
USING ORTHONORMAL POLYNOMIALS
TO ESTIMATE MIXING DISTRIBUTIONS

Bo E. Honoré1

Northwestern University

August 1989

(front page recreated 2016. The rest is from the 1989 version)

1This paper extends results from my University of Chicago Ph. D. dissertation (Honoré
(1987)) and from Honoré (1986). Support from NSF Grant No SES-8809352 is greatfully
acknowledged.

1



1

ABSTRACT: This paper illustrates how orthonormal polynomials can be used to estimate the

densities of the mixing distributions in mixtures of Poissons, exponentials and normals. For the

models considered, there is a simple relationship between the distribution of the data and inner

products of the mixing density and a sequence of orthonormal polynomials.

ABBREVIATED TITLE: Mixing Distributions.

Estimation of the mixing distribution in a mixture model has long been a topic of interest

in statistics. The contribution of this paper is to observe that in some mixtures models, the

implied distribution reveals the inner products of the mixing density with a sequence of orthonormal

polynomials. This observation is used to construct estimators of the mixing density. Assuming that

the mixing distribution does have a density, the estimators considered in this paper are consistent

in the metric defined by the inner product, and the implied estimators of the mixing distributions

are consistent in the sense of weak convergence.

Orthogonal series estimators have previously been used in density estimation (for references

see Prakasa–Rao (1980)), but to our knowledge this is the first time they have been used for

estimation of mixing distributions. Previous estimators of the mixing distribution in mixture

models include maximum likelihood estimators (Simar (1976), Lambert and Tierney (1984), and

Jewell (1982)) and method of moments estimators (Tucker (1963), Heckman and Walker (1988),

and Lindsay (1989)). There is a tradeoff between these estimators and the estimators described in

this paper. The former are consistent (in the sense of weak convergence) for all mixing distributions,

whereas we have only been able to prove consistency of the latter if the true mixing distribution has

a density. On the other hand, assuming that the mixing densities do exist, it might be of interest

1 This paper extends results from my University of Chicago Ph. D. dissertation (Honoré (1987)) and
from Honoré (1986). Support from NSF Grant No SES-8809352 is greatfully acknowledged.
AMS 1980 SUBJECT CLASSIFICATION: Primary 62G05; secondary 62G25.
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to estimate them, just as it might be of interest to estimate densities in general. The maximum

likelihood and method of moments estimators do not give consistent estimators of the density. The

estimators in this paper do.

The necessary notation is defined in Section 2. In Section 3, it is demonstrated that the

probabilities in a mixture of Poissons can be interpreted as inner products of the mixing density

and polynomials. This fact is used to construct an estimator which is consistent in the norm defined

by the inner product. The problem with this estimator is that it can be negative and might not

integrate to 1. However, it can easily be modified to a proper density by changing the negative

values to zero and rescaling the resulting density. Assuming that the true mixing distribution

has a density, the resulting density estimator gives an estimator of the mixing distribution which

converges (in probability) weakly to the true mixing.

Section 4 demonstrates that the idea behind the estimator for the mixing density in a mixture

of Poissons, can be used to construct estimators in a mixture of exponentials and in a mixture of

normals (with known variance). In Section 5, we discuss the use of alternative inner products in

the estimation of the mixing density in mixtures of Poissons and normals.

Before defining and motivating the estimators, we need to briefly review Laguerre, Legendre

and Hermite Polynomials.

Let L2(0,∞) be the space consisting of all real valued measurable functions f on (0,∞) for

which
∫∞
0

e−tf(t)2 dt < ∞. Define an inner product by 〈f, g〉 =
∫∞
0

e−tg(t)f(t) dt. L2(0,∞) is

then a Hilbert space with norm ‖f‖ = 〈f, f〉 1
2 . Let Li(t), i = 0, 1, . . ., be the Laguerre polynomials

defined by

Li(t) =
i∑

j=0

cL
ji tj ,

where

cL
ji = (−1)j

(
i

i − j

)
1
j!

