�0t
�21 � �20

+ �1

are unique interior solutions, where s = � � (�1 � �0) and t =
r
s2 + 2

�
�21 � �20

�
ln
�1
�0
. Theorem

3.2 implies that the asymptotic distribution of FLn (�) (F
U
n (�)) is normal for all � 2 R. Inferences

can be made using asymptotic distributions or standard bootstrap with the same sample size.

Example 2. Consider the following family of distributions indexed by a 2 (0; 1). For brevity,
we denote a member of this family by C (a). If X � C (a), then

F (x) =

8><>:
1

a
x2 if x 2 [0; a]

1� (x� 1)
2

(1� a) if x 2 [a; 1]
and f(x) =

8><>:
2

a
x if x 2 [0; a]
2 (1� x)
(1� a) if x 2 [a; 1]

:

Suppose Y1 � C
�
1
4

�
and Y0 � C

�
3
4

�
. The functional form of F1 (y)�F0 (y � �) di¤ers according

to �: For y 2 Y�, using the expressions for F1 (y)�F0 (y � �) provided in Appendix B, one can �nd
ysup;� and M (�). They are:

ysup;� =

8<:
1+�
2 if � 1 + 1

2

p
2 < � � 1�

0; 1+�2 ; 1 + �
	

if � = �1 + 1
2

p
2

f0; 1 + �g if � 1 � � < �1 + 1
2

p
2

;

M (�) =

8>>><>>>:
4 (� + 1)2 � 1 if � 1 � � � �3

4

�4
3
�2 if � 3

4
� � � �1 + 1

2

p
2

�2
3 (� � 1)

2 + 1 if � 1 + 1
2

p
2 � � � 1

:

Figure 3 below plots ysup;� and M (�) against �.
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ysup,δysup,δ at boundaries

M(δ) < 0

Figure 3. M (�) and ysup;�:
�
C
�
1
4

�
; C
�
3
4

��

Figure 4 below plots F1 (y) � F0 (y � �) against y 2 [0; 1] for a few selected values of �. When
� = �5

8 (Figure 4(a)), the supremum occurs at the boundaries of Y�: When � = �1 +
p
2
2 (Figure

4(b)); fysup;�g =
�
0; 1+�2 ; 1 + �

	
, i.e., there are three values of ysup;�; one interior and two boundary

solutions. When � > �1+
p
2
2 , ysup;� becomes a unique interior solution. Figure 4(c) plots the case

where the interior solution leads to a value 0 for M(�) and Figure 4(d) a case where the interior

solution corresponds to a positive value for M(�).

delta = -5/8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0.5

1

y

F1(y)-F0(y-delta)

Common support(Yδ)

Figure 4(a). [F1 (y)� F0 (y + 5=8)]

delta = -1+sqrt(2)/2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-0.5

0.5

1

y

F1(y)-F0(y-delta)

Common support(Yδ)

Figure 4(b).
�
F1 (y)� F0

�
y + 1�

p
2=2
��
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delta = 1-sqrt(6)/2
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Figure 4(c).
�
F1 (y)� F0

�
y � 1 +

p
6=2
��

delta = 1/8
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-0.5
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y

F1(y)-F0(y-delta)

Common support(Yδ)

Figure 4(d). [F1 (y)� F0 (y � 1=8)]

In the simulation study in the next section, we focus on the case of a unique interior solution for

ysup;�. Depending on the value of �, M(�) can have di¤erent signs leading to di¤erent asymptotic

distributions for FLn (�). For example, when � = 1 �
p
6
2 (Figure 4(c)); M (�) = 0 and for � >

1 �
p
6
2 ; M (�) > 0. Since M(�) = 0 when � = 1 �

p
6
2 ; ysup;� = 1 �

p
6
4 is in the interior, and

f 01 (ysup;�)� f 00 (ysup;� � �) = �16
3 < 0, Theorem 3.2 implies that at � = 1�

p
6
2 ;

p
n1[F

L
n (�)� FL(�)] =) max

�
N(0; �2L); 0

�
where �2L =

(1 + �)

4
:

When � = 1
8 (Figure 4(d)),

ysup;� =
9

16
; M(�) =

47

96
> 0; f 01 (ysup;�)� f 00 (ysup;� � �) = �

16

3
< 0:

Theorem 3.2 implies that when � = 1
8 ;

p
n1[F

L
n (�)� FL(�)] =) N(0; �2L) where �

2
L = (1 + �)

7007

36 864
:

We now illustrate both possibilities for the upper bound FU (�). Suppose Y1 � C
�
3
4

�
and

Y0 � C
�
1
4

�
: Then using the expressions for F1 (y)� F0 (y � �) provided in Appendix B, we obtain

yinf;� =

8><>:
1+�
2 if � 1 � � � 1�

p
2
2�

�; 1+�2 ; 1
	

if � = 1�
p
2
2

f�; 1g if 1� 1
2

p
2 � z � 1

;

m (�) =

8>><>>:
2
3 (� + 1)

2 � 1 if � 1 � � � 1�
p
2
2

4�2

3
if 1�

p
2
2 � � � 3

4

�4 (1� �)2 + 1 if 34 � � � 1

:

The graphs of yinf;� and m (�) are:
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��

Graphs of F1 (y)�F0 (y � �) against y for selective ��s are presented in Figure 6 below. Figures
6(a) and 6(b) illustrate two cases each having a unique interior minimum, but in Figure 6(a), m(�)

is negative and in Figure 6(b), m(�) is 0. Figure 6(c) illustrates the case with multiple solutions:

one interior minimizer and two boundary ones, while Figure 6(d) illustrates the case with two

boundary minima.
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Figure 6(a). [F1 (y)� F0 (y + 1=8)]
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Figure 6(d). [F1 (y)� F0 (y � 5=8)]

In the simulation study, we considered the case with a unique interior solution corresponding

to Figures 6(a) and (b). When � =

p
6

2
� 1; we obtain yinf;� =

p
6

4
; m(�) = 0; and f 01 (yinf;�) �

f 00 (yinf;� � �) =
16

3
> 0. By Theorem 3.2, we get

p
n1[F

U
n (�)� FU (�)] =) min

�
N(0; �2U ); 0

�
; where �2U =

1 + �

4
:

When � = �1
8
, we get yinf;� = 7

16 ; m(�) = �
47
96 < 0; and f

0
1 (yinf;�)� f 00 (yinf;� � �) =

16

3
> 0. Hence

p
n1[F

U
n (�)� FU (�)] =) N(0; �2U ) where �

2
U = (1 + �)

7007

36 864
:

4 Inference on the Sharp Bounds

Given Theorem 3.2, the same arguments in Fan (2006) show that the standard bootstrap with the

same sample size is asymptotically invalid for FL(�) whenM(�) = 0 (for FU (�) whenm(�) = 0) and

this bootstrap failure can be recti�ed by the fewer-than-n bootstrap or subsampling. Alternatively,

note that if � is such that M(�) = 0, then FL(�) = 0 and if � is such that m(�) = 0, then

FU (�) = 1. The failure of the standard bootstrap (bootstrap with the same sample size) at such

� values follows from the bootstrap failure when parameters are at the boundary of the parameter

space, see Andrews (2000).

