
Calibrated Uncertainty†

Faruk Gul

and

Wolfgang Pesendorfer

Princeton University

March 2020

Abstract

We define a binary relation (qualitative uncertainty assessment) that describes the

shared likelihood assessments of decision makers with diverse ambiguity attitudes. Ambi-

guity renders this binary relation incomplete. Our axioms yield a representation according

to which A is more likely than B if and only if a capacity, called uncertainty measure,

assigns a higher value to A than to B and a higher value to B-complement than to A-

complement. Agents combine this uncertainty perception with their uncertainty attitude

to form a complete ranking of bets. We provide a representation theorem for this extended

model, show that its parameters are uniquely identified and characterize a new measure of

comparative ambiguity aversion. For general acts, we modify Machina and Schmeidler’s

(1992) sophistication axiom to allow for ambiguity and analyze three nested extensions:

first, we axiomatize a minimal extension which reduces to expected utility when there is

no ambiguity; the second and third extensions show how non-expected utility theories can

be accommodated in our framework.
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1. Introduction

A standard assumption in applied and theoretical information economics is that agents

share a common prior but differ in their risk attitudes. The common prior describes the

agents’ common uncertainty perception while utility indices measure their idiosyncratic risk

attitudes. The purpose of this paper is to provide an analogous separation for situations

in which the agents may perceive ambiguity.

Subjective expected utility theory identifies uncertainty perception with betting be-

havior; that is, if a group of agents shares a common uncertainty perception, then the

group deems event A more likely than event B if every agent would rather bet on A than

on B. The resulting binary relation, defined on a collection of events, is a qualitative prob-

ability and Savage’s theorem (Savage (1972)) gives conditions under which a probability

represents it. Thus, Savage’s theorem yields a cardinal measure of likelihood, a probability,

that can be combined with different individual risk postures or even non-expected utility

theories to form a full-fledged theory of behavior.

One consequence of ambiguity is that the measure of uncertainty perception cannot

be a probability. In the presence of ambiguity, an agent may be indifferent between betting

on A or betting on Ac (the complement of A), indifferent between betting on B or betting

on Bc, but may nevertheless prefer betting on A to betting on B. A second consequence

of ambiguity is that even when all agents perceive the same uncertainty (and ambiguity),

their betting preferences may differ. For example, it may be that ambiguity loving agents

prefer betting on either A or Ac to betting on either B or Bc while ambiguity averse agents

have the opposite preferences. Thus, a given uncertainty perception must be compatible

with a range of betting behaviors to accommodate different ambiguity attitudes.

To deal with these issues, we modify Savage’s model as follows: a binary relation

describes the agents’ likelihood assessments and A � B means that all agents in the

population prefer to bet on A rather than B. Since agents may perceive some events as

ambiguous and differ in their ambiguity attitude, the binary relation, �, is incomplete.1

We call this binary relation a qualitative uncertainty assessment (QUA) and interpret it as

1 The idea to use an incomplete relation to describe consensus judgements is due to Gilboa, Maccheroni,
Marinacci and Schmeidler (2010).
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reflecting those comparisons that can be made for all ambiguity attitudes. Conversely, we

interpret instances of incompleteness as reflecting situations in which an agent’s ambiguity

attitude affects her ranking of two bets.

As an illustration, consider members of a PhD admissions committee who must choose

candidates from a pool of applicants. Committee members base their beliefs about the

relative strengths and weaknesses of the candidates on the same sources of information

and, therefore, it is plausible that they share a common uncertainty perception. Moreover,

some information sources may be ambiguous, leading to a shared perception of ambigu-

ity. For example, suppose no candidate similar to candidate b was previously admitted

and, therefore, committee members perceive ambiguity about b’s prospects. In contrast,

committee members agree that candidate a will succeed with probability .5 because many

candidates with characteristics similar to candidate a were admitted in the past and 50% of

those candidates succeeded. In this situation, ambiguity loving committee members prefer

a bet on B := [b will succeed] to a bet on A := [a will succeed ] while ambiguity averse

committee members have the reverse ranking. The committee’s QUA records all those

rankings of bets that are shared by all committee members. Since there is no agreement

on the ranking of A and B, the resulting binary relation is incomplete.

The hypothesis of a shared uncertainty perception is appropriate when members of the

group draw from the same information sources or share their private information, as in the

example of a PhD admissions committee.2 By contrast, consider the uncertainty perception

regarding the economic consequences of a tax change among all voters of a country. Since

voters draw from different information sources we would not expect a common uncertainty

perception. In particular, tax-experts may perceive no ambiguity because for them the

uncertainty is akin to a draw from an urn with a known composition while non-experts

may perceive ambiguity because for them the uncertainty resembles a draw from an urn

with unknown composition. This issue does not arise when all members of the group share

the same understanding of all information sources.

We assume that a subclass of events are unambiguous. For those events, ambiguity

attitudes do not affect agents’ betting behavior and, therefore, the qualitative uncertainty

2 Members of the admissions committee typically have different utility functions, and thus, their shared
uncertainty perception does not imply they agree on who to admit.
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assessment is complete. Returning to the example of the admissions committee, assume

that there is a collection of universities for which the committee has many examples of

admitted students. All committee members assign the same probability to the event that

a particular student from one of those universities will succeed. Bets on the success of any

of these candidates are unambiguous. Suppose E1 and E2 are unambiguous events but A

is not and E1 � A � E2. In that case, even the most ambiguity averse agent prefers a bet

on A to a bet on E2 while even the most ambiguity loving agent prefers E1 to A. Thus,

in the example above, suppose that all committee members prefer to bet on candidate c,

whose success probability is .6, over a bet on candidate b, whose success probability is

ambiguous. Assume also that every committee member prefers a bet on candidate b to

a bet on candidate d whose success probability is .4. By identifying a “tight” window of

unambiguous events of this form, we determine the range of probabilities thatAmight have.

Our first theorem (Theorem 1) is a representation theorem for QUAs; it provides axioms

that ensure the existence of a special type of capacity (uncertainty measure) representing

the QUA. The uncertainty measure has the feature that π(A) + π(Ac) ≤ 1 where equality

holds if and only if the event is unambiguous. Thus, if we define π̄(A) = 1− π(Ac), then

the uncertainty measure identifies the range of probabilities [π(A), π̄(A)] for every event

A. The uncertainty measure π represents the QUA � if

A � B if and only if

{
π(A) ≥ π(B)
π̄(A) ≥ π̄(B)

If π(A) > π(B) and π̄(B) > π̄(A), then the underlying QUA cannot compare A and

B. In that case, a sufficiently ambiguity averse agent prefers a bet on A to a bet on B

while a sufficiently ambiguity loving agent has the reverse preference.3 In the second part

of the paper, we show how our model of uncertainty perception can be combined with

different uncertainty attitudes to form a full fledged model of choice. First, we consider

betting behavior; that is, a setting with two fixed prizes. Specifically, we consider agents

who combine their QUA and their ambiguity attitudes to form complete (and transitive)

rankings of bets. We describe agents’ ambiguity attitudes with a function that assigns a risk

3 Filiz-Ozbay, Gulen, Masatlioglu, and Ozbay (2016) conduct Ellsberg-style experiments using urns
of different cardinality. Their experiment can be interpreted as measuring the ambiguity perception of
subjects for different urns.

3



equivalent to each probability range. The risk equivalent of [π(A), π̄(A)] is the probability

of the unambiguous event E that renders the decision maker indifferent between betting on

A and betting on E. In Proposition 3, we provide a representation theorem for this betting

model and show that the uncertainty measure is uniquely identified. Thus, Proposition

3 shows that even in a restricted setting with two prizes, we can separate an individual

agent’s uncertainty perception, quantified by the uncertainty measure, and her uncertainty

attitude, quantified by the risk-equivalent function. We take advantage of this separation

to define and characterize a measure of comparative ambiguity aversion.

Machina and Schmeidler (1992) introduce the notion of probabilistic sophistication and

provide a setting in which agents may share a common uncertainty perception yet have

very different uncertainty attitudes. Hence, probabilistically sophisticated agents may

or may not be expected utility maximizers. However, Machina and Schmeidler’s strong

comparative probability axiom rules out ambiguity. We provide a weakening of their axiom

– weak sophistication – that is consistent with ambiguity and does not require decision

makers to be subjective expected utility maximizers when comparing unambiguous acts.

We then provide three nested models that extend QUAs to preferences over all acts.

The first model can be thought of as a minimal departure from expected utility theory be-

cause it retains the expected utility hypothesis over unambiguous acts. The second exten-

sion is a generalization of Choquet Expected Utility theory that facilitates easy identifica-

tion of decision makers’ ambiguity perception, ambiguity attitude and risk attitude. When

restricted to unambiguous prospects, this model coincides with the Machina-Schmeidler

model. The third extension is the most general model consistent with QUAs. The second

and third extensions show that any non-expected utility theory can be extended to a rich

model of choice over ambiguous prospects within our framework.

Our paper is related to Nehring (2009) who axiomatizes a set of priors in a Savage

setting. Like our model, Nehring takes as a primitive an incomplete comparative likelihood

relation. Rather than betting behavior, Nehring’s incomplete relation is meant to capture

likelihood comparisons that are coherent, a normative requirement. To this end, Nehring

requires that the incomplete binary relation satisfy Savage’s additivity axiom. By contrast,

QUA’s represent betting behavior, albeit those of a group, and need not satisfy additivity.
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Our paper is also related to a literature that develops measures of uncertainty per-

ception in the Anscombe-Aumann setting. Examples are the papers by Ghirardato, Mac-

cheroni and Marinacci (2004), Siniscalchi (2006), Ghirardato and Siniscalchi (2012), and

Klibanoff, Mukerji and Seo (2014). The Anscombe-Aumann model describes a dynamic

setting with a potentially ambiguous event occurring in the first stage followed by an

unambiguous lottery in the second stage. The uncertainty measures developed for this set-

ting rely on the assumption that the agent is an expected utility maximizer in the second

stage. In other words, these papers postulate expected utility maximizers for unambigu-

ous prospects. By contrast, our model is agnostic about the agent’s uncertainty attitude

over unambiguous prospects and applies to settings in which ambiguous and unambiguous

uncertainty resolves concurrently.

We borrow from Gilboa et al. (2010) the interpretation that an incomplete binary

relation describes judgements that are commonly agreed upon by a group of individuals.

In Gilboa et al. (2010), an incomplete relation describes choices over acts that are “objec-

tively” rational; that is, agreed upon by a group of agents. In our model, an incomplete

relation describes choices of bets that are objectively rational in the same sense.

Our main result (Theorem 1) characterizes agents whose uncertainty perception is

described by a totally monotone capacity (i.e., belief function). Dempster (1967) and

Shafer (1976) introduced belief functions to model ambiguity.4 Zhang (2002) and Gul and

Pesendorfer (2014) axiomatize ambiguity models that yield inner probabilities, a special

case of belief functions, as measures of uncertainty perception. The uncertainty measures

analyzed in this paper are belief functions but are more general than inner probabilities.

Casadesus-Masanell et al. (2000) axiomatize maxmin expected utility preferences over

Savage acts. Gilboa (1987), Wakker (1989), Nakamura (1990), Sarin and Wakker (1992),

and Chew and Karni (1994) axiomatize Choquet expected utility over Savage acts.

4 Wong, Yao, Bollmann, and Burger (1991) provide an axiomatization for belief functions for a finite
state space. A key difficulty with the finite setting is that the representation is not unique. For example,
the representation theorem for belief functions in Wong et al. could be restated as a representation theorem
for supermodular capacities.
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2. Cardinal Measurement of Uncertainty

Throughout this paper, Ω is the state space and Σ is a σ-algebra of events. Henceforth,

all sets considered are elements of Σ. A set function (q,A) is a mapping from a sub-σ-

algebra A of Σ to [0, 1] such that q(∅) = 0 and q(A) ≤ q(B) whenever A ⊂ B. Given a set

function (q,A), the event A ∈ A is null if q(Ac) = q(Ω) and it is whole if B ⊂ A implies

B ∈ A. Let. The following terminology will be used throughout the paper:

Definition: The set function (q,A) is

(i) a capacity if q(Ω) = 1.

(ii) additive if q(A ∪B) + q(A ∩B) = q(A) + q(B);

(iii) continuous if An+1 ⊂ An for all n implies q (
⋂
An) = lim q(An).

(iv) complete if every null set is whole.

(v) a probability measure if it is complete, continuous, additive and q(Ω) = 1.

(vi) a subprobability measure if it is complete, continuous, additive and q(Ω) < 1.

(vii) nonatomic if, for all A such that q(A) > 0, there is B ⊂ A such that 0 < q(B) < q(A).

(viii) totally monotone (a belief function) if it is a capacity and if, for all positive integers

n, N = {1, . . . , n}, and for any collection of sets A1, . . . , An,

q

(⋃
i∈N

Ai

)
≥

∑
I⊂N,I 6=∅

(−1)|I|+1q

(⋂
I

Ai

)

It is not difficult to verify that an additive set function is continuous if and only if it

is countably additive. Moreover, a countably additive, nonatomic set function is convex

ranged; that is, q(A) > 0 and r ∈ [0, 1] implies there is B ⊂ A such that q(B) = rq(A).5

Next, we will define a class of capacities, uncertainty measures, that represent the

uncertainty perception of agents under the axioms provided in section 3. An uncertainty

measure has two components: a probability measure (µ, E) that quantifies the uncertainty

of unambiguous events and a subprobability measure (η,Σ) that quantifies the uncertainty

of ambiguous events.

5 See Billingsley (1995), p. 35.
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Definition: A capacity π is an uncertainty measure if there exist a nonatomic probability

measure (µ, E) and a non-atomic subprobability measure (η,Σ) such that

(i) π(A) = maxE∈[A]{µ(E) + η(A\E)} where [A] = {E ∈ E , E ⊂ A}

(ii) µ(E) > η(E) for every µ-nonnull E ∈ E , and η(E) = 0 for every µ-whole E ∈ E .

We refer to (µ, E) in the above definition as the risk measure and to (η,Σ) as the

ambiguity measure. When (µ, E) and (η,Σ) satisfy (ii) above, we say the two measures are

compatible. Notice that the risk measure is defined on E , the sub-σ−algebra of unambigu-

ous events, while η is defined for all events in Σ.

Example 1: Let S = [0, 1]2 be the state space and let Σ be the Borel sets of S. Let λ denote

the Lebesgue measure on Σ. Assume that the unambiguous events correspond to realiza-

tions of the first component of the state. More precisely, let B1 be the Borel sets of [0, 1], de-

fine E0 = {A×[0, 1] |A ∈ B1} and let E = {B ∈ Σ |λ(B∆B0) = 0 for some B0 ∈ E0} be the

unambiguous events (X∆Y is the symmetric difference of X and Y ). Then, π : Σ→ [0, 1]

such that

π(B) = max
{E⊂B,E∈E}

λ(E) + λ(B\E)/2

is an example of an uncertainty measure. In this case, the risk measure µ is Lebesgue

measure on E , while the ambiguity measure η is Lebesgue measure on Σ divided by 2.

The risk and ambiguity measures are compatible since E ∈ E is µ−whole if and only if

µ(E) = 0 and, therefore, η(E) = 0 for all µ-whole events.

In general, µ−whole events are the completely unambiguous events; that is, all subsets

of these events are unambiguous. For those events ambiguity plays no role and, thus,

the ambiguity measure is zero. In Example 1 above, only null events are µ−whole. If

E is not µ−whole, then some subsets of E are not E-measurable. That is, there are

A,B ⊂ E such that A ∪ B = E but neither A nor B is unambiguous. For these events,

the ambiguity measure (η,Σ) places bounds on the probabilities of A and B. For example,

consider the unambiguous event E = [0, 1/2]× [0, 1]. The events A = [0, 1/2]× [0, 1/2] and

B = [0, 1/2] × (1/2, 1] partition E into two ambiguous events. Since η(A) = η(B) = 1/8,

the ambiguity measure bounds the probabilities of A and B to be at least 1/8. Since

µ(E) = 1/2, it follows that an upper bound for the probability of A is 1/2− η(B) = 3/8.

Thus, [1/8, 3/8] is the probability range for the event A.
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Clearly, every compatible pair of risk and ambiguity measures give rise to a unique

uncertainty measure via (i) in the above definition. Part (i) of Proposition 1, below, shows

that the converse is true as well. Every uncertainty measure π can be uniquely decomposed

into risk and ambiguity measures. Moreover, the σ-algebra of the risk measure coincides

with the set of π−unambiguous events; that is, those events for which π(A) + π(Ac) = 1.

We let Eπ denote the collection of all π-unambiguous sets. Finally, part (iii) shows that

every uncertainty measure is a totally monotone capacity (i.e., belief function).

Proposition 1: (i) If (µ, E) is a risk measure for the uncertainty measure π, then E = Eπ;

(ii) every uncertainty measure has a unique risk measure and a unique ambiguity measure;

(iii) every uncertainty measure is a belief function.

In the following section, we consider a binary relation � on Σ. We interpret A ∈ Σ

as a bet; one that the decision-maker wins if and only if a state in A occurs. The ranking

A � B means that the decision maker prefers to bet on A rather than B regardless of her

ambiguity attitude. As we noted in the introduction, the binary relation � is observable

through the betting behavior of a group of agents who have identical uncertainty perception

and exhibit a full range of ambiguity attitudes. In that case, A � B reveals that all agents

in the group prefer to bet on A rather than B. If agents disagree, then A and B are not

comparable and, thus, the binary relation � may be incomplete. This incompleteness is

resolved once the decision maker’s ambiguity attitude is taken into account.