(see, for example, Abramowitz and Stegun (1970)). The Laguerre polynomials are a complete

orthonormal sequence in L2(0,∞). It follows that
∑∞

i=0〈f, Li〉Li converges to f for f ∈ L2(0,∞)

(Luenberger (1969), Theorem 2, page 60).
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Likewise, L2[−1, 1] is the space consisting of all the real valued measurable functions f on

[−1, 1] for which f2 is Lebesque integrable. L2[−1, 1] is a Hilbert space with inner product 〈f, g〉 =∫ 1

−1
f(t)g(t) dt. Let Pi(t) i = 0, 1, . . . be the Legendre polynomials,

Pi(t) =
i∑

j=0

cP
ji tj ,

where

cP
ji =

⎧⎪⎨
⎪⎩

0 for i − j odd,

1
2i

(−1)
i−j
2

(
i

i−j
2

)(
i + j

i

)
for i − j even.

Let ei(t) =
√

2i+1
2 Pi(t). The sequence

{
ei : i = 0, 1, . . .

}
is then a complete orthonormal sequence

in L2[−1, 1]. It therefore follows that
∑∞

i=0〈f, ei〉ei converges to f for f ∈ L2(−1, 1).

Finally, let L2(−∞,∞) be the space consisting of all real valued measurable functions

f on (−∞,∞) for which
∫∞
−∞ e−t2/2f(t)2 dt < ∞. Define an inner product by 〈f, g〉 =∫∞

−∞ e−t2/2g(t)f(t) dt. L2(−∞,∞) is then a Hilbert space with norm ‖f‖ = 〈f, f〉 1
2 . Let Hi(t),

i = 0, 1, . . ., be the Hermite polynomials defined by

Hi(t) =
i∑

j=0

cH
ji tj ,

where

cH
ji =

⎧⎪⎪⎨
⎪⎪⎩

0 for i − j odd,(
−1

2

)(i−j)/2
i!

( i−j
2 )! j!

for i − j even.

(see, for example, Abramowitz and Stegun (1970)). The Hermite polynomials are a complete

orthonormal sequence in L2(−∞,∞). Hence
∑∞

i=0〈f, Hi〉Hi converges to f for f ∈ L2(−∞,∞).

In this paper, we use 〈·, ·〉 and ‖·‖ to denote the inner products and norms on all three spaces.

A mixture of Poissons has support on the non–negative integers, and the probabilities P (X =

i) = πi are given by

(1) πi =
∫ ∞

0

1
i!

e−θθi dG(θ)



– 4 –

where G is the mixing distribution. In this section, it will be assumed that G has a bounded

density, g. This implies that g ∈ L2(0,∞). The aim is to estimate g and/or G from a sample of n

i.i.d. observations of X.

With the notation of Section 2, note that

(2) i! πi =
∫ ∞

0

e−θθig(θ) dθ = 〈g, θi〉,

and therefore

〈g, Li〉 =
i∑

j=0

cL
ij〈g, θj〉 =

i∑
j=0

cL
ij j! πj .

This implies that γi
def= 〈g, θi〉 can be consistently estimated by γ̂i

def=
∑i

j=0 cL
ji j! π̂j , where π̂i

is the fraction of the observation for which X = i.

The idea behind the estimator defined in this section is to approximate g by
∑I(n)

i=0 γ̂Li, where

the order of the approximation, I(n), depends on the sample size in such a way that the estimator

is consistent in the norm ‖ · ‖.
To specify the rate at which the degree of the polynomial increases with sample size I(n),

notice that for a given degree, I,

∥∥g −
I∑

i=0

γ̂iLi

∥∥ ≤ ∥∥g −
I∑

i=0

γiLi

∥∥+
∥∥ I∑

i=0

(
γi − γ̂i

)
Li

∥∥

=
∥∥g −

I∑
i=0

γiLi

∥∥+
⎧⎩ I∑

i=0

(
γi − γ̂i

)2⎫⎭ 1
2

The first term goes to 0 as I → ∞, so we must find an I(n) such that I(n) → ∞ as n → ∞ and⎧⎩∑I(n)
i=0

(
γi − γ̂i

)2⎫⎭ 1
2 p−→ 0 as n → ∞. To do this, it suffices to find a function I(n) such that

I(n) → ∞ and E
[∑I(n)

i=0

(
γ̂i − γi

)2] → 0 as n → ∞.

