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PARSONS AND THE STRUCTURALIST VIEW 

 

1. OVERVIEW 

 The involvement of Charles Parsons with structuralism goes back to 

the first appearance of the issue in the literature of contemporary analytic 

philosophy of mathematics, in the mid-1960s, before the ‘structuralist’ label 

had been attached to it, and when still ‘structuralism’ referred only to 

intellectual trends then in fashion in Paris. For while the origin of the issue 

of structuralism in the sense under discussion here is generally traced to the 

seminal paper of Paul Benacerraf [1965], which is wholly devoted to the 

issue, Parsons made some of the same observations, and advanced some of 

the same conclusions, in the same year, in the course of his very wide-

ranging critical study of Frege’s theory of numbers [Parsons 1965, §III].  

 Both Benacerraf and Parsons observe that multiple reductions of the 

natural numbers are available, with Benacerraf discussing mainly set-

theoretic reductions, and Parsons logicist reductions. Both suggest that 

nothing crucial to mathematical practice will be affected by which reduction 

one chooses, and conclude that there is no basis for claiming that the natural 

numbers literally are what set-theory or logicism would reduce them to. A 

difference is that Benacerraf goes on, as Parsons does not, to end his paper 
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by suggesting that there are no such things as the natural numbers, though he 

expresses the thesis in a paradoxical way. Much as Santayana’s view was, 

according to Robert Lowell, that there is no God and Mary is His mother, so 

Benacerraf’s view seems to be that there are no numbers, and infinitely 

many of them are prime. 

 A difference between Benacerraf and Parsons is that the former is 

concerned with mathematicians, Zermelo and Von Neumann, who in 

offering their reductions of natural numbers never claimed to be revealing 

what natural numbers really had been all along; whereas Frege, the author 

with whom Parsons is concerned, seems to be committed to some claim in 

such a direction. Frege in this respect contrasts with his fellow logicist 

Russell, who while proposing an identification very similar to that put 

forward by Frege, one that makes out the number two, for instance, to be the 

class of all two-membered classes, repudiated any claim to be discovering 

what was there all along, writing apologetically as follows: 

 

So far we have not suggested anything in the slightest degree paradoxical. 

But when we come to the actual definition of numbers we cannot avoid 

what must at first sight seem a paradox, though this impression will soon 

wear off. We naturally think that the class of couples (for example) is 

something different from the number 2. But there is no doubt about the 

class of couples; it is indubitable and not difficult to define, whereas the 

number 2, in any other sense, is a metaphysical entity about which we can 
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never feel sure that it exists or that we have tracked it down. It is therefore 

more prudent to content ourselves with the class of couples, which we are 

sure of, than to hunt for a problematical number 2 which must always 

remain elusive. [Russell 1919, p.18] 
 

 Benacerraf’s position would in Parsons’ terminology be called 

eliminative structuralism, and opposition to eliminativism has been an 

enduring feature of Parsons’ writing on structuralist views. This rejection of 

eliminativism puts him in opposition to the ‘hard-headed’ or ‘in re’ varieties 

of structuralism found in the work of the nominalists Geoffrey Hellman 

[1989] and Charles Chihara [2004], and in a sense, in the work also of the 

anti-nominalist David Lewis [1991, 1993]. Parsons’ differences with the 

‘mystical’ or ‘ante rem’ approaches of Michael Resnik [1997] and Stewart 

Shapiro [1997] are more subtle, and to me more elusive. 

 Parsons returned in the 1980s to the matter of multiple reductions in 

another wide-ranging critical study, this time of Quine on the philosophy of 

mathematics [Parsons 1982, §IV]. Both the Frege and the Quine papers are 

reprinted in the volume of selected papers [Parsons 1983], where the 

Introduction (end of §I) adds some further remarks. But the first full-scale 

paper devoted wholly to the topic is [Parsons 1990].  

 This paper opens with a characterization of structuralism intended to 

cover all versions, both those with which Parsons sympathizes and those 
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with which he does not, that continues to be used in Parsons’ later work: 

 

(A)  Reference to mathematical objects is always in the context of some 

background structure, and the objects involved have no more to them than 

can be expressed in terms of the basic relations of the structure. 
 

This formulation is followed by an apparently approving quotation from 

Resnik of a passage asserting that mathematical objects are ‘structureless 

points or positions in structures’.  

 Note that while discussion of structuralism began with the case of the 

natural numbers, the claim in (A) is perfectly general, and nowadays one is 

not perhaps considered a full-fledged structuralist unless one is willing to 

uphold a thesis like (A) pretty much across the board. By this criterion 

Quine is not a structuralist, despite favoring something like structuralism for 

all mathematical objects except sets, precisely because he does make an 

exception for sets. Nor is Parsons a full-fledged structuralist, since he makes 

an exception for expression types, of which more later. 