Both subsampling and fewer-than-n bootstrap have been explored in other contexts to rectify

the failure of standard bootstrap, see Andrews (2000), Bickel, Götze, and van Zwet (1997), and

Beran (1997) for discussion and references. Subsampling was �rst proposed by Wu (1990) and

extended by Politis and Romano (1994), see Politis, Romano, and Wolf (1999) for more applications

of subsampling. Bickel, Götze, and van Zwet (1997) provide numerous examples for which fewer-

than-n bootstrap works, while standard bootstrap fails.
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In the next section, we investigate the performance of the fewer-than-n bootstrap in constructing

con�dence intervals for FL(�) and FU (�) for � values corresponding to ysup;� (yinf;�) being an interior

solution with M(�) > 0 and M(�) = 0 (m(�) < 0 and m(�) = 0). To implement the fewer-than-n

bootstrap, we need to choose the subsample size. We use the procedure suggested in Bickel and

Sakov (2005). Let m denote the subsample size and bm the value of m chosen by the procedure

in Bickel and Sakov (2005) (see below for a detailed description of this rule applied to our case).

As shown by Bickel and Sakov (2005), bm has the desirable property that under general regularity

conditions, when the standard bootstrap fails, bm!1 in probability and bm=n = op(1); and when
the standard bootstrap works, bm=n = Op(1). As a result, there is no loss in e¢ ciency in using the
fewer-than-n bootstrap with this adaptive rule of choosing the subsample size. On the other hand,

subsampling requires a strictly smaller subsample size, i.e., m!1 and m=n! 0.

We now describe this rule for the lower bound FL (�). For notational clarity, we consider the

case n1 = n0. Let fY �1igmi=1 be i.i.d. from F1n(�) and fY �0igmi=1 i.i.d. from F0n(�) where m � n.

Denote the bootstrap estimators of the sharp bounds by F �Lm;n(�) and F
�U
m;n(�) and the bootstrap

estimators of �2L and �
2
U by b�2�m;L and b�2�m;U . Let T �LTm;n =

p
m
�
F �Lm;n(�)� FLn (�)

�
=b��m;L. To choose

m, we follow the steps below.

Step 1. Consider a sequence of m�s of the form:

mj =
�
qjn
�
for j = 0; 1; 2; � � � ; 0 < q < 1

where [
] denotes the largest integer � 
:

Step 2. For each mj ; let L�mj ;n denote the empirical distribution of values of T
�LT
m;n over a large

number (B) of bootstrap repetitions.

Step 3. Let bm = argminmj

�
supx

n���L�mj ;n (x)� L
�
mj+1;n (x)

���o� :
Once bm is chosen, the con�dence intervals can be constructed in the usual way. For example, the

100� (1� �)% two-sided equal-tailed bootstrap con�dence interval for FL(�) based on subsamples
of size bm is�

FLn (�)�
1

n

cbm;(1��=2)
�̂L

; FLn (�)�
1

n

cbm;�=2
�̂L

�
;

where cm;� = inf
�
x : L�m;n (x) � �

	
.

5 Simulation

In this section, we examine the �nite sample accuracy of the nonparametric estimators of the treat-

ment e¤ect distribution bounds and investigate the coverage rates of the standard bootstrap and
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the fewer-than-n bootstrap con�dence intervals for the lower and upper bounds at di¤erent values

of �. The data generating processes (DGP) being used in this simulation study are respectively

Example 1 and Example 2 introduced in Sections 2 and 3. The detailed simulation design will be

described in the subsections below.

5.1 Estimates of FL and FU

5.1.1 Computation of FLn and FUn

The quantile functions of FUn and FLn provide consistent estimators of the lower and upper bounds

on the quantile function of F�. For 0 < q < 1, Lemma 2.3 (the duality theorem) implies that the

quantile bounds (FUn )
�1(q) and (FLn )

�1(q) can be computed as follows:

(FLn )
�1(q) = inf

u2[q;1]

�
F�11n (u)� F

�1
0n (u� q)

�
;

(FUn )
�1(q) = sup

u2[0;q]

�
F�11n (u)� F

�1
0n (1 + u� q)

�
;

where F�11n (�) and F
�1
0n (�) represent the quantile functions of F1n (�) and F0n (�) respectively.

To estimate the distribution bounds, we compute the values of (FLn )
�1(q) and (FUn )

�1(q) at

evenly spaced values of q in (0; 1). One choice that leads to easily computed formulas for (FLn )
�1(q)

and (FUn )
�1(q) is q = r=n1 for r = 1; : : : ; n1, as one can show that

(FLn )
�1(r=n1) = min

l=r;:::;(n1�1)
min

s=j;:::;k
[Y1(l+1) � Y0(s)]; (12)

where j =
h
n0

�
l�r
n1

�i
+ 1 and k =

h
n0

�
l�r+1
n1

�i
, and

(FUn )
�1(r=n1) = max

l=0;:::;(r�1)
max

s=j0;:::;k0
[Y1(l+1) � Y0(s)]; (13)

where j0 =
h
n0

�
n1+l�r
n1

�i
+ 1 and k0 =

h
n0

�
n1+l�r+1

n1

�i
. In the case where n1 = n0 = n, (12) and

(13) simplify:

(FLn )
�1(r=n) = min

l=r;:::;(n�1)
[Y1(l+1) � Y0(l�r+1)];

(FUn )
�1(r=n) = max

l=0;:::;(r�1)
[Y1(l+1) � Y0(n+l�r+1)]:

The empirical distribution of (FLn )
�1(r=n1), r = 1; :::; n1 provides an estimate of the lower bound

distribution and the empirical distribution of (FUn )
�1(r=n1), r = 1; :::; n1 provides an estimate of

the upper bound distribution.