From

γi − γ̂i =
i∑

j=0

cL
ji j! (π̂j − πj)

it is seen that

E
[
(γi − γ̂i)2

]
=

i∑
j=0

i∑
k=0

cjicki k! j! cov(π̂j , π̂k) ≤
i∑

j=0

i∑
k=0

|cji| |cki| j! k! n−1.
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To simplify notation let dI =
∑I

i=0

∑i
j=0

∑i
k=0 |cji| |cki| j! k!. Then

E
[ I∑

i=0

(γi − γ̂i)2
] ≤ d̃In

−1

So any rule I(n) for which d̃I(n)n
−1 → 0 and I(n) → ∞ as n → ∞ will suffice (such rules obviously

exist).

We have therefore proved

THEOREM. Assume that G in (2) has a bounded density g. Let γ̂i =
∑i

j=0 cL
jij! π̂j and let

I(n) be any sequence of integers such that I(n) → ∞ and I(n)n−1 → 0 as n → ∞, then ĝn(t) =∑I(n)
i=0 γ̂iLi(t) is a consistent (in the metric, ‖ · ‖, defined above) estimator of g:

∥∥ĝn − g
∥∥ p−→ 0 as n → ∞.

In kernel estimation of densities, it is of interest to let the bandwidth depend on the data.

Similarly, it might be of interest to let the order of the polynomial for the estimator depend on

that data. It is clear from the discussion above that the consistency result would still hold if I(n)

is random and d̃I(n)n
−1 a.s.−→ 0 and I(n) a.s.−→ ∞ as n → ∞.

There is no guarantee that ĝn will be positive and integrate to 1. To get a non–negative

estimator of g, define g̃n
def= 1{ĝn≥0}ĝn. As g ≥ 0,

∥∥g̃n − g
∥∥ ≤ ∥∥ĝn − g

∥∥ and hence
∥∥g̃n − g

∥∥ p−→ 0

as n → ∞. So g̃n is consistent in the norm ‖ · ‖.
If the support of g is known to be bounded from above by M < ∞, then g̃n can be normalized

to integrate to 1. Define ǧn(θ) = 1{0≤θ≤M}a−1
n g̃n(θ), where an =

∫M

0
g̃n(θ) dθ.

First notice that
∥∥g̃n − g

∥∥ p−→ 0 implies that
∫M

0
|g̃n(θ) − g(θ)| e−θ dθ

p−→ 0, and hence

∣∣an − 1
∣∣ =

∣∣∣∣∣
∫ M

0

(
ǧn(θ) − g(θ)

)
dθ

∣∣∣∣∣ ≤
∫ M

0

∣∣ǧn(θ) − g(θ)
∣∣ dθ ≤ eM

∫ M

0

∣∣ǧn(θ) − g(θ)
∣∣e−θ dθ

p−→ 0

so an
p−→ 1. This implies that

∥∥ǧn − g
∥∥ =

⎧⎪⎪⎪⎩
∫ M

0

(
ǧn(θ) − g(θ)

)2
e−θ dθ

⎫⎪⎪⎪⎭
1
2

≤
⎧⎪⎪⎪⎩
∫ M

0

(
ǧn(θ) − g̃n(θ)

)2
e−θ dθ

⎫⎪⎪⎪⎭
1
2

+

⎧⎪⎪⎪⎩
∫ M

0

(
g̃n(θ) − g(θ)

)2
e−θ dθ

⎫⎪⎪⎪⎭
1
2
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≤
⎧⎪⎪⎪⎩
∫ M

0

(
ǧn(θ) − g̃n(θ)

)2
e−θ dθ

⎫⎪⎪⎪⎭
1
2

+

⎧⎪⎪⎪⎩
∫ M

0

(
g̃n(θ) − g(θ)

)2
e−θ dθ

⎫⎪⎪⎪⎭
1
2

≤ ∣∣an − 1
∣∣∥∥g̃n

∥∥+
∥∥g̃n − g

∥∥
p−→ 0 as n → ∞,

So ǧn is consistent in the norm ‖ · ‖.
If Ǧn is defined by Ǧn(θ) def=

∫ θ

0
ǧn(η) dη, then Ǧn is a distribution function and Ǧn converges

weakly to G (in probability):

sup
0≤θ≤M

∣∣Ǧn(θ) − G(θ)
∣∣ ≤ sup

0≤θ≤M

∫ θ

0

∣∣ǧn(η) − g(η)
∣∣ dη =

∫ M

0

∣∣ǧn(η) − g(η)
∣∣ dη

p−→ 0.