 The paper from which (A) comes was reprinted in [Hart 1996], and 

followed by two substantial sequels, one on structuralism and the concept of 

set, originally appearing in an obscure venue in 1995, but more readily 

available in the reprint [Parsons 1997], and another on structuralism and 

metaphysics [Parsons 2004].  
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 In the latter Parsons makes a distinction between ‘basic’ and 

‘constructed’ or derived structures, which among other things lets him avoid 

having to claim that each mathematical object has a unique home structure: 

If the natural numbers form a basic structure, and the rational numbers and 

so on derived structures, then it is perfectly possible for an object with a 

place in the natural number system to have also a place in the rational and 

other number systems. The wording of (A) indeed already leaves an opening 

for such a state of affairs, insofar as it only requires that every reference to 

an object must involve some structure, and not that it must be the same 

structure for every reference. 

 The last sentence of the abstract to [Parsons 2004] is a word of 

warning that every writer on this topic should take to heart: 

 

Ideas from the metaphysical tradition can be misleading when applied to 

the objects of modern mathematics. 
 

Though this is not the main point of the statement, do note the word 

‘modern’, which the larger context suggests means what elsewhere might be 

called late modern as opposed to early modern: Though I have not 

mentioned the fact so far, and though it is perhaps seldom mentioned by 

structuralists as explicitly as it is in the above statement from Parsons, the 

concern throughout is with the objects of present-day mathematics, back to 



 7 

the late nineteenth century, but not much earlier than the time of Richard 

Dedekind, though as with almost anything precursors of still earlier date can 

be found if one is looking for them.  

 In speaking below of ‘mathematical practice’ we must understand 

primarily present-day, professional mathematical practice. Indeed, we had 

better understand present-day, professional practice in core mathematics, to 

the exclusion of, among other things, the practice of set-theorists. For it 

simply is not true that it makes no difference whether one follows Zermelo 

or Von Neumann, if one is concerned with set theorists’ practice. For set 

theorists, Zermelo’s reduction, which applies only to the natural numbers, is 

merely an historical footnote, while Von Neumann’s reduction, which 

generalizes to identifying a cardinal with the least ordinal of that cardinality, 

and an ordinal with the set of its predecessors, is more or less taken for 

granted. In my experience, set theorists when writing for each other 

generally will abbreviate 

 

Let κ and λ be uncountable cardinals, and let ƒ be a function from the set 

of ordinals of cardinality less than κ to the set of ordinals of cardinality 

less than λ. 
 

to 

 

Let κ and λ be uncountable cardinals, and let ƒ be a function from κ to λ. 
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And this abbreviation presupposes the Von Neumann identifications. Along 

with set theory we had better exclude from consideration other areas of logic 

and foundations, and also category theory (which Parsons himself does 

explicitly set aside). 

 Mathematical Thought and Its Objects ([Parsons 2008], henceforth 

MTO) incorporates most of the substance of [Parsons 1990, 1997, 2004] and 

offers considerable further elaboration. Moreover, wide-ranging as the 

discussion of structuralism is in MTO, the coverage of the objects of 

mathematical thought is wider still. For the treatment of structuralism in 

MTO, mainly in chapters 2 and 3, is preceded by a treatment in chapter 1 of 

the notions of ‘object’ and ‘abstract object’ more generally. It is here, for 

instance, that Parsons discusses what he calls quasi-concrete abstract 

objects, a classification that includes expression types, and the contrast 

between them and pure abstract objects. But even MTO is not Parsons’ last 

word on the subject, since a reply to critics is in the works, though I have at 

the time of this writing seen it only in a draft form, not to be quoted, and will 

therefore leave it out of account here.  

 In MTO the preliminaries are followed by a long critique of 

eliminativism, including an extended discussion of modality. I will not say 

much about Parsons’ anti-eliminativism here, having said most of what I 
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would have to say already, in a review [2008]. But while passing over most 

of the anti-eliminativist material, I should not fail to mention the discussion 

of structuralism and applications in §14 of MTO.  

 Here Parsons treats a point on which Benacerraf originally went astray 

and eventually was obliged to publish a recantation [Benacerraf 1996]. 

Consider the structuralist claim that the natural numbers, say, have none but 

structural properties, summed up in the property of their all together forming 

a progression in which each has a distinctive place (0 as initial, 1 as next, 2 

as next, and so on). To accept this claim is not to deny that natural numbers 

have external relations to other objects, but only to insist that all such 

external relations derive from their structural relations to each other. In 

particular, natural numbers, even when conceived structuralistically, can still 

serve as answers to ‘how many?’ questions, since the elements of any 

progression can. One simply defines a given element of the progression to 

represent the number of Fs if and only if there is a correspondence between 

the Fs and the elements of the progression coming before the given one.  

 Finally in §18 Parsons briefly sketches his own positive view, a 

version of structuralism that, while firmly anti-eliminativist, is at the same 

time supposed to differ from the mystical kind of anti-eliminativism, though 

it does so in ways that I will not attempt to summarize. This section also 
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hints at the view on what structures are that Parson wants to defend, a kind 

of ‘metalinguistic’ view. I will not have much to say about it, because 

Parsons himself does not have much to say about it. He acknowledges that 

his approach will involve an ontological commitment to linguistic 

expression types, which is why he cannot be an across-the-board 

structuralist, but says little about obvious ideological commitment to a 

notion of satisfaction, though as an author of an important and influential 

paper on the liar paradox, he must know how problematic this notion of 

‘satisfaction’ can sometimes be. Some of the more negative parts of the 

discussion, arguing that the notion of ‘structure’ found in core mathematics 

cannot be identified with the set-theoretic notion of ‘structure’ that we find 

in model theory, for instance, I will partly be repeating below, though my 

discussion derives less from Parsons than from obiter dicta of my 

dissertation supervisor Jack Silver that I heard as a student many years ago. 