5.1.2 The Simulation Design and Results

The DGPs being used in this experiment are: (i) F1 = N(2; 1) and F0 = N(1; 1); (ii) F1 = N(2; 2)

and F0 = N(1; 1); (iii) F1 = C(1=4) and F0 = C(3=4); (iv) F1 = C(3=4) and F0 = C(1=4). For
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each set of marginal distributions, random samples of sizes n1 = n0 = n = 1; 000 are drawn and

FLn and F
U
n are computed. This is repeated for 500 times. Below we present four graphs. In each

graph, we plotted FLn and FUn randomly chosen from the 500 estimates, the averages of 500 FLn s

and FUn s; and the simulation variances of F
L
n and FUn multiplied by n: Each graph consists of 8

curves. The true distribution bounds FL and FU are denoted as F^L and F^U, respectively. Their

estimates (FLn and FUn ) are Fn^L and Fn^U. The lines denoted by avg(Fn^L) and avg(Fn^U)

show the averages of 500 FLn s and F
U
n s: The simulation variances of F

L
n and FUn multiplied by n

are denoted as n*var(Fn^L) and n*var(Fn^U).

Figures 7(a) and (b) correspond to DGP (i) and (ii), while Figures 8(a) and (b) correspond to

DGP (iii) and (iv). In all cases, we observe that Fn^L and avg(Fn^L) are very close to F^L at all

points of its support (the same holds true for F^U). In fact, these curves are barely distinguishable

from each other. The largest variance in all cases for all values of � is less than 0.0005.
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F^U

Fn^L

Fn^U

Avg(Fn^L)

Avg(Fn^U)

n*var(Fn^L)

n*var(Fn^U)
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Figure 7(a). Estimates of the Distribution
Bounds: (N (2; 1) ; N (1; 1))
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Figure 7(b). Estimates of the Distribution
Bounds: (N (2; 2) ; N (1; 1))
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Figure 8(a). Estimates of the Distribution
Bounds: (C (1=4) ; C (3=4))
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Figure 8(b). Estimates of the Distribution
Bounds: (C (3=4) ; C (1=4))

5.2 Coverage Rates

5.2.1 Computation

Construction of the con�dence intervals requires estimation of the variances �2L and �
2
U which

depend on ysup :� and yinf :�: Based on

FLn (�) = max fMn (�) ; 0g and FUn (�) = 1 +min fmn (�) ; 0g ;

we now describe a method for computing Mn (�), mn (�) and the corresponding ysup;�, yinf;�.

Suppose we know Y�. To compute Mn (�) or mn (�), we just need to consider Y1i 2 Y� and
Y0i 2 Y� � �. If Y� is unknown, we can estimate it by

Y�n =
�
Y1(1); Y1(n1)

�T �
Y0(1) + �; Y0(n0) + �

�
;

where
�
Y1(i)

	n1
i=1

and
�
Y0(i)

	n0
i=1

are the order statistics of fY1ign1i=1 and fY0ig
n0
i=1 respectively (in

ascending order). In the discussion below, Y� can be replaced by Y�n if Y� is unknown.
We de�ne a subset of the order statistics fY1ign1i=1 denoted as

�
Y1(i)

	s1
i=r1

as follows:

r1 = argmin
i

h�
Y1(i)

	n1
i=1

T
Y�
i
and s1 = argmax

i

h�
Y1(i)

	n1
i=1

T
Y�
i
:

In words, Y1(r1) is the smallest value of
�
Y1(i)

	n1
i=1

T
Y� and Y1(s1) is the largest. Then,

Mn (�) = max
i

�
i

n1
� F0n

�
Y1(i) � �

��
for i 2 fr1; r1 + 1; � � � ; s1g and

mn (�) = min
i

�
i

n1
� F0n

�
Y1(i) � �

��
for i 2 fr1; r1 + 1; � � � ; s1g :
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To estimate �2L and �
2
U ; we use the following method. De�ne two sets IM and Im such that

IM =

�
i : i = argmax

i

�
i

n1
� F0n

�
Y1(i) � �

���
and

Im =

�
i : i = argmin

i

�
i

n1
� F0n

�
Y1(i) � �

���
:

Then the estimators �2Ln and �
2
Un can be de�ned as

�2Ln =
i

n1

�
1� i

n1

�
+ �F0n

�
Y1(i) � �

� �
1� F0n

�
Y1(i) � �

��
and

�2Un =
j

n1

�
1� j

n1

�
+ �F0n

�
Y1(j) � �

� �
1� F0n

�
Y1(j) � �

��
;

for i 2 IM and j 2 Im: Since IM or Im may not be singleton, we may have multiple estimates of

�2Ln or �
2
Un: In the simulation, we experimented with di¤erent ways of selecting �

2
Ln or �

2
Un and

the results are very similar.

5.2.2 The Simulation Design and Results

We looked at pointwise coverage rates of two-sided equal-tailed con�dence intervals for the lower

and upper bounds separately at deliberately chosen points. The true marginal distributions and

the values of � used in the simulation are summarized in Table 1.

Table 1: DGPs Used in the Simulation
Estimators Marginal Distributions �
for F1 F0 �1 �2 �3

Example 1 FL (�) N (2; 2) N (1; 1) 1:3 2:6 4:5
FU (�) N (2; 2) N (1; 1) �2:4 �0:6 0:7

Example 2 FL (�) C
�
1
4

�
C
�
3
4

�
1
8 1�

p
6
2 �

FU (�) C
�
3
4

�
C
�
1
4

�
�1
8

p
6
2 � 1 �

For Example 1, both Y1 and Y0 are normally distributed. As shown in Section 3.2, M (�) > 0

and m (�) < 0 for all three values of �. Hence both the �rst order asymptotics and standard

bootstrap work for all ��s. The values of � are chosen such that FL (�1) � FU (�1) � 0:15;

FL (�2) � FU (�2) � 0:5; and FL (�3) � FU (�3) � 0:85 to see the e¤ect of the relative position of
� on the coverage rates. For Example 2, M (�1) > 0 and m (�1) < 0 while M (�2) = m (�2) = 0 for

both FL (�) and FU (�). Hence the standard bootstrap works for �1 but not for �2.
For each DGP described in Table 1, we generated random samples of the same size n from F1

and F0 respectively. The sample sizes are n = 1; 000; 2; 000; 4; 000 and the number of simulations

was 1000. To select the number of bootstrap repetitions B, we followed Davidson and Mackinnon