To summarize, we have proved

THEOREM. Assume that G in (2) has a bounded density g and support bounded by some known

M . Then the estimator ǧn defined above is a proper density and it is consistent in the metric ‖ · ‖:∥∥ǧn − g
∥∥ p−→ 0 as n → ∞. Also, the implied distribution function, Ǧn converges weakly to G in

probability.

In Section 5, it is demonstrated that the same idea that was used to construct ǧn can be used

to construct an alternative estimator for which it is not necessary to assume that M is finite and

known.

Finally, observe that for j ≥ 1

j! πj =
∫ ∞

0

e−θθj dG(θ) = e−θθjG(θ)
∣∣∣∞
0

−
∫ ∞

0

(
jθj−1e−θ − e−θθj

)
G(θ) dθ

= 0 − jγj−1 + γj

and

π0 =
∫ ∞

0

e−θ dG(θ) = e−θG(θ)
∣∣∣∞
0

−
∫ ∞

0

−e−θG(θ) dθ = γ0

so γj = j!
∑j

k=0 πk for j = 0, 1, . . ., and therefore

〈G, Li〉 =
i∑

j=0

cL
jij!

j∑
k=0

πk =
i∑

j=0

cL
jij! P (X ≤ j).

This could be used to construct an estimator for G which is consistent in ‖ · ‖.
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The idea behind the estimator defined in Section 3 can also be used to construct estimators

of the mixing distribution in mixtures of exponentials and normals (with known variance).

Let X be a random variable with survivor function

(3) S(x) = P (X > x) =
∫ ∞

0

e−θx dG(θ).

Define

f(η) =

{
g(− log η) for 0 < η ≤ 1

0 for −1 ≤ η ≤ 0

Assume that g is bounded. It then follows that f ∈ L2[−1, 1]. As in Section 3, the basis for the

estimator is that it is very easy to consistently estimate the projections of f on a set of orthonormal

polynomials. For any integer i ≥ 0,

S(i) =
∫ ∞

0

e−θi dG(θ) =
∫ ∞

0

(
e−θ

)i
g(θ) dθ =

∫ 1

0

ηi−1f(η) dη

which implies

〈f, xi〉 = S(i + 1) − (−1)i+1

i + 1

This means that we can estimate the projection of f on all polynomials by simply substituting

the empirical survivor function Sn for S in the expression above, and hence the projection on the

Legendre polynomials can be estimated.

Letting

c̃ji =

√
2i + 1

2
cP
ji, di =

i∑
j=0

i∑
k=0

|c̃ji| |c̃ki| , and d̃I =
I∑

i=0

di,

it is straightforward to show that if I(n) is a function such that I(n) → ∞ and d̃I(n)n
−1 → 0 as

n → ∞, then the estimator of f described above is consistent in the L2[−1, 1] metric. As was the

case for the estimator of the compound distribution in a mixture of Poissons, it is clear that we

can allow I(n) to be random as long as I(n) a.s.−→ ∞ and d̃I(n)n
−1 a.s.−→ 0 as n → ∞.

Two points should be made about the estimator for f defined in this section. First, notice

that it is not necessary to have exact observations on T in order to estimate f . We only need to

estimate S at the integers, so it is sufficient to have grouped observations on T . The other thing
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to note is that an estimator for f could be constructed by estimating the projections of f on the

shifted Legendre polynomials which span the space L2[0, 1].

From the estimator f̂ of f , an estimator of g can be defined by ĝ(θ) = f̂
(
e−θ

)
. The consistency

of f̂ in the metric ‖ · ‖ implies that

∫ 1

0

(
f̂(η) − f(η)

)2
dη =

∫ 1

0

(
ĝ(− log η) − g(− log η)

)2
dη =

∫ ∞

0

(
ĝ(θ) − g(θ)

)2
e−θ dη

p−→ 0.

So the estimator ĝ is consistent in the same metric as the estimator of the mixing density in a

mixture of Poissons. Hence, if the support of g is known to be bounded from above by some M ,

then the logic of Section 3 can be mimicked to construct an estimator of g. The resulting estimator

is positive and integrates to 1 and the integral of which converges weakly to G (in probability).

