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Construction Theorems and Constructive Proofs 

in Geometry 

 

JOHN P. BURGESS 

 

Abstract Given Tarski’s version of Euclidean straightedge and 

compass geometry, it is shown how to express construction theorems, 

and shown that for any purely existential theorem there is a 

construction theorem implying it. Some related results and open 

questions are then briefly described. 

 

 Introduction I will be concerned with comparing and contrasting three types 

of mathematifcal assertions, illustrated by these:  

 

(1) Existence claim: 

 There exists a regular heptadecagon. 

(2) Constructibility claim: 

 It is possible to construct a regular heptadecagon. 

(3) Construction claim: 

 It is possible to construct a regular heptadecagon in the following way… 

 

where the ellipsis in the last item would be completed with the specification of 

Gauss’s construction or some other (as in Weisstein 2021). 

 The kind of constructions meant here are those familiar from the early books 

of Euclid’s Elements, traditionally called straightedge and compass constructions. 

(What are at issue are an unmarked straightedge, not usable as a ruler, and a 

collapsing compass, not usable as dividers, so neither tool by itself can be used to 

transfer a length, though Euclid accomplishes this less directly in his Proposition 
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2.) Actually, what Euclid assumes is that a line can be drawn through two points A 

and B in the plane (in two steps, first joining the points to form the segment AB as 

provided for by Postulate 1, then extending the segment indefinitely in a straight 

line at either end, as provided for by Postulate 2), and also that a circle can be 

drawn of given center and given radius (as per Postulate 3). He does not specify a 

method or tools for doing such things; in particular, he does not mention the use of 

straightedge and compass. Let us nonetheless for convenience retain the traditional 

label for the class of constructions in question.1  

 Many propositions of Book I, beginning with the very first, are 

“problems,” whose solutions end with words amounting to “which was to be done” 

or QEF, in contrast to “theorems,” whose demonstrations end with “which was to 

be shown” or QED. Both kinds of propositions have in Euclid a very stylized form 

of exposition, according an analysis of Proclus (see Netz 1999) consisting of the 

same sequence of a half-dozen parts: protasis, ekthesis, diorismos, kataskeve, 

apodeixis, symperasma. In a problem, the kataskeve does what is to be done, and 

the apodeixis shows that it has successfully done it. In a theorem, the kataskeve 

introduces auxiliary points, lines, circles, or whatever, and the apodeixis uses them 

to show what was to be shown. The term “construction” gets used in two ways in 

discussing these matters, first as a term for problems as opposed to theorems, 

second as a translation of kataskeve. 

 Philosophers of mathematics have often contrasted the ancient style of 

axiomatic geometry represented by Euclid with the modern style represented by 

David Hilbert (1902). Paul Bernays (1964, p. 275) explicitly draws the contrast as 

one between statements of type (2) and statements of type (1): 

 

 Euclid postulates: One can join two points by a straight line; Hilbert 

states the axiom: Given any two points, there exists a straight line on 
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which both are situated. 

 

 Thomas Heath, however, in his classic translation (1968), renders Euclid’s 

formulations as infinitival phrases (“to join two points…”) rather than complete 

sentences (“one can join two points…”) of type (2). But probably it would not 

matter much to Bernays if his formulation of Euclid had to be confessed to be not 

quite accurate, since a closer look at the context shows that Bernays is much less 

concerned with differences between Hilbert and Euclid than with differences 

between Hilbert and twentieth-century “constructivists.”  

 Chief among these was L. E. J. Brouwer, the founder of mathematical 

intuitionism and Hilbert’s main adversary in the Grundlagenstreit or foundational 

dispute of the years between the world wars, which was just beginning to wind 

down in 1934 when Bernays produced the original French version of the paper just 

quoted. And Euclid and Brouwer differ from Hilbert in different ways. 

 

1 Two Kinds of Constructivity in Geometry 

 Where Hilbert would have existence theorems, Euclid would have 

construction problems, while Brouwer would still want existence theorems, but 

would impose a requirement rejected by Hilbert, that a proof of a theorem to the 

effect that there exists a mathematical object satisfying a given condition not be 

accepted unless it is “constructive” in the sense that there is implicit in it a method 

of specifying a particular example of such an object (as for instance Euclid’s proof 

in the Elements, Book IX, Proposition 20 that for any given number n of primes 

there is a further prime, has implicit in it the method for finding such an additional 

prime, namely, taking the product of the given primes, adding one to obtain a 

number m, and checking all numbers up through m until a prime dividing m is 

found.)  
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 Brouwer identified mathematical existence with the possibility of being 

constructed (or in his more extreme formulations, with the actuality of having been 

constructed). But in this Brouwer avows influence not from Euclid but from Kant’s 

view that mathematical proof involves “constructions in intuition” (or as it is 

sometimes put, “mental mathematical construction”), though the Kantian view 

itself was clearly influenced by the role of construction in ancient mathematics, so 

there would be a Euclidean influence on Brouwer after all, at least at one remove. 

 Their requirement of constructivity in proofs makes it impossible for 

intuitionists to accept the classical logical laws of the excluded middle, p  ¬p, or 

equivalently the law of double negation ¬¬p → p, as used in proofs by 

contradiction or reductio ad absurdum. Brouwer’s disciple Arend Heyting 

presented a formal version of the principles intuitionists do accept, and these two 

are conspicuously absent, and have to be, because using them one can easily 

produce existence proofs where no specific example of the sort of thing claimed to 

exist is provided even implicitly.  

 What is perhaps the simplest case of this phenomenon is shown in the 

classical proof, intuitionistically unaceptable, of the following: 

 

(4) xy((y) → (x)) 

 

“There is something that s if anything does.” For excluded middle tells us that 

either there exists something that s or there doesn’t. If there does, any such thing 

may be taken for x in (4), and the conditional will be true because its consequent is 

true. If there does not, then any x at all may used in (4), and the conditional will be 

true because its antecedent is false. This clearly does not give us a specific example 

of an x of the kind asserted to exist by (4), unless we already either know an 
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example of something that s or know that there isn’t any. 

 It would be anachronistic to say that Euclid reasons by “classical” logic in 

the sense of the logic expounded in orthodox present-day textbooks, but he 

certainly does not conform to the constructivist restrictions of intuitionistic logic. 

Notoriously he uses passim the method of proof by reductio. And according to the 

early modern commentator Christoph Schlüssel, he uses the equally 

intuitionistically unnacceptable law (¬p →  p) → p, sometimes called the 

consequentia mirabilis, but dubbed by Jan Łukasiewicz the law of Clavius 

(“Clavius” being Schlüssel’s Latinization of his Germanic family name, which like 

the Latin clavis means key) and better known under that label. So we must 

distinguish Euclid’s emphasis on construction problems from Brouwer’s insistence 

on constructive proofs, though the full significance of the difference between the 

two will only gradually become clearer in what follows.  

 It appears to have been Bernays’ paper that first introduced something like 

the (historically dubious) use of  “platonism” current in philosophy of mathematics 

during the last half-century or more, during which period there has been a vigorous 

debate between so-called platonists and so-called nominalists over the existence of 

abstract entities, and specifically mathematical objects such as numbers or sets. 

Allusions to Euclidean constructions have played an occasional role in this debate. 