(2004; p. 163-165) by choosing B such that � (B + 1) is an integer. Speci�cally, we used B = 999

for � = 0:05: For Example 1, we constructed con�dence intervals for FL (�) and FU (�) for each �
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by three methods. The �rst used the asymptotic distributions of FLn (�) and F
U
n (�). In particular,

p
n
�
FLn (�)� FL (�)

�
=) N

�
0; �2L

�
;

where

FL (�) = �

�p
2 (� � 1)�

q
(� � 1)2 + ln 2

�
� �

�
� � 1�

q
2 (� � 1)2 + 2 ln 2

�
,

�2L = �

�p
2 (� � 1) +

q
(� � 1)2 + ln 2

��
1� �

�p
2 (� � 1) +

q
(� � 1)2 + ln 2

��
+�

�
� � 1 +

q
2 (� � 1)2 + 2 ln 2

��
1� �

�
� � 1 +

q
2 (� � 1)2 + 2 ln 2

��
;

p
n
�
FUn (�)� FU (�)

�
=) N

�
0; �2U

�
;

where

FU (�) = 1 + �

�p
2 (� � 1) +

q
(� � 1)2 + ln 2

�
� �

�
� � 1 +

q
2 (� � 1)2 + 2 ln 2

�
;

�2U = �

�p
2 (� � 1)�

q
(� � 1)2 + ln 2

��
1� �

�p
2 (� � 1)�

q
(� � 1)2 + ln 2

��
+�

�
� � 1�

q
2 (� � 1)2 + 2 ln 2

��
1� �

�
� � 1�

q
2 (� � 1)2 + 2 ln 2

��
:

We denote the corresponding results by �Asymptotics� in Table 2 below. The second method

used the standard bootstrap and the results are denoted by �n-bootstrap�in Table 2. Finally, we

used the �fewer-than-n-bootstrap�con�dence intervals. In the �fewer-than-n-bootstrap�, we used

q = 0:95: Here only one value for q was used, because the �fewer-than-n bootstrap�was only used

for comparison purposes (the standard bootstrap works for this case). For Example 2, we used the

standard bootstrap (�n-bootstrap�in Table 3) and the �fewer-than-n-bootstrap�with two values for

q: 0:75 and 0:95.

First, we discuss the coverage rates for normal distributions in Table 2. Clearly the coverage

rates depend critically on the location of �. For �2, all three methods lead to con�dence intervals

with very accurate coverage rates for both FL and FU . The coverage rates at �1 and �3 depend

on the methods being used. Although in theory all three methods are asymptotically valid, in

�nite samples, con�dence intervals based on asymptotic normal critical values often substantially

under cover the true values at �1 and/or �3. For example, the coverage rates of con�dence intervals

based on normal critical values for FL(�) at � = �1 and �3 are respectively :927 and :937 when

n = 1; 000 and :935 and :936 when n = 4; 000. On the other hand, the standard bootstrap

leads to coverage rates of :942 and :950 when n = 1; 000 and :945 and :953 when n = 4; 000,

supporting the asymptotic re�nement of the standard bootstrap over asymptotic normality in this

case. Interestingly, the fewer-than-n bootstrap overall provides slightly better coverage rates than

the standard bootstrap especially when the standard bootstrap under covers.
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Table 2: Coverage Rates: (N(2; 2); N(1; 1))
FL (�) FU (�)

n Method �1 �2 �3 �1 �2 �3
1; 000 Asymptotics .927 .944 .937 .927 .942 .927

n-bootstrap .942 .954 .950 .950 .953 .939
q = 0:95 Fewer-than-n bootstrap .948 .949 .948 .952 .951 .942
2; 000 Asymptotics .942 .944 .934 .939 .941 .926

n-bootstrap .949 .944 .946 .946 .952 .937
q = 0:95 Fewer-than-n bootstrap .941 .944 .952 .949 .950 .939
4; 000 Asymptotics .935 .951 .936 .947 .947 .926

n-bootstrap .945 .957 .953 .951 .952 .936
q = 0:95 Fewer-than-n bootstrap .944 .957 .952 .951 .952 .939

For Example 2, the relative performance of the n-bootstrap and the fewer-than-n bootstrap at

�1 is the same as that for the normal distributions in the sense that when the n-bootstrap con�dence

intervals undercover, the fewer-than-n bootstrap con�dence intervals correct for this and provide

better coverage rates regardless of the value of q. At �2, the n-bootstrap is asymptotically invalid,

but leads to coverage rates higher than :95 for almost all sample sizes, while the fewer-than-n

bootstrap produces coverage rates that are slightly better than the n-bootstrap, but not by much4.

On the other hand, it may be argued that it is more important to correct undercoverage than

overcoverage. Both examples demonstrate that it is exactly when either the �rst order asymptotics

or the standard bootstrap under cover the true bounds, the fewer-than-n bootstrap improves on

their coverage rates.

Table 3: Coverage Rates:
�
C
�
1
4

�
; C
�
3
4

��
for FL;

�
C
�
3
4

�
; C
�
1
4

��
for FU

FL (�) FU (�)
n Method �1 �2 �1 �2
1; 000 n-bootstrap .941 .961 .951 .958

Fewer-than-n bootstrap (q = 0:75) .943 .963 .951 .960
Fewer-than-n bootstrap (q = 0:95) .945 .963 .947 .962

2; 000 n-bootstrap .951 .970 .947 .959
Fewer-than-n bootstrap (q = 0:75) .944 .971 .946 .959
Fewer-than-n bootstrap (q = 0:95) .951 .969 .946 .959

4; 000 n-bootstrap .947 .963 .946 .963
Fewer-than-n bootstrap (q = 0:75) .949 .964 .947 .965
Fewer-than-n bootstrap (q = 0:95) .949 .962 .951 .961

Tables 4 and 5 below present the bias and RMSE of FLn (�) and F
U
n (�) for the values of � used

to evaluate coverage rates. As expected, as the sample size n increases, both the bias and the MSE

of the lower and upper bound estimators decrease regardless of the values of � for both examples.