Notice that orthonormal polynomials can be used to estimate G in (3) directly. Define

G̃(η) =

{
1 − G(− log η) for 0 < η ≤ 1

0 for −1 ≤ η ≤ 0

It follows that G̃ ∈ L2[−1, 1]. Then for any integer i ≥ 0,

S(i) =
∫ ∞

0

e−θi dG(θ) =
∫ 1

0

ηi dG̃(η) = 1 − i

∫ 1

0

ηi−1(1 − F (η)) dη,

so we have

〈G̃, ηi〉 =
∫ 1

−1

ηiG̃(η) dη =
∫ 1

0

ηiG̃(η) dη =
1 − S(i + 1)

i + 1

which means that we can easily estimate the projection of G̃ on all polynomials.

As a final example of how orthonormal polynomials can be used to estimate mixing distribu-

tions, we consider a mixture of normals with known variance (which without loss of generality will

be assumed to equal 1).

The mixture of normals is defined by

(4) P(X ≤ x) =
∫ ∞

−∞
Φ(x − θ) dG(θ)

where Φ is the normal c.d.f.

It is helpful to notice that for i ≥ 0 and κ < 1
2
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E
[
Y ieκY 2∣∣Y ∼ N(μ, 1)

]
=
∫ ∞

−∞

yi

√
2π

exp
{
κy2

}
exp

{−(y − μ)2

2

}
dy

=
∫ ∞

−∞

yi

√
2π

exp
{
−y2(1 − 2κ) − 2μy + μ2

2

}
dy

=
∫ ∞

−∞

yi

√
2π

exp
{
−y2 − 2μy(1 − 2κ)−1 + μ2(1 − 2κ)−1

2(1 − 2κ)−1

}
dy

=
∫ ∞

−∞

yi

√
2π

exp
{
− (y − μ(1 − 2κ)−1)2

2(1 − 2κ)−1
− μ2

2
+

μ2

2(1 − 2κ)

}
dy

=
exp

{
κμ2

1−2κ

}
√

1 − 2κ

∫ ∞

−∞

yi√
2π(1 − 2κ)−1

exp
{
− (y − μ(1 − 2κ)−1)2

2(1 − 2κ)−1

}
dy

=
exp

{
κμ2

1−2κ

}
√

1 − 2κ
E
[
Y i

∣∣ Y ∼ N(
μ

1 − 2κ
,

1
1 − 2κ

)
]

=
exp

{
κμ2

1−2κ

}
(√

1 − 2κ
)i+1

E
[(

Y +
μ√

1 − 2κ

)i ∣∣ Y ∼ N(0, 1)
]

For κ = − 1
2 we have

E
[
Y ie−Y 2/2

∣∣Y ∼ N(μ, 1)
]

= e−μ2/4
i∑

j=0

(
i

j

)
mi−j

(
1
2

) i+j+1
2

μj

= e−μ2/4
i∑

j=0

kijμ
j

where mj is the jth moment of a standard normal and

kij =
(

i

j

)
mi−j

(
1
2

) i+j+1
2

.

So if X is distributed as in (4) and G has bounded density g, then with f(η) = g(
√

2η) and

k̃ij = kij2(i+1)/2,

E
[
Xie−X2/2

]
=

i∑
j=0

kij

∫ ∞

−∞
e−θ2/4θjg(θ) dθ =

i∑
j=0

k̃ij

∫ ∞

−∞
e−η2/2ηjf(η) dη =

i∑
j=0

k̃ij〈ηj , f〉

which can be rewritten as

〈ηi, f〉 =

⎧⎪⎨
⎪⎩

E[e−X2/2]/k̃00 for i = 0(
E[Xie−X2/2] −∑i−1

j=0 k̃ij〈ηj , f〉
)
/k̃ii for i = 1, 2, . . .



– 10 –

where we have used that k̃ii �= 0 for i = 0, 1, 2, . . ..

This implies that the inner products of f with polynomials can be consistently estimated.

Furthermore, observe that

E
[(

Xie−X2/2
)2] =

2i∑
j=0

(
2i

j

)
m2i−j

(
1
3

) 2i+j+1
3

∫ ∞

−∞
e−θ2/3θjg(θ) dθ

≤
2i∑

j=0

(
2i

j

)
m2i−j

(
1
3

) 2i+j+1
3

rj

where rj = sup0≤θ<∞ e−θ2/3θj < ∞. This implies that (except for algebra) it is simple to find a

function I(n) such that the estimator for f based on orthonormal polynomials is consistent.

