Velocity Gradient Corrections to Superpipe Data

M.V. Zagarola*and A.J. Smits
Department of Mechanical and Aerospace Engineering
Princeton University, Princeton, N.J. 08544-0710

September 25, 1996

The following information is summarized from [1], where further details can be found. The streamline displacement by a Pitot probe, which causes the probe to measure a velocity other than the value at its geometric center, requires a correction which is known as the velocity gradient correction. The correction Δy is usually written as a correction to the probe position, where

$$
\frac{\Delta y}{D_{\text {probe }}}=\varepsilon,
$$

where $D_{\text {probe }}$ is the outer diameter of the Pitot probe (in these data, $D_{\text {probe }}=$ $0.902 \mathrm{~mm})$, and Δy is the correction that needs to be added to the wall distance y.

We recommend the correction proposed by Chu [2], where

$$
\varepsilon=0.18\left(\alpha-0.17 \alpha^{3}\right)
$$

and

$$
\alpha=\left.\frac{1}{U_{c}} \frac{d U}{d y}\right|_{c} \frac{D_{\text {probe }}}{2},
$$

where the subscript c indicates the quantity evaluated at the center of the Pitot probe.
This correction only has a small effect on the profiles (in our case, less than 0.15% on the average velocity, less than 0.6% on von Kàrmàn's constant, and less than 2% on the additive constant in the log-law). Other corrections, such as that proposed by MacMillan [3] lead to much greater differences, which we feel to be incorrect.

[^0]
References

[1] M.V. Zagarola. Ph.D. Thesis, Princeton University, 1996.
[2] S.H. Chu. Progress in Aerospace Sciences, 16:147-223, 1975.
[3] F.A. MacMillan. Reports and Memoranda No. 3028, Ministry of Supply, London, Feb 1954.

[^0]: *Currently: Creare Inc., P.O. Box 71, Hanover, NH 03755