4Our simulation results show that in this case, the average widths of the fewer-than-n bootstrap con�dence intervals
are often shorter than the n-bootstrap con�dence intervals.
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Also for both examples, the lower bound estimator FLn (�) is biased upward and the upper bound

estimator FUn (�) is biased downward for all sample sizes and for all values of � considered.

Table 4: MSE and Bias: (N(2; 2); N(1; 1))
FL (�) FU (�)

n Statistics �1 �2 �3 �1 �2 �3
1; 000

p
MSE .0209 .0194 .0118 .0123 .0198 .0215

Bias .0094 .0070 .0046 �:0054 �:0082 �:0107
2; 000

p
MSE .0143 .0135 .0083 .0086 .0138 .0149

Bias .0064 .0040 .0033 �:0030 �:0052 �:0077
4; 000

p
MSE .0102 .0094 .0060 .0062 .0097 .0103

Bias .0045 .0028 .0022 �:0022 �:0034 �:0053

Table 5: MSE and Bias:
�
C
�
1
4

�
; C
�
3
4

��
for FL;

�
C
�
3
4

�
; C
�
1
4

��
for FU

FL (�) FU (�)
n Statistics �1 �2 �1 �2
1; 000

p
MSE .0202 .0216 .0204 .0221

Bias .0080 .0147 �:0087 �:0155
2; 000

p
MSE .0139 .0149 .0144 .0153

Bias .0044 .0101 �:0057 �:0104
4; 000

p
MSE .0098 .0102 .0100 .0103

Bias .0033 .0069 �:0033 �:0069

6 Estimation and Inference on the Distribution of the Relative
Treatment E¤ect

When the potential outcomes are almost surely positive, an alternative measure of the treatment

e¤ect is the relative risk de�ned as the ratio of the two potential outcomes. Let R = Y1
Y0
: A value of

R larger than 1 indicates e¤ectiveness of the treatment and a value of R smaller than 1 indicates

ine¤ectiveness of the treatment. Williamson and Downs (1990) showed that the sharp bounds on

the distribution of R are:

FLR (�) = sup
y
max(F1(y)� F0(y=�); 0) and

FUR (�) = 1 + inf
y
min(F1(y)� F0(y=�); 0):

Let Y1 = [a; b] and Y0 = [c; d] for a; b; c; d 2 R+
S
f0;1g denote the supports of Y1 and Y0

respectively. De�ne Y�;R = [a; b]
T
[�c; �d] for � 2

�
a
d ;
b
c

�T
R+ with obvious de�nitions of ad and

b
c
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when one or more of a; b; c; d 2 f0;1g. Then it can be shown that

FLR (�) = max

(
sup
y2Y�;R

[F1(y)� F0(y=�)] ; 0
)
� max (MR (�) ; 0) and

FUR (�) = 1 +min

�
inf

y2Y�;R
[F1(y)� F0(y=�)] ; 0

�
� 1 + min(mR (�) ; 0);

where

MR (�) = F1(ysup;�R)� F0(ysup;�R=�) and

mR (�) = F1(yinf;�R)� F0(yinf;�R=�)

in which

ysup;�R = arg sup
y2Y�;R

(F1(y)� F0(y=�)) and

yinf;�R = arg inf
y2Y�;R

(F1(y)� F0(y=�)) :

Consistent estimators of FLR (�) and F
U
R (�) are:

FLnR(�) = max

(
sup
y2Y�;R

(F1n(y)� F0n(y=�)) ; 0
)
and

FUnR(�) = 1 +min

�
inf

y2Y�;R
(F1n(y)� F0n(y=�)) ; 0

�
:

To provide the asymptotic distributions of FLnR(�) and F
U
nR(�), we modify (A3) and (A4) to (A3R)

and (A4R) below.

(A3R) (i) For every � > 0, supy2Y�;R:jy�ysup;�Rj�� fF1(y)� F0(y=�)g < fF1(ysup;�R)� F0(ysup;�R=�)g;
(ii) f1 (ysup;�R)� 1

�f0 (ysup;�R=�) = 0 and f
0
1 (ysup;�R)� 1

�2
f 00 (ysup;�R=�) < 0.

(A4R) (i) For every � > 0, infy2Y�;R:jy�yinf;�Rj�� fF1(y)� F0(y=�)g > fF1(yinf;�R)� F0(yinf;�R=�)g;
(ii) f1 (yinf;�R)� 1

�f0 (yinf;�R=�) = 0 and f
0
1 (yinf;�R)� 1

�2
f 00 (yinf;�R=�) > 0.

THEOREM 6.1 (i) Suppose (A1),(A2) and (A3R) hold. De�ne 0
0 =

1
1 = 1. For any � 2�

a
d ;
b
c

�T
R+, if min

�
a
c ;
b
d

	
< �, then

p
n1[F

L
nR(�)� FLR (�)] =) N(0; �2LR); otherwise

p
n1[F

L
nR(�)� FLR (�)] =)

�
N(0; �2LR); if MR(�) > 0;
max

�
N(0; �2LR); 0

	
if MR(�) = 0;

and Pr
�
FLnR (�) = 0

�
! 1 if MR(�) < 0;

where

�2LR = F1(ysup;�R) [1� F1(ysup;�R)] + �F0(ysup;�R=�) [1� F0(ysup;�R=�)] :
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(ii) Suppose (A1), (A2), and (A4R) hold. De�ne 0
0 =

1
1 = 0. For any � 2

�
a
d ;
b
c

�T
R+, if

max
�
a
c ;
b
d

	
> �, then

p
n1[F

U
nR(�)� FUR (�)] =) N(0; �2UR); otherwise

p
n1[F

U
nR(�)� FUR (�)] =)

�
N(0; �2UR); if mR(�) < 0;
min

�
N(0; �2UR); 0

	
if mR(�) = 0;

and Pr
�
FUnR (�) = 1

�
! 1 if mR(�) > 0;

where

�2UR = F1(yinf;�R) [1� F1(yinf;�R=�)] + �F0(yinf;�R=�) [1� F0(yinf;�R=�)] .

The proof of Theorem 6.1 is similar to that of Theorem 3.2 and is thus omitted. Like Theorem

3.2, Theorem 6.1 implies that in general, the standard asymptotics and bootstrap may fail to

provide valid inference on the sharp bounds FLR (�) and F
U
R (�). Instead the fewer-than-n bootstrap

or subsampling should be used to make inferences on these bounds.