 Notably, Charles Chihara (1973), one of the earliest of a group of writers 

who have attempted to reconstruct or reconstrue mathematics nominalistically, 

pursues the following sort of strategy. First, statements about mathematical objects 

such as numbers are replaced by statements about linguistic expressions, 

mathematical notations such as numerals. Second, assertions of the actual 

existence of linguistic expressions as abstract types are replaced by assertions of 

the possible existence of linguistic expressions as concrete tokens. Third, the 

modal notion of “possible existence” in this context, which some have criticized as 
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unacceptably “metaphysical,”  is explained as potential physical “constructibility,” 

which Chihara claims is a notion that should be familiar from ancient mathematics 

and considered philosophically respectable.  

 And in this last connection he quotes with approval an expression of a 

similar sentiment from his colleague Ernest Adams (1973, p. 406), who alludes to 

Euclid thus: 

 

 Euclidean geometry cannot be criticized for lack of rigor simply on the 

grounds of its modal formulation, whatever other faults it may have in this 

respect, since the logical laws to which the constructibility quantifier 

conforms are quite clear. 

 

 It is clear enough, though, from the writings of the contemporary and recent 

philosophical thinkers mentioned so far—Adams, Bernays, Brouwer, Chihara, 

Heyting, and the list could be extended—that even if all are inspired in some way 

and to some degree by Euclid’s Elements, none is primarily concerned with 

arguing over the correct interpretation of that ancient text. But apart from 

appropriations for other philosophical purposes, the correct interpretation of Euclid 

on construction has been a topic of interest for its own sake, and a subject of 

discussion among scholars of ancient Greek philosophy and historians of ancient 

Greek mathematics.  

 Recently Silvia De Toffoli and I conducted a joint graduate seminar on 

mathematical rigor in theory and practice, and among our guest speakers we were 

fortunate enough to have Benjamin Morison, who gave an account of his work 

with Jonathan Beere (to appear) in precisely this area. The present note is a kind of 

scholium to the Beere-Morison paper, describing some relevant logical facts about 

formalized systems of geometry, in a way that I hope will be readable by and 
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informative to students of classical philosophy and ancient mathematics who have 

a modicum of knowledge of modern logic but are not specialists. 

 The main thesis of the joint authors concerns the purpose of construction 

problems. (They also offer the opinion that the infinitival phrases “to do this or 

that” should be taken to have a kind of imperatival or jussive force; but 

philological issues are beyond me.) Their view is that, just as theorems and their 

proofs aim to impart an especially solid kind of knowledge-that something is the 

case, episteme or scientia, so construction problems and their solutions aim to 

impart an especially solid kind of knowledge-how to do something. It is when one 

tries to express this knowledge-how as a kind of knowledge-that that one may 

arrive at something like a construction theorem of type (3), as contrasted with a 

constructibility claim of type (2). 

 Constructibility claims may still play a role, though a limited one, for those 

whose primary interest is in construction claims. This is perhaps best brought out 

by comparison with the views of finitists on arithmetic. For finitists, existence 

statements in number theory of the type “condition (n) holds for some natural 

number n” are not really meaningful or inhaltich. Nonetheless, finitists allow that 

such a form of words may be used as a partial communication of meaningful 

results of the type “condition (n) holds for the following natural number n…” 

where would follow the specification of a relevant n. In the same way, something 

like (2) may be admitted as a partial communication of something like (3). 

 As Beere and Morison make clear, though existence and constructibility 

assumptions or assertions are not entirely absent from the Elements, they are rare. 

By contrast, construction problems are ubiquitous in the geometrical books, which 

famously culminate in Book XIII with the construction of the regular polyhedra or 

Platonic solids. The situation is different in present-day mainstream mathematics. 

There questions of existence are prior, and it is only when one is answered in the 
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affirmative that a question of constructibility then arises, or rather a variety of them 

for various kinds of constructibility (of which straightedge and compass 

constructibility in geometry is only the best known). Similarly with numerical 

functions: Existence comes first, computability in this or that sense (say recursive 

or primitive recursive or polynomial-time) being a distinct and subsequent issue or 

series of issues. 

 Moreover, though modal idioms such as “it is possible to…” or “one can…” 

or -ible and -able suffixes do occur all over present-day mathematics, including the 

present note, in formal contexts such locutions get explained away in terms of 

existence statements, rather than the other way around. Thus constructibility and 

computability are defined in terms of the existence of programs for constructing or 

computing. This circumstance would affect the understanding of (2) and (3), 

turning them into “There is a program for doing such-and-such,” and “The 

following is a program for doing such-and-such…,” or something of the sort.  

 

2 Tarskian Rigor But the most important difference of present-day from 

ancient mathematics is that mathematicians now hold themselves to a higher 

standard of rigor. They have done so since the later nineteenth century when Frege 

opened the body of his epochal Grundlagen der Arithmetik with the following 

much-cited remark, which I quote in the English translation of J. L. Austin (see 

Frege 1953, p.1): 

 

 After deserting for a time the old Euclidean standards of rigor, mathematics 

is now returnng to them, and even making efforts to go beyond them. 

 

 For Euclid is indeed not the ultimate or last word on rigor, and there are 

notoriously lapses of rigor in the Elements (as seems to be conceded, somewhat 
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grudgingly perhaps, by Adams in the passage quoted by Chihara), many of which 

were being repaired by contemporaries of Frege. Most notably, Euclid lists the 

primitive constructions and assertions he is supposing to be allowed in Postulates 

1-5, but then immediately assumes another without explicit statement or 

acknowledgment in Proposition 1. 

 This, it will be recalled, is the problem, given a segment AB, to construct an 

equilateral triangle ABC having it as a side. Euclid considers two circles with 

radius AB, the one with center at A and the one with center at B, whose 

construction is provided for by Postulate 3. But in subsequent reference to these 

circles he speaks of each not as the circle with such-and-such center and radius, but 

rather by mentioning three points on it. Now for any three non-collinear points 

there is indeed a unique circle passing through them, the circumscribed circle of 

the triangle having those points as vertices. But Euclid does not deal with such 

matters until Book IV, so he may seem to be getting ahead of himself in Book I. 

Beere and Morison allude to this sort of thing as an illustration of the gap between 

existence and construction: by definition, every circle has a center, but to find the 

center when the circle is presented by naming three points is another matter. 

 Crucially, by labeling his two circles “the circle BCD” and “the circle ACE” 

Euclid insinuates, without any justification on the basis of his announced  

principles, that the two circles have a point C in common. In modern treatments 

this can be proved using a circle axiom to be stated shortly, but Euclid 

acknowledges no need for any such thing among his postulates.  

 It has been the view of some recent commentators that Euclid doesn’t need 

to do so, since the truth of this assumption about circles, along with other 

unacknowledged assumptions of related kinds, can be read off the diagrams that 

always accompany Euclid’s propositions. This interpretation (which would apply 

equally well to the circles Euclid considers and the elipses that he doesn’t), 
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according to which the diagram is an essential part of a geometrical proof, many of 

us find implausible among other reasons because diagrams or illustrations are still 

there in the arithmetical books of the Elements, where they are surely little more 

than decorations, playing no role in the proofs. 

 Be that as it may, besides the difficulty under discussion, which occurs not 

only Poposition 1 but well beyond it, there are similar lapses involving the 

intersection of a line and a triangle, necessitating another missing axiom, 

introduced by Moritz Pasch in 1882. As the remark of Bernays hints, it was in the 

process of rigorization, filling in such gaps in Euclid’s arguments as was done by 

Pasch and other nineteenth century figures culminating in Hilbert, that the 

explaining away of modal locutions in terms of existence statements occurred.  