 In sum, I will not be attempting to do anything like justice to Parsons’ 

discussion as a whole. I will focus almost exclusively on his formulation 

(A), and I will evaluate it only from a single point of view, namely, with 

regard to how well or poorly it agrees with and helps make sense of 

mathematical practice. In the jargon of Strawson, I will be examining (A) as 

‘descriptive metaphysics’ rather than ‘revisionary metaphysics’. 
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 In §2 below I will take note of several sorts of abstract objects to 

which a structuralist account would not apply, moving here beyond Parsons’ 

category of quasi-concrete exceptions to the larger category of abstractions 

so much discussed in the literature on so-called neo-logicism. The claim of 

structuralism concerning such objects presumably must be that they no 

longer play a role in mathematical practice, if they ever did. 

 In §3 I will look at the first half of (A), which says that mathematical 

objects come in structures, and consider closely whether this seems to be 

true of the objects under discussion in elementary number theory (as that 

subject is actually conducted in mathematical practice, not as it might in 

principle be ‘regimented’). My conclusion will be that mathematical practice 

refers many sorts of mathematical objects that, even if they do not seem to 

be conceived of as neo-logicist abstractions, equally do not seem to be 

referred to in connection with some background structure, let alone as 

‘structureless points’ in such a background structure. It is here that I will 

draw on the material from Parsons and others alluded to above about the 

differences between the working mathematician’s conception of ‘structure’ 

and the set-theoretic conception. 

  In §4 I will consider what is left of the second half of (A) if the first 

half is admitted to have many exceptions. On one level it is obvious what is 
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left, namely, the thesis that in the case of those mathematical objects that do 

come in structures — the natural number system, with which structuralism 

began, being the most plausible candidate — all there is to them is what 

follows from their occupying the places they do in their structures. My 

conclusion will be that it is not so obvious why one should, as (A) does, go 

beyond saying all we are justified in taking there to be to them is what 

follows from their occupying the places they do in their structures, and say 

outright that this is all there is to them. I locate the border between 

eliminativist and mystical structuralism in the gap between these two 

formulations. 

 In §5 I close by sketching an alternative explanation of some of the 

features of mathematical practice that have motivated structuralism — one 

that unlike the structuralist interpretation involves no special claims about 

the ontological character of mathematical objects. Here I will mainly be 

developing themes I have discussed in a series of lectures over the past 

several years (on which Parsons had some comments in the work-in-

progress alluded to earlier), and in a less condensed form intended for a non-

specialist audience in the latter half of chapter 3 of my recent book [2015]. 

Though I will be differing from the letter of some of what Parsons says, I 

believe I will still be in agreement with the spirit of much of it, and above all 
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with the spirit of Parsons’ warnings about ‘the metaphysical tradition’.  

 

2. ABSTRACTION 

 Mathematical objects come ‘not single spies, but in battalions’. One 

never posits or recognizes or introduces into one’s theorizing a single, 

isolated mathematical object, but always some whole sort of object. Often 

objects of the newly-posited or -recognized sort are introduced and 

explained in terms of their relations to other sorts of objects already posited 

or recognized. In particular this is so in the case of abstraction, where the 

entities of the ‘new’ sort, equivalence types, are conceived as what entities 

of some ‘old’ sort that are equivalent in some way thereby have in common.  

 Ordinary language and commonsense thought quite freely engage in 

abstraction, moving from recognizing that objects in some sense are 

equivalent or ‘have something in common’ to recognizing some thing as 

what they have in common. The paradigmatic case is Frege’s example: lines 

that are parallel or like-directed thereby have in common their directions. 

Likewise figures that are similar or like-shaped thereby have in common 

their shapes. In connection with linguistic expressions, the relation of type to 

token closely resembles the relation of shape to figure. These examples are 

cases of abstractions connected with equivalences among entities that are 
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arguably concrete, and so arguably are examples of Parsons’ category of the 

quasi-concrete; but the category of abstractions is broader. 

 The geometric relations of parallelism and similarity are two-place, 

and the general notion of an equivalence relation — a reflexive, symmetric, 

transitive relation — is one applicable to two-place relations. A closely 

analogous notion, however, can be considered for four-place relations, or 

more generally for relations with an even number of places. For instance, 

proportionality of geometric magnitudes such as lengths is a four-place 

relation that has the properties analogous to reflexivity, symmetry, and 

transitivity: 

 

 A : B :: A : B 

 if A : B :: C : D then C : D :: A : B 

 if A : B :: C : D  and C : D :: E : F then A : B :: E : F 
 

In such a case the analogue of an equivalence type may also be posited or 

recognized, and these will in the case of proportionality be ratios. Euclid 

already in effect recognizes ratios, and Omar Khayyam in commentary 

proposed that such geometric ratios could be consider a kind of number, 

construing certain known geometric constructions as the arithmetic 

operations of addition and multiplication of ratios. This same geometric 

conception or real numbers is found in Newton’s Universal Arithmetick, and 
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is largely what the nineteenth-century ‘arithmetization of analysis’ aimed to 

replace.  