Since every uncertainty measure π is a belief function, it follows that π(A)+π(Ac) ≤ 1.

Define π̄(A) = 1 − π(Ac) and note that π̄(A) ≥ π(A). The interval [π(A), π̄(A)] is the

probability range of A. We interpret the probability range as a measure of ambiguity. Thus,

[π(A), π̄(A)] ⊂ [π(B), π̄(B)] means B is more ambiguous than A.

In the next section, we impose axioms on the binary relation � that yield the following

representation:

A � B if and only if

{
π(A) ≥ π(B) and
π̄(A) ≥ π̄(B)

Thus, A is more likely than B if the lowest possible probability of A is higher than the

lowest possible probability of B and the highest possible probability of A is higher than

the highest possible probability of B. As an illustration, consider again Example 1, above.
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Let A = [0, a]× [0, b] be an ambiguous event and let E = [0, c]× [0, 1] be an unambiguous

event. The uncertainty measure defined in that example yields the following:

E � A⇔ c ≥ a(1 + b)

2

A � E ⇔ ab

2
≥ c

Thus, if a(1 + b)/2 > c > ab/2, then the two events cannot be ranked. In that case, agents

who are sufficiently ambiguity loving prefer to bet on A rather than E while sufficiently

ambiguity averse agents reverse this ranking.

3. Qualitative Uncertainty Assessments

In Ellsberg’s thought experiments, the wording of the choice problem makes it clear

which class of events are unambiguous and which ones are not. Events that correspond to

draws from an urn with a known composition are unambiguous while events that are not

are ambiguous. In our model, we do not assume that the distinction between ambiguous

events and unambiguous events is self-evident or exogenous. Instead, we provide a criterion

for identifying unambiguous events and calibrate the ambiguous events with them.

Implicitly or explicitly, there are at least two different notions of an unambiguous

event in the literature. Some formal models and empirical/experimental work accept what

we might call a “relative” notion of unambiguous events. In this approach, events are

unambiguous if they belong to a collection of sets for which the more likely relationship is

preserved whenever two unambiguous sets A,B are combined with a third disjoint unam-

biguous set C; that is, A � B if and only if A∪C � B ∪C whenever A∩C = B ∩C = ∅.6

Other formulations assume (or imply) what we might call an “absolute” test for ambiguity,

or lack thereof. Here, an event E is deemed unambiguous if the more likely relationship

is preserved when any A,B such that (A ∪ B) ∩ E = ∅ is combined with E.7 The first

approach yields multiple collections of unambiguous events. Since our goal is to identify a

unique collection of unambiguous events and use them to calibrate the uncertainty of all

events, we take the second approach.

6 This view is implicit in the notion of a source as defined in Fox and Tversky (1995) and studied in
Gul and Pesendorfer (2014).

7 See for example, Epstein and Zhang’s (2001) notion of an unambiguous event and Gul and Pesendor-
fer’s (2014) notion of an ideal event.
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Definition: An event E is unambiguous if A � B if and only if A∪E � B∪E whenever

(A ∪B) ∩ E = ∅.

The set E denotes the set of all unambiguous events. In the following, whenever an

event is referred to as E,F or G it is understood that the event is unambiguous and,

therefore, we will write E,F,G instead of E,F,G ∈ E . A generic event A,B,C or D is

understood to be an element of Σ, the underlying sigma-algebra of events, and, therefore,

we will write A,B,C,D instead of A,B,C,D ∈ Σ.

Our goal is to provide a version of Savage’s Theorem for decision makers who perceive

ambiguity. To illustrate our model and the axioms, we will refer to the following stylized

version of an Ellsberg-type thought experiment: a ball will be chosen from an urn that

has n balls, numbered from 1 to n. For each integer i ∈ N := {1, . . . , n}, there is exactly

one ball with number i. Each ball has one of k colors; that is, each ball i has some color

k ∈ K := {c1, . . . , ck} and, therefore, the state space is Ω = N ×K. Let Aj ⊂ Ω denote

the event that a ball of color cj is drawn and Ei denote the event that ball number i is

drawn. Nothing is known about the composition of colors in the urn or about the color

of any particular ball i. Let Aj =
⋃j
t=1At and Ei =

⋃i
t=1Et. Thus, Ei denotes the

(unambiguous) event that one of the first i balls will be drawn, whereas Aj denotes the

(ambiguous) event that the drawn ball will have one of the colors in {c1, . . . , cj}. Below,

we refer to an act that yields 1 if ω ∈ B and 0 if ω ∈ Bc as a bet on B.

For now, suppose that n = k = 10. How would we expect decision makers to rank a

bet on Aj and a bet on Ei? If the agent is ambiguity averse, she might prefer E5 to A5;

if she is ambiguity loving she may prefer A5 to E5. Even when comparing two ambiguity

averse agents, it might be that one prefers a bet on E5 to a bet on A5 but would rather

bet on A5 than on E4 while the other is more ambiguity averse and even prefers E4 to

A5. Thus, simple rankings of bets by a single individual do not enable us to distinguish

ambiguity perception from attitude towards ambiguity.

To overcome this difficulty, we take an approach analogous to that of Gilboa, Mac-

cheroni, Marinacci and Schmeidler (2010) and interpret � as the common qualitative

uncertainty assessment of a group of individuals. Thus, E7 � A5 � E3 means that even

the most ambiguity averse person in this group prefers A5 to E3 while even the most

10



ambiguity loving member of the group prefers E7 to A5. By identifying a “tight” window

of unambiguous events of this form, we determine the range of probabilities that A5 might

have. Specifically, assume that E7 � A5 � E3 and A5 6� E4 and E6 6� A5. Thus, we

conclude that the range of probabilities for A5 is [.3, .7] and, therefore, the comparison

between A5 and E5 is indeterminate; i.e., A5 6� E5 and E5 6� A5. This indeterminacy

does not reflect the incompleteness of a single agent’s preferences; rather it reflects the fact

that the group’s common uncertainty perception by itself is not sufficient to rank the two

bets E5 and A5.

Our main hypothesis, calibration, imposes two consistency properties on the qualita-

tive uncertainty assessment. The first of these is the complements property: A � B implies

Bc � Ac. Hence, if all decision makers with a common perception of ambiguity agree that

A is a better bet than B irrespective of their attitude towards ambiguity, then they must

also agree that Bc is a better bet than Ac. To see why this is reasonable, suppose for

example that the range of probabilities for A is [a, a∗] and the range of probabilities for B

is [b, b∗]. Then, the range of probabilities for Ac is [1− a∗, 1− a] and for Bc, the range is

[1− b∗, 1− b]. If a bet on A is preferred to a bet on B for all ambiguity attitudes, we must

have a∗ ≥ b∗ and a ≥ b. But then it follows that 1 − b ≥ 1 − a and 1 − b∗ ≥ 1 − a∗ and,

therefore, a bet on Bc is preferred to a bet on Ac for all ambiguity attitudes. Of course, it

may be the case that A and B are not comparable, for example, if a > b but b∗ > a∗. In

that case, an ambiguity averse decision maker may prefer both a bet on A to a bet on B

and a bet on Ac to a bet on Bc. However, this particular pair of preferences emerges only

if we “complete” the QUA by considering the decision maker’s attitude to ambiguity (as

we do in the next section).

To understand the second consistency requirement, range dependence, consider two

events A and B such that their range of probabilities, as defined above, are the same.

Range dependence implies that all agents in the group are indifferent between betting

on A and betting on B. For agents who are maximally ambiguity averse (or maximally

ambiguity loving) this assumption requires no justification since for those agents only the

lower (upper) bound affects betting behavior. More generally, this assumption means that

the range of probabilities associated with an event captures all that is relevant for betting
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behavior. The main idea of this paper is to investigate the extent to which the ambiguity

of an arbitrary set can be calibrated; i.e., quantified with unambiguous events. Range

dependence makes this idea formal.

Definition: Let W (A) = {E |A � E} and S(A) = {E |E � A}. Then, � satisfies range

dependence if

A � B if and only if

{
W (B) ⊂W (A) and
S(A) ⊂ S(B)

Our main hypothesis, calibration, combines range dependence with the complements

property and ensures that this range of probabilities is sufficient to fully describe the

decision maker’s betting behavior. In particular, shifting the range upward makes the bet

more attractive and shifting downward makes it less attractive. It is easy to verify that

calibration, defined below, is equivalent to the conjunction of the complements property

and range dependence.

Definition: The binary relation � is calibrated if

A � B if and only if

{
W (B) ⊂W (A) and
W (Ac) ⊂W (Bc)

We write A � B when both of the calibration inclusions are strict.8

Definition: An event A is null if B � B ∪A for all B.

The binary relation is monotone if A ⊂ B implies B � A and B � A if, in addition,

B\A is not null. The binary relation � is non-degenerate if Ω is not null.

Axiom 1: The binary relation � is monotone, non-degenerate and calibrated.

Clearly, a calibrated binary relation must be transitive. As we noted above, � may

be incomplete, reflecting a dependence of the decision maker’s betting behavior on her

ambiguity attitude. However, in some cases the ranking of bets is independent of the

8 Note that the strict relation � is defined independently of �. We show in Lemma B1(i) that A � B
if and only if A � B and B 6� A. Thus, the strict preference derived from � coincides with �.
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agents’ ambiguity attitude. One such case is the comparison of bets on unambiguous

events. A second case is the comparison of ‘color events’ in our stylized version of the

Ellsberg thought experiment: the comparison of A = A1 ∪ A2 ∪ A3 and B = A4 ∪ A5 is

independent of the agents’ ambiguity attitude since both A and B are equally ambiguous.

More generally, we assume two events are comparable if they preserve the same collection

of unambiguous events. For any event A, let

〈A〉 = {E |E ∩A ∈ E , E ∩Ac ∈ E}

denote the sets of unambiguous events that A preserves.

Definition: A,B are similar (A ∼= B) if 〈A〉 = 〈B〉.

When two arbitrary events, A,B are similar, Axiom 2(i), below, requires that the

decision maker be able to compare them solely based on her perception of ambiguity. The

second part of Axiom 2 requires unambiguous events, E,F , to be similar. The two parts

together ensure that the restriction of � to the set of unambiguous events is complete.

A second consequence of Axiom 2 is that the set of unambiguous events is closed under

unions and complements; that is, it is an algebra.

Axiom 2: (i) A ∼= B implies A � B or B � A. (ii) E ∼= F for all E,F ∈ E .

The familiar additivity axiom of qualitative probability requires that A � B if and

only if A∪C � B ∪C whenever A,C and B,C are both disjoint. Axiom 3 below weakens

the additivity requirement of qualitative probability to permit ambiguity.

To see why we need a weaker form of additivity, consider again our Ellsberg exper-

iment. Assume the decision maker finds the events A = A1 ∩ E1 (“ball 1 will be drawn

and it will be red”) and B = A1 ∩ E2 (“ball 2 will be drawn and it will be red”) equally

likely. Consider the event C = E1\A1 (“ball 1 will be drawn and it will not be red.”) Then

A∪C = E1 (“ball one is drawn”) is an unambiguous event while B ∪C is not. Therefore,

ambiguity averse agents might prefer A ∪ C to B ∪ C while an ambiguity loving agent

might have the opposite preference. Such a situation can arise when A∪C is unambiguous

while A and C are not. This situation cannot arise if A ∪ C is similar to A or if A and

13



C are contained in disjoint unambiguous events, that is A ⊂ E,C ⊂ Ec for some E ∈ E .

This motivates the following definition:

Definition: The pair (A,B) conforms if A∪B ∼= A or if A ⊂ E,B ⊂ Ec for some E ∈ E .

Ellsberg-style thought experiments suggest violations of additivity do not occur when

A,C and B,C are conforming pairs. For example, suppose A = (E1 ∪E2)∩A1 (“ball 1 or

2 will be drawn and it will be red”) while B = E1 ∩ (A1 ∪A2) (“ball 1 will be drawn and

it will be red or green.”) Notice that these two events are not similar and, therefore, they

need not be ranked. However, if there is agreement and, for example, all decision makers

agree that A and B are equally likely, then we require that they consider A∪C and B ∪C

equally likely as well, where C = E3 ∩A2 (“ball 3 will be drawn and it is green.”)

Axiom 3: If (A,C) and (B,C) conform and A ∩ C = B ∩ C = ∅, then A � B if and

only if A ∪ C � B ∪ C.

Our axioms allow but do not require the decision-maker to perceive ambiguity. How-

ever, we do impose the existence of a rich set of unambiguous events. This assumption

is implicit in any uncertainty model stated in the Anscombe-Aumann framework and in

Savage’s formulation of subjective expected utility. We also assume that every event,

unambiguous or not, can be divided into finer, similar events. The following version of

Savage’s fineness assumption ensures that this is so.

Axiom 4: A � B implies there is a partition C1, . . . , Ck of Ω such that Cn\B ∼= B and

A � B ∪ Cn for all n.

The following axiom is the counterpart of the monotone continuity axiom from the

Savage framework. It ensures that unambiguous events are closed under countable (not

just finite) unions. It also ensures countably additivity of the risk measure.

Axiom 5: An+1 ⊂ An, An � B for all n and either B ∈ E or An\An+1 ∈ E for all n,

implies
⋂
An � B.

We call a binary relation that satisfies the five axioms above a qualitative uncertainty

assessment (QUA). Let � be any binary relation on Σ. A capacity π represents � if

A � B if and only if

{
π(A) ≥ π(B) and
π̄(A) ≥ π̄(B)
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where π̄(C) = 1− π(Cc).

Theorem 1: A binary relation � on Σ can be represented by a nonatomic uncertainty

measure if and only if it is a qualitative uncertainty assessment.

Theorem 1 formalizes our notion of separating ambiguity attitude from ambiguity

perception. It establishes that every QUA can be represented by a nonatomic uncertainty

measure. The proposition below establishes that the uncertainty measure that represents

the QUA is unique.

Proposition 2: If π with risk measure (µ, E) and ambiguity measure (η,Σ) and π̂ with

risk measure (µ̂, Ê) and ambiguity measure (η̂,Σ) both represent �, then (µ, E) = (µ̂, Ê),

η = η̂ and hence π = π̂.

4. Betting Behavior and Uncertainty Attitude

In the previous section, we assumed that the observed primitive is the betting behavior

of a group of individuals with a broad range of ambiguity attitudes. From this primitive

we derived the common uncertainty perception of the group. In this section, we analyze

extensions of this common uncertainty perception to complete and transitive preferences

over bets; that is, we consider an individual who combines her uncertainty perception and

her uncertainty attitude to form a complete ranking of bets.

Recall that an uncertainty measure π assigns to each event A an interval, [π(A), π̄(A)]

(where π̄(A) = 1− π(Ac)), of probabilities called the probability range which depicts the

decision maker’s ambiguity perception. The function ρ assigns a value in [a, b] to each such

interval [a, b] and describes the agent’s ambiguity attitude. Values close to the lower bound

of the range indicate ambiguity aversion while values close to the upper bound indicate

ambiguity loving. The risk equivalent of any bet A with probability range [a, b] is the

probability ρ(a, b) such that the decision maker is indifferent between betting on A and

betting on any unambiguous event E such π(E) = ρ(a, b).

For I ⊂ [0, 1]2, we say that the function ρ : I → IR is strict if (a, b) ≥ (a′, b′), (a, b) 6=

(a′, b′) implies ρ(a, b) > ρ(a′, b′). Thus, a strict ρ increases if either of the two probability

bounds increases. The function ρ is maximally ambiguity averse (loving) if ρ(a, b) = a
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(ρ(a, b) = b) for all (a, b) ∈ I. Maximally ambiguity averse functions depend only on the

lower bound and maximally ambiguity loving functions depend only on the upper bound.

Let π be the unique uncertainty measure that represents the QUA � and let I =

{(π(A), π̄(A)) : A ∈ Σ}.

Definition: The function ρ : I → IR is a risk equivalent function for � if (i) ρ is

continuous; (ii) ρ is either strict, maximally ambiguity averse, or maximally ambiguity

loving; (iii) a ≤ ρ(a, b) ≤ b.

Not included in the set of risk equivalent functions are functions that are sometimes

maximally ambiguity loving and sometimes maximally ambiguity averse or functions that

remain constant unless both bounds increase. These restrictions notwithstanding, the set

permits a wide range of ambiguity attitudes.

In Proposition 3, below, we characterize betting behavior that can be represented by

an uncertainty measure and a risk equivalent function ρ. The pair (π, ρ) represent the

betting preference �o if

A �o B if and only if ρ (π(A), π̄(A)) ≥ ρ (π(B), π̄(B))

To obtain this representation, we assume that the agent’s uncertainty perception is a QUA

and that the agent’s ranking of bets extends it. Specifically, the complete and transitive

binary relation �o is a completion of the QUA � if

B � A implies B �o A (C)

We say that the completion �o is strict if, for all A,B, A � B implies A �o B. In that

case, a bet on A is strictly preferred to a bet on B if both probability bounds are weakly

greater and one is strictly greater for A than for B. The completion is maximally ambiguity

averse if, for all A,E, A 6� E implies E �o A; it is maximally ambiguity loving if, for all

A,E, E 6� A implies A �o E. Thus, a maximally ambiguity averse agent prefers a bet on

an unambiguous event E over a bet on A whenever E and A are not ranked by the common

uncertainty perception. In the same situation, a maximally ambiguity loving agent prefers

a bet on A.
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Definition: The binary relation �o is a regular completion if there exists a QUA � such

that �o is a strict, maximally ambiguity averse, or maximally ambiguity loving completion

of �.