If it is assumed that the support of g is included in the interval (−M, M) for some known M ,

then this estimator can be used to construct an estimator for G which is consistent (in the sense

of weak convergence) by exactly the same argument as in Section 3.

As mentioned in the previous sections, the density estimators based on orthonormal polyno-

mials can be integrated to give estimators of the mixing distributions which converge weakly to

the true mixing distribution. In order to obtain that result, it was assumed that the support of

the mixing distribution is bounded by known constants. We now demonstrate that the orthonor-

mal polynomial estimators of the mixing distribution in Poissons and normals can be modified in

such a way that the weak convergence of the estimated distribution function to the true mixing

distribution holds even if the mixing distribution has unbounded support.

The modification of the estimators will be based on a slight modification of the definitions

in Section 2. Let L2(0,∞) be the space consisting of all real valued measurable functions, f , on

(0,∞) for which
∫∞
0

f(t)2 dt < ∞. Define an inner product by 〈f, g〉 =
∫∞
0

g(t)f(t) dt. L2(0,∞)

is then a Hilbert space with norm ‖f‖ = 〈f, f〉 1
2 . Let L◦

i (t) = e−t/2Li(i), i = 0, 1, . . ., where Li

are the Laguerre polynomials defined in Section 2. The functions L◦
i are a complete orthonormal

sequence in L2(0,∞). It follows that
∑∞

i=0〈f, L◦
i 〉L◦

i converges to f for f ∈ L2(0,∞). Likewise,

let L2(−∞,∞) be the space consisting of all real valued measurable functions f on (−∞,∞) for

which
∫∞
−∞ f(t)2 dt < ∞. Define an inner product by 〈f, g〉 =

∫∞
−∞ g(t)f(t) dt. L2(−∞,∞) is then

a Hilbert space with norm ‖f‖ = 〈f, f〉 1
2 . Let H◦

i (t) = e−t2/4Hi(t), i = 0, 1, . . ., where Hi are the
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Hermite polynomials defined in Section 2. The functions H◦
i are a complete orthonormal sequence

in L2(−∞,∞). Hence
∑∞

i=0〈f, H◦
i 〉H◦

i converges to f for f ∈ L2(−∞,∞).

Consider first the mixture of Poissons given by (1). Assume that G has density g satisfying∫∞
0

g(θ)2dθ < ∞, so g ∈ L2(0,∞). Then

i! πi =
∫ ∞

0

e−θθig(θ) dθ =
(

1
2

)i ∫ ∞

0

e−η/2ηif(η) dη =
(

1
2

)i

〈f, e−η/2ηi〉

where f(θ) = 1
2g(θ/2), i.e. f is the density of two times a random variable with density g. So

the inner product of f and L◦
i can be expressed as a linear combination of the probabilities πj ,

j = 0, 1, . . . , i. This implies that if
∫∞
0

g(θ)2 dθ < ∞ (and hence
∫∞
0

f(θ)2 dθ < ∞), then the logic

of Section 3 can be used to construct an estimator for f , f̂n, such that
∫∞
0

(
f̂n(θ)−f(θ)

)2
dθ

p−→ 0,

and therefore
∫∞
0

(
ĝn(θ) − g(θ)

)2
dθ

p−→ 0 where ĝn(θ) = 2f̂n(2θ). Mimicking the discussion in

Section 3, this implies that if ĝn is first modified by changing the negative values to 0, and then

normalized to integrate to 1, then the resulting estimator, ǧn, is consistent in the norm defined

above, and sup0≤θ<∞
∣∣Ǧn(θ) − G(θ)

∣∣ p−→ 0, where Ǧn(θ) =
∫ θ

0
ǧn(η) dη.

Next consider the mixture of normals (4). From the expression for E
[
Xie−X2/4

]
, it is clear

that the inner products of g with e−θ2/4θi (and the inner products of g with H◦
i can be consistently

estimated. This can be used to construct an estimator for g, ĝn, such that
∫∞
−∞

(
ĝn(θ)−g(θ)

)2
dθ

p−→
0. If this estimator is modified to be non–negative and integrated to 1 as above, then the resulting

estimator ǧn, is consistent in the same norm as ĝn, and sup−∞≤θ<∞
∣∣Ǧn(θ) − G(θ)

∣∣ p−→ 0, where

Ǧn(θ) =
∫ θ

−∞ ǧn(η) dη.
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