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An iteration scheme for the Poisson-Boltzmann equation for two spheres with constant surface potentials 
is devised. The scheme yields an exact solution to this problem, and it is uniformly convergent. © 1986 
Academic Press, Inc. 

I. INTRODUCTION 

The Poisson-Boltzmann (PB) equation has 
been a major theoretical tool (1-5) in under- 
standing and interpreting properties of colloi- 
dal systems immersed in electrolitic solutions. 
The most elementary geometry of two particles 
consists of two parallel plates, since the PB 
equation for such system becomes a classical 
ordinary differential equation. This simplifi- 
cation enables one to obtain a useful intuition 
about the system at hand. On the other hand 
it has some serious limitations, particularly 
due to the fact that most systems of interest 
are not one-dimensional. Furthermore, ge- 
ometry and curvature effect embedded in a 
system of interest can at best be approximated 
with little information on improvement of 
these estimates. Thus, it is highly desirable to 
obtain a systematic solution of the PB equation 
for a realistic nontrivial geometry. 

It is the purpose of this paper to provide an 
exact solution for a system of spheres with un- 
equal surface potentials immersed in 1-1 elec- 
trolyte. Once the solution is obtained, one may 
use it directly to compute electrostatic inter- 
action energies, forces, stability parameters, 
escape probabilities, potential profiles, etc. 
This method enables one to obtain a solution 
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to systems of spheres with different boundary 
conditions as well, provided a good approxi- 
mation is available. 

II, FORMULATION 

Consider (6) a system of two spheres of radii 
at,  a2, surface-to-surface separation 14o, and 
fixed dimensionless surface potentials 0 < ~bl 
< ~2, immersed in 1-1 electrolite with Debye's 
inverse length K satisfying the PB equation 

AG = K2sinh G [1] 

G (on sphere 1) = ffl 

G (on sphere 2) = if2. [2] 

Suppose that a good approximation to [ I ] 
is obtained by some independent method as 
G0. Since the charge density in the bulk is ap- 
proximately known it is reasonable to expect 
that the potential associated with this charge 
density satisfies the Poisson equation approx- 
imately, 

AG1 = K2sinh G0 [3] 

with conditions [2] applied to GI, as well as 
Go. If  the method used to obtain G~ is inde- 
pendent of G0 one may repeat the process in- 
definitely, as long as it converges. In other 
words one may define the iterative process 

2~Gn+l=K2sinhGn n = 0 ,  1,2, - - .  [4] 
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with conditions [2] imposed. When the process 
converges uniformly, lim,~o~ ~ = q* becomes 
an exact solution of [ 1 ]. Equation [4] can be 
rewritten as 

Agtn+l = r2sinh ~n+l 

+ ~2(sinh qG - sinh ~,+1). [5] 

Let ~ ,  ~- qr+l + e~. If E, is systematically 
decreasing the limit exists, since [5] can be ex- 
pressed as 

A~.+l = K2sinh ~I/n+l 

Therefore, lim,-oo ~, = 0 is equivalent to 
lim~o~ ~ ,  = • as long as [e,I ~ I~k,+ll. 

To illustrate the method of  convergence, it 
is useful to exhibit the asymptotic behavior 
for the cylindrically symmetric PB equation. 
It takes the form (for K = 1) 

l d  d 
r dr r ~ ~ = ~t + (sinh q' - g*)" [7] 

Consider the linear equation as the equation 
utilized to obtain ~o. That is to say that 

• o(r) = AKo(r) [81 

with Ko being modified Bessel function of the 
third kind. Variation of parameters yields 

• l(r) =A(Ko(r)  + 1 2 ~Ko(r) + O(Ko 3) [9] 

which indeed illustrates the above discussion 
after one iteration. Furthermore, since the 
system has absence of movable critical points, 
the behavior at finite distances is completely 
determined by the asymptotic region. 

III. DETERMINATION OF THE STARTING 
SOLUTION ~o 

Recently, a uniform approximation con- 
sisted of scale balancing was introduced (6), 
making use of the fact that the parameter x is 
very large. The PB equation for the two-sphere 
system is cylindrically symmetric, thus it can 
be written as 

1 0 , 9  0 2 
r ~ q + - - ~ = ~ Z s i n h q .  [10] 

r Or Oz 2 

Upon scaling 

R = K Y  

Z = K2(Z --  a l )  

Ho = r-2h [11] 

the equation takes the approximate form 

02 
K 2 ~ qo = sinh qo [12] 

and its linearized form becomes 

02 
K 2 ~ ~o,t = ~o,l [13] 

with boundary conditions 

ff'(Zl) = qo (on Z ~ - R 2 / 2 a O  = ~Pl [14a] 

• (Z2) = ~o (on Z ~ h + R2/2a2) = 42. 

[14b] 

The solution of [ 131 is immediate and could 
serve as a starting solution. It is given explicitly 
by 

~It0,l 

= {~lsinh[~H0 + (~r)z/2(Ka2) - K(z - a0] 

+ ~b2sinh[r(z - aO + (Kr)2/2(ral)]}/ 

{sinh[KH0 + (1/Kal + 1/Ka2)(Kr)2/2]}. [15] 

However, the convergence is slow if one in- 
tends to solve the nonlinear system. Since ~0,1 
is a linear combination of two hyperbolic sines, 
it could be monotonic with z or contain an 
extremal point. Thus, two cases must be dis- 
tinguished for [ 12]. 

d't'o 
(i) - ~ > 0  for - R 2 / 2 a j  

<, Z <~ h + R2/2a2. 

One integration of  [ 12] yields 

de/° - 21/2K-l[cosh ~0(Z, R ) -  q51(R)] m [16] 
d Z  
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with 051(r) determined from 

f f2  d~b'[cosh ~b' - 051(R)] -1/2 
1 

= 2~/zK-l[h + ½R2(1/al + l/a2)]. [17] 

The second integration is a well-known clas- 
sical inversion problem. 

c/~o 
(ii) ~ = 0 for some Z =  Zo(R). 

First integral is the same as [161 with 05:(R) 
replacing 05~(R), and it is determined from 

-21/2~-1[h + R2(1/al + 1/az)/2] 

f,~¢R) du[(u: 1)(u 052(R)1-1/2 

f 
~z(R) 

+ du[(u 2 - -  I)(U -- 052(R)] -1/2. [18] 
~rA 2 

The function 052(R) satisfies the relation 

coshl~o(Zo(R), R)] = 052(R). [ 19] 

Note