7 Sharp Bounds on the Distribution of Treatment E¤ect With
Covariates

In many applications, observations on a vector of covariates for individuals in the treatment and

control groups are available. In this section, we extend our study on sharp bounds to take into

account these covariates. For notational compactness, we let n = n1 + n0 so that there are n

individuals altogether. For i = 1; :::; n; let Xi denote the observed vector of covariates and Di the

binary variable indicating participation; Di = 1 if individual i belongs to the treatment group and

Di = 0 if individual i belongs to the control group. Let

Yi = Y1iDi + Y0i(1�Di)

denote the observed outcome for individual i. We have a random sample fYi; Xi; Digni=1 : In the
literature on program evaluation with selection-on-observables, the following two assumptions are

often used to evaluate the e¤ect of treatment or program, see e.g., Rosenbaum and Rubin (1983a,b),

Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998), Dehejia and Wahba (1999), and Hirano,

Imbens, and Ridder (2000), to name only a few.

(C1) Let (Y1; Y0; D;X) have a joint distribution. For all x 2 X (the support of X), (Y1; Y0) is

jointly independent of D conditional on X = x.

(C2) For all x 2 X , 0 < p(x) < 1, where p(x) = P (D = 1jx).

In the following, we present sharp bounds on the distribution of � under (C1) and (C2). For

any �xed x 2 X , Lemma 2.1 provides sharp bounds on the conditional distribution of � given
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X = x:

FL(�jx) � F�(�jx) � FU (�jx);

where

FL(�jx) = sup
y
max(F1(yjx)� F0(y � �jx); 0);

FU (�jx) = 1 + inf
y
min(F1(yjx)� F0(y � �jx); 0):

Here, we use F�(�jx) to denote the conditional distribution function of � given X = x. The other

conditional distributions are de�ned similarly. Conditions (C1) and (C2) allow the identi�cation

of the conditional distributions F1(yjx) and F0(yjx) appearing in the sharp bounds on F�(�jx). To
see this, note that

F1(yjx) = P (Y1 � yjX = x) = P (Y1 � yjX = x;D = 1)

= P (Y � yjX = x;D = 1); (14)

where (C1) is used to establish the second equality. Similarly, we get

F0(yjx) = P (Y � yjX = x;D = 0): (15)

Given the random sample fYi; Xi; Digni=1 ; nonparametric estimators of the bounds FL(�jx); FU (�jx)
can be easily constructed from nonparametric estimators of F1(y1jx) and F0(y0jx). Their asymp-
totic properties extend directly from those of FL(�); FU (�) established in Section 3.

Sharp bounds on the unconditional distribution of � follow from those of the conditional dis-

tribution:

E
�
FL(�jX)

�
� F�(�) = E (F�(�jX)) � E

�
FU (�jX)

�
:

Let bF1(y1jx) and bF0(y0jx) denote nonparametric estimators of F1(y1jx) and F0(y0jx) respectively.
The bounds E

�
FL(�jX)

�
; E
�
FU (�jX)

�
can be estimated respectively by

1

n

nX
i=1

max

�
sup
y

n bF1(yjXi)� bF0(y � �jXi)o ; 0�
and

1 +
1

n

nX
i=1

min

�
inf
y

n bF1(yjXi)� bF0(y � �jXi)o ; 0� :
For the sake of space, we will present a complete asymptotic theory for these estimators in a separate

paper.
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8 Conclusion

This paper is the �rst to develop nonparametric estimation and inference procedures for sharp

bounds on the distribution of a di¤erence between two random variables. In the context of program

evaluation or evaluation of a binary treatment, the di¤erence between the two potential outcomes

measures the program e¤ect or e¤ect of the treatment and hence plays an important role. We have

also extended our results to a ratio of two random variables, a measure of the relative treatment

e¤ect. As we mentioned in the Introduction, sharp bounds on the distribution of a sum of random

variables are important in �nance and risk management. The results developed in this paper are

directly applicable to a sum of two random variables by rede�ning the second random variable.

Much work remains to be done. In terms of the sharp bounds, those in this paper are the worst

bounds in the sense that they do not make use of any prior information on the possible dependence

between the potential outcomes. When such information is available, these bounds can be tightened.

In a companion paper, we explore sharp bounds taking account of dependence information such as

values of dependence measures of the potential outcomes. The focus on randomized experiments

in this paper allows the identi�cation of the marginal distributions. In cases where the marginal

distributions themselves are not identi�able but bounds on them can be placed (see, e.g., Manski

(1994, 2003), Manski and Pepper (2000), Shaikh and Vytlacil (2005), Blundell, Gosling, Ichimura,

and Meghir (2006), Honore and Lleras-Muney (2006)), we can also place bounds on the treatment

e¤ect distribution. In terms of statistical inference, we looked at inference on the sharp bounds

themselves. Con�dence intervals on the true distribution instead of its bounds may be constructed

using the methodologies developed recently in Horowitz and Manski (2000), Imbens and Manski

(2004), Chernozhukov, Hong, and Tamer (2004), and Romano and Shaikh (2006). These results

will be reported in separate papers.
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Appendix A: Technical Proofs

Proof of Proposition 3.1: Since the proofs of (i) and (ii) are similar, we provide a proof for
(i) only. Let

Qn(y; �) = F1n(y)� F0n(y � �); Q(y; �) = F1(y)� F0(y � �):

De�ne

bysup;� = arg sup
y
Qn(y; �):

Then Mn(�) = Qn(bysup;�; �) and M(�) = Q(ysup;�; �). Let Mn(�) = Qn(ysup;�; �). Obviously,p
n1
�
Mn(�)�M(�)

�
=) N(0; �2L). We will complete the proof of (i) in three steps:

1. We show that bysup;� � ysup;� = op(1);
2. We show that bysup;� � ysup;� = Op(n�1=31 );

3.
p
n1 (Mn(�)�M(�)) has the same limiting distribution as

p
n1
�
Mn(�)�M(�)

�
.

Proof of 1. By the classical Glivenko-Cantelli theorem, the sequences supy jF1n(y) � F1(y)j
and supy jF0n(y � �) � F0(y � �)j converge in probability to zero. Consequently, the sequence
supy j[F1n(y) � F0n(y � �)] � [F1(y)� F0(y � �)] j also converges in probability to zero. This and
A3(i) imply that the sequence bysup;� converges in probability to ysup;�, see e.g., Theorem 5.7 in van
der Vaart (1998).