 The relations considered so far have been ones taking singular 

arguments: this is related to that by parallelism or similarity, or this and this 

other are related to that and that other by proportionality. But one may also 

consider relations taking plural arguments: these are related to those, and 

such relations in some cases have properties analogous to the properties of 

equivalence relations. Such is the case with equinumerosity:  

 

 there are just as many xs as xs 

if there are just as many xs as ys, then there are just as many ys as xs 

if there are just as many xs as ys, and just as many ys as zs, then there are 

just as many xs as zs 
 

In this case the equivalence types produced by abstraction are cardinal 

numbers: What these have in common with those when there are just as 

many of these as of those is their number. Here, where the xs and ys may be 

things of any sort, we have definitely gone beyond the quasi-concrete. 

 Of course, if one already posits or recognizes ordered pairs, the four-

place case reduces to the two-place case, by reconstruing a four-place 

relation as a two-place relation between pairs. And of course, if one already 

posits collections (sets or classes or the like) of some sort, the plural case 

may be reducible to the singular case, by reconstruing the plural relation as 
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an equivalence relation between collections. But inversely the ordered pair 

can be viewed as obtained by abstraction from the four-place relation ‘x = u 

& y = v’. And inversely collections can be viewed as obtained by abstraction 

from the plural relation ‘each of the xs is among the ys, and each of the ys is 

among the xs’.  

 Indeed, Cantor’s introduction of sets into mathematical theorizing 

may perhaps be construed as taking something like this form, a passage from 

speaking in the singular of, say, the points of discontinuity of a function, to 

speaking in the singular of the set of points of discontinuity, as an object, on 

which operations can be performed, such as the operation of discarding 

isolated points. Closely related to the general, abstract notion of a set, of 

which an object may or may not be an element, is the general, abstract 

notion of function, which applied to one object as input or argument may 

produce another object as output or value. 

 A very large range of objects familiar from traditional and early 

modern mathematics and incipient late-modern mathematics can thus 

without much artificiality be regarded as equivalence types of one kind or 

another, or as closely related to such equivalence types; and when so 

regarded their introduction takes the form of connecting them with the items 

of which they are the equivalence types or to which they are otherwise 



 17 

specially related. Structuralism, by contrast, considers sorts of objects 

introduced as elements or points of a structure, and explained only in terms 

of their relationships to each other within that structure, any external 

relations being derivative from these. The next task must be to evaluate how 

well such a conception, as reflected in the first half of thesis (A), fits with 

mathematical practice. 

 

3. THE OBJECTS OF NUMBER THEORY 

 What sorts of mathematical objects are considered in basic number 

theory, and are they in mathematical practice treated structuralistically? I 

will not attempt an exhaustive catalogue, but merely take note of four 

diverse sorts of mathematical objects to be encountered.  

 Natural numbers. To begin with, of course, there are the natural 

numbers, which are higher arithmetic’s principle object of study. It is 

notable that even in the purest pure number theory the natural numbers are 

treated not merely as elements of an algebraic system with an order relation 

(and addition and multiplication operations, though these are definable once 

the order relation is given), but also answers to ‘how many’ questions. For 

consider the Euler totient function φ, which makes a very early appearance 

in any introductory text. On the one hand φ  is a function from natural 
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numbers to natural numbers, which means that φ(n) is a natural number, 

while on the other hand φ(n) is defined to be the number of natural numbers 

< n that are relatively prime to n, which means that φ(n) is an answer to a 

‘how many’ question. To be sure, as all structuralists today would insist, and 

as I have granted in §1, the elements of any algebraic structure of the right 

kind can be used as answers to ‘how many’ questions. Thus the fact that 

natural numbers are treated as answers to ‘how many’ questions is not 

decisive counterevidence against the claim that they are treated as mere 

featureless points in a structure; but it is hardly evidence for the structuralist 

claim, and against the rival hypothesis that they are treated as finite 

cardinals construed as abstractions.  

 Other numbers. As auxiliaries to the natural numbers, the negative 

integers are almost immediately introduced, to give us the full system of 

integers, and then the fractions, to give us the full system of rational 

numbers. At least some irrational and imaginary numbers make a fairly 

earlier appearance, ones of the form m + n√2 or of the form m + ni, say, with 

m and n integers. And there is not the slightest hint that the natural number 2 

needs to be distinguished from the positive integer +2, or the latter from the 

rational number +2/1, or the latter from the real number 2.000…, or the 

latter from the complex number 2.000… ± 0.000…i. To be sure, 
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mathematicians do quite frequently admit to engaging in what they call 

‘abuse of language’, and the commonest form thereof is the use of the same 

notation or terminology for conceptually distinct items. So the fact that all 

the same notation ‘2’ and terminology ‘two’ is used for elements of N and Z 

and Q and R and C is not decisive evidence against the claim each kind of 

number belongs exclusively to its own home structure, though it is hardly 

evidence for that claim, or against the rival hypothesis that a number or 

other mathematical object is not tied to any one structure, but can reappear 

in several. But in any case, as noted in §1, formulation (A), unlike some less 

restrained rhetoric sometimes indulged in by structuralists, does not insist 

that every mathematical object has a single home structure, and Parsons’ 

doctrine of constructed structures explicitly allows that it need not. 