 Euclidean straightedge and compass plane geometry was given its final 

rigorous form only in the twentieth century, by Alfred Tarski and coworkers, in a 

formal theory here to be called G0. (It is called CG(2) in the authoritative survey of 

Tarski and Givant, 1999, p. 191.) The austere formalism of G0 is to begin with a 

first-order theory, one whose logical notions comprise those of standard classical 

logic as in present-day textbooks and those only, without any “higher-order” 

apparatus as in Hilbert, let alone intuitionist logical operators as in Brouwer and 

Heyting, or modalized quantifiers as in Chihara or Adams.  

 Moreover, the variables of the language are to be thought of as ranging only 

over points of the plane: there are no variables for lines or circles, for instance. 

And there are only two primitive predicates or relations symbols for two geometric 

relations:  

 

(5a) Bxyz or betweenness: x, y, z lie in a line, with y between x and z 

(5b) Cwxyz or congruence: w lies as far from x as y lies from z 
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(Here betweenness is to be understood inclusively, so Bxxz and Bxzz always hold, 

and identity of points x = y is definable as Bxyx.)  

 Nonetheless, because any pair of distinct points may be regarded as coding a 

line (the one passing through both points) and a circle (the one having as center the 

first point and passing through the second point), one can express indirectly 

through coding the basic geometry of lines, circles, as well as many kinds of 

composite figures. (Propositions about areas, including the Pythagorean theorem, 

admittedly present further challenges.) In particular, G0 has a circle axiom to the 

effect that if a line has both a point inside a given circle (of distance from the 

center less than the radius) and a point outside that circle (of distance from the 

center greater than the radius), it will have a point on the circle. 

 (Ellipses, too, can be coded, not by pairs but by triples of points, the two foci 

plus any point on the circumference. But in G0 there is no ellipse axiom 

comparable to the circle axiom, and arguments assuming the existence of 

intersections of conic sections could not have been carried out on the basis of 

Euclid’s postulates—not that Euclid wished to go into such matters.)  

 Returning to (1)-(3), because there is no modal apparatus in the language of 

G0, (2) cannot be expressed if the modal locutions are understood literally or 

primitively, in terms of a possibility operator ◊. And if (2) is explained in terms of 

the existence of a program, it still cannot be expressed—not directly, since the 

variables do not range over programs; nor yet indirectly, since programs cannot be 

coded by pairs of points, as can lines and circles, or by configurations of any other 

fixed finite number of points. 

 But two more positive remarks can be made. There is a slight modification 

or small adjustment G of G0 of which the following may be said: 

 

(A) By adding to the language of G symbols for certain functions definable in G, 
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corresponding to the familiar operations of finding the intersections of lines 

and circles, one can obtain a notation for straightedge and compass 

construction programs permitting the systematic expression of assertions of 

type (3). 

 

(B) It can then be shown that, for any purely existential assertion of type (1) 

provable in G, there is a construction assertion of type (3) that implies the 

given existenstial assertion and is provable in G taken together with the 

definitions of the new symbols. 

 

In the next two sections I will first sketch the construction justifying (A), then 

outline the proof justifying (B). 

 These results should not be surprising. On the contrary, they are just what 

one might expect (in both the factive and the normative sense) of a formalism in 

modern language that aspires to embody so far as possible the spirit of Euclid’s 

construction-oriented geometry. But the departures from the ipsissima verba of 

ancient formulations needed to secure a level of rigor up to modern standards are 

numerous enough and large enough that (A) and (B) are not obvious without proof, 

either. Their proof is, so to speak, a check on the fidelity of Tarski and his school 

to something like the Euclidean point of view. 

 Before proceeding further let me indicate the “slight modification or small 

adjustment” needed in the formal geometry under consideration. For G0 as thus far 

described conspicuously fails to satisfy the most basic kind of “constructivist” 

requirement that every proof of the existence of a configuration of points with a 

certain feature has to have at least implicit in it a specification of a particular 

example of such a configuration.  

 The most trivial existential theorem is simply that there exists a point that is 
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self-identical, or more simply still, that there exists a point.  But it is not possible to 

specify any particular point using only the betweenness and congruence relations. 

This can be seen by looking at the most familiar model of G0, the Cartesian plane 

as studied in middle school. The points of the plane are pairs (a, a') of real 

numbers, and betweenness and congruence are defined by the usual formulas. Thus 

if x = (a, a'), y = (b, b'), z = (c, c'), u = (d, d'), v = (e, e'), then  

 

(6a) Bxyz holds if and only if 

 a ≤ b ≤ c or c ≤ b ≤ a and 

 (b - a)·(c' - a') = (b' - a')· (c - a) 

 

(6b) Cxyuv holds if and only if 

 (b - a)2 + (b' - a')2 = (e- d)2 + (e' - d')2 

 

 In this plane any condition  satisfied by any one point x will equally be 

satisfied by any other point x', so that the condition cannot be used to pick out a 

distinguished point. This is because there is a translation carrying x' to x, and 

translation preserves relations of betweenness and congruence, in terms of which  

would be stated. 

 If we add a constant a to denote some specific, privileged or destinguished 

point a, the “constructivist” condition will still fail to hold. For it will be a trivial 

theorem that there exists some point y other than a, while again it is not possible to 

specify any particular example. This is because, given any point y distinct from a 

and any other such point y' there will be a rotation around a, keeping a fixed, that 

will carry y', if not yet to y itself, then at least to some other point y'' lying on the 

line ay on the same side of a as y. And then there will then be a dilatation (uniform 

expansion or contraction) leaving a fixed and carrying y'' to y. And rotation and 

dilatation, just like translation, preserve betweenness and congruence relations. 
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 If we add a constant b to denote some specific, privileged or distinguished 

point b other than a, then there will be infinitely many points of the plane that can 

be uniquely specified in terms of the two distinguished points a and b. One of these 

will be the midpoint of the segment ab, characterizable as being between a and b 

and at the same distance from either. But all the specifiable points will, like this 

example, be on the line ab. And it is, of course, a theorem of plane geometry that 

the plane is more than one-dimensional, and so contains a point z not collinear with 

a and b. But for any such point z there is another such point z', though only one, 

satisfying all the same conditions involving betweenness, congruence, and the two 

distinguished point a and b, namely, the mirror image of z on the opposite side of 

ab. For there will be a transformation, namely, reflection in the line ab, leaving a 

and b fixed, that will carry z' to z, and reflections as much as translations, rotations, 

and dilatations preserve betweenness and congruence.  

 But if we add a constant c to denote some specific point c not on the line ab, 

then it is a theorem of plane geometry that the plane is less than three-dimensional, 

and there will be no two points z and z' satisfying all the same conditions involving 

betweeness and congruence and the three distinguished points; in particular there 

will be no two points simultaneously equidistant from a and from b and from c. 