Proof of 2. We use Theorem 3.2.5 in van der Vaart and Wellner (1996) to establish the rate of
convergence for bysup;�. Given (A2), the map: y 7! Q(y; �) is twice di¤erentiable and has a maximum
at ysup;�. By (A3), the �rst condition of Theorem 3.2.5 in van der Vaart and Wellner (1996) is
satis�ed with � = 2. To check the second condition of Theorem 3.2.5 in van der Vaart and Wellner
(1996), we consider the centered process:

p
n1(Qn �Q)(�; �) =

p
n1(F1n � F1)(�)�

p
n1(F0n � F0)(� � �)

� Gn1 (�)�
p
n1p
n0
Gn0 (� � �) :

For any � > 0,

E sup
jy�ysup;�j<�

jpn1(Qn �Q)(y; �)�
p
n1(Qn �Q)(ysup;�; �)j

� E sup
jy�ysup;�j<�

jGn1 (y)�Gn1 (ysup;�) j+
p
n0p
n1
E sup
jy�ysup;�j<�

jGn0 (y � �)�Gn0 (ysup;� � �) j:

Note that the envelope function of the class of functions

fI f(�1; y]g � I f(�1; ysup;�g : y 2 [ysup;� � �; ysup;� + �]g

is bounded by I f(ysup;� � �; ysup;� + �)g which has a squared L2-norm bounded by 2
�
supy f1(y)

�
�.

Since the class of functions I fY1i � �g has a �nite uniform entropy integral, Lemma 19.38 in van
der Vaart (1998) implies:

E sup
jy�ysup;�j<�

jGn1 (y)�Gn1 (ysup;�) j . �1=2: (A.1)
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Similarly, we can show that

E sup
jy�ysup;�j<�

jGn0 (y � �)�Gn0 (ysup;� � �) j . �1=2: (A.2)

Consequently,

E sup
jy�ysup;�j<�

jpn1(Qn �Q)(y; �)�
p
n1(Qn �Q)(ysup;�; �)j . �1=2:

Hence the second condition of Theorem 3.2.5 in van der Vaart and Wellner (1996) is satis�ed leading
to the rate of n�1=31 .

Proof of 3. For a �xed �, we get
p
n1 (Mn(�)�M(�))
=

p
n1 (F1n(bysup;�)� F0n(bysup;� � �))�pn1 (F1(ysup;�)� F0(ysup;� � �))

=
p
n1(Qn �Q)(bysup;�; �) +pn1 (F1(bysup;�)� F0(bysup;� � �))�pn1 (F1(ysup;�)� F0(ysup;� � �))

=
p
n1(Qn �Q)(ysup;�; �) +

p
n1 [F1(bysup;�)� F0(bysup;� � �)� F1(ysup;�)� F0(ysup;� � �)] + op(1)

=
p
n1
�
Mn(�)�M(�)

�
+
1

2

p
n1
�
f 01(y

�
sup;�)� f 00(y�sup;� � �)

	
(bysup;� � ysup;�)2 + op(1)

=
p
n1
�
Mn(�)�M(�)

�
+ op(1);

where y�sup;� lies between bysup;� and ysup;� and we have used stochastic equicontinuity of the
process:

p
n1(Qn �Q)(�; �) and the �rst order condition for supy fF1(y)� F0(y � �)g.

�
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Appendix B: Functional Forms of ysup;�; yinf;�; M (�) and m (�) for Some
Known Marginal Distributions

Denuit, Genest, and Marceau (1999) provided the distribution bounds for a sum of two random
variables when they both follow shifted Exponential distributions or both follow shifted Pareto
distributions. Below, we augment their results with explicit expressions for ysup;�; yinf;�; M (�) and
m (�) which may help us understand the asymptotic behavior of the nonparametric estimators of
the distribution bounds when the true marginals are either shifted Exponential or shifted Pareto.

First, we present some expressions used in Example 2.
Example 2 (continued). In Example 2, we considered the family of distributions denoted by

C(a) with a 2 (0; 1). If X � C (a), then

F (x) =

8><>:
1

a
x2 if x 2 [0; a]

1� (x� 1)
2

(1� a) if x 2 [a; 1]
and f(x) =

8><>:
2

a
x if x 2 [0; a]
2 (1� x)
(1� a) if x 2 [a; 1]

:

Suppose Y1 � C (a1) and Y0 � C (a0). We now provide the functional form of F1 (y)�F0 (y � �).

1. Suppose � < 0. Then Y� = [0; 1 + �] :

(a) If a0 + � � 0 < a1 � 1 + �, then

F1 (y)� F0 (y � �) =

8<:
y2

a1
�
�
1� (y���1)2

(1�a0)

�
if 0 � y � a1�

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a1 � y � 1 + �

;

(b) If 0 � a0 + � � a1 � 1 + �, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
� (y��)2

a0
if 0 � y � a0 + �

y2

a1
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � a1�

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a1 � y � 1 + �

;

(c) If a0 + � � 0 � 1 + � � a1, then

F1 (y)� F0 (y � �) =
y2

a1
�
 
1� (y � � � 1)

2

(1� a0)

!
if 0 � y � 1 + �;

(d) If 0 � a0 + � < 1 + � � a1, then

F1 (y)� F0 (y � �) =

8<:
y2

a1
� (y��)2

a0
if 0 � y � a0 + �

y2

a1
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1 + �

;

(e) If 0 < a1 � a0 + � � 1 + �, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
� (y��)2

a0
if 0 � y � a1�

1� (y�1)2
(1�a1)

�
� (y��)2

a0
if a1 � y � a0 + ��

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1 + �

:
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2. Suppose � � 0. Then Y� = [�; 1].