The betting preference is Archimedean if it satisfies the following continuity property:

B �o A implies there are E,F such that A ∼o B ∩ E and B ∼o A ∪ F (Ao)

Proposition 3: The binary relation �o is a regular Archimedean completion if and only

if some (π, ρ) represents it. If (π, ρ) and (π′, ρ′) both represent �o, then π = π′ and ρ = ρ′.

Proposition 3 establishes that the underlying uncertainty measure can be recovered

uniquely from the completed preference. One implication of this result is that the assump-

tion of a common uncertainty perception among a group of agents is testable; that is, if

an analyst incorrectly assumes that two agents share a common uncertainty perception π,

then some choices (of bets) can falsify this assumption. The result also implies that the

agent’s uncertainty perception can be separated from her uncertainty attitude even in the

context of bets; that is, in a setting with only two prizes. This separation justifies our

interpretation of ρ as measuring ambiguity attitude, allows us to compare the ambiguity

attitudes of agents even if their uncertainty perceptions are different and facilitates the

following definition of comparative ambiguity aversion.

Definition: Let ρ̂ and ρ be two risk equivalent functions for �. Then, ρ̂ is more ambi-

guity averse than ρ if ρ(a, b) ≥ ρ(a′, b′) implies ρ̂(a, b) ≥ ρ̂(a′, b′) for all (a, b), (a′, b′) such

that 0 ≤ a′ ≤ a ≤ b ≤ b′ ≤ 1.

The definition above asserts that the more ambiguity averse agent is the one more

inclined to favor tighter probability bounds. As we show in Proposition 4, below, this

notion of “more ambiguity averse” facilitates a local characterization when the utility

functions are differentiable. We let ρ1 and ρ2 denote the partial derivatives of ρ with

respect to the first and second arguments. Let R be the set of risk equivalent functions

that are continuously differentiable with partial derivatives ρ1(·, b) and ρ2(a, ·) such that:

(i) ρ1 > 0, ρ2 > 0 (if ρ is strict); (ii) ρ1 > 0, ρ2 = 0 (if ρ is maximally ambiguity averse);
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(iii) ρ1 = 0, ρ2 > 0 (if ρ is maximally ambiguity loving). Proposition 4 below, characterizes

our relative measure of ambiguity aversion in terms of the partial derivatives. In the

proposition, we let y/x =∞ whenever y = 0 6= x. We define the measure Lρ(a, b) of local

ambiguity aversion: for all ρ ∈ R and (a, b) ∈ I

Lρ(a, b) :=
ρ1(a, b)

ρ2(a, b)

Proposition 4: Let ρ̂ and ρ be two risk equivalent functions for �. Then, ρ̂ is more

ambiguity averse than ρ if and only if Lρ̂ ≥ Lρ at every (a, b).

Note that Lρ is a local measure of the relative weight the agent places on the lower

bound versus the upper bound. If ρ is linear; that is, ρ(a, b) = αa+ (1− α)b for all (a, b),

then Lρ is constant and

α =

{
Lρ

1+Lρ
if Lρ <∞

1 otherwise.

Existing comparative measures (Epstein (1999), Ghirardato and Marinacci (2002))

differ from the one above in two ways: first, they require a shared uncertainty perception,

at least for unambiguous events.9 Second, the existing measures are weaker since they rely

only on comparisons between ambiguous and unambiguous acts (or bets). The analogous

measure in our setting is the following:

Definition: Let ρ and ρ̂ be two risk equivalent functions for �. Then, ρ̂ is weakly more

ambiguity averse than ρ if ρ(c, c) ≥ ρ(a, b) implies ρ̂(c, c) ≥ ρ̂(a, b).

Clearly, ρ̂ more ambiguity averse than ρ implies that ρ̂ is weakly more ambiguity averse

than ρ. Moreover, for linear ρ the two notions coincide. However, if ρ or ρ̂ are nonlinear,

then one can be weakly more ambiguity averse without being more ambiguity averse as the

following example illustrates: Let ρ(a, b) = min{(a+b)/2, a+b/4} and ρ̂(a, b) = (3a+b)/4.

Then, ρ̂ is weakly more ambiguity averse than ρ since ρ(a, a) = ρ̂(a, a) and ρ ≥ ρ̂. However,

ρ̂ is not more ambiguity averse than ρ.10 To see this, note that ρ(0, 1) = ρ(1/8, 1/2) while

9 In Gul and Pesendorfer (2014), we also derive a measure of ambiguity attitude that does not require
a common uncertainty perception. However, that paper considers a more restrictive model so that the
ambiguity attitude over bets can be described by a single parameter.

10 For ease of exposition, we have chosen ρ2 so that it is not differentiable at b = 2a; however, it is easy
to see that this is not essential.
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ρ̂(0, 1) > ρ̂(1/8, 1/2). Thus, the increase in ambiguity from (1/8, 1/2) to (0, 1) is acceptable

to ρ̂ but not to ρ. The relation between these two notions of ambiguity aversion is analogous

to the relationship between notions of risk aversion based on mean preserving spreads and

those based on certainty equivalents.

5. Preferences over Acts and Weak Sophistication

Machina and Schmeidler (1992) introduce the notion of probabilistic sophistication in

the course of establishing Savage-type foundations for the theory of choice among risky

prospects without expected utility maximization. That is, they provide a theory that iden-

tifies an agent’s uncertainty perception without imposing the expected utility hypothesis

on her uncertainty attitude. The goal of this section is to provide an analogous separation

for uncertain prospects. In particular, we will identify the most permissive theory that can

be interpreted as an extension of QUAs and the extension of QUAs that can be interpreted

as the smallest deviation from expected utility theory.

We assume uncertain prospects yield a monetary prize in every state of the world.

The restriction to monetary prizes simplifies the exposition below but is inessential for

our results. It is straightforward to adapt the results below for a general prize space.

Let X = [w, z] be a nondegenerate compact interval. Let F be the set of all simple,

Σ-measurable functions on Ω; that is,

F = {f : Ω→ X | f−1(x) ∈ Σ and f(Ω) finite}

where f(A) = {f(s) | s ∈ A} for all A ⊂ Ω. We call F the set of all acts. For any f ∈ F ,

x ∈ X and A ∈ Σ, let fAg denote h ∈ F such that h(s) = f(s) for all s ∈ A and

h(s) = g(s) for all s /∈ A. We identify a constant act that always yields x with x and hence

write x ∈ F .

An act preference is a complete, transitive and continuous binary relation �∗ on F .

An act preference �∗ is an extension of the QUA � if

B � A implies zBw �∗ zAw and

B � A implies zBw �∗ zAw
(X)
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Condition (X) extends condition (C) in section 4 to all prize pairs.

Machina and Schmeidler provide axioms that yield a subjective probability ν such that

the decision maker prefers f to g whenever she prefers Gνf , the cumulative distribution of

the act f , to Gνg , the cumulative distribution of g. In particular, the decision maker is

indifferent between two acts whenever the acts have the same cumulative distribution; that

is, the decision maker is probabilistically sophisticated. Machina-Schmeidler’s key axiom,

strong comparative probability, asserts the following: if y �∗ x and ŷ �∗ x̂, then

yBx(A ∪B)h �∗ yAx(A ∪B)h implies

ŷBx̂(A ∪B)ĥ �∗ ŷAx̂(A ∪B)ĥ

The act f = yBx(A ∪ B)h yields the more desirable prize y on event B and the less

desirable prize x on A; by contrast, g = yAx(A ∪ B)h yields the more desirable prize on

A and the less desirable prize on B. At each state not in A ∪ B both f, g yield the same

prize. The decision maker prefers f to g means that she considers B at least as likely as

A; that is, B � A. Thus, the axiom requires this comparative probability judgement to

remain valid regardless of what the act yields on (A ∪ B)c and the choice of more/less

desirable prizes. Since we are interested in extending a QUA rather than a qualitative

probability, we will need to identify a weaker axiom that permits ambiguity. Also, since

we are assuming that more is better, we will replace y �∗ x with y > x.

Weak probabilistic sophistication, formally defined below, requires that Machina and

Schmeidler’s separability axiom hold only for certain events: consider the three color Ells-

berg urn; that is, a partition of the state space into three events C,D,E with C and D

representing the two ambiguous colors and E representing the unambiguous color. Since

E is unambiguous, the agent’s preference for getting the better prize on C or D should be

independent of the act given E. Therefore, the Machina-Schmeidler axiom should hold for

A = C,B = D. By contrast, an agent’s preference for getting the prize on C or E need not

be independent of the act given D and, thus, we would not expect the Machina-Schmeidler

axiom to hold for A = C,B = E. More generally, Machina and Schmeidler’s axiom should

hold whenever the underlying QUA satisfies the standard separability assumption; that is,

when Axiom 3 applies to the pairs (A, (A ∪B)c) and (B, (A ∪B)c):

A � B if and only if A ∪ (A ∪B)c � B ∪ (A ∪B)c
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Axiom 3 ensures that the above relationship holds if (A, (A ∪ B)c) and (B, (A ∪ B)c)

conform. Thus, we obtain the following definition:

Definition: An extension �∗ of � satisfies weak sophistication (WS) if, for all y > x, ŷ >

x̂ and for all A,B such that either B = ∅ or (A, (A ∪B)c) and (B, (A ∪B)c) conform,

yBx(A ∪B)h �∗ yAx(A ∪B)h implies

ŷBx̂(A ∪B)ĥ �∗ ŷAx(A ∪B)ĥ

The B = ∅ case simply ensures monotonicity; that is yAh �∗ xAh whenever A

is nonnull and y > x. We refer to an extension that satisfies (WS) as a sophisticated

extension. Weak probabilistic sophistication asserts that events that are separable for

the underlying QUA are also separable for general acts. Thus, we can interpret (WS)

as an implication of the hypothesis that the QUA fully describes the agent’s uncertainty

perception.

In the following two subsections, we provide three sophisticated extensions. The first,

Double Expected Utilities, can be thought of as a minimal departure from expected utility

theory. It retains the expected utility hypothesis for unambiguous acts. The second, Double

Lottery Utilities, is the most general extension of QUAs; it does not impose the expected

utility hypothesis on unambiguous acts; instead, when restricted to unambiguous act, it

coincides with the Machina-Schmeidler model. The final extension, Capacity Utilities,

identifies a subclass of Double Lottery Utilities that generalizes the Choquet Expected

Utility model. We show that Capacity Utilities facilitate an easy identification of the

decision maker’s ambiguity perception, ambiguity attitude and risk attitude.11

5.1 Double Expected Utility

Theorem 2, below, identifies a class of utility functions for which ambiguity is the only

source of deviation from expected utility theory. In addition to weak sophistication, we

assume that �∗ satisfies the following two assumptions. (In the statements below, A,B,C

11 Note that all our extensions maintain Savage’s P4; that is, the assumption that betting preferences
are independent of the stakes, since this assumption is embedded in the definition of weak sophistication.
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represent arbitrary, possibly ambiguous, events whereas the events E and F represent

unambiguous events of the QUA.) The preference �∗ is separable if for all E

fEh �∗ gEh implies fEĥ �∗ gEĥ (S)

The preference �∗ is Archimedean if for all y > x′ > x and A ⊂ F , there is E, x∗ such

that

yEx ∼∗ x′Fx and x∗Fx ∼∗ yAx (A)

Assumption (S) is Savage’s sure thing principle restricted to unambiguous prospects. As-

sumption (A) requires that �∗ satisfies an Archimedean property both in terms of prizes

and in terms of events; the first part of the axioms states that for any bet x′Fx on an

unambiguous event F and any prize y > x′, we can find a (less likely) unambiguous event

E such that the agent is indifferent between yEx and x′Fx. The second part states that

if A is a subset of the unambiguous event F , then for a suitable choice of x∗, the decision

maker can be made indifferent between yAx and x∗Fx.

Theorem 2 below shows that if a weakly sophisticated extension satisfies (S) and (A),

then it has a Dual Expected Utility (DEU) representation. For any capacity π and act f ,

define the cumulative Gπf and the dual cumulative Fπf as follows:

Gπf (x) =
∑
y≤x

π(f−1(y))

Fπf (x) = 1−
∑
y>x

π(f−1(y))

Note that the definition of a cumulative distribution function for an uncertainty measure

is the same as the corresponding definition for a probability. Moreover, when π is a

probability, Fπf = Gπf for all f . Then, V is a Dual Expected Utility (DEU) function if there

is some uncertainty measure π, continuous function u : X → IR and α ∈ [0, 1] such that

V (f) = α

∫
udFπf + (1− α)

∫
udGπf (DEU)

for all f . We say that an extension �∗ of a QUA, �, is a DEU extension if there exists an

α ∈ [0, 1], a continuous utility index u, and π representing � such that the V defined by

equation (DEU) represents �∗.
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Theorem 2: A sophisticated extension satisfies (S) and (A) if and only if it is a DEU

extension.

Since Proposition 1 ensures that every uncertainty measure is a belief function and

hence convex (i.e., supermodular), we can write a DEU utility V equivalently as an α−MM

utility. Let ∆ be the set of all probability measures on (S,Σ). For any uncertainty measure

π, let

Cπ := {q ∈ ∆ : q(A) ≥ π(A),∀A ⊂ Σ}

be the core of π. Then, V , the DEU representing the extension �∗ with parameters

(α, π, u) satisfies

V (f) = α min
q∈Cπ

∫
u ◦ fdq + (1− α) max

q∈Cπ

∫
u ◦ fdq (αMM)

The equivalence of the above two representations, αMM and DEU follows from known

results relating Choquet expected utility theory and maxmin expected utility theory.

5.2 Non-Expected Utility Theories and Ambiguity

Machina and Schmeidler’s notion of sophistication implies that the DM identifies

each act with a lottery and ranks acts according to the corresponding ranking of lotteries.

The DEU representation above provides a weaker interpretation of sophistication that

can accommodate ambiguity: the decision-maker prefers f to g if and only if she prefers

(Fπf , G
π
f ) to (Fπg , G

π
g ); that is, the decision maker identifies acts with pairs of lotteries

and ranks them accordingly. This interpretation suggests a generalization of DEU, which

we call Double Lottery Utility, that can accommodate non-expected utility theories for

unambiguous prospects.

Let L be the collection of cumulative distributions on [w, z]. Given an uncertainty

measure π, let φ : F → L × L be the function φ(f) = (Fπf , G
π
f ) and let Φ = φ(F) be

the range of φ. We say that f dominates g if Fπf first order stochastically dominates

Fπg , Gπf first order stochastically dominates Gπg and Fπf 6= Fπg , G
π
f 6= Gπg . The function

V : Φ→ IR is increasing if f dominates g implies V (Ff , Gf ) > V (Fg, Gg). We say that �∗

has a double-lottery representation if there is an uncertainty measure π and a continuous

increasing function V : Φ→ IR such that f �∗ g if and only if V (Fπf , G
π
f ) ≥ V (Fπg , G

π
g ).
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Utility functions of the form U(f) = V (Fπf , G
π
f ) represent the most general theories

consistent with QUAs. For unambiguous acts, the two lotteries Fπf and Gπf coincide and

the double lottery representation simplifies to a Machina-Schmeidler representation. Note

that the convexity of π implies Gπf (weakly) stochastically dominates Fπf ; that is, Gπf (x) ≤

Fπf (x) for all x. Next, we define a notion of ambiguity aversion for Double Lottery Utilities:

Definition: Double Lottery Utility V̂ is more ambiguity averse than V if V (F,G) ≥

V (G′, G′) implies V̂ (F,G) ≥ V̂ (G′, G′) for all G ≤ F and G′.

It is easy to verify that this comparative measure, when restricted to bets (i.e., binary

acts with a fixed pair of prizes, y > x), coincides with the definition of “weakly more

ambiguity averse” as defined in the previous section. Next, we will define a rich set of

utility functions over acts, which we call Capacity Utilities that enables a clear separation

of ambiguity perception, ambiguity attitude and risk attitude. Let ρ : I → IR be a

risk equivalent function and, for any cumulative F , let F (x) := 1 − F (x) denote the

complementary cumulative distribution function. Then, for any pair of lotteries (F,G),

define the cumulative FρG as follows:

(FρG)(x) = 1− ρ(F (x), G(x))

We call FρG the risk equivalent of (F,G). To see that this is the appropriate generalization

of the risk equivalent notion of section 4, it is enough to note that if (a, b) = (π(A), π̄(A))

for the event A = {y > x}, then ρ(F (x), G(x)) = ρ(a, b).

Let W be any monotone utility function (i.e., if G (strictly) stochastically dominates

G′, then W (G) ≥ (>)W (G′)) on the set of all lotteries. Fix π, ρ and define the following

utility function, U , on the set of all acts:

U(f) = W (FπfρG
π
f )

That π describes the decision maker’s ambiguity (or uncertainty) perception and W de-

scribes her risk attitude is clear. The following proposition establishes that ρ represents

her ambiguity attitude:

Proposition 5: The capacity utility (π̂, ρ̂,W ) is more ambiguity averse than the capacity

utility (π, ρ,W ) if and only if ρ̂ is weakly more ambiguity averse than ρ.
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The proof of Proposition 5 is straightforward and omitted. If W is not linear; that is,

if it is not an integral, then the restriction of the utility function U above to unambiguous

acts will be a non-expected utility capable of accommodating the Allais paradox and other

known violations of the expected utility hypothesis. If W is linear, then the U above is a

Choquet Expected Utility function with capacity η defined by:

η(A) = ρ(π(A), π̄(A))

Note that η need not be totally monotone but this failure of monotonicity arises from the

fact that it conflates the decision maker’s ambiguity perception and ambiguity attitude.