From any pair of points z, z' we may therefore always specify one as what may be 

called proximal and the other distal relative to the three distinguished points 

a, b, c:  

 Namely, if the two points are at different distances from first point a, then 

the one nearer to a should be designated the proximal one. If the two points are 

equidistant from a but of different distances from the second point b, then the one 

nearer to b should be designated the proximal one. If the two points are equidistant 

both from a and from b, then they cannot be equidistant also from the third point c, 

and the one nearer to c should be designated the proximal one.  
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 In what follows it will be convenient to pick as the point c one of the two 

points of intersection of the circle with center a passing through b and the line 

through a perpendicular to the line ab, thus obtaining what in the terminology of 

Burgess (1982) would be called a system of benchmarks a, b, c. In connection with 

such as system the point a may suggestively be termed the origin, and the lines ab 

and ac the horizontal and vertical axes, and b and c the unit points on those axes. 

 Now it is a completely general fact about first order theories that if we start 

with such a theory T in a language L in which can be proved x(x) for some 

condition expressed by a formula  of L, and if we then add a new constant d to L 

and the new axiom (d) to T, the result T' will be what is called a conservative 

extension of T, meaning that anything statable in L (without the new constant) and 

provable in T' (with the new axiom) will be already provable in T (without the 

new axiom). (This is an immediate consequence of the rule of existential 

elimination found in textbook natural-deduction formulations of first order logic.) 

Further, by first-order logic, when any conclusion (d) is provable in T' the 

following will be a theorem of T: 

 

(7) x((x) → (x)) 

 

 Similar results hold when adding two, three, or more constants. In particular, 

if we let G be the extension of G0 obtained by adding the constants a, b, c and the 

axiom that the points they denote form a system of benchmarks, then the extension 

will be conservative, and to that extent harmless. (For it is a theorem of G0 there do 

exist systems of benchmarks, and indeed that for any two distinct points there 

exists a system of benchmarks of which the given points are the first two. Indeed, 

there exist exactly two such systems.) This technical adjustment will remove the 
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three rather trivial failures of  “constructivism” mentioned above. (A) and (B) 

should henceforth be understood as applying to this conservative extension G of 

G0, and the terms proximal and distal henceforth understood relative to the 

benchmarks denoted by the three new constants.  

 

3 To Express a Construction Theorem Where we have only points, as in 

Tarskian formulations, a straightedge and compass construction must be viewed as 

involving marking new points given previously marked points. (Constructing a line 

or circle will be a matter of constructing a pair of points coding one.) There are 

three basic kinds of steps: 

 

(8a) to mark the intersection of the lines coded by x, y and by u, v 

(8b)  to mark the intersections of the line and circle coded by x, y and u, v 

(8c)  to mark the intersections of the circles coded by x, y and by u, v 

 

 Let now L be a first-order language and T a theory in L and  a formula of 

L for which it is a theorem of T that for any xs there exists a unique y such that  

holds of the xs and y, or in symbols, the following: 

 

(9) x1x2…xn!y(x1, x2, … , xn, y) 

 

Then one can add an operator or function symbol  representing the function that, 

given any xs as input, gives their y as output. In this situation  is called the 

defining formula of , the relation expressed by (x1, x2, … , xn, y) is called the 

graph relation of , while the defining axiom for , to be added to T when  is 

added to L, is the following: 
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(10) x1x2…xn(x1, x2, … , xn, (x1, x2, … , xn)) 

 

Because the symbol  is definable, every formula containing it will have a formula 

in the original language L without the new function symbol that can be proved 

equivalent to it given T plus the defining axiom.  

 All this is true quite generally, for arithmetic, for geometry, for anything. In 

the specific context of geometry, we will want to add in this way to the language L 

of G function symbols corresponding to the basic construction steps (8abc). For 

this we must first indicate or recall how various auxiliary notions are expressible in 

the language of G. Here are a few basic ones: 

 

(11a) |xyz or collinearity:  

 “x, y, z lie on a line” or   

 “y lies on the line coded by x, z”: 

 Bzxy  Bxzy  Bxyz  

(11b) xyz or equidistance:  

 “y lie at the same distance that z does from x” or 

 “y lies on the circle coded by x, z”:  

 x ≠ y & Cxyxz 

(11c) xyz or equilaterality:  

 “x, y, z are the vertices of an equilateral triangle”:  

 ¬|xyz & Cxyyz & Cxzyz 

(11d) ⊥xyz or perpendicularity:  

 “the angle yxz is right”: 

 ¬|xyz & w(Bwxy & Cxwxy & Czwzy) or equivalently 

 ¬|xyz & w(Bwxy & Cxwxy → Czwzy) 

(11e)  xyz or benchmarking: 
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 “x, y, z form a system of benchmarks” 

 Cxyxz & ⊥xyz 

(11f) <xyz or nearness:  

 “y lies less far than z does from x”:  

 w(w ≠ z & Bzwx & Cxyxw) or equivalently  

 w(Bwzx → ¬Cxyxw) 

(11g)   tuvxy or proximality: 

 “t, u, v constitute a system of benchmarks and 

 of the two points x and y, the former is proximal 

 and the latter distal relative to them”: 

 tuv & [<xyt or (Cxtyt & <xyu) or (Cxtyt & Cxuyx & <xyv)] 

In G, where have distinguished a system of benchmarks denoted a, b, c, we may 

write simply xy for  abcxy. The list (11) could be indefinitely extended. 

 We next define five seven-place functions, one of them, , related to 

constructions steps of kind (8a), two of them,  and ', related to construction steps 

of kind (8b), and two of them,  and ', related to construction steps of kind (8c). 

The benchmarks will play three roles in what follows. 

 First, constructions must begin with some data, as Euclid’s Proposition 1 

starts with there being given a line segment, or equivalently the two distinct points, 

its endpoints. The benchmarks will serve the starting points for all the 

constructions with which we will be concerned. 

 Second, before we can introduce a symbol  for a function in the manner 

discussed in connection with (9) and (10), the function must be total, or defined for 

all inputs, even in waste cases where we do not care what the output is; and we 

may conventionally take the first benchmark as the waste-case output. For 

geometric constructions the definition of waste case for a function 
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  (t, u, v, w, x, y, z)  

 

where  is any of , , , ', ' will be a disjunction four clauses, the first three the 

same for all of (8abc):  

 

(12a) t, u, v are not a system of benchmarks 

(12b) w = x, meaning that the pair w, x  fails to code a line or circle 

(12c) y = z, meaning that the pair y, z  fails to code a line or circle 

 

The last clause will be different for each of the three basic construction steps, thus: 

 

(13a) the lines coded by x, y and u, v do not intersect in a point  

 (they coincide or are parallel) 

(13b) the line coded by x, y does not intersect the circle coded by u, v in two points 

 (the former is disjoint from or tangent to the latter) 

(13c) the circles coded by x, y and u, v do not intersect in two points 

 (they coincide or are disjoint or are tangent) 

 

In any waste case we will set the value of function  to be t. 

 Third, when we need to mark a point of intersection of a line or another 

circle with a given circle, we have two equally good options that are mirror images 

of each other, so to speak. Euclid’s instructions for producing an equilateral 

triangle on a given base, as we find them implicit in his Proposition 1, do not tell 

us how to choose, and this may be said for many others of his construction 

problems as well: Buridan’s ass would be unable to complete the construction 

given only Euclid’s instructions. With benchmarks in the background we can agree 
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that when we are faced with a choice between two points, we should always take 

the proximal one of that pair. 

 We can now write down the definitions of symbols for the functions 

connected with constructions (writing as usual in mathematics “iff” for “if and 

only if”).  

 

(14a) (t, u, v, w, x, y, z) = s iff we are in a waste case and s =  t or s  is  

 the point of intersection of the lines coded by w, x and by y, z 

(14b) (t, u, v, w, x, y, z) = s iff we are in a waste case and s =  t or s  is 

 the proximal point of intersection of the line and circle 

  coded by w, x and by y, z 

(14c) (t, u, v, w, x, y, z) = s iff we are in a waste case and s =  t or s  is  

 the proximal point of intersection of the circles coded by w, x and by y, z 

(14d) ' like  but for distal    

(14e) ' like  but for distal 

 

Here in (14bcde) proximal and distal are to be understood relative to the 

benchmarks t, u, v.  

 Three trivial three-place functions as follows will also be wanted: 

 

(15a) i(t, u, v) = t  (15b) j(t, u, v) = u  (15c) k(t, u, v) = v 

 

Applied to a system of benchmarks these pick out, respectively, the origin and 

horizontal and vertical unit points.  

 One further abbreviation will make for conciseness: Let §fg1…gn denote the 

m-place function obtained by substituting n given m-place functions in the n-place 

function f, thus: 
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(16) §fg1…gn(x1, … , xm) = f(g1(x1, … , xm), …, gn(x1, … , xm)) 

 

Then a program for constructing a configuration of k points (starting from given 

benchmarks) can be represented as a k-tuple of complexes of the above-mentioned 

nine symbols , , , ', ', i, j, k, and  §.  

 To apply this apparatus to Euclid’s Book I, Proposition 1, we will want a 

complex  provably satisfying the following: 

 

(17) (i(a, b, c), j(a, b, c), (a, b, c)) 

 

Here i and j applied to our system of benchmarks will simply give us the first two 

of them, thus determining a line segment such as is given at the outset in Euclid’s 

construction. The crucial  applied to our benchmarks should yield the proximal 

point of intersection of two circles, the radius of each being the distance between 

the first two benchmarks, and the centers of the two being the first and the second 

benchmark. This amounts to (a, b, c, a, b, b, a), which amounts to the 

composition of the seven-place function  with the seven three-place functions i, j, 

k, i, j, j, i.  

 Hence the program for the construction of the vertices of an equilateral 

triangle, given benchmarks a, b, c can be represented by a trio of symbol 

complexes , ,  as follows: 

 

(18)  = i   = j   = §abcabba 

 

And the  existence theorem that there is an equilateral triangle, namely, 
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(19) xyz (x, y, z)  

 

is implied by the following restatement of (17):  

 

(20) ((a, b, c), (a, b, c), (a, b, c)) 

 

Leaving the benchmarks to be understood we may write this as (, , ) for 

short. And what has just been said about the equilateral triangle applies equally to 

the regular heptadecagon, substituting Gauss’s construction for Euclid’s. Behind a 

formalized version of (1) in the style of (19) there stands a formalized version of 

(3) in the style of (20).  

 More generally, for any condition expressible in a formula , a statement of 

type (3), to the effect that an explicitly specified program would produce a 

configuration of points x1, x2, x3, … satisfying , can be taken to be a formula of 

the form 

 

(21) (1, 2, 3, …) 

 

wherein 1, 2, 3, … are symbol complexes of our notation for representing 

programs, indicating how points x1, x2, x3, … are to be constructed from the 

benchmarks, applying specified cases of (8abc) in a specified order. 

 In sum, while a constructibility assertion of type (2), to the effect that there 

exists a program that would produce a given kind of configuration, has to be 

expressed in the “metalanguage,” as the statement that there exist s for which (21) 

is a theorem, by contrast we have produced (or at least sketched, relying on results 

of Tarski and his school) a way, namely (21) itself, of expressing in the “object 

language” a construction assertion of type (3), QEF. 
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4 There Is a Construction Theorem for Any Pure Existence Theorem A 

purely existential formula (respectively, purely universal formula) is one that, 

when it is written out in primitive notation, with all defined symbols replaced by 

their definitions, consists of a string of existential quantifiers  (respectively, 

universal quantifiers ) in front of a quantifier-free formula. (A bit confusingly, 

formulations of a theory that have only purely universal formulas as axioms are 

conventionally called quantifier-free formulations. This is because of the custom of 

omitting the initial universal quantifiers when a purely universal axiom is stated, 

leaving them to be tacitly understood. Thus for instance in arithmetic the 

commutative law for addition is expressed as 

  x + y = y + x 

where what is really meant is the universal closure of this formula, namely 

  xy(x + y = y + x) 

In effect, assertion of the version without the initial string of universal quantifiers 

is taken to be tantamount to assertion of the version with them.) 

  A forumla provably equivalent in G to a formula that is purely existential 

(respectively, purely universal) is said to be of class  (respectively, class ). A 

formula of class  is any that is of both classes  and , thus expressing a notion 

that can be given both a purely existential and a purely universal definition. The 

function denoted by a symbol  introduced as above is of class  if its defining 

formula is.  

 The basic features of these notions belong to general definability theory and 

include the following closure properties:  

 

(22a)  is closed under  and  and  

(22b)  is closed under  and  and  
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(22c)  is closed under  and  and ¬  

 

and all three are closed under substitution of  functions. There is nothing 

specifically geometrical about these facts, nor about the fact that the negations of  

 formulas are  formulas, and vice versa. Notably, the general proofs about  and 

 are very much like those for semi-recursive and recursive in computability 

theory (compare Boolos et al., 2007, p. 76, Theorem 7.4). 

 Now obviously (21) implies the existence statement 

 

(23) x1x2x3, …(x1, x2, x3, …) 

 

which will be purely existential provided  is quantifier-free (and will be  

provided  is ). This covers the case of the formula stating that the xs are the 

vertices of a regular polygon of n sides, for any n ≥ 3. It also covers many other 

cases, for we will soon see that the class  and indeed the class  is quite large.  

 The main result whose proof will be outlined here is that for any purely 

existential theorem of G of type (23) there is a theorem of G of type (21) that 

implies it. (And note that we have already in effect seen in connection with (7) that 

if some statement about the distinguished system of benchmarks denoted a, b, c is 

a theorem of G, the corresponding generalization about all systems of benchmarks 

will be a theorem of G0.) 

 It is crucial for the proof of this result that the defining formulas  for our 

, ,  can be taken to be . This is verified by going through the list of defined 

notions in the preceding section one by one, and that list could be indefinitely 

extended. At the beginning, collinearity and equidistance and equilaterality were 

given quantifier-free definitions (11abc). Then perpendicularity and nearness were 

each given a  and an equivalent  definition in (11df). The first problematic case 
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comes only with (13a), or the parallelism of the lines coded by x, y and by u, v. 

Here the obvious definition is  (the non-existence of a common point). The 

parallel postulate implies a less obvious equivalent definition that is , in terms of 

the existence of points on the one line and on the other with the segment between 

them perpendicular to both lines. The other cases are left as exercises to the reader. 

The end result is that in a case of the kind that interests us, where  is ,  the 

formulas of type (23) will be , by the closure of that class under substitution of  

functions and the other closure properties (22abc) of   and . 

 The rest of the proof draws on the beautiful nineteenth-century algebra used 

to show that the classic problems of giving straightedge and compass constructions 

for duplicating the cube and trisecting the angle or constructing a regular heptagon 

are unsolvable (as expounded, for instance, in Papantonopoulou 2002, chapters 11 

and 12; the impossibility of squaring the circle, involving as it does the number pi, 

requires analytic methods). The constructible field is the smallest set of real 

numbers containing 0 and 1 and closed under the rational operations of addition, 

subtraction, multiplication, and division by non-zero numbers, as well as under 

extraction of square roots of positive numbers.  

 Tarski shows that a minimal model M0 of G0 can be obtained by taking as 

“points” pairs constructible numbers and defining the primitive relations just as in 

the Cartesian model, which is to say, just as in middle school analytic geometry. 

Square roots are needed to get the circle axiom. This M0 may be called the 

constructible plane and contrasted with the Cartesian plane in which B and C are 

defined by the same formulas (6ab), but the points are pairs of arbitrary real 

numbers. The points a = (0, 0), b = (1, 0), c = (0, 1) may be taken as benchmarks to 

get a minimal model M of G, and a crucial property of M is that every point is 

straightedge and compass constructible from those benchmarks.  
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 This result has a long history. Euclid has in Book V a theory (which 

historians associate with Eudoxus) of ratios and proportions of lengths and other 

magnitudes, but he does not speak of these ratios as real numbers the way we 

would. Numbers for Euclid are positive integers. That is why it is an anachronism 

to speak of the Greek discovery of the incommensurability of the side and diagonal 

of a square as the discovery that √2 is an irrational number. In Euclid ratios are not 

things that can be added and multiplied.  

 But ratios were considered numbers at least as early as Omar Khayyam, and 

constructions in Euclid could then be reconstrued as rational operations on ratios, 

as well as extraction of square roots. This picture is in the background in 

Descartes’ Géométrie and the foreground in Newton’s Universal Arithmetick, and 

the theory is treated fully rigorously in Hilbert. It is also behind the results in 

Burgess 1984 on the possibility of reconstructing or reconstruing analytically-

formulated theories of classical physics in a “synthetic” style.  

 The treatment of the straightedge and compass constructions related to 

multiplication, division, and square roots has found its way into the more thorough 

introductory textbooks of abstract algebra, as part of Galois theory. (See 

Papantonopoulou, Propositions 11.1.12 through 11.1.14, pp. 345-346.)  In the 

constructible plane, any point (x, 0) on the horizontal axis can be obtained from 

(0, 0) and (1, 0) by the geometric steps corresponding to the algebraic steps used to 

obtain x from 0 and 1. Likewise any point (0, y) on the vertical axis is constructible 

from the benchmarks (0, 0) and (1, 0). And then any point at all (x, y) is 

constructible from the benchmarks as the intersection of the horizontal line through 

(0, y) with the vertical line through (s, 0). 

 Now suppose (23) is a theorem of G, with  quantifier-free or even just . 

Then it must be true in the constructible plane, where every point is constructible, 

and if we take symbol complexes, s, describing the construction of the pertinent 
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xs, then (21) will be true in the constructible plane. But part of what was meant by 

calling M a “minimal” model is that any model of G has the constructible plane (or 

an isomorph or copy thereof) as a submodel. And it is a quite general fact of model 

theory, not at all tied to geometry specifically, that any  statement true in a 

submodel of a model is true in the model itself. Because (21) is , it will thus be 

true in every model of G. And finally, by the Gödel completeness theorem it 

follows that it will be a theorem of G. And so we have shown (at least in outline) 

that behind every pure existence theorem there is a construction theorem, QED. 

 

4 Related Issues Let me take note now of a few questions about potential 

extensions or refinements of the results discussed so far.  

 First question. A proof has been outlined for following “metatheorem”: For 

every pure existence theorem there exists a construction theorem implying it, or 

more long-windedly, for every proof  of a pure existence theorem , there exists 

a pair of proofs (, ) with  being a proof of a construction theorem , and  

being a proof of the logical implication  → . The question now arises: is the 

“metaproof” that has been given or sketched for this result “constructive” in the 

sense of that there is an effective procedure that applied to any given pertinent  

will compute a suitable (, )? 

 Yes, there is, and it goes like this: Nineteenth-century set theory established 

that given a finite alphabet of symbols, one can effectively list all finite strings  of 

symbols from this alphabet in a sequence 0, 1, 2, … indexed by natural numbers. 

Given a pertinent , for any  on the list one can effectively decide or compute 

whether it is a suitable pair (, ) for . So just go down the list until a suitable 

pair is found. This procedure is “effective” or “computable” in the sense that in any 

given case it is possible in principle (not worrying about the amount of time 
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needed to carry it out or the amount of space needed to record intermediate 

results), for a digital machine to carry it out.  

 But it is not feasible in practice. The function taking one from  to (, ) in 

the manner described is computable or recursive but might take astronomically 

long to compute. And this raises the question: Is there any more efficient way to 

find a construction theorem behind any given existence theorem? To begin with, 

could there be a procedure producing not just a recursive but a primitive recursive 

function?  Such questions of  “complexity theory” virtually always arise when 

something is proved to be computable or recursive. They are often quite difficult to 

answer, or anyhow, often go unanswered for a long time after they are originally 

posed. We need not be especially troubled, therefore, if the question just 

enunciated turns out to be one that has to be left open for the present and 

foreseeable future. 

 Second question. We may ask how far can results similar or analogous to 

those established in this note for straightedge and compass construction be 

obtained for other kinds of geometric construction? This is obviously not a single 

question but a series of them for different species of constructibility. Probably the 

most interesting case, and the only one I will explicitly discuss, is that of so-called 

neusis or verging constructions (known to be equivalent to origami constructions). 

Where straightedge and compass permit the duplication of the square and the 

bisection of an angle and the construction of a regular pentagon, they do not allow 

for the duplication of the cube or the trisection of an angle or the construction of a 

regular heptagon. These three things do have neusis or verging constructions.  

 By definition these are constructions using in addition to the compass a 

“marked ruler” or “notched straightedge.” They are equivalent to constructions 

involving drawing of conic sections (using a string as mentioned in a note early on 

here in the case of the ellipse, or in some other way) and finding the intersections 
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of such curves. They are equivalent also to constructions using a curve called the 

conchoid of Nicomedes, for the drawing or producing of which there is a 

mechanism whose invention is attributed by a commentator (one Eutocius of 

Ascalon) to Archimedes. 

 This class of constructions has been analyzed algebraically as thoroughly as 

have been straightedge and compass constructions. (See Papantonopoulou 2002, 

pp. 357ff.) The algebraic counterpart of going beyond straightedge and compass 

constructions to neusis or verging constructions is in jargon that of going beyond 

“Euclidean” to “Vietan” fields, or in plainer language, from solving quadratic to 

solving cubic equations. This last is a problem that itself has long history, in which 

the outstanding figures are Omar Khayyam in the eleventh or twelfth century, for 

geometric solutions by intersecting conics, and Gerolama Cardano in the sixteenth 

century, for algebraic solutions by radicals. 

 There is much more that could be said, but what is most relevant here is that 

since the algebra has been so thoroughly analyzed it ought not to be very difficult 

to extend the methods of the present note to establish analogues of (A) and (B) for 

the wider class of constructions. Still, since I have not worked through the details, I 

can for the moment only advance this as a conjecture rather than claim it as a 

theorem. 

 Third question. How widely beyond the case of purely existential theorems 

can the notions and results of the present note be extended? What has been shown 

so far is that there is a construction theorem behind any purely existential theorem, 

that is, any theorem of form (23) above with  quantifier-free; and a moment’s 

thought shows that this results extends to the case where  consists of a string of 

existential quantifiers follow by something quantifier-free. The next cases to 

consider would be those of universal-existential theorems, of the type 
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(24) x1x2…xm y1y2…xn (x1, x2, …, xm, y1, y2, …,yn) 

 

with  quantifier-free.  

 The methods used here do establish some results of this kind. For instance, it 

can be shown not just how to construct an equilateral triangle but how for any line 

segment to construct an equilateral triangle having that segment as a side (which is 

the actual result in Euclid’s Proposition 1). For the construction given above 

establishes that there is an equilateral triangle having the segment ab joining the 

first two benchmarks as one side, and we have already seen that what is provable 

in G to hold for a, b, c, is provable in G0 to hold for any system of benchmarks, 

and that for any two distinct points there is a system of benchmarks of which they 

are the first and the second. The general case is, however, so far as I know open. 

 The next case to consider would be that of existential-universal theorem, of 

the type 

 

(25) y1y2…ynz1z2…zp(y1, y2, …, yn, z1, z2, …, zp) 

 

with  quantifier-free. But it can be shown that there is not always a construction 

theorem behind such a result. It will be worthwhile to spell out a counterexample, 

since it will illustrate an important point about the distinction between Euclid-type 

construction-oriented geometry and Brouwer-type constructivist or intuitionist 

logic, a theme that thus far has been left in the background here since it was 

initially enunciated. For the counterexample will depend on the law of excluded 

middle. 

 It is known that proportionality or equality of ratios of segments, written in 

traditional notation thus: 
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 st : uv :: wx : yz 

 

is expressible in the language of G, and indeed is of class . Hence it is expressible 

that the quintuple u of points u1, u2, u3, u4, u5 are so related that 

 

(26a) they all lie on the same line and in the order listed 

(26b) u1 and u5 lie at the same distance from u2 on opposite sides,  

 so that u1u2 and u1u5 are in the ratio 1 to 2 

(26c) u1u2 is to u1u3 as u1u3 is to u1u4 and as u1u4 is to u1u5, 

 so that u1u2 and u1u3 are in the ratio 1 to 3√2 

 

 Since 3√2 is the number that has to be constructed in the problem of the 

duplication of the cube, when (26abc) hold for u1, u2, u3, u4, u5 let us say the 

quintuple u is a cube-duplicator, and write Qu. Similarly write Pu to express that 

the quintuple u is pentagonal in the sense that u1, u2, u3, u4, u5 in that order are the 

successive vertices of a regular pentagon. Let us also write u to abbreviate 

u1u2u3u4u5. Then the counterexample to be discussed will be statable in this 

abbreviated notation thus: 

 

(27) u(Qu  (Pu & ¬vQv)) 

 

This is logically equivalent to the following existential-universal formula: 

 

 uv(Qu  (Pu & ¬Qv)) 
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 It is provable in G that uPu. It is neither provable nor disprovable in G that 

uQu, for there is a cube-duplicator in the full Cartesian plane but not in the 

restricted constructible plane. To prove (27), note that by excluded middle (in any 

given model) there either does or does not exist a cube-duplicator. If there does, 

any cube-duplicator may be taken for the u in (27) and the disjunction will hold 

because its first disjunct does. If there does not, then the second conjunct of the 

second disjunct in (27) will hold, and if we take for u any regular pentagon—and 

we know there will be one—the first conjunct will hold as well, and hence the 

second disjunct as a whole, and hence the disjunction as a whole. So either way, 

(27) holds. The argument here is only slightly fancier than that used for (4). 

 Now consider any quintuple  = (1, 2, 3, 4, 5) of operations 

compounded out our basic operations , , , and so on, and apply it to the 

benchmarks to obtain the quintuple of points 

 

(28) 1(a, b, c), 2(a, b, c), 3(a, b, c), 4(a, b, c), 5(a, b, c) 

 

Part of what was meant by calling the constructible plane a “submodel” of the 

Cartesian plane is that when applied to the benchmarks or any other elements of 

the smaller plane, , , , and the rest will give the same results whether we are 

thinking of them as operators on that plane or on the larger plane. So the notation 

(28), which may be abbreviated as or (a, b, c), or even just as , is unambiguous. 

A construction theorem implying the existence theorem (27) would have to look 

like this: 

 

(29) Q  (P & ¬vQv) 
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 But no such thing can be a theorem of G, since nothing like (29) can be true 

in both the constructible and the Cartesian plane. To be true in the smaller plane, 

where there are no cube-duplicators and hence the first disjunct is false, the second 

disjunct and in particular its first conjunct, must be true. But that means that  is 

giving us a regular pentagon. By contrast, to be true in the larger plane, where the 

second conjunct of the second disjunct, and hence the second disjunct as a whole, 

is false, the first disjunct must be true. But that means that  is giving us a cube-

duplicator. And nothing is both a regular pentagon and a cube-duplicator. 

 So while the main results (A) and (B) above hold for purely existential 

theorems as was seen in §3, we have just seen this success does not extend to 

arbitrary existence theorems. One can only conclude that G is “constructive” in 

one sense and “non-constructive” in another sense. But that was true already of 

Euclid and does not in itself demonstrate infidelity of the Tarskian approach to the 

Euclidean. 

 

5 Not Unrelated Developments.  At the suggestion of a reader of an earlier 

draft of this note, let me before closing describe some previous work on 

constructivity in geometry by Nancy Moler and Patrick Suppes (1968). It is clearly 

relevant to the present discussion, even though its results do not directly quite yield 

(A) and (B) above, while inversely and more emphatically, what is done here 

certainly does not accomplish the aims of the joint authors’ more ambitious 

project. A certain gap or space exists between the two investigations, which in 

some respects are even opposite in their perspectives.  

 Here, in attempting to modernize the Euclidean context of Beere’s and 

Morison’s historical discussion of existence theorems versus construction 

problems, I have simply adopted Tarski's axiomatization, whose primitives are 

predicates, and whose postulates include items (notably Pasch's axiom) of 
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universal-existential form. The tradition originating with Moler and Suppes, by 

contrast, seeks to do for geometric theories what has already been done for any 

number of arithmetic or algebraic theories, namely, to formulate them with only 

function symbols rather than predicates as primitives—constants are also allowed, 

since they may be counted as zero-place function symbols—and with all axioms as 

so-called quantifier-free (really, purely universal) statements. It might not be too 

inaccurate to say that whereas the interest here has been in finding construction 

theorems “behind” existence theorems, the interest in the tradition under discussion 

is more in simply avoiding existence assertions in favor of construction assertions. 

 Moler and Suppes are aiming to give a different axiomatization of what is in 

some sense supposed to be the “same” geometric theory as the Tarskian 

formulation they contrast with it. In the end they establish the agreement of their 

proposal with earlier models by means of representation theorems, which play a 

large role elsewhere in Suppes’ œuvre. It is, however, also possible to give a more 

syntactic definition of the sort of thing that is wanted: 

 

(30a)  The function symbols of the new theory are to be definable in terms of the 

predicates of the old theory. 

(30b) The axioms of the new theory are to be deducible from those of the old 

theory together with the definitions just mentioned of the function symbols. 

(30c) The old predicates are to be definable in term of the function symbols of the 

new theory. 

(30d) The axioms of the old theory are to be deducible from those of the new 

theory together with the definitions just mentioned of the predicates. 

 

 What is meant in (30a) is definability in exactly the same sense in which , 

,  here were defined in terms of B and C and a, b, c. It should be mentioned that 



 35 

it turns out to be needful, in order to avoid trivialization, for Moler and Suppes also 

find that they need to introduce constants a, b, c denoting three non-collinear 

points, like the benchmarks in this note. Once this is done there is a very general 

way, not specifically geometrical, and perhaps not optimal, but always available, to 

introduce function symbols r, s, t,… for the new theory that will be interdefinable 

with the predicates R, S, T,… of the old theory.  

 How this may be done is sufficiently illustrated by the case of a single two-

place predicate R. We associate with the predicate a symbol r for (a version of) the 

characteristic or indicator function r for R, which for given x and y as inputs 

returns as output the item denoted a if R(x, y) holds, and that denoted b if not. 

Replacing R(x, y) by r(x, y) = a will be enough to enable one to accomplish (52cd), 

and inversely, accomplishing (56ab) can be carried out by the usual methods of 

eliminating function symbols (as in Boolos et al. 2007, §19.4, pp. 255-258).  

 That usual method will involve introducing some existence axioms like (9). 

Moving in the opposite direction will make such axioms superfluous, but will not 

by itself eliminate all the old existence axioms already present in the original 

version of the theory. It is, however, as mentioned in passing above, the avowed 

aim of Moler and Suppes to eliminate in their geometric context to do just that: 

eliminate all existential axioms from the new theory, finding an axiomatization 

using only universal formulas. As they say (p. 143) 

 

 In view of the highly constructive character of Euclidean geometry, it seems 

natural to strive for a formulation that eliminates all dependence on purely 

existential axioms… 

 

 And there exists what may superficially appear to be an all-purpose method 

for eliminating existential axioms at the cost of introducing new function symbols, 
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a method of which some readers will have heard, called “reduction to Skolem 

normal form” or simply “Skolemization” (as in Boolos et al. 2007, §19.2, pp. 247-

253). But in fact Skolemization is not really relevant to the Moser-Suppes project. 

or to that of this note. (And readers unfamiliar with it may simply skim or skip the 

next paragraph here, which explains why.) 

 In general, Skolemization does not even guarantee that the new functions 

introduced will be definable in terms of what was there before their introduction, 

as required by (30a). That aside, it is certainly not something Moler and Suppes 

wish to rely on, since they continue the passage just quoted with these words: 

 

 …but not, of course, by use of some wholly logical, non-geometric method 

of quantifier elimiination. 

 

And Skolemization is the very paradigm of a wholly logical, non-geometric 

method of quantifier elimination. Rather, Moler and Suppes call for primitive 

function symbols representing “familiar constructions,” of the kind whose use is 

acknowledged in the tradition of geometric construction problems, and something 

like this requirement of connection with historically given functions or operations 

has also been implicitly or tacitly assumed in the approach taken in this note. 

 Moler and Suppes take as their “familiar” geometric constructions finding 

the intersection of lines, a version of which was the first (8a) of the basic 

constructions (8) used in §3 above, and the laying out of segments as in Euclid, 

Book I, Proposition 2. Here the aim has been similar, to use only what are 

recognizably versions of the familiar construction steps (8abc). Moler and Suppes 

do not concern themselves with finding the intersection of circles as was done in 

this note with (8bc), because they are working not with the Euclidean geometry 
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that has been the focus here, but with the weaker Pythagorean geometry, which 

lacks the circle axiom.  

 The difference between the two geometries parallels the difference in 

algebra between Euclidean ordered fields, in which every positive element has a 

square root, and Pythagorean fields, satisfying the weaker condition that every sum 

of squares has a square root. The Euclidean as opposed to Pythagorean case was 

taken up later, by Horst Seeland (1978). By the time we come to the survey of 

Victor Pambuccian (2008), multiple geometries have come into play (including the 

stronger geometry of neusis or verging constructions alluded to earlier, and the 

oldest kind of non-Euclidean geometry, the hyperbolic), and the bibliography of 

this tradition has grown to nearly 150 items. There is a great deal here that might 

be looked over again from the somewhat different perspective of this note. 

 Moler and Suppes encounter the difficulty, which they describe as “akin to 

division by zero,” that their functions are not always defined (as the intersection of 

lines does not exist when the lines are parallel). Indeed, they cite such difficulties 

as probably the main reason why something like their project was not carried out 

much earlier in the history of formalized geometry. Here such difficulties were 

dealt with by conventionally assigning a sort of null value, the origin, to waste 

cases where this happens. Moler and Suppes take the bolder line of simply 

allowing some functions in some models to be partial, and generalizing model-

theoretic notions such as submodel and isomorphism to apply to this 

wider-than-usual range of models. 

 The paper of Moler and Suppes was published in a journal founded by  

Brouwer after Hilbert had, at a sort of climax of the Grundlagenstreit, manœuvred 

him off the editorial board of the Mathematische Annalen. And in a footnote at the 

bottom of the first page of their work they refer to Brouwer’s chief disciple and tell 

us the following: 
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 It is a pleasure to dedicate this paper to Professor Heyting on the occasion of 

his seventieth birthday. In view of his long interest in constructive 

mathematics and in geometry, we believe the subject of our paper make it 

particularly appropriate to dedicate it to him. 

 

For there is indeed a long tradition among intuitionists of concern with geometry, 

from parts of Brouwer’s dissertation onward, through work by Heyting partly on 

problems to which Brouwer directed him, and then on to Heyting’s student Dirk 

van Dalen and beyond. Still. overlap with the Moler-Suppes tradition may be 

somewhat limited insofar as the latter sticks to classical logic. 

 A genuine intuitionist would not allow definitions by cases, as repeatedly 

used here (in particular, in the definitions of  , , ) unless the case hypotheses are 

decidable. And just as in intuitionistic algebra the identity of real numbers is not 

assumed decidable, so also for the coincidence of planar points in intuitionistic 

geometry. There exists a more recent body of work produced by Michael Beeson, 

culminating in Beeson (to appear), specifically concerned with geometry that is 

“constructive” in the double sense of being both occupied with straightedge and 

compass constructions and based on Brouwer’s and Heyting’s intuitionistic or 

constructivistic logic. But this work inevitably has a rather different flavor from the 

work discussed or reported here. 
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NOTE 

1.  But it may be not inappropriate to recall parenthetically that there are other 

ways to draw lines and circles, some antedating the oldest surviving examples of 

compasses, which come from Roman times. Proclus describes geometry as arising 

out of the practice of Egyptian surveyors, with which Euclid as a resident of 

Alexandria might be expected to have been familiar. These surveyors were called 

“rope stretchers” and are depicted in wall paintings as carrying a long rope, which 

stretched taut can be used to trace a straight line on the ground. It is no coincidence 

that our word “straight” is etymologically linked to “stretched’ and that “line,” 

which is still the nautical term for “rope,” is etymologically linked to “linen,” flax 

being one of the materials out of which ropes were produced. A method something 

like this, involving a taut cord tied at both ends to stakes, is still used today in 

gardening, and a web search on the key words “garden” and “straight line" will 

turn up several videos giving a demonstration. A taut string could be used to draw 

a straight line on paper or papyrus or parchment in an analogous way. A string can 

also be used to draw a circle. It can even be used to draw an ellipse, though Euclid 

makes no provision in the Elements for ellipses and other conic sections. 
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