(a) If � < a0 + � � a1 < 1, then
(i) if a1 6= a0 and � 6= 0, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
� (y��)2

a0
if � � y � a0 + �

y2

a1
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � a1�

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a1 � y � 1

;

(ii) if a1 = a0 = a and � = 0, then

F1 (y)� F0 (y � �) = 0 for all y 2 [0; 1] :

(b) If � � a1 � a0 + � � 1, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
� (y��)2

a0
if � � y � a1�

1� (y�1)2
(1�a1)

�
� (y��)2

a0
if a1 � y � a0 + ��

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1

;

(c) If � � a1 < 1 � a0 + �, then

F1 (y)� F0 (y � �) =

8<:
y2

a1
� (y��)2

a0
if � � y � a1�

1� (y�1)2
(1�a1)

�
� (y��)2

a0
if a1 � y � 1

;

(d) If a1 < � < a0 + � � 1, then

F1 (y)� F0 (y � �) =

8<:
�
1� (y�1)2

(1�a1)

�
� (y��)2

a0
if � � y � a0 + ��

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1

;

(e) If a1 < � < 1 � a0 + �, then

F1 (y)� F0 (y � �) =
 
1� (y � 1)

2

(1� a1)

!
� (y � �)

2

a0
if� � y � 1:

(Shifted) Exponential marginals. The marginal distributions are:

F1 (y) = 1� exp
�
�y��1

�1

�
for y 2 [�1;1) and

F0 (y) = 1� exp
�
�y��0

�0

�
for y 2 [�0;1) , where �1; �1; �0; �0 > 0:

Let �c = (�1 � �0)�min f�1; �0g (ln�1 � ln�0) :

1. Suppose �1 < �0.
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(a) If � � �c,

FL (�) = max fM (�) ; 0g = 0;

where M (�) =

 �
�0
�1

� �1
�1��0

�
�
�0
�1

� �0
�1��0

!
exp

�
�� � (�1 � �0)

�1 � �0

�
< 0;

and yinf;� =
�0�1 (ln�1 � ln�0) + �1�0 � �0�1 + �1�

�1 � �0
(an interior solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) = min
n
exp

�
�maxf�1�(�+�0);0g

�0

�
� exp

�
�maxf�0+���1;0g

�1

�
; 0
o

and ysup;� = max f�1; �0 + �g or 1 (boundary solution).

(b) If � > �c,

FL (�) = max fM (�) ; 0g =M (�) > 0;

where M (�) = 1� exp
�
� �+�0��1

�1

�
and yinf;� = �0 + �:

FU (�) = 1 +min fm (�) ; 0g = 1
since m (�) = 0 and ysup;� =1:

2. Suppose �1 = �0 = �. Then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) =

(
0 if � � �1 � �0
1� exp

�
� ��(�1��0)

�

�
> 0 if � > �1 � �0

and yinf;� =

8<:
1 if � < �1 � �0
any point in R if � = �1 � �0
�0 + � if � > �1 � �0

:

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

(
exp

�
� �1�(�+�0)

�

�
� 1 < 0 if � < �1 � �0

0 if � � �1 � �0

and ysup;� =

8<:
�1 if � < �1 � �0
any point in R if � = �1 � �0
1 if � > �1 � �0

:

3. Suppose �1 > �0.

(a) If � < �c,

FL (�) = max fM (�) ; 0g = 0 , since M (�) = 0 and yinf;� =1:
FU (�) = 1 +min fm (�) ; 0g = 1�m (�) ;

where m (�) = exp

�
��1 � (� + �0)

�0

�
� 1 < 0, ysup;� = �1:
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(b) If � � �c;

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) = max
n
exp

�
�maxf�1�(�+�0);0g

�0

�
� exp

�
�maxf�0+���1;0g

�1

�
; 0
o

and yinf;� = max f�1; �0 + �g or 1 (boundary solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

 �
�0
�1

� �1
�1��0

�
�
�0
�1

� �0
�1��0

!
exp

�
�� � (�1 � �0)

�1 � �0

�
< 0

and ysup;� =
�0�1 (ln�1 � ln�0) + �1�0 � �0�1 + �1�

�1 � �0
(an interior solution).

(Shifted) Pareto marginals. The marginal distributions are:

F1 (y) = 1�
�

�1
�1 + y � �1

��
for y 2 [�1;1) and

F0 (y) = 1�
�

�0
�0 + y � �0

��
for y 2 [�0;1) , where �; �1; �1; �0; �0 > 0:

De�ne

�c = (�1 � �0)� (max f�1; �0g)
�

�+1

�
�

1
�+1

1 � �
1

�+1

0

�
:

1. Suppose �1 < �0.

(a) If � � �c, then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) =
�
�

�
�+1

0 � �
�

�+1

1

�0@ �
�

�+1

1 � �
�

�+1

0

� � �0 + �1 � �1 + �0

1A� > 0
and yinf;� =

(� + �0 � �0)�
�

�+1

1 + (�1 � �1)�
�

�+1

0

�
�

�+1

1 � �
�

�+1

0

(an interior solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) = min

��
�0

�0 +max f�1 � � � �0; 0g

��
�
�

�1
�1 +max f�0 + � � �1; 0g

��
; 0

�
and ysup;� = max f�1; �0 + �g or 1 (boundary solution).

(b) If � > �c, then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) = 1�
�

�1
�1 + �0 + � � �1

��
� 0 and yinf;� = �0 + �:

FU (�) = 1 +min fm (�) ; 0g = 1
since m (�) = 0 and ysup;� =1:
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2. Suppose �1 = �0 = �. Then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) =

8<: 0 if � � �1 � �0
1�

�
�

�+ � � (�1 � �0)

��
� 0 if � > �1 � �0

and yinf;� =

8<:
1 if � < �1 � �0
any point in Y if � = �1 � �0
�0 + � if � > �1 � �0

:

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

8<:
�

�

�� � + (�1 � �0)

��
� 1 if � < �1 � �0

0 if � � �1 � �0

and ysup;� =

8<:
�1 if � < �1 � �0
any point in Y if � = �1 � �0
1 if � > �1 � �0

:

3. Suppose �1 > �0.

(a) If � < �c, then

FL (�) = max fM (�) ; 0g = 0 since M (�) = 0 and yinf;� =1:
FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

�
�0

�0 + �1 � � � �0

��
� 1 � 0 and ysup;� = �1:

(b) If � � �c, then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) = max

��
�0

�0 +max f�1 � � � �0; 0g

��
�
�

�1
�1 +max f�0 + � � �1; 0g

��
; 0

�
and yinf;� = max f�1; �0 + �g or 1 (boundary solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =
�
�

�
�+1

0 � �
�

�+1

1

�0@ �
�

�+1

1 � �
�

�+1

0

� � �0 + �1 � �1 + �0

1A� < 0
and ysup;� =

(� + �0 � �0)�
�

�+1

1 + (�1 � �1)�
�

�+1

0

�
�

�+1

1 � �
�

�+1

0

(an interior solution).
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