 Sets of and functions on numbers. Along with the natural numbers we 

consider sets of them and functions on them. And I do not just mean that we 

consider certain particular sets, such as the primes, and certain particular 

functions, such as the Euler φ already mentioned, or the Möbius µ. I mean 

that universally quantified, general theorems about all sets of natural 

numbers and about all functions from and to the natural numbers are stated 

and proved early on. The well-ordering or least-number principle would be 

an instance for sets, the Möbius inversion formula for functions. And the 
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sets and functions here seem to be taken quite naively, as entities with 

intrinsic natures relating them to more basic entities, the sets as unities 

formed from pluralities of numbers, the functions as operating on numerical 

arguments and assigning them numerical values. They do not seem to be 

treated as ‘structureless points or places in a structure’. (What structure 

would it be?)  

 But the formulation (A) contains a phrase ‘in the context of’ that is 

indefinite — or to put it more positively, guarded — enough perhaps to 

allow number-sets or number-functions can be construed as being ‘in the 

context of’ the background system of the natural numbers, even though the 

sets and functions are not, of course, literally points in that structure. At least 

it can be said that, if one changes one’s concept of natural number, one will 

have to change one’s concept of number-set or number-function along with 

it, and in this sense the sets and functions are tied to the structure, without 

being elements of or points in it, let alone featureless or structureless ones. 

 Structures. In present-day approaches to number theory one very early 

encounters a diverse range of groups, rings, and fields. Bourbaki popularized 

the label ‘(algebraic) structures’ for the genus of which groups, rings, and 

fields are species. A difficulty for the structuralist is that core 

mathematicians do not seem to speak of such structures as the ring of 
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Gaussian integers  Z[i] or the field Zp of integers modulo a prime p — and 

the student meets with these and many similar structures very early in the 

study of number theory — as featureless points in some larger structure, or 

make reference to them only in the context of some background structure. 

(Or rather, if mathematicians do ever treat such algebraic systems as 

featureless points, it is only in something like the more abstract context of 

category theory, which is not encountered in elementary number theory, and 

which we have set aside.) Well, perhaps all these examples, too, are to be 

construed as derived or constructed structures, to which (A) is not to be 

taken to apply directly; but if so, then it must be conceded that the basic 

structures to which (A) does apply are comparatively few and far between, 

and with them the mathematical objects that can properly be said to be 

structureless or featureless. 

 Alternatively, the structuralist might be tempted to claim that the 

various groups and rings and fields encountered in number theory are all 

sets, and sets are ultimately structureless or featureless points. After all, the 

Bourbaki group, in order to develop all the branches of mathematics within a 

common framework, so that results from any one branch may be appealed to 

in any other, adopt set theory as the only worked-out option for such a 

framework (despite their having less than no interest in set theory as a 
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subject in its own right). Officially, a bourbachique structure is supposed to 

be a set-theoretic object of a specific kind: an ordered n-tuple consisting of a 

set in the first place, and various distinguished elements thereof and/or 

relations thereon and/or operations thereon and/or families of distinguished 

subsets thereof, in the other places. And most structuralists have wished to 

claim that set-theoretic objects, which is to say sets, are mere ‘structureless 

points or positions in a structure’, namely, that of the set-theoretic universe 

or a set-theoretic universe. (Recall that Quine was disqualified as a 

structureless on account of his not wishing to take this line.) But in the first 

place, nothing in mathematical practice suggests this structuralist view of 

sets, as already noted in connection with sets of numbers. And in the second 

place, the bourbachique identification of groups, rings, and fields with 

ordered n-tuples isn’t in practice taken very seriously by mathematicians.  

 Is a topological group a triple (G, ·, O) consisting of a set, a binary 

operation (group multiplication), and a family of distinguished subsets (the 

open sets of a topology)? Or is it a triple (G, O, ·)? Any one book may be 

expected to pick one convention and stick to it, but if two different books 

choose opposite conventions, no one will think that this circumstance makes 

them to be about different subject matters, groups-with-topologies and 

topological-spaces-with-group-operations. The same lecturer may use the 
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one formulation one day and the other the next, if indeed the lecturer ever 

says anything more than that with a topological group we have a set or space 

and we have a group operation and we have a topology, in no particular 

order. Mostly in practice they will use the same letter G for a structure such 

as a topological group as for its underlying set, though this is admittedly an 

abuse of language. 