Next, we provide an example of a Capacity Utility (π, ρ,W ) that reveals that a similar

conflation of ambiguity perception, ambiguity attitude and risk attitude occurs in Maxmin

Expected Utility theory. Assume the decision maker is maximally ambiguity averse and,

therefore, ρ(a, b) = a for all (a, b). Let τ : [0, 1]→ [0, 1] be convex, strictly increasing and

onto. Define τ ∗H as follows: τ ∗H(x) = 1 − τ(H(x)) for all x. Finally, we define W as

follows:

W (H) =

∫
u(x)dτ ∗H

where u is a continuous, strictly increasing utility function. Note that for the Capacity

Utility (π, ρ,W ), the function τ is a parameter of W and, therefore, is a part of the

agent’s risk attitude. This becomes clear if we restrict attention to risky prospects; that is,

unambiguous lotteries, and τ become the familiar preference parameter of rank-dependent

expected utility theory.

Clearly, the composition τ and π, τπ, is also a capacity. In fact, it is not difficult to

show that τπ is convex capacity whenever τ is convex function and π is convex capacity.

It is also not difficult to show that we can restate the utility function U as follows:

U(f) = min
ν∈Cτπ

∫
u ◦ fdν

where Cτπ is the core of τπ. The core of π is a strict subset of the core of τπ. Thus,

the maxmin representation of this agent yields a set of priors that is strictly larger than
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the set of priors implied by the uncertainty measure π because this set reflects both the

uncertainty perception and the non-linearity of the decision makers risk preferences τ .12

Motivated by Gilboa and Schmeidler’s (1989) maxmin expected utility theory, uncer-

tainty perception is often identified with a set of priors (see for example Ghirardato and

Siniscalchi (2012)). The preceding example shows that the relevant set of priors may not

capture uncertainty perception when agents are not expected utility maximizers for unam-

biguous prospects. More generally, while the uncertainty measure π remains unchanged

as we vary the agent’s (non-expected) utility function over unambiguous prospects, the

corresponding set of relevant priors (as defined by Ghirardato and Siniscalchi (2012)) will

typically change. This example illustrates the usefulness of separating ambiguity per-

ception from ambiguity and risk attitudes, as we have done in this paper, when agents

simultaneously exhibit Allais- and Ellsberg-style behavior.

6. Appendix A

6.1 Preliminaries

Throughout, Ω is the state space and all sets are contained in the σ−algebra Σ. Thus,

if we refer to a probability measure (µ, E) it is understood that E ⊂ Σ. We let E,F,G

denote unambiguous events; that is, elements of E and A,B,C,D denote arbitrary events;

that is, elements of Σ.

Definition: Given any probability measure (µ, E) and A, let [A] = {E ⊂ A}. The inner

probability of A is µ∗(A) = supE∈[A] µ(E). Let E(A) = {E ∈ [A] |µ(E) = µ∗(A)}.

Note that for all A, E(A) is non-empty. To see this, let Ei ∈ [A] be a sequence

such that limµ(Ei) = µ∗(A). By definition such a sequence exists. Then, since µ is a

probability measure, E =
⋃
Ei is the desired set. Note also that we can replace the sup

in the definition of the inner probability with a max. Finally, note that E(A) is unique up

to a set of measure zero. Let E(A) be this unique element and refer to it as “the” core of

A. We define the boundary of A to be the set F (A) := [E(A) ∪ E(Ac)]c. Since E(A) is

unique up to a set of measure zero, so is F (A). Also note that F (A) = F (Ac).

12 In particular, τπ need not be totally monotone; that is, a belief function. The example shows that
some Maxmin Expected Utility functions with a set of priors that does not correspond to the core of a
belief function are also Capacity Utility functions.
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For any n ≥ 1, let N = {1, . . . , n} and let N denote the set of all nonempty subsets

of N . Then, let (µ, E) be any probability measure and A = {Ai | i ∈ N} be any partition

of Ω. The partition {Eκ | ∅ 6= κ ⊂ N} is a µ-split of A if Eκ ∈ E for all κ and⋃
κ∈K

Eκ ⊂
⋃
i∈K

Ai

µ

(⋃
κ∈K

Eκ

)
= µ∗

(⋃
i∈K

Ai

) (A1)

for all ∅ 6= K ⊂ N and K = {κ ∈ N |κ ⊂ K}.

Note that {E(A), E(Ac), F (A)} is a µ-split of the binary partition {A,Ac}.

Lemma A1: Let (µ, E) be a probability measure. Then, every partition A has a µ-split.

Moreover, if {Eκ | ∅ 6= κ ⊂ N} is a µ-split of A, then the partition {Fκ | ∅ 6= κ ⊂ N} is also

a µ-split of A if and only if µ(Eκ\Fκ) = 0 for all κ.

Proof: Suppose (µ, E), N = {1, . . . , n} and A = {Ai | i ∈ N} satisfy the hypotheses of

the Lemma. Let E∅ = ∅ and choose Eκ ∈ E
(⋃

i∈κAi
)

for all κ ∈ N and let

Eκ = Eκ\
⋃

κ6=κ̂⊂κ

Eκ̂

for all κ ∈ N . It is straightforward but somewhat tedious to verify that {Eκ |κ ∈ N} is

the desired partition. Now, if {Eκ} ⊂ E and {Fκ} ⊂ E are two partitions as defined above

and µ(Eκ\Fκ) > 0, then µ∗(Aκ) ≥ µ(Eκ ∪ Fκ) > µ(Eκ) = µ∗(Aκ), a contradiction.

Lemma A2:

(i) The partition {E1, E12, E2} is a µ-split of (A,Ac) if and only if E1 ⊂ A,E2 ⊂ Ac and

µ∗(A ∩ E12) = 0 = µ∗(E12 ∩Ac).

(ii) If A ⊂ E, then E(A) ⊂ E,F (A) ⊂ E.

(iii) Let A1 ⊂ E1, A2 ⊂ E2, E1∩E2 = ∅, then E(A1∪A2) = E(A1)∪E(A2), F (A1∪A2) =

F (A1) ∪ F (A2).

(iv) Let {Eκ} be a µ−split of the partition {A1, A2, A3} and let A = A1 ∪ A2. Then,

E(A) = E1 ∪ E2 ∪ E12 and F (A) = E13 ∪ E23.
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Proof: (i) Let E1, E12, E2 be a µ-split of (A,Ac). Then, for all E ⊂ A, µ(E∩E12) = 0 and,

similarly, for all E ⊂ Ac, µ(E ∩E12) = 0. It follows that µ∗(A∩E12) = 0 = µ∗(A
c ∩E12).

For the converse, let E1 ⊂ A,E2 ⊂ Ac and µ∗(A ∩ E12) = µ∗(A
c ∩ E12) = 0. Then, for

all E ⊂ A, µ(E1 ∩ Ec) = 0 and, therefore, µ(E1) = µ∗(A). An analogous argument shows

that µ∗(A
c) = µ(E2).

(ii) Since E(A) ⊂ A it follows that E(A) ⊂ E. To see that F (A) ⊂ E, note that if

E1, E12, E2 is a µ-split of (A,Ac) then Ec ⊂ Ac and, therefore, Ec ⊂ E2. Thus, E12 ⊂ E.

(iii) Without loss of generality, we may assume that E1 ∪ E2 = Ω. First note that

[A1 ∪ A2] = [A1] ∪ [A2]. This follows since E′ ∈ [A1 ∪ A2] implies E1 ∩ E′ ∈ [A1],

E2 ∩E′ ∈ [A2] and, therefore, E′ ∈ [A1] ∪ [A2]. The converse is obvious. Since Ac1 ∩Ac2 =

(E1\A1) ∪ (E2\A2) the same argument shows that [Ac1 ∩ Ac2] = [E1\A1] ∪ [E2\A2]. The

last two observations imply

E(A1 ∪A2) = E(A1) ∪ E(A2)

E(Ac1 ∩Ac2) = E(Ac1) ∩ E(Ac2)

It follows that F (A1 ∪A2) = (E(A1 ∪A2) ∪E(Ac1 ∩Ac2))c = (E(A1) ∪E(A2) ∪E(Ac1))c ∪

(E(A1)∪E(A2)∪E(Ac2))c = (E(A1)∪E(Ac1))c∪ (E(A2)∪E(Ac2))c = F (A1)∪F (A2). The

penultimate equality follows from E(A2) ⊂ E2 ⊂ E(Ac1) and E(A1) ⊂ E1 ⊂ E(Ac2).

(iv) By definition of a µ−split E1 ∪ E2 ∪ E12 ⊂ A and µ(E1 ∪ E2 ∪ E12) = µ∗(A).

Similarly, E3 ⊂ A3 = Ac and µ(E3) = µ∗(A
c). It follows that E(A) = E1 ∪ E2 ∪ E12 and

E(Ac) = E3. Since F (A) = (E(A) ∪ E(Ac))c, the result follows.

Lemma A3: If (µ, E) is a probability measure, then µ∗ is a belief function.

Proof: Let A = {A1, . . . , An} be any partition of Ω and let {Eκ} be the corresponding

µ−split of A. Assume without loss of generality that ∅ /∈ A. Let Â be the finite collection

of sets that can be expressed as the unions of elements in A. Let γ(A) = µ(Eκ) for all

A =
⋃
i∈κ∈N Ai. Clearly, γ(A) ≥ 0 for all A ∈ Â. Lemma A1 ensures that

µ∗(A) =
∑
B∈Â
B⊂A

γ(B)

for all A ∈ A. Dempster (1967) shows that a capacity on the algebra of sets generated by

some partition A is a belief function if and only if there exists a γ ≥ 0 satisfying the above
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displayed equation. Hence, the restriction of µ∗ to Â ∪ {∅} is a belief function. Since the

partition A was arbitrary, this proves that µ∗ is a belief function. .

Definition: (i) E is blank if there exists A ⊂ E such that µ∗(A) = µ∗(E\A) = 0; (ii)

(E,Ec) is an essential partition for µ if E ∈ E and is whole and Ec is blank.

Lemma A4: Every non-atomic probability measure has an essential partition. If (E,Ec)

and (F, F c) are two essential partitions for µ, then µ(E∆F ) = 0.

Proof: Let B = {E ∈ E |E is blank} and b = supE∈B µ(E). First, we will show that a

countable union of blank sets is a blank set. Suppose E =
⋃
En and define F1 = E1,

Fn = En\
⋃
i<nEn. Hence, the sets Fn are pairwise disjoint and

⋃
Fn = E. Choose

An ⊂ Fn for all n so that µ∗(An) = µ∗(Fn\An) = 0. Suppose there exists E′ ⊂ F

such that µ(E′) > 0 and (i) E′ ∩ (
⋃
An) = ∅ or (ii) E′ ∩ (E\(

⋃
An)) = ∅. Then, the

countable additivity of µ ensures that we have µ(E′ ∩Fn) > 0 for some n. Then, (i) yields

µ∗(Fn\An) > 0 while (ii) yields µ∗(An) > 0. In either case we have a contradiction.

Let En ∈ B be a sequence such that limµ(En) = b. Then, µ(
⋃
En) = b and by the

argument above,
⋃
En ∈ B. Set G = (

⋃
En)c. Assume there exists A ⊂ G such that

A /∈ E . Since µ is complete, part (i) implies that µ(F (A)) > 0. Thus, F (A) is a blank set

and, by the above argument, so is F (A) ∪Gc. But, µ(F (A) ∪Gc) > b, which contradicts

the definition of b and proves that F is whole. So, (G,Gc) is the desired partition. The

proof of the second part is straightforward and omitted.

6.2 Proof of Proposition 1

Proof of parts (i) and (ii): Suppose π is an uncertainty measure and let (µ, E) and

(η,Σ) satisfy the appropriate properties. In particular,

π(A) = max
E∈[A]

µ(E) + min
E∈[A]

η(A\E)

for all A.

Since µ is complete, every µ-null set is µ-whole. Hence, η(E) = 0 whenever µ(E) = 0

and therefore µ(E) ≥ η(E) for all E ∈ E . Next, we claim that for all E ∈ [A], µ(E) =

maxF∈[A] µ(F ) implies π(A) = µ(E) + η(A\E).
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To see this, choose any E ∈ [A] such that µ(E) = maxF∈[A] µ(F ). Suppose there

is Ê ∈ [A] such that η(A\Ê) < η(A\E). Hence, η(A\(Ê ∪ E)) < η(A\E) and therefore

η(Ê ∪E) > η(E) which means η(Ê\E) > 0 and hence µ(Ê\E) > 0, contradicting the fact

that µ(E) = maxF∈[A] µ(F ).

Next, we will show that π is superadditive; that is, π(A∪B) ≥ π(A)+π(B) whenever

A ∩ B = ∅. To see this, suppose π(A) = µ(E) + η(A\E) and π(B) = µ(F ) + η(A\F ) for

some E ∈ [A] and F ∈ [B]. Then, since E ∪ F ∈ [A ∪B], we have

π(A∪B) ≥ µ(E∪F )+η((A∪B)\(E∪F )) = µ(E)+µ(F )+η(A\F )+η(B\F ) = π(A)+π(B)

as desired.

Next, we prove that E = Eπ. To see this, suppose A ∈ Eπ, then

1 = π(A) + π(Ac) = µ(E) + η(A\E) + µ(F ) + η(Ac\F )

for some E ∈ [A] and F ∈ [Ac]. Hence, 1 = µ(Ê)+η(Êc) where Ê = (E∪F ). If η(Êc) > 0,

we have µ(Êc) > η(Êc) and hence µ(Ê) + µ(Êc) > 1 contradicting the fact that µ is a

probability. So, we must have µ(Êc) = η(Ê) = 0. Then, µ(E) = 1 and the completeness

of µ ensures that A\E ∈ E and hence A ∈ E .

Suppose E ∈ E . Then, π(E) ≥ µ(E) and π(Ec) ≥ µ(Ec). Since π is superadditive,

1 = π(E ∪Ec) ≥ π(E) + π(Ec) ≥ µ(E) + µ(Ec) = 1. Hence, E ∈ Eπ proving that E = Eπ.

It follows that µ(E) = π(E) for all E ∈ Eπ proving that the risk measure of any

uncertainty measure is unique. Let (F, F c) be any essential partition and choose B ⊂ F c

such that µ∗(B) = µ∗(F
c\B) = 0. Hence, for any E ⊂ F c, π(E ∩ B) = η(E ∩ B)

and π(E\B) = η(E ∩ B). Hence, η(E) = π(E ∩ B) + π(E\B). Then, for any E ∈ E ,

η(E) = η(E ∩ F ) + η(E ∩ F c) = η(E ∩ F c) = π(E ∩ B) + π(E\B). Hence, any two

ambiguity measures for π must agree on E .

Take any A and E ∈ [A] such that µ(E) = µ∗(E) and note that π(A) = µ(E) +

η(A\E) = µ(E) + η(A) − η(E). Hence, η(A) = π(A) − η(E). Since any two ambiguity

measures for π must agree on E , it follows that they must agree everywhere.

Proof of part (iii): Let π be an uncertainty measure with risk measure µ and ambiguity

measure η. If η(Ω) = 0, then π = µ∗ and hence, Lemma A3 ensures that π is a belief
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function. If η(Ω) > 0, then let a = 1 − η(Ω). Since, µ dominates η, η(Ω) < µ(Ω) and

hence a ∈ (0, 1). Also, µ(E) = 0 implies η(E) = 0. To see this, note that if µ(E) = 0 and

η(E) > 0 for some E, then π(Ω) > µ(Ec) + η(E) = 1 + η(A) > 1, contradicting the fact

that π is a capacity.

Let η̂(A) = η(A)/(1− a) and note that η is a probability measure. Since µ dominate

η, the countable additivity of µ ensures countable additivity of the restriction of η to E .

Hence, µ̂ = (µ− η)/a is a probability measure on E and therefore, by Lemma A3, its inner

probability, µ̂∗, is a belief function.

Clearly µ(E\F ) = 0 for all E,F ∈ E(A) and hence η(E\F ) = 0 for all E,F ∈ E(A)

and therefore,

π(A) = µ(E) + η(A\E) = µ∗(A) + η(A)− η(E)

for all E ∈ E(A). Then,

π = aµ̂∗ + (1− a)η̂

Clearly a convex combination of a belief function and a probability is a belief function.

This completes the proof of part(iii).

7. Appendix B: Proof of Theorem 1 and Proposition 2

Assume � is a qualitative uncertainty assessment. We will prove that it can be

represented by a non-atomic uncertainty measure. The converse is straightforward to verify

and, therefore, omitted. For the remainder of this section, we assume that � satisfies all

properties of a qualitative uncertainty assessment, that is, it is calibrated and satisfies

Axioms 1-5. Calibration implies transitivity (A � B and B � C implies A � C) and

consistency (A � B if and only if Bc � Ac). We will use these properties without explicit

reference to calibration below.

For any two sets X,Y , let X∆Y := (X ∪ Y )\(X ∩ Y ). For any two collections of

events A, B, let A t B = {A ∪ B |A ∈ A, B ∈ B} and A u B = {A ∩ B |A ∈ A, B ∈ B}.

Finally, let [A] = {E ⊂ A}.

Lemma B1:

(i) A � B and B 6� A implies A � B.
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(ii) 〈A〉 = [A] t [Ac].