 Still less does a working mathematician ever think about whether an 

ordered triple (x, y, z) is an ordered pair (x, (y, z)) with an ordered pair in the 

second place, or an ordered pair ((x, y), z) with an ordered pair in the first 

place, or something else, or in practice think of a one-place operation or 

function as a set of ordered pairs, a two-place operation or function as a set 

of ordered triples, or whatever. Least of all does the core mathematician 

consider whether the ordered pair (x, y) is the set {{x, Ø}, {y, {Ø}}} or the 

set {{x}, {x, y}}, or something else. 

 Some workers in foundations sometimes use a different notion of 

structure (perhaps metalinguistic, perhaps something else) from the set-

theoretic one, so as to be able to consider the universe of sets as a whole as a 

structure, despite the non-existence of any set of all sets. But such 

conceptions play no role in core mathematics (and as for the metalinguistic 

view specifically, the very expressions ‘predicate’ and ‘satisfaction’, in 



 24 

terms of which workers in foundations may discuss such ‘structures’ hardly 

belong to the vocabulary of the core mathematician). Core mathematicians 

are even further from adhering to any such alternative view of ‘structures’ 

than they are from seriously adhering to the set-theoretic view, since they 

may at least pay lip-service to the latter on official occasions. In sum, the 

scope of a claim like (A) must be significantly restricted if it is to be offered 

as a description of established practice rather than a prescription for reform.  

 

4. ELIMINATIVISM VS  MYSTICISM 

 Since the second half of (A) presupposes the first half, which I have 

just called into question, what is left of (A) would be the claim that in the 

case of those mathematical objects that do come in structures — the original 

case of the natural numbers remains the paradigm case — they have the 

‘metaproperty’ of having none but structural properties. (I believe I first saw 

this word ‘metaproperty’ in Parsons. The notion enables us to dismiss the 

complaint that the claim that mathematical objects such as natural numbers 

have none but structural properties is self-contradictory, on the grounds that 

having none but structural properties seems to be itself a property, and a 

quite remarkable one.) But if we are looking at things from the standpoint of 

mathematical practice, we should not be too quick to accept even this 
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formulation, which is in fact more congenial to mystical than to eliminativist 

structuralism. 

 Elimitativists wish to treat a symbol like N, not as the name of some 

specific structure, but as something like a free variable ranging over all 

structures of a certain kind, in this case progressions. One is only justified in 

asserting a formulation involving a free variable if one would be equally 

justified in asserting it regardless of the value of that variable (within the 

intended range). And so on the eliminativist view, while one indeed is not 

justified in attributing to N any feature except that of being a progression, or 

to 0 any feature except that of being the initial element in that progression, 

or to 1 any feature except that of being the next-to-initial element in that 

progression, and so on, neither is one justified in denying a formulation 

involving a free variable unless one would equally justified in denying it 

regardless of the value of the variable. And so one would not, it seems, be 

justified in denying that the number two is Julius Caesar, since there is, after 

all, surely some progression in which Julius Caesar is the next-to-next-to-

initial element. 

 Actually, however, eliminativists speak on two levels. Out of one side 

of the mouth the eliminativist will say that of course there is such a thing as 

the number two, since every progression has a next-to-next-to-initial 
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element. Out of the other side of the mouth the eliminativist will say that 

there is no such thing as the number two, since there are many different 

progressions with different next-to-next-to-initial elements. The former way 

of speaking is mathematical, the latter metamathematical. Santayanesque or 

Benacerrafic formulations such as ‘There are no numbers, and infinitely 

many of them are prime’ are examples of something like zeugma, where 

discourse drops from the meta-level to the object-level in mid-sentence. 

 The mystic, by contrast, is prepared to recognize N as a property-

deficient entity, a structure of a certain kind, with the metaproperty of 

having no properties other than that of being a structure of this kind, namely, 

a progression. Now all progressions are isomorphic, and therewith have in 

common their isomorphism type. But an isomorphism type is not itself a 

structure, and in particular, not a structure isomorphic to the various 

structures of which it is the isomorphism type. The mystic’s N is like 

Triangularity on a Platonic conception, in which the Form is itself triangular, 

while the isomorphism type is like triangularity on an Aristotelian 

conception, a universal exemplified by various triangles, but not by itself. 

Mystical structuralism is thus mystical in the same way in which Platonism 

is mystical. (I mean Platonism properly so-called: I am not using the word in 

accordance with the deplorably promiscuous, and historically absurd, 
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contemporary usage according to which to be a ‘Platonist’ it is enough not to 

be a nominalist.) The one difference between contemporary mysticism and 

Platonism is that the structuralist does not claim that the reason why various 

progressions met with in set-theoretic or logicist reductions are progressions 

is only because they ‘participate’ in N. 

 N being property-deficient, its elements must be so as well. For if 2, 

say, the next-to-next-to-initial element, had the property, say, of having 

conquered Gaul, then N would have the property of having in its next-to-

next-to-initial place a conqueror of Gaul. For similar reasons, if 0, 1, 2, … 

are all property-deficient, then so must be the structure N to which they 

belong and that they, taken together as structurally related, constitute. 

Property-deficiency of the structure and of the various elements standing in 

various positions therein go hand in hand. 

 But all this business about property-deficiency is metaphysics, not to 

be mentioned in the course of mathematical practice. Since when doing 

mathematics the eliminativist will be speaking only at the object-level and 

not the meta-level, there need be and will be no difference in mathematical 

practice between the two versions of structuralism, just as there will be no 

difference in core mathematical practice between mathematicians who as 
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students may have been taught the Zermelo identification and those who as 

students may have been taught the Von Neumann identification. And this is 

to say that nothing said in mathematical practice seems to support a mystical 

as opposed to an eliminativist reading — or vice versa.  

 I have questioned in the preceding section how well any form of 

structuralism fits with mathematical practice, except in restricted cases 

where, say, the natural numbers are the only mathematical objects under 

discussion. Even in these restricted cases, I now say, it would be hard to 

claim that one version of structuralism fits mathematical practice better than 

another. It is only at a metamathematical, metaphysical level of discourse 

that the divergence between the two forms of structuralism even emerges.  

 Speaking at that level, the mystic will say that numbers lack 

spatiotemporal location, do not participate in causal interactions, and so on, 

while the eliminativist will say, ‘Well, of course not, since there are no such 

things as numbers.’ Suppose, for instance, some graduate student in physics, 

working on the missing-mass problem, concludes that the hypothesis that 

neutrinos have mass fails to solve the problem, and proposes instead to 

consider the hypothesis that numbers have mass. Both kinds of structuralists, 

as well as various kinds of non-structuralists, will agree that there can be no 

justification for saying that numbers have masses, but for the mystic this will 
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be because numbers are massless, while for the eliminativist it will be 

because they are nonexistent. 

 But if the absence of any difference in mathematical practice is 

enough to disqualify both the Zermelo and the Von Neumann identifications, 

why is it not also enough to disqualify both forms of structuralism? May 

there not be some other interpretation of mathematical practice that accounts 

for a wider range of phenomena, not restricted to the case of natural numbers 

and a few others, and not involving one in metaphysical disputes that are 

mathematically irrelevant? I believe there is.  

 

5. HARDY’S PRINCIPLE 

 By early in the last century, the new ‘arithmetized’ — which is to say, 

‘degeometrized’ — foundation for analysis was not just accepted among 

sophisticated professional pure mathematicians in place of older conceptions 

like Newton’s, but was being taught to their students as well. Accounts of 

Dedekind’s construction began to find their way into textbooks for 

undergraduate students of mathematics, even freshmen, where one still finds 

them today. The Dedekind cut construction appears, for instance, already in 

the second (1914) edition of G. H. Hardy’s A Course of Pure Mathematics.  

 Hardy’s account of the construction is followed by an interesting 
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remark: 

 

The reader should observe … that no particular logical importance is to be 

attached to the precise form of the definition of ‘real number’ that we have 

adopted. We defined a ‘real number’ as being … a pair of classes. We might 

equally well have defined it as being the lower, or the upper class; indeed, it 

would be easy to define an infinity of classes of entities each of which would 

possess the properties of the class of real numbers.  

 

What Hardy is observing here is that the Dedekind construction admits many 

minor variants. He might have added that there is also a well-known rival 

construction due to Cantor, that takes real numbers to be given by 

equivalence classes of Cauchy sequences of rational numbers. That 

construction, too, admits many minor variants. And there are let other 

constructions (for instance, as equivalence classes of narrowing nested 

sequences of intervals). The common feature of all the constructions is that 

they give us a complete ordered field, and it is known that all such fields are 

isomorphic to one another. 

 Hardy comments on this situation in the following terms: 

 

What is essential in mathematics is that its symbols should be capable of some 

interpretation; generally they are capable of many, and then, so far as mathematics 

is concerned, it does not matter which we adopt.  
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We may call this last remark Hardy’s Principle. I make a point of attaching 

Hardy’s name to the principle because the observation that it does not matter 

for mathematical purposes what mathematical objects are is often credited to 

Wittgenstein, who called Hardy a bad philosopher. (Incidentally, it seems to 

be established that Wittgenstein read Hardy’s book.) Hardy himself in effect 

credits the observation to Russell. For he goes on to say the following: 

 

Bertrand Russell has said that ‘mathematics is the science in which we do not 

know what we are talking about, and do not care whether what we say about it is 

true’, a remark which is expressed in the form of a paradox, but which in reality 

embodies a number of important truths. It would take too long to analyze the 

meaning of Russell’s epigram in detail, but one at any rate of its implications is 

this, that the symbols of mathematics are capable of varying interpretations, and 

that we are in general at liberty to adopt whichever we prefer. 

 

 In line with Hardy and with his take on Russell, different textbooks 

introduce the real numbers in different ways, and while reviewers may find 

one approach pedagogically superior to another, no one considers any 

definition mathematically superior to any other, so long as that other still 

suffices for deducing the basic properties of the real numbers, those of a 

complete ordered field. Two analysts who wish to collaborate do not need to 

check whether they were both taught the same definition of ‘real number’, as 
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conceivably two algebraists may have to check whether they are both using 

the same definition of ‘ring’ (since on some usages the definition includes 

having a multiplicative identity while for others it does not). For it is only 

the properties of a complete ordered field that will be used in their 

collaboration, and never the definition of ‘real number’.  

 We have here so far merely another instance of the phenomenon of 

multiple reductions, with which structuralism began, and most of what 

Hardy says would be congenial at least to an eliminativist, if not to a 

mystical, structuralist. However, Hardy’s principle is not restricted to 

claiming indifference between isomorphic structures, but is quite a bit more 

general.  

 It would apply equally to, for instance, indifference between two 

different set-theoretic definitions of ordered pair, such as Weiner’s and 

Kuratowski’s, though that is not a case of the kind on which structuralist 

philosophers focus. Ordered pairs as such do not form a ‘structure’ in the 

way that natural or real numbers do, nor are they defined only in relation to 

each other; rather, they are defined in relation to the objects of which they 

are the ordered pairs. Presumably the eliminativist or mystical structuralist 

could go on to claim that ordered pairs, too, are nonexistent or property-

deficient, despite their not being ‘structureless points or places in a 
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structure’. But to do so would already be to concede that the emphasis on 

‘structures’ was to some degree misplaced.  

 The scope of Hardy’s principle, and of the indifference of 

mathematicians between various pairs of options, is in any case wider than 

the examples of number systems and ordered pairing by themselves bring 

out. Consider, for instance, the base e of the natural logarithms. It is 

certainly important that the symbol ‘e’ should have a meaning, and one that 

fits with the way the symbol is used by mathematicians; but is it important 

precisely what one defines it to mean? One may define it as the limit of a 

certain sequence, thus: 

 

  e = limn→∞ (1 + n-1)n 

 

and deduce as a theorem that it also the sum of a certain series, thus: 

 

 e = 1/0! + 1/1! + 1/2! + 1/3! + … 

 

But one could equally well take the series characterization as the definition, 

and deduce the sequence characterization as the theorem. One book may do 

it one way, and another another, but from the standpoint of mathematical 

practice there is no saying that one book is right and the other wrong. It just 

does not matter which of the two characterizations is taken as definition, and 
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which as theorem. And this is a kind of indifference that has nothing to do 

with ontology. There is a significant feature of mathematical practice on 

display here, but a preoccupation with ontology is likely to get in the way of 

seeing it. 

 I do not have space to do more than hint at what I think the feature or 

phenomenon at work here amounts to. We may begin with the observation 

that the mathematics of the last hundred years or so is rightly held to have 

maintained a higher standard of rigor than that of any other period. The 

highest manifestation of such rigor might be thought to lie in the 

encyclopedic codification of Bourbaki, Éléments de Mathématique, a 

modern successor to Euclid’s Elements. And yet, there is a discrepancy of 

sorts between mathematical practice in the Bourbaki codification.  

 Any rigorous development must logically deduce all results from 

postulates acknowledged at the outset, and logically define all notions from 

primitives acknowledged at the outset. That is what rigor amounts to. But to 

fulfill this requirement Bourbaki must make many choices — for instance of 

definition of real number system, of ordered pair, or of the number e — that 

are purely conventional, in the sense that various other choices would have 

done just as well. Mathematical practice as a whole does not itself make any 

definite choice in such cases. If some German rival to the French group were 
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to publish an Elemente der Mathematik making different choices, no one but 

the most atavistic nationalist would claim that one group was right and the 

other wrong. 

 The individual contributor X to a project like Bourbaki’s, working say 

on chapitre 11 of tome 9, needs to deduce all new results and define all new 

notations logically from results and notions in tomes 1-8 and chapitres 1-10 

of tome 9. But it is not incumbent upon X, when wanting to use a result or 

notion from tome 3, chapitre 7, to check how it was deduced or defined from 

first principles, the postulates and primitives in tome 1, chapitre 1. If X only 

needs the fact that the real number system is a complete ordered field, then 

how the real number system was defined will not matter for X; if X only 

needs the fact about ordered pairs that (a, b) = (c, d) if and only if a = c and 

b = d, then how ordered pairs were defined will not matter for X; if X only 

needs the series characterizations of e, then whether it was a definition or a 

theorem will not matter to X. And the requirement of rigor on an arbitrary 

working mathematician is simply to proceed as if one were in X’s position 

and writing a chapter in some hypothetical comprehensive codification. That 

is why some aspects of previous work matter, while others can be forgotten 

about. 

 But how can we tell whether a given choice is going to matter? I do 
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not believe there is any simple formula to answer this question. Certainly the 

answer ‘The choices that don’t matter are those between isomorphic 

structures’ will not do. This formulation ignores the fact I have been 

insisting upon, that there are other kinds of choices that don’t matter, and it 

overstates the indifference of mathematicians to differences between 

isomorphic structures, since the whole large field of group representations, 

for instance, is in a sense concerned with nothing but differences between 

isomorphic groups. In the end, I think there is no way to answer the question 

except by observing mathematical practice. Perhaps some general principles 

will emerge from such observation, but at this stage I have none to offer. 
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