(iii) If B � An, An ⊂ An+1, An+1\An ∈ E for all n, then B �
⋃
An.

(iv) E is a σ−algebra.

(v) A ∈ E if and only if A ∼= Ω.

(vi) A ∩ E = ∅ implies A ∪ E ∼= A.

Proof: (i) Note that A � B,B 6� A implies that W (A) ⊃ W (B),W (Bc) ⊃ W (Ac) with

at least one inclusion strict. It follows that there exists E such that A � E,Ec � Ac and

B 6� E or Ec 6� Bc. Consistency then implies that both B 6� E and Ec 6� Bc must hold.

Thus, W (A) ⊂W (B),W (Bc) ⊂W (Ac) with both inclusions strict and, hence, A � B.

(ii) Suppose E ∈ 〈A〉. Then, E ∩ A ∈ [A] and E ∩ Ac ∈ [Ac] and hence E =

(E∩A)∪(E∩Ac) ∈ [A]t[Ac]. To prove [A]t[Ac] ⊂ 〈A〉, it is enough to show that E,F ∈ E

and E ∩ F = ∅ implies E ∪ F ∈ E . Suppose A � B and (A ∪ B) ∩ (E ∪ F ) = E ∩ F = ∅.

Then, A ∪ E � B ∪ E and hence (A ∪ E) ∪ F � (B ∪ E) ∪ F as desired.

(iii) Suppose B � An, An ⊂ An+1 and An+1\An ∈ E for all n. Then, by consistency,

Acn � Bc and also Acn+1 ⊂ Acn, Acn\Acn+1 ∈ E for all n. Hence, Acn converges to
⋂
Acn and,

by Axiom 5,
⋂
Acn � Bc. Hence, again by consistency, B �

⋃
An.

(iv) We first show that E is an algebra. Clearly, Ω ∈ E and ∅ ∈ E . Then, Axiom 2(ii)

and part (ii) imply [E]t [Ec] = [Ω]t [∅] and hence Ω ∈ [E]t [Ec] which yields Ec ∈ E . To

complete the proof that E is an algebra, we need to show that E ∩ F ∈ E . By Axiom 2(ii)

and part (ii), [E] t [Ec] = [F ] t [F c]. Clearly, E ∈ [E] ∪ [Ec] and therefore E ∈ [F ] ∩ [F c]

which implies E ∩ F ∈ [F ] and hence E ∩ F ∈ E .

To show that E is a σ−algebra, let E =
⋃
Fi. Define En =

⋃n
i=1 Fi and note that

E =
⋃
Fi. Since E is an algebra, En ∈ E for all n. Suppose A � B and A∩E = B∩E = ∅.

Then, A ∪ En � B ∪ En for all n and, by monotonicity, A ∪ E � A ∪ En � B ∪ En for

all n. Hence, transitivity implies A ∪ E � B ∪ En for all n. Then, Lemma B1 (iii) yields

A ∪ E � B ∪ E.

For the converse, assume A ∪ E � B ∪ E and (A ∪ B) ∩ E = ∅. By consistency,

Bc∩Ec � Ac∩Ec. Hence, (Bc∩Ec)∪En � (Ac∩Ec)∪En. Monotonicity and transitivity

yield (Bc ∩ Ec) ∪ E � (Ac ∩ Ec) ∪ En. Then Lemma B1 (iii) implies (Bc ∩ Ec) ∪ E �
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(Ac ∩ Ec) ∪ E; that is, Bc � Ac and hence by consistency A � B as desired. This proves

that E is a σ-algebra.

(v) Since Ω is unambiguous, one direction follows from Axiom 2(ii). For the other

direction, assume A ∼= Ω and, since Ω is unambiguous, Ω ∈ [A] t [Ac] by part (ii); that is,

A ∈ [A] and therefore A ∈ E .

(vi) We will show that when A ∩ E = ∅, [A] t [Ac] = [A ∪ E] t [Ac ∩ Ec] and appeal

to part (ii). Suppose F1 ∈ [A] and F2 ∈ [Ac]. Then, F1 ⊂ A ∪ E, F2 = F3 ∪ F4 where

F3 := F2 ∩ E and F4 = F2 ∩ Ec. Since E is an algebra (by part (ii)), F1 ∪ F3 ∈ [A ∪ E]

and F4 ∈ [Ac ∩ Ec] and hence F1 ∪ F2 = F1 ∪ F3 ∪ F4 ∈ [A ∪ E] t [Ac ∩ Ec].

For the converse, take F1 ∈ [A ∪ E] and F2 ∈ [Ac ∩ Ec]. Then, let F3 = F1 ∩ A

and F4 = F1 ∩ E. Since E is an algebra, F4 ∈ E and therefore, F3 = F1\F4 ∈ E and,

therefore, F3 ∈ [A] and F2, F4 ∈ [Ac]. Since E is an algebra, F2 ∪ F4 ∈ [Ac] and therefore

F1 ∪ F2 = F3 ∪ F4 ∪ F2 ∈ [A] t [Ac].

Lemma B2: There exists a nonatomic probability measure µ on E such that E � F if

and only if µ(E) ≥ µ(F ).

Proof: Let �E be the restriction of � to E . Note that � is transitive and Axiom 2

ensures that �E is complete. Moreover, by Lemma B1(i), F � E, E 6� F implies F � E,

and, thus, � coincides with the strict preference derived from �. By definition, E � F

if and only if E ∪ F ′ � F ∪ F ′ whenever (E ∪ F ) ∩ F ′ = ∅. Hence, � restricted to �E
is a qualitative probability. By Lemma B1(iii), Axiom 4 restricted to �E yields Savage’s

small event continuity axiom. Repeating Savage’s proof for the σ-algebra E instead of the

σ-algebra of all subsets of Ω yields a finitely additive, convex valued probability µ that

represents �E . Then, the restriction of Axiom 5 to sets in E establishes that µ is countably

additive.

Next, we will show that µ is complete; that is, C ⊂ E and µ(E) = 0 implies C ∈ E .

Assume C ⊂ E and µ(E) = 0. Since µ represents �E , E ∼ ∅. To show that E is null, note

that E ∼ ∅ implies A ∪ E ∼ A\E (by Axiom 3) and hence, by monotonicity, A � A ∪ E,

proving that E is null. Monotonicity implies that any subset of a null set is also null and
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hence C is null. Then, for any A,B such that A � B, we have A ∪ C ∼ A � B ∼ B ∪ C

and hence C ∈ E .

Finally, we will show that µ is nonatomic. Suppose µ(E) > 0. Then, since µ represents

�E , E � ∅. Then, by Axiom 4, there is F ⊂ E such that F ∼= E, E � F � ∅. By Lemma

B1(v), F ∈ E . Again, since µ represents �E , we have µ(E) > µ(F ) > 0 as desired.

For the remainder of this proof we fix the nonatomic probability measure (µ, E) and

let N (A) denote the set of all null subsets of A, Eo(A) = {E ⊂ A |µ(E) = 0}. Let E(A)

be the core of A, F (A) the boundary of A and let (E(A), F (A), E(Ac)) be a µ−split of A.

Lemma B3: N (A) = Eo(A)

Proof: While proving that µ is complete (Lemma B2), we have shown that µ(E) = 0

implies E is null. It follows that Eo(A) ⊂ N (A). For the converse, assume C is null.

Then, A′ ∪ C ∼ A′ for all A′ and hence A′ � B′ implies A′ ∪ C ∼ A′ � B′ ∼ B′ ∪ C and

by transitivity A′ ∪ C � B′ ∪ C proving that C ∈ E . But if C ∈ E is null then clearly,

µ(C) = 0. It follows that N (A) ⊂ Eo(A).

Let E = Σ. Then, set π = µ and η(A) = 0 for all A ∈ E and note that π is the desired

uncertainty measure. So, from now on, we will assume E 6= Σ. We recall the definition of

a blank set and an essential partition. Their existence and uniqueness was established in

Lemma A4:

Definition: (i) E is blank if there exists A ⊂ E such that µ∗(A) = µ∗(E\A) = 0; (ii)

(E,Ec) is an essential partition for µ if E ∈ E and is whole and Ec is blank.

Assume E 6= Σ and let (G,Gc) be an essential partition for µ. Since µ is complete and

E 6= Σ, µ(Gc) > 0. For any subset E of Gc such that µ(E) > 0 let

CE = {A ⊂ E |µ∗(A) = µ∗(E\A) = 0}

Since (G,Gc) is an essential partition, there is B ⊂ Gc such that µ∗(B) = µ∗(G
c\B) = 0.

Setting A1 = B ∩ E and verifying that A1 ∈ CE establishes that CE 6= ∅. Note that, by

Lemma A2 (iii), A ∈ CE if and only if {E1 = ∅, E2 = Ec, E12 = E} is a µ−split of {A,Ac}.

Thus, µ(E∆F (A)) = 0 and µ(E(Ac)∆Ec) = 0.
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Lemma B4: Let A,B ∈ CE and F, F ′ ⊂ Ec. Then,

(i) E � A � ∅

(ii) A ∪ F ∼= C if and only if C = B′ ∪ E′ for some B′ ∈ CE and some E′ ⊂ Ec;

(iii) A ⊂ C ⊂ E, B ∩ C = ∅ implies C ∈ CE ;

(iv) A ∪ F � B ∪ F ′ implies there is C ∈ CE such that B ∩ C = ∅, A ∪ F � B ∪ F ′ ∪ C

and B ∪ C ∈ CE .

(v) A ∪ F � B ∪ F ′, µ(E) ≤ 1/3, and either F = ∅ or F ′ = ∅ implies there is E′ ⊂ Ec

such that E′ ∩ (F ∪ F ′) = ∅, µ(E′) > 0 and A ∪ F � B ∪ F ′ ∪ E′.

(vi) If E1 . . . , En are pairwise disjoint and E =
⋃n
i=1Ei, then, CE = CE1 t . . . t CEn .

Proof: (i) If A is null then A ∈ E by Lemma B3. Then, Ac∩E1 ∈ E and hence µ(Ac∩E1) =

µ(E1) > 0 contradicting the fact that A ∈ CE . Therefore, monotonicity implies that

A � ∅. From the definition of CE it follows that E\A ∈ CE and, therefore, E\A is not

null. Monotonicity then implies E � A.

(ii) First we show that A ∼= B if B ∈ CE . As we noted above, µ(Ec∆E(Ac)) = 0 =

µ(Ec∆E(Bc)). By Lemma B1(ii), it suffices to show that [A]t [Ac] = [B]t [Bc]. Suppose

F1 ∈ [A] and F2 ∈ [Ac]. Let F3 = F1∩B, F4 = F1∩Bc, F5 = F2∩E∩B, F6 = F2∩E∩Bc,

F7 = F2 ∩ Ec ∩B and F8 = F2 ∩ Ec ∩Bc. Clearly,

F1 ∪ F2 = F3 ∪ F4 ∪ F5 ∪ F6 ∪ F7 ∪ F8

Since µ is complete and µ∗(A) = µ∗(B) = 0, we have F3, F4, F5, F7 ∈ E . Since F2 ∈ [Ac],

µ(F2\E(Ac)) = 0. Then, since µ(Ec∆E(Ac)) = 0, we have µ(F2\Ec) = 0 and therefore

F6 ∈ E . Also, since µ(Ec∆E(Bc)) = 0, we can write Ec = (E(Bc)\F9)∪F10 for F9, F10 ∈ E

such that µ(F9 ∪ F10) = 0. Then, Ec ∩ Bc = (E(Bc) ∩ F c9 ∩ Bc) ∪ (F10 ∩ Bc). Since

E(Bc) ⊂ Bc, we have Ec ∩ Bc = (E(Bc) ∩ F c9 ) ∪ (F10 ∩ Bc). Clearly, E(Bc) ∩ F c9 ∈ E .

Since µ is complete, we have (F10 ∩ Bc) ∈ E and therefore, Ec ∩ Bc ∈ E and hence

F8 ∈ E . It follows that F1 ∪ F3 ∪ F5 ∪ F7 ∈ [B] and F2 ∪ F4 ∪ F6 ∪ F8 ∈ [Bc] and therefore

F1 ∪ F2 ∈ [B] t [Bc] proving that A ∼= B.

Next, we show that C ∼= A if and only if C = B ∪ F for some B ∈ CE . First, assume

C = B ∪ F for some F ⊂ Ec. Then, by Lemma B1(vi), B ∼= B ∪ E and, since A ∼= B, it

follows that A ∼= B ∪ F = C.
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For the converse, we first show that [A] t [Ac] = N (Ω) t [Ec]. Note that if F1 ∈ [A]

and F2 ∈ [Ac], then µ(F1) = 0 and µ(F2 ∩ E) = 0. Hence, F1 and F2 ∩ E are in N (Ω) by

Lemma B3. Since the union of null sets is null, F1 ∪ (F2 ∩ E) ∈ N (Ω). Let F3 = F2\E

and note that F2 ∈ [Ec] and therefore, F1 ∪ F2 ∈ N (Ω) t [Ec]. Similarly, if F1 ∈ [Ec] and

F2 ∈ N (Ω), then, since µ is complete, F3 = F2 ∩A ∈ [A] and F4 = F2 ∩Ac ∈ [Ac] and also

F1 ∈ [Ac]. Hence, F1 ∪ F2 = F3 ∪ (F1 ∪ F4) ∈ [A] t [Ac] as desired.

Now, suppose C ∩ E /∈ CE . Then, either there is F ∈ [C ∩ E] such that µ(F ) > 0 or

there is F ∈ [Cc ∩E] such that µ(F ) > 0. Since, [A] t [Ac] = N (Ω) t [Ec], either of these

establishes that [A] t [Ac] 6= [C] t [Cc]. If C ∩ Ec /∈ E , then, let E1, E2, E12 be a µ-split

of the partition A1, A2 where A1 = C ∩ Ec and A2 = Ac1. Then, µ(E12\E) > 0. Hence,

E12\E ∈ [A] t [Ac] and E12\E /∈ [C] ∪ [Cc].

It remains to show that A ∪ F ∼= B ∪ F ′ whenever F, F ′ ⊂ Ec. By Lemma B1(vi),

A ∼= A ∪ E and B ∼= B ∪ F . The result now follows from A ∼= B.

(iii) Note since B ∈ CE , C ⊂ E and B ∩ C = ∅, then C ⊂ E\B and hence µ∗(C) ≤

µ∗(E\B) = 0. Similarly, E\C ⊂ E\A and therefore, µ∗(E\C) ≤ µ∗(E\A) = 0. Hence,

C ∈ CE .

(iv) Assume A ∪ F � B ∪ F ′. By Axiom 4 there exists a partition C1, . . . , Ck of Ω

such that B∪F ∼= Cn\(B∪F ) and A∪F � B∪F ′∪Cn for all n. By part (ii) this implies

that B ∼= Cn\(B ∪F ) for all n and that there are Bn, Fn such that Bn ∪Fn = Cn\(B ∪F )

for Bn ∈ CE and Fn ∩ E = ∅. Note that B2 ∩ B1 = ∅ and therefore B ∪ B1 ∈ CE by

part (iii). Since B1 ∈ CE , part(i) implies it is non-null; then, monotonicity implies that

B1 ∪B ∪ F ′ � B ∪ F ′ and, therefore, B1 is the desired set.

(v) Argue as in the proof of part (iv) to get Bn∪Fn = Cn\(B∪F ) such that Bn ∈ CE ,

Fn∩E = ∅. Since Fn is a partition of Ec and µ(Ec) > 0 we must have µ(Fn) > 0 for some

n. Then if F ′ = ∅, E′ = Fn is the desired set. Similarly, if F = ∅, then A � B ∪F ′ implies

µ(F ′) ≤ µ(E) < µ(Ec). Hence, there must be Fn such that µ(Fn\F ′) > 0 and therefore,

E′ = Fn\F ′ is the desired set.

(vi) We will prove the results for n = 2. Then, the general case follows from an

inductive argument. Suppose A ∈ CE . Then, for i = 1, 2, µ∗(A ∩ Ei) ≤ µ∗(A) = 0 and

µ∗(Ei\A) = µ∗((E\A) ∩ Ei) ≤ µ∗(E\A) = 0 and hence A ∈ CE1
t CE2

. Conversely, if
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Ai ∈ CEi for i = 1, 2, then for any F ⊂ A1 ∪ A2, F ∩ Ei ⊂ Ai and hence µ(F ∩ Ei) = 0.

Therefore, µ(F ) = µ(F∩E1)+µ(F∩E2) = 0 and, similarly, µ(F ) = 0 whenever F ⊂ Ac1∪Ac2
and therefore A1 ∪A2 ∈ CE .

For E ⊂ Gc such that µ(E) > 0 and A ∈ CE , define

ηE(A) = sup{µ(E′) |A � E′}

ηE(E) = sup
A∈CE

ηE(A)

For E such that µ(E) = 0, define ηE(A ∩ E) = 0 for all A. Next, observe that if E∆E∗

is null, and E ∪E∗ is not null, the definition of CE implies that A ∩E ∈ CE if and only if

A ∩ E∗ ∈ CE∗ . Then, the definition of ηE implies that ηE(A ∩ E) = ηE∗(A ∩ E∗) for all

A ∈ CE∪E∗ . If E ∪ E∗ is null, then ηE(A ∩ E) = ηE∗(A ∩ E∗) = 0.

Let (G,Gc) be an essential partition of Ω. Define the set function η on Σ as follows:

for any A ∈ Σ, E = E(A ∩Gc), F = F (A ∩Gc), let

η(A) := ηE(E) + ηF (A ∩ F )

If µ(F ) > 0, then A ∩ F ∈ CF . Moreover, by the argument above, ηE is unaffected by the

addition of null events. It follows that η(A) is well defined and η(A∪B) = η(A) if B is null.

Since µ(F (A)∆Gc) = 0, we can assume (wlog) that F (A) ⊂ Gc whenever µ(F (A)) > 0.

Lemma B5: Let A ⊂ E = F (A). Then,

(i) η(A) ≥ µ(F ) if and only if A � F ;

(ii) For all ε > 0 there is C such that η(C) < ε, C ⊂ F (C) = E, A ∩ C = ∅.

Proof: (i) Let E = F (A). If µ(E) = 0, the result is immediate. Thus, assume µ(E) > 0

and A ∈ CE . If η(A) ≥ µ(F ) we can find a sequence Fn ∈ E such that A � Fn and

limµ(Fn) ≥ µ(F ). Since µ is nonatomic, we can choose this sequence so that Fn ⊂ Fn+1.

Hence, by Lemma B1(iii), A �
⋃
Fn � F , establishing A � F . The converse follows from

the definition of ηE .

(ii) If µ(E) = 0 the result is immediate. Hence, assume µ(E) > 0. Then, by Lemma

B4(i), E � A. By Axiom 4, there is a partition C1, . . . , Cn of Ω such that Cn\A ∼= A. By

Lemma B4(ii), it follows that B̂n := (Cn∩E)\A ∈ CE , and, by Lemma B4(iii), A∪B̂n ∈ CE .
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Let B1 = B̂1. Replacing A with A ∪ B1 and repeating the argument yields B2 ∈ CE such

that (A∪B1)∩B2 = ∅, B2 ∈ CE and A∪B1 ∪B2 ∈ CE . Continuing in this fashion, we get

a sequence of pairwise disjoints set Bn such that Bn ∈ CE and Bn ∈ E1\A for all n. Since

Bn ∈ CE , it follows that E = F (Bn) for all n. By part (i) the sequence η(Bn) is bounded.

If lim η(Bn) = 0, we are done. Otherwise, η(Bnj ) ≥ ε > 0 for some subsequence Bnj .

Assume, without loss of generality, that this subsequence is Bn and let An =
⋃
i≥nBn.

Then, by Lemma B4(iii), An ∈ CE . Also, by monotonicity, An � E for any E such that

µ(E) ∈ (0, ε) and, therefore, by Axiom 5,
⋂
An � E. But

⋂
An = ∅ and hence we have a

contradiction.

Lemma B6: Let A,B ⊂ F (B) = F (A) = E, 1/3 ≥ µ(E), and let F, F ′ ∈ Ec. Then,

F, F ′ ⊂ Ec implies A ∪ F � B ∪ F ′ if and only if η(A) + µ(F ) ≥ η(B) + µ(F ′).

Proof: If E is null, the Lemma follows from the fact that µ represents � on E . Assume,

therefore, E is not null. Then, E ⊂ Gc and A,B ∈ CE . First, we show that A ∪ F � B

implies η(A) + µ(F ) ≥ η(B). Choose F ∗ ⊂ Ec such that η(B) = µ(F ∗). If µ(F ) ≥ µ(F ∗),

we get η(A)+µ(F ) ≥ η(B) immediately. Otherwise, since µ is non-atomic, we may assume

F ⊂ F ∗. Since F\F ∗ ∈ Ec, A ∪ F � B � F ∗ (by Lemma B5(i)), it follows from Axiom 3

that A � F ∗\F ∗∗. By Lemma B5(i) this implies η(A) ≥ µ(F ∗\F ∗∗) = η(B) − µ(F ∗∗) as

desired.

Next, we show that A � B ∪ F ′ implies η(A) ≥ η(B) + µ(F ′). By Lemmas B4(i) and

B5(i), it follows that η(A) < 1/3. Therefore µ(F ′) < 1/3 and, since µ is non-atomic, we

can choose F ∗ ⊂ Ec, F ∗ ∩ F ′ = ∅ such that η(B) = µ(F ∗). Then, B ∼ F ∗ and hence

B ∪ F ′ ∼ F ∗ ∪ F ′ and therefore η(A) ≥ µ(F ∗) + µ(F ′) = η(B) + µ(F ′).

Next, we show that η(A) + µ(F ) ≥ η(B) implies A∪ F � B. Suppose η(A) + µ(F ) ≥

η(B) and A ∪ F 6� B. By Lemma B4(ii), A ∪ F ∼= B, and, therefore, we must have

B � A ∪ F . Then, by Lemma B4(v), there is F ′′ > 0 such that (A ∪ F ) ∩ F ′′ = ∅,

µ(F ′′) > 0 and B � A ∪ F ′ ∪ F ′′. Then, the part of the this lemma that we have already

proven yields η(B) ≥ η(A) + µ(F ∪ F ′′). Hence, η(B) > η(A) + µ(F ), a contradiction.

Next, we show that η(A) ≥ η(B) + µ(F ′) implies A � B ∪ F ′. Suppose η(A) ≥

η(B) + µ(F ′) and A 6� B ∪ F ′. Then, arguing as above, we conclude that B ∪ F ′ � A and
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hence, by Lemma B4(v), B ∪ F ′ � A∪ F ′′ for some F ′′ ⊂ Ec such that µ(F ′′) > 0. Then,

since µ(F ′) < 1/3 by the argument above, we can assume that F ′ and F ′′ are nested. If

F ′ ⊂ F ′′, then we get B � A ∪ (F ′′\F ′) and then, part of the this lemma that we have

already proven yields η(B) > η(A), a contradiction. Similarly, if F ′′ ⊂ F ′, then we have

B ∪ (F ′\F ′′) � A and hence η(B) + µ(F ′) > η(B) + µ(F ′\F ′′) ≥ η(A), a contradiction.

Finally, to complete the proof assume F, F ′ are nested. Since µ is nonatomic, we

can do so without loss of generality. Then, if F ⊂ F ′, A ∪ F � B ∪ F ′ if and only if

A � B ∪ (F ′\F ). If F ′ ⊂ F ′′ then A ∪ F � B ∪ F ′ if and only if A ∪ (F\F ′) � B. Then,

the arguments given above prove the Lemma.

Lemma B7: Let Ai ∈ F (Ai) for i = 1, . . . , n such that F (Ai) ∩ F (Aj) = ∅ for i 6= j.

Then, η(
⋃
Ai) =

∑
η(Ai).

Proof: We will prove the result for n = 2; then the general case follows from an inductive

argument. Let Ei = F (Ai). If µ(E1 ∩ Gc)µ(E2 ∩ Gc) = 0 the result is immediate. Thus,

assume µ(E1)µ(E2) > 0 and E1, E2 ⊂ Gc. Since µ is non-atomic and µ(Ei) ≥ η(Ai) by

Lemma B4(i) we may choose E∗i ⊂ Ei such that η(Ai) = µ(E∗i ). Let Bi = Ei\Ai and

Fi = E\E∗i .

To prove η(A1 ∪ A2) ≥ η(A1) + η(A2), note that F (A1 ∪ A2) = F (A1) ∪ F (A2) by

Lemma A2. By Lemma B5(i), Ai � E∗i . Note that A1, A2 and E∗1 , A2 are conforming

pairs and, therefore, Axiom 3 implies that A1∪A2 � E∗1 ∪A2. Since E∗2 is unambiguous it

follows that E∗1 ∪A2 � E∗1 ∪E∗2 and, by transitivity, A1∪A2 � E∗1 ∪E∗2 . We conclude that

A1∪A2 � A1∪E∗2 � E∗1∪E∗2 . Lemma B5(i) therefore implies η(A1∪A2) ≥ µ(E∗1 )+µ(E∗2 ) =

η(A1) + η(A2).

To prove the converse, note that (by Axiom 3) for E′i ⊂ Ei, A1 ∪E′2 � E′1 ∪E′2 if and

only if A1 � E′1. The definition of E∗i therefore implies that W (A1 ∪ E∗2 ) = W (E∗1 ∪ E∗2 ).

If A1∪A2 � E∗1 ∪E∗2 , then, by calibration, W (A1∪A2) ⊃W (E∗1 ∪E∗2 ) = W (A1∪E∗2 ) with

a strict inclusion and, therefore, A1 ∪ E∗2 6� A1 ∪ A2. Since A1 ∪ A2 � A1 ∪ E∗2 , it follows

(from Lemma B1(i)) that A1 ∪ A2 � A1 ∪ E∗2 . By Axiom 3, this, in turn, implies that

A2 � E∗2 . Then, by calibration, there exists E′ such that µ(E′) > µ(E∗2 ) and A2 � E′,

contradicting η(A2) = µ(E∗2 ).
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Lemma B8: If A ∩B = ∅ then η(A) + η(B) = η(A ∪B).

Proof: If A or B are null the result is trivial. Thus, assume that A and B are non-null.

Claim 1: If 0 < µ(E) ≤ 1/3 and F (A) = F (B) = E,A ∪ B ∈ CE then η(A ∪ B) =

η(A) + η(B).

To prove that η(A)+η(B) ≥ η(A∪B). Choose F ∗ ⊂ Ec such that µ(F ∗) = η(B). By

part (i), A ∪ F ∗ � A ∪ B if and only if η(A) + η(B) = η(A) + µ(F ∗) ≥ η(A ∪ B). Hence,

it suffices to show that A ∪ F ∗ � A ∪ B. If A ∪ F ∗ 6� A ∪ B then, since A ∪ F ∗ ∼= A ∪ B

(by Lemma B4(ii)) it follows from Lemma B1(v) that A ∪B � A ∪ F ∗. Then, by Lemma

B4(iv), A ∪ B � A ∪ C ∪ F ∗ for some C ∈ CE such that A ∩ C = ∅ and A ∪ C ∈ CE . Let

Â = (A ∪B)\B and note that C ∪ Â ∈ CE . Therefore, B ∼= A ∪B ∼= (A\Â) ∪C. Axiom 3

then implies that (A ∪ B)\Â = B � (A\Â) ∪ C ∪ F ∗ � C ∪ F ∗ (by monotonicity). From

part (i) it now follows that η(B) > µ(F ∗), a contradiction.

Next, we show that η(A ∪ B) ≥ η(A) + η(B) if A ∪ B = ∅. If not, then choose

F ∗ ⊂ EcE such that η(A ∪B) = µ(F ∗) + η(A). It follows that A ∪ F ∗ � A ∪B by part(i).

Since A ∩ B = ∅, A ∪ B ∼= A, Axiom 3 implies that F ∗ � B. Choose C ∈ CE such that

η(C) < η(B) + η(A) − η(A ∪ B), A ∩ C = ∅ and A ∪ C ∈ CE . By Lemma B5(iii) this is

possible. By monotonicity, A∪F ∗ 6� A∪C ∪F ∗ and, since A∪F ∗ ∼= A∪C ∪F ∗, it follows

that A∪C ∪F ∗ � A∪F ∗ and, therefore, Lemma B1(i) implies that A∪C ∪F ∗ � A∪F ∗.

Thus, (again by Axiom 3), C ∪ F ∗ � F ∗ � B. Then, part (i) implies η(C) + µ(F ∗) ≥

η(B) = µ(F ∗) + η(A) + η(B)− η(A ∪B) > µ(F ∗) + η(C), a contradiction.

Claim 2: If 0 < µ(E) ≤ 1/3 and F (A) = F (B) = E,A ∪ B = E then η(A ∪ B) =

η(A) + η(B).

First, we show that η(A) + η(B) ≤ η(E). By Lemma B5(ii), we can choose a set

C ∈ CE such that C ⊂ B, A ∪ C ∈ CE and η(C) < ε. Hence, E ∩ (A ∪ C)c = B\C ∈ CE
and E ∩ Cc = A ∪ (B\C) ∈ CE . By claim 1 of this lemma, η(B) = η(B\C) + η(C) and

η(A ∪ (B\C)) = η(A) + η(B\C). Hence, η(A) + η(B) < η(A ∪ (B\C)) + ε. Therefore,

η(A) + η(B)− ε < supD∈CE η(D). Since ε is arbitrary, the result follows.

Next, choose anyD ∈ CE such that η(D) > η(E)−ε. Let C1 = A∩D,C2 = B∩D,C3 =

A∩ (E\D), C4 = B ∩ (E\D) and C5 = Ec and let {Eκ} for ∅ 6= κ ⊂ {1, . . . , 5} be a µ-split

of C1, . . . , C5. Since Ec ∈ E , Eκ is null for all κ such that 5 ∈ κ, κ 6= {5}. Hence, we ignore
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these elements of the µ-split and assume E5 = Ec; that is, we can find an alternative

µ-split in which all these sets are empty and E5 = Ec. Let F1, . . . , Fm be the nonnull

elements of the µ-split Eκ for κ such that 5 /∈ κ and, therefore, F1, . . . , Fm is a partition

of E. Since A,B,D ∈ CE , Lemma B4(v) implies that A ∩ Fi, B ∩ Fi, D ∩ Fi ∈ CFi for all

i. By Lemma B7, η(A) =
∑
i η(A∩ Fi), η(B) =

∑
i η(B ∩ Fi) and η(D) =

∑
Fi
η(D ∩ Fi).

Since D ⊂ A ∪ B it follows that D ∩ Fi = (D ∩ A ∩ Fi) ∪ (D ∩ B ∩ Fi) for all i. So,

η(D ∩ Fi) ≤ η(A ∩ Fi) + η(B ∩ Fi) for all i. Hence, η(D) ≤ η(A) + η(B) and therefore,

supD∈CE η(D) ≤ η(A) + η(B). This proves claim 2.

To complete the proof of the Lemma, let A = A1 ∪ A2, A3 = Ac and let {Eκ} be a

µ-split of A1, A2, A3. By Lemma A2(iv), E(A) = E(A1) ∪ E(A2) ∪ E12 = E1 ∪ E2 ∪ E12,

and F (A) = E13 ∪ E23 ∪ E123. Let F1, F2, F3 be a partition such that µ(Fi) = 1/3 for all

i and define {Eiκ} = Eκ ∩ F i ∩Gc. Then, for all i = 1, 2, 3, Claim 2 implies that

η(Ei12) = η(Ei12 ∩A1) + η(Ei12 ∩A2)

and, similarly, for all i = 1, 2, 3, Claim 1 implies that

η(Ei123 ∩A) = η(Ei123 ∩A1) + η(Ei123 ∩A2)

Note that Ei1 ⊂ A1, E2 ⊂ Ei2, B ∩ E13 = A ∩ E23 = ∅. Therefore, Lemma B7 and the two

display equations above imply that

η(A ∩ Fi) = η(Ei1) + η(Ei12 ∩A1) + η(Ei123 ∩A1) + η(E2) + η(Ei12 ∩A2) + η(Ei123 ∩A2)

= η(A1 ∩ Fi) + η(A2 ∩ Fi)

where the second equality follows from Lemma A2 (iii). A further application of Lemmas

A2 (iii) and B7 then yields

η(A) =
3∑
i=1

η(A ∩ Fi) =
3∑
i=1

η(A1 ∩ Fi) + η(A2 ∩ Fi) = η(A1) + η(A2)

as desired.

Lemma B9: η is countably additive and non-atomic.
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Proof: It is enough to establish that An+1 ⊂ An,
⋂
An = ∅ implies lim η(An) = 0. Let

En = E(An) and Fn = F (An). Clearly, En+1 ⊂ En, Fn+1 ⊂ Fn for all n. If limµ(En) > 0,

then countable additivity of µ yields µ(
⋂
En) = limµ(En) > 0. Hence, ∅ 6=

⋂
En ⊂

⋂
An,

a contradiction. Since η(E) ≤ µ(E), it follows that lim η(En) = 0. It remains to show that

lim η(An ∩ Fn) = 0.

Let F =
⋂
n Fn. If µ(F ) = 0 then, since η(An ∩ Fn) ≤ µ(Fn) and limµ(Fn) = 0 the

result follows. Thus, assume that µ(F ) > 0. Since η(A) = η(A ∩Gc) we may assume that

F ⊂ Gc. By Lemma B8, η(An∩Fn) = η(An∩F )+η(An∩(F\Fn)) ≤ η(An∩F )+η(F\Fn).

Let N be such that µ(FN\F ) < ε. Then, η(An ∩ Fn) ≤ η(An ∩ F ) + ε for n > N . Let

Gn ∈ E be such that µ(Gn) = η(An ∩F ). Then, An ∩F � Gn for all n. Let µ(G) = δ > 0.

If η(An ∩ F ) ≥ δ, for all n, then, by Axiom 5,
⋂
n(An ∩ F ) = ∅ � G. It follows that

η(An ∩ F )→ 0.

To see that η is nonatomic, note that by definition, η(A) > 0 implies η(E(A)) =

η(E(A)∩Gc) > 0 or η(F (A)) > 0 (and F (A) ⊂ Gc). In the first case, nonatomicity follows

from Lemma B5(ii). In the second case, let B = E\A and note that B ∈ CF (A). Then,

Lemma B5(ii) implies the result also in this case.

Let

π(A) = max
E∈[A]

µ(E) + min
E∈[A]

η(A\E)

Lemma B10:

(i) If A ⊂ E and B ∩ E = ∅, then π(A ∪B) = π(A) + π(B).

(ii) If µ(E) = η(E), then µ(F ) = η(F ) for all F ⊂ E.

(iii) If µ(E) = η(E), A1 ∪A2 ⊂ E, A1 ∩A2 = ∅, then π(A1 ∪A2) = π(A1) + π(A2).

Proof: (i) This follows from Lemma B9 and the additivity of µ.

(ii) By Lemma B4(i), η(E′) ≤ µ(E′) for all E′. By definition, η(E) = η(E ∩ Gc).

Then, η(E ∩ Gc) ≤ µ(E ∩ Gc) = µ(E) − µ(E\Gc). So, µ(E\Gc) = 0. Hence, we may

assume without loss of generality that E ⊂ Gc. Let E∗ = E\F . Since µ is additive, µ(E) =

µ(F ) + µ(E∗). Lemma B9 implies that η(E) = µ(E) = η(F ) + η(E∗) ≤ η(F ) + µ(E∗).

Therefore, µ(F ) = η(F ) as desired.
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(iii) Without loss of generality we may assume that A ∪ B ⊂ E ⊂ Gc. Let A =

A1 ∪ A2, A3 = Ac and let {Eκ} be a µ-split of A1, A2, A3. Then, by Lemma A2(iii),

E(A) = E(A1) ∪ E(A2) ∪ E12 = E1 ∪ E2 ∪ E12 and F (A) = E13 ∪ E23 ∪ E123. From the

definition of π and the additivity of µ and η it follows that

π(A) = µ(E1) + µ(E2) + µ(E12) + η(A ∩ E13) + η(A ∩ E23) + η(A ∩ E123)

π(A1) = µ(E1) + η(A1 ∩ E12) + η(A1 ∩ E13) + η(A1 ∩ E123)

π(A2) = µ(E2) + η(A2 ∩ E12) + η(A2 ∩ E23) + η(A2 ∩ E123)

Since (A1∩E12)∪(A2∩E12) = E12 it follows from Lemma B8(ii) that η(A1∩E12)+η(A2∩

E12) = η(E12) and, by part (ii), η(A1 ∩E12) + η(A2 ∩E12) = µ(E12). The additivity of η

then implies the result.

Lemma B11:

(i) π(A) = max{µ(E) |A � E}.

(ii) π represents �.

(iii) (µ, E) and (η,Σ) are compatible.

Proof: (i) If A ∈ E , then π(A) = µ(E) and hence the result is obvious. Suppose A /∈ E

Then, A = E(A) ∪ (A ∩ F (A)) and π(A) = µ(E(A)) + η(A ∩ F (A)) and F (A) ⊂ Gc. Let

a = sup{µ(E) |A � E} let En be such that En ⊂ En+1,
⋃
En = E, µ

(⋃k
n=1En

)
< a and

lim (
⋃
En) = a. Then, A �

⋃k
n=1En for all k and hence

(⋃k
n=1En

)c
� Ac by consistency

and therefore Ec = (
⋂
En)

c � Ac by Axiom 5. Hence, A � E, again by consistency.

Note that µ(E(A) ∪ F (A)) > µ(E) ≥ µ(E(A)). Therefore, we may choose E such that

E(A) ⊂ E ⊂ E(A) ∪ F (A). Since A � E, we have A ∩ F (A) � E\E(A). Therefore,

η(A ∩ F (A)) ≥ µ(E)− µ(E(A)) and π(A) ≥ a.

If π(A) > a, then we can find F such that F ⊂ E(A)∪F (A), µ(F ) > a and E(A)∪(A∩

F (A)) � F . Hence A ∩ F (A) � F\E(A). That is, η(A) > π(A)− µ(E(A)), contradicting

the definition of π. This completes the proof of (i).

For (ii), suppose A � B, then by consistency W (B) ⊂ W (A) and W (Ac) ⊂ W (Bc).

Take E,F such that π(B) = µ(E) and π(Ac) = µ(F ). By part (i), E and F are well-

defined. Then, by calibration, A � E and Bc � F and hence π(A) ≥ µ(E) = π(B) and
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π(Bc) ≥ µ(F ) = π(Ac). For the converse, suppose π(A) ≥ π(B) and π(Bc) ≥ π(Ac).

Then, take F such that µ(F ) = π(A). By part (i), A � F . Then, B � E implies

µ(F ) ≥ µ(E) and hence A � F � E. Hence, W (B) ⊂ W (A). The same argument

establishes that W (Ac) ⊂W (Bc) and hence A � B by calibration.

For (iii), note that η(E) = η(E ∩Gc) by construction. If η(E ∩Gc) = 0, we are done.

Otherwise, let E0 = E ∩Gc. By definition, η(E ∩Gc) = η(E0). Lemma B4(i) implies that

η(E0) ≤ µ(E0). To conclude the proof, we will show that this inequality is strict. Pick

any A ∈ CE0 . Then, by Lemma B9, η(E0) = η(A) + η(B) for B := E0\A. To conclude

the proof, we will show that if η(A) = µ(E0)− η(B), then A ∈ E , which would contradict

the fact that A ∈ CE0
. To prove this, we will show that ηE0

(A) = µ(E0) − ηE0
(B) and

(C∪D)∩A = ∅ implies [π(C) ≥ π(D), π(Dc) ≥ π(Cc)] if and only if [π(C∪A) ≥ π(D∪A),

π(Dc ∩Ac) ≥ π(Cc ∩Ac)] and appeal to part (ii) of this lemma.

Note that π(C∪A) = π(((C∪A)∩E0)∪(C∪A)∩Ec0) = π((C∪A)∩E0)+π((C∪A)∩Ec0)

by Lemma B10(i). By Lemma B10(iii), π(C ∪ A) = π(C ∩ Ec0) + π(C ∩ E0) + π(A ∩ E0).

Thus, by Lemma B10(i), we have (a) π(C ∪ A) = π(C) + π(A). Similarly, π(Cc) =

π(Ec0 ∩ Cc) + π(Cc\Ec) = π(A) + π(B ∩ Cc) + π(Cc\Ec) = π(A) + π(Ac ∩ Cc); that is,

(b) π(Cc) = π(A) + π(Ac ∩ Cc). But, (a) and (b) imply [π(C) ≥ π(D), π(Dc) ≥ π(Cc)] if

and only if [π(C ∪A) ≥ π(D ∪A), π(Dc ∩A) ≥ π(Cc ∩Ac)] as desired.

Proof of Proposition 2: Let Eo be the set of �-unambiguous events. Since π and π̂ both

represent �, E ⊂⊂ Eo and Ê ⊂ Eo. By Proposition 1, Eπ = E and Eπ̂ = Ê . Suppose there

is A ∈ E\Ê . Then π̂(A) < 1− π̂(Ac). Choose E ∈ Ê such that π̂(A) < π̂(E) < 1− π̂(Ac).

Then, A ∈ Eo, A 6� E and E 6� A contradicting Axiom 2. Hence E = E∗. Then, familiar

arguments from the uniqueness of subjective probability in the Savage setting ensure that

µ = µ∗.

Next, assume w.l.o.g. that η(A) > η̂(A) for some A. Choose E such that η(A) >

µ(E) = µ̂(E) > η̂(A). Since π represents �, we have A � E. Since π̂ represents �, we

have A 6� E, a contradiction.
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8. Appendix C: Proof of Propositions 3 and 4

Proof of Proposition 3: The ‘only if’ part of the representation theorem is straightfor-

ward and, therefore, omitted. Let � be a QUA and let π be the capacity that represents

it. Let π̄ be the ‘dual’ of π, that is, π̄(A) = 1 − π(Ac). Note that Ω � A for all A and,

therefore, by (Ao), for every A there exists E such that E ∼o A. Define ρ : I → IR as

follows:

ρ(a, b) = π(E) such that E ∼o A and (a, b) = (π(A), π̄(A))

First, we will show that ρ is well defined. Let A,B be such that π(A) = π(B), π̄(A) = π̄(B).

Then, since π represents �, we have A ∼ B and since �o is an extension of �, we have

A ∼o B. Hence, ρ is well defined.

Next, we will show that ρ is continuous. Let (an, bn) ∈ I be a convergent sequence

and let (a, b) ∈ I be its limit. Consider a convergent subsequence of ρ(an, bn) and let r

be its limit. If r > ρ(a, b), then, since � is represented by an uncertainty measure, there

is E∗ such that π(E∗) = ρ(a, b)/2 + r/2. Then, by (Ao), there exists E,A such that

(π(A), π̄(A)) = (a, b) and A ∪ E ∼o E∗ and therefore, ρ(A ∪ E) = ρ(a, b)/2 + r/2. Since

Ac ∩ E is not null, it follows that π(A ∪ E) > a, π̄(A ∪ E) > b. Then (C) implies that

ρ(an, bn) ≤ ρ(a, b)/2 + r/2 for large n, yielding the desired contradiction. If ρ(a, b) > r,

then, arguing as above, we can find E,A such that (π(A), π̄(A)) = (a, b) and ρ(A ∩ E) =

ρ(a, b)/2 + r/2. Since Ac ∩ E is not null, it follows that π(A ∩ E) < a, π̄(A ∩ E) < b.

Then (C) implies that ρ(an, bn) ≥ ρ(a, b) + r/2 for large n, again yielding the desired

contradiction.

To conclude the proof of sufficiency, we will prove that ρ is either strict, maximally

ambiguity averse, or maximally ambiguity loving. If � is maximally ambiguity averse

(loving), then (C) implies ρ(π(A), π̄(A)) = π(A) (π̄(A)). Hence, ρ is maximally ambiguity

averse (loving). That ρ is strict if �o is strict is immediate.

Finally, to prove the uniqueness of the representation, let (π, ρ) and (π′, ρ′) be two

representations of the preference �o such that π = (µ, η) and π′ = (µ′, η′). We will first

show that µ = µ′ and η = η′. Let E = Eµ, E ′ := Eµ′ . First, we show that E = E ′.

Assume A ∈ E ′, A 6∈ E . Let E1, E12, E2 be a µ-split of A. That is, E1 ⊂ A is the

maximal (µ, η)-unambiguous subset of A; µ(A∩E12) = µ(E12\A) = 0, and A ⊂ E1 ∪E12.
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Let B := E12\A. Partition E12 into two subsets F1, F2 ∈ E and partition B into two

subsets B1, B2 such that η(Bi ∩ Fk) = η(Bj ∩ Fl) = α > 0 for all i, j ∈ {1, 2}, k, l ∈ {1, 2}.

Since µ and η are non-atomic, it is straightforward to show that such a partition exists.

Then, let

C1 := (B1 ∩ F1) ∪ (B2 ∩ F1)

C2 := (B1 ∩ F1) ∪ (B2 ∩ F2)

Note that

π(C1) = π(C2) = 2α

1− π(Cc1) = 2α+ µ(F1)− η(F1)

1− π(Cc2) = 1− π(Cc1) + µ(F2)− η(F2)

Therefore, π(C1) = π(C2) and 1− π(Cc2) > 1− π(Cc1). Next, note that

π(A ∪ C1) = π(A ∪ C2) + (µ(F1)− η(F1))

π([A ∪ C1]c) = π([A ∪ C2]c)

Thus, if ρ is strictly increasing in the lower bound, then A∪C1 �o A∪C2 while C2 �o C1

whereas if ρ is strictly increasing in the upper bound, then C2 �o C1 but A∪C1 �o A∪C2.

In either case, we obtain a contradiction to the fact that A ∈ E ′ and, hence, unambiguous.

We conclude that E = E ′. For all E,F ∈ E , we have E �o F if and only if µ(E) ≥ µ(F )

if and only if µ′(E) ≥ µ′(F ). The uniqueness of the probability representation in Savage’s

theorem then implies that µ = µ′.

Given the unique µ, let (G,Gc) be an essential partition of Ω; recall that G ∈ E is

whole and Gc is blank. If µ(Gc) = 0, then we are done since η = η′ = 0. Thus, assume

µ(Gc) > 0 and let C = {D : µ∗(D) = 0 = µ∗(G
c\D)}. By the definition of an essential

partition, C is not empty. Partition Gc into two subsets G1, G2 such that µ(G1) = µ(G2).

Consider any A ⊂ G1 such that µ∗(A) = 0. Choose D ∈ C such that D ∩ A = ∅. Let

D1 = G1 ∩D. Let F ∈ E , F ⊂ G2 be such that F ∪D1 ∼o A ∪D1. Note that

π(A ∪D1) = η(A) + η(D1)

π(F ∪D1) = µ(F ) + η(D1)

1− π([A ∪D1]c) = 1− π(Dc
1) + η(A)

1− π([F ∪D1]c) = 1− π(Dc
1) + µ(F )
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Therefore, F ∪D1 ∼o A ∪D1 implies that µ(F ) = η(A). The same argument shows that

µ(F ) = η′(A). Thus, it follows that η(A) = η′(A) for all A ⊂ G1 such that µ∗(A) = 0.

For an arbitrary A ⊂ G1, let Cn ∈ C such that η(Cn) ≤ 1/n and define Dn = Cn ∩ G1.

By Lemma 4(ii), Cn exists for all n. Moreover, µ∗(Dn) = µ∗(A\Dn) = 0 and, therefore,

η(A\Dn) = η′(A\Dn) and η(Dn) = η′(Dn). Since,

η(A\Dn) ≤ η(A) ≤ η(A\Dn) + η(Dn)

η′(A\Dn) ≤ η′(A) ≤ η′(A\Dn) + η′(Dn)

it follows that |η(A) − η′(A)| ≤ η(Dn) ≤ 1/n. Since this inequality holds for all n, it

follows that η(A) = η′(A), for all A ⊂ G1. Note that, by symmetry, the same argument

shows that η(A) = η′(A) for all A ∈ G2. Since η(A) = η(A ∩ G1) + η(A ∩ G2) and

η′(A) = η′(A ∩G1) + η′(A ∩G2) it follows that η = η′, as desired.

Let (a, b) = (π(A), π̄(A)) = (π′(A), π̄′(A)). Choose E ∈ E = E ′ such that A ∼o E.

Hence, ρ(a, b) = π(E) = π′(E) = ρ′(a, b) proving that ρ = ρ′.

Proof of Proposition 4: Let (a, b) be such that b > a and assume Lρ > Lρ̂. Hence,

α :=
Lρ(a, b)

1 + Lρ(a, b)
>

Lρ̂(a, b)

1 + Lρ̂(a, b)
=: α̂

Let β ∈ (α̂, α). Let a′(ε) = a+ (1− β)ε, b′(ε) = b− βε. Note that

lim
ε→0

ρ(a, b)− ρ(a′(ε), b′(ε))

ε
= ρ1(a, b)(1− β)− ρ2(a, b)β

lim
ε→0

ρ̂(a, b)− ρ̂(a′(ε), b′(ε))

ε
= ρ̂1(a, b)(1− β)− ρ̂2(a, b)β

Since β > α̂, 0 > ρ̂1(a, b)(1−β)− ρ̂2(a, b)β and since β < α, ρ1(a, b)(1−β)−ρ2(a, b)β > 0.

Therefore, ρ̂ is not more ambiguity averse than ρ proving necessity of the condition for all

(a, b) such that b > a.

To prove sufficiency, first assume that both ρ and ρ̂ are strict. Let a ≤ a′ ≤ b′ ≤ b

and ρ(a′, b′) ≥ ρ(a, b). By the monotonicity and continuity of ρ, we may choose (a∗, b∗) ≤

(a′, b′) such that ρ(a∗, b∗) = ρ(a, b). For c ∈ (a, a∗), let f(c) ∈ [0, 1] be real number
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such that ρ(c, f(c)) = ρ(a, b). Note that f is a continuously differentiable function and

f ′ = −ρ1/ρ2. Since ρ2 > 0, f ′ is well defined. Therefore,

ρ(a∗, b∗)− ρ(a, b) =

∫ a∗

a

[ρ1(c, f(c)) + ρ2(c, f(c)]f ′(c)dc = 0

By assumption ρ̂1(a, b)/ρ̂2(a, b) ≥ ρ1(a, b)/ρ2(a, b) and, therefore,

ρ̂(a∗, b∗)− ρ̂(a, b) =

∫ a∗

a

[ρ̂1(c, f(c)) + ρ̂2(c, f(c)]f ′(c)dc ≥ 0

Then, monotonicity implies ρ̂(a′, b′) ≥ ρ̂(a, b), as desired.

If ρ̂ is maximally ambiguity averse, then ρ̂(a′, b′) ≥ ρ̂(a, b) for all (a′, b′) such that

a′ ≥ a and hence there is nothing to prove. If ρ is maximally ambiguity averse, then

Lρ̂ ≥ Lρ implies ρ̂ is also maximally ambiguity averse and again we are done. Similarly,

if ρ is maximally ambiguity loving, there is nothing to prove; if ρ̂ is maximally ambiguity

loving, then Lρ̂ ≥ Lρ implies ρ is also maximally ambiguity loving and again, we are done.

9. Appendix D: Proof of Theorem 2

Assume that �∗ is a sophisticated extension of � (that is, �∗ satisfies (X) and (WS))

and, in addition, satisfies (A), (S) and (P4). Let π be the uncertainty measure that

represents �. In particular, π(E) = µ(E) for every �-unambiguous E. Let E be the set of

�-unambiguous events and let Fe be the set of all E-measurable acts.

Step 1: (Monotonicity) If y > x, then π(A) = 0 implies yAh ∼∗ xAh and π(A) > 0

implies yAh �∗ xAh.

Proof: If π(A) = 0, then, for B = ∅, we have zBw(A∪B)w = w ∼∗ zAw = zAw(A∪B)w

since �∗ is an extension of �. Then, (WS) yields xAh = yBx(A∪B)h ∼∗ yAx(A∪B)h =

yAh. If π(A) > 0, we have zBw(A∪B)w 6�∗ zAw(A∪B)w, since �∗ is an extension of �

and B = ∅. Then, (WS) implies yBx(A ∪ B)h 6�∗ yAx(A ∪ B)h and hence xAh 6�∗ yAh;

that is, yAh �∗ xAh.

Step 2: There exists a strictly increasing, continuous and onto utility index u : X → [0, 1]

such that u−1(π(E)) ∼∗ zEw.
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Proof: By (A) there exists E such that x ∼∗ zEw. Let u(x) = π(E). By (X), zEw ∼∗

zFw if and only if π(E) = π(F ). So, u is well-defined. Suppose y > x and y ∼∗ zEw,

x ∼∗ zFw. Then, by Step 1, y �∗ x and, therefore, zEw �∗ zFw. It follows that E � F

and therefore π(E) > π(F ), proving that u is strictly increasing. For any α ∈ [0, 1], we

may choose E such that µ(E) = α. By (A), there is x such that x ∼∗ zEw. Therefore, u

is onto. To conclude the proof of Step 2, we note that a strictly increasing, onto function

from a one compact interval to another must be continuous.

Step 3: For all 0 < a ≤ b ≤ 1, there is x(a, b) ∈ [0, 1] such that E ⊂ F , π(F ) = b,

π(E) = a implies x(a, b)Fh ∼∗ (zEw)Fh for all h.

Proof: Let x(a, b) = x such that xFw ∼∗ zEw. Let E′, F ′ be two other unambiguous sets

such that π(E′) = a and π(F ′) = b. By (X) and (P4), xF ′w ∼∗ xFw and zE′w ∼∗ zEw.

Therefore, the x above only depends on a and b, not on the specific choice of E,F . Then,

(S) yields x(a, b)Fh ∼∗ (zEw)Fh for all h and E,F such that π(E) = a, π(F ) = b.

A real number b is dyadic if b = k2−n for some integers k, n.

Step 4: For all 0 < a ≤ b ≤ 1, x(a, b) = u−1(a/b).

Proof: First, we will show that if b = 2−n for some integer n, E ⊂ F and π(E) = ab,

then u−1(a)Fh ∼∗ (zEw)Fh. If n = 0, then the result follows from Step 2. Next, suppose

the result holds for n and assume π(F ) = b = 2−n−1. Let F1 = F and partition F c into

2n+1 sets, F2, . . . , F2n+1 such that π(Fi) = 2−n−1. Since π is nonatomic, this can be done.

Then, set E1 = E and for each i = 2, . . . , 2n+1 choose Ei ⊂ Fi such that π(Ei) = ab. Let

h(s) = z if s ∈
⋃
Ei and h(s) = w otherwise, Then, by Step 3,

h ∼∗ x(ab, b)F1h ∼∗ x(ab, b)(F1 ∪ F2)h

which, in turn, implies that x(ab, b) = x(2ab, 2b). By the inductive hypothesis, x(2ab, 2b) =

u−1(ab) and hence x(ab, b) = u−1(a) as desired. Extending the result to arbitrary dyadic b’s

is straightforward. To conclude the proof, we will show that the result holds for arbitrary

b. Suppose x(ab, b) < u−1(a) and choose a dyadic number d such that

u(x(ab, b)) · b+ (b− a) < d < b
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Then, choose E′ ⊂ E ⊂ F such that π(E) = a, π(F ) = b and c := π(E′) = d − b + a.

Let F ′ = (F\E) ∪ E′. Note that π(F ′) = d and hence F ′ is dyadic and conclude that

x(c, d) = u−1(c/d). Hence, we have

(x(c, d)F ′z)Fw ∼∗ x(a, b)Fw

Our choice of E′, E, F ′ and F yields u(x(c, d)) > u(x(a, b)) and hence x(c, d) > x(a, b)

which means (x(c, d)F ′z)Fw yields a strictly larger prize at every state in F than x(c, d)Fw

which given monotonicity, contradicts the display equation above. A symmetric argument

yields a contradiction for x(a, b) > u−1(a/b).

Let E(uf) =
∫
u ◦ fdπ for all f ∈ Fe.

Step 5: f �∗ g if and only if E(uf) ≥ E(ug) for all f, g ∈ Fe.

Proof: The proof is by induction on the cardinality of the set {x ∈ (w, z) |π(f−1(x)) > 0}.

Let n(f) denote this cardinality. If n(f) = 0, then the result follows from Step 2 and the

definition of u. Suppose the result holds for all f ′ such that n(f ′) = n and assume

n(f) = n + 1. Let F = f−1(y) and pick any y ∈ {x ∈ (w, z) |π(f−1(x)) > 0}. By (A),

there is E ⊂ F such that yFw ∼∗ (zEw)Fw and, by (S), f = yFf ∼∗ (zEw)Ff := g. By

Step 4, E(ug) = E(uf) and, by construction, n(g) = n. Then, the inductive hypothesis

yields f ∼∗ g ∼∗ zE′w for E′ such that π(E′) = E(ug) = E(uf). For the converse, note

that if π(E∗) 6= π(E′), then Step 2 ensures that zE∗w is not indifferent to zE′w and hence

not indifferent to f .

If E = Σ, Step 5 ensures that �∗ has an expected utility representation. Then Cπ =

{π} and choosing any α establishes the desired representation. Henceforth, we assume

that E 6= Σ and choose some G such that (G,Gc) is an essential partition of �.

Step 6: For all E ⊂ Gc, A ∈ CE and F ′ satisfying π(E) > 0, E ∩ F ′ = ∅, there is a

unique βE ∈ [0, 1] such that for all y > x, A ∈ CE , yA ∪ F ′x �∗ yFx if and only if

η(A) + π(F ′) + βE(π(E)− η(E)) ≥ π(F ).

Proof: Let A ∈ CE . By (A) there exists F ∗ such that zA ∪ F ′w ∼∗ zF ∗w. From (X) it

follows that F ∗ 6� A∪F ′ and A∪F ′ 6� F ∗. Since F ∗ is unambiguous, it follows that π(F ∗) ≥
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η(A) + π(F ′) and 1 − π(F ∗) ≥ π((A ∪ F ′)c) = η(E\A) + π((E ∪ F ′)c). Since η(E\A) =

η(E)− η(A), the second inequality simplifies to π(F ∗) ≤ η(A) + π(F ′) + π(E)− η(E). It

follows that there is some βE ∈ [0, 1] such that η(A) + π(F ′) + βE(π(E)− η(E)) = π(F ∗).

Since π(E) > 0, this βE is unique. We have established that z(A∪F ′)w ∼∗ zF ∗w implies

that η(A) + π(F ′) + βE(π(E)− η(E)) = π(F ). Since F ∗ � F if and only if π(F ∗) ≥ π(F ),

Step 6 now follows from (X) and (P4).

Step 7: βE = βF for all E,F ⊂ Gc such that π(E) · π(F ) > 0 and π(E) − η(E) =

π(F )− η(F ).

Proof: Without loss of generality, assume π(E) ≥ π(F ). Choose F ′ ⊂ F c such that

π(F ′) = π(E) − π(F ) and A ∈ CE , B ∈ CF such that η(A) − η(B) = π(F ′). Since

η(E)− η(F ) = π(E)− π(F ) and η is nonatomic, this can be done. Then, note that

π(A) = η(A) = η(B) + π(F ′) = π(B ∪ F ′)

π(Ac) = 1− π(E) + η(E)− η(A) = 1− π(F )− π(F ′) + η(F )− η(B) = π((B ∪ F ′)c)

Hence, A ∼ B ∪ F ′ and, by (X), zAw ∼∗ z(B ∪ F ′)w. By (A) there is F ∗ such that

zAw ∼∗ zF ∗w. By Step 6, η(A) + βE(π(E)− η(E)) = π(F ∗). Since zAw ∼∗ z(B ∪ F ′)w,

Step 6 implies η(B) + π(F ′) + βF (π(F )− η(F )) = π(F ∗). The last two equations, and the

fact that π(E)− η(E) = π(F )− η(F ) > 0 yield βE = βF .

Step 8: For all E,F ⊂ Gc such that π(E) · π(F ) > 0 and E ∩ F = ∅,

βE∪F =
(π(E)− η(E))βE + (π(F )− η(F ))βF

π(E) + π(F )− η(E)− η(F )

Proof: Choose A ∈ CE , B ∈ CF , F1 ⊂ E and F2 ⊂ F such that π(F1) = η(A)+βE(π(E)−
η(E)) and π(F2) = η(B) + βF (π(F ) − η(F )). Then, by Steps 6 and 7, (zAw)Ew =

zAw ∼∗ zF1w = (zF1w)Ew and (zBw)Fw = zBw ∼∗ zF2w = (zF2w)Fw. By (S),

(zAw)E(zBw) ∼∗ (zF1w)E(zBw) ∼∗ (zF1w)E(zF2w) = z(F1 ∪F2)w. Hence, η(A∪B) +

βE∪F (π(E ∪ F ) − η(E ∪ F )) = π(F1 ∪ F2) = π(F1) + π(F2) = η(A) + η(B) + η(π(E) −
η(E)) + βF (π(F )− η(F )). Since η(A ∪B) = η(A) + η(B), the desired result follows.

For all E ⊂ Gc such that π(E) > 0, let ν(E) = π(E)−η(E)
π(Gc)−η(Gc) . Clearly, ν is countably

additive, nonnegative, and ν(Gc) = 1. If follows that ν is a nonatomic probability measure

on the σ-algebra E∗ = {E ⊂ Gc}.
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Step 9: For all E,F ⊂ Gc such that ν(E) · ν(F ) > 0 and ν(E), ν(F ) are both rational,

βE = βF .

Proof: By assumption, there are k, m and n such that ν(E) = k/n and ν(F ) = m/n.

Partition Gc into n sets E1, . . . , En such that ν(Ei) = 1/n for all i. By Step 7, βEi = βEj

for all i, j. Let F1 =
⋃k
i=1Ei and F2 =

⋃m
i=1Ei. By Step 8, βF1

= βE1
= βF2

. Again, by

Step 7, βE = βF1
and βF = βF2

and therefore βE = βF .

Step 10: βE = βF for all E,F ⊂ Gc such that ν(E) · ν(F ) > 0.

Proof: Suppose βE > βF for some E,F ⊂ Gc such that ν(E) · ν(F ) > 0. Then choose

real numbers a, b ∈ (0, 1) such that

(βE − (1− a))/a > βF /b

Since βE > βF such a, b exist. Then choose E′ ⊂ E and F ′ ⊂ F such that ν(E′), ν(F ′)

are both rational and ν(E′) ≥ aν(E), ν(F ′) ≥ bν(F ). By Step 8,

βE = [ν(E′)βE′ + (ν(E\E′)βE\E′ ]/ν(E)

βF = [ν(F ′)βF ′ + (ν(F\F ′)βF\F ′ ]/ν(F )

Since βE′ , βF ′ ∈ [0, 1], it follows that

(βE − (1− c))/c ≥ (βE − (1− a))/a > βF /b ≥ βF /d

where c = ν(E′)/ν(E) and d = ν(F ′)/ν(F ). Thus, we conclude that βE′ > βF ′ , ν(E′) ·

ν(F ′) > 0 and both ν(E′), ν(F ′) are rational numbers, a contradiction. Hence, βE ≤ βF

and by symmetry βF ≤ βE completing the proof .

Let β the common βE for all E. For any f and E ⊂ Gc such that π(E) > 0, let

FE = {f | f−1(x) ∩ E 6= ∅ implies f−1(x) ∈ CE}

Note that f ∈ FE if and only if fEh ∈ FE for all h. Let

VE(f) =
∑
y

u(y)η(E ∩ f−1(y)) + β(π(E)− η(E))u(max f(E))

+ (1− β)(π(E)− η(E))u(min f(E))
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Step 11: Let E ⊂ Gc, π(E) > 0, and f ∈ FE . Then, fEh ∼∗ xEh if and only if

VE(fEh) = π(E)u(x)

Proof: We will prove the assertion by induction over the cardinality of f(E). By definition

fE(E) has cardinality greater or equal to 2. Suppose f(E) = {x1, x2}, x1 > x2, and

fEh ∼∗ xEh. Then fEh = (x1Ax2)Eh for some A ∈ CE . By (A), we may choose

F ⊂ E, x such that (x1Ax2)Eh ∼∗ (x1Fx2)Eh ∼∗ xEh. By (S), x1Ax2 ∼∗ x1Fx2 ∼∗

xEx2. Steps 6 and 10 yield a := η(A) + β(π(E) − η(E)) = π(F ) which is equivalent to

au(x1) + (1−a)u(x2) = π(F )u(x1) + (1−π(F )u(x2). Since x1Fx2 ∼∗ xEx2, Step 5 yields

π(F )u(x1) + (1− π(F )u(x2) = π(E)u(x) + (1− π(E)u(x2); it follows that

VE(fEh) = VE((x1Ax2)Ex2) = au(x1) + (π(E)− a)u(x2) = π(E)u(x)

The argument reverses to yield VE(fEh) = au(x1)+(π(E)−a)u(x2) implies fEh ∼∗ xEh.

Assume that the result is true for all f ′ such that f ′(E) = n−1 ≥ 2. Let {x1, . . . , xn} =

f(E) such that x1 > x2 > . . . > xn and let Ai = f−1(xi)∩E. We first prove the result for

π(E) ≤ 1/2. Note that Ai ∈ CE for all i and Ai ∼= Aj for all i, j. Define f1 = (x1A1x2)Ef

and f2 = (x1A1 ∪ A2x2)Ef . Note that VE(f2) − VE(f1) = η(A2)(u(x1) − u(x2)). By the

inductive hypothesis, yiExn ∼∗ fiExn for u(yi)π(E) = VE(fi). Step 5 then implies that

y1E(x1Fx2) ∼∗ y2Ex2 for F ⊂ Ec, π(F ) = η(A2). Such an F exists since π(E) ≤ 1/2 and,

therefore, η(A2) < 1/2. Thus, by (S), f1E(x1Fx2) ∼∗ y1E(x1Fx2) ∼∗ y2Ex2 ∼∗ f2Ex2.

Note that (A1, (A1∪A2)c) and (A2, (A1∪A2)c) are both conforming pairs. Therefore, (WS)

implies that, for f∗ = f2(A1∪A2)f , we have (f1A∪Bf)E(x1Fx2) = fE(x1Fx2) ∼∗ (f2A∪

Bf)Ex2 = f∗Ex2. By the inductive hypothesis, ŷEx2 ∼∗ f∗Ex2 for π(E)u(ŷ) = VE(f∗).

Let y be such that yEx1Fx2 ∼∗ fE(x1Fx2). Then, yEx1Fx2 ∼∗ ŷEx2. By Step 5, this

implies that π(E)u(y) = VE(f∗) − η(A2)(u(x1) − u(x2)) = VE(f), as desired. Again, the

argument reverses to yield the desired conclusion.

If π(E) > 1/2, then find set E1, E2 ⊂ E such that π(E1) = π(E)/2 = π(E2). Choose

yi such that VEi(f) = yi for i = 1, 2. Then, by the preceding argument fEih ∼∗

yiEi(fEh). such that VEi(f) = π(Ei)u(yi) for i = 1, 2 for some yi. The additivity of

η implies VE(f) = VEi(f) + VEi(f) and (S) implies fEw ∼∗ (y1E1y2)Ew. Then, Step
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5 ensures fEw ∼∗ xEw for x such that VE(f) = π(E)u(x). Then, monotonicity yields

fEh ∼∗ xEh if and only if VE(f) = π(E)u(x).

Proof of Theorem 2: Consider any f ∈ F . Let f(Ω) = {x1, . . . , xn} such that xi < xi+1,

let Ai = f−1(xi), let N be the non-empty subsets of {1, . . . , n} and let N ∗ be the subset

of N that are not singleton sets. Let Eκ for κ ∈ N be an µ-split of A1, . . . , An. If (G,Gc)

is the essential partition, then µ(Eκ∆G) = 0 for all κ ∈ N ∗. Thus, we may assume that

Eκ ⊂ G implies κ = {i} for some i ∈ {1, . . . , n} and, therefore, f is constant on Eκ. Define

V (f) =
n∑
i=1

π(Ei)u(f(Ei)) +
∑
κ∈N∗

VEκ(f)

Steps 5, 11 and (S) imply that f �∗ g if and only if V (f) ≥ V (g). Note that V (f) =

(1− β)V 1(f) + βV 2(f) where

V 1(f) =

n∑
i=1

π(Ei)u(xi) +
∑
κ∈N∗

(∑
i

u(xi)η(Eκ ∩Ai) + (π(E)− η(E))u(min
i∈κ

xi)

)

=

∫
udGπf

V 2(f) =
n∑
i=1

π(Ei)u(xi) +
∑
κ∈N∗

(∑
i

u(xi)η(Eκ ∩Ai) + (π(E)− η(E))u(max
i∈κ

xi)

)

=

∫
udFπf

Thus, setting α = 1− β proves the sufficiency part of the Theorem.

For the converse, suppose �∗ has a DEU representation with uncertainty measure π

and continuous utility index u. Let � be the QUA that π represents. Clearly �∗ is an

extension of �. Given the continuity of u, verifying that �∗ satisfies (A) is straightforward;

(P4) is an immediate consequence of the additive separability of the representation; (S)

and (WS) follow from the fact that π represents the QUA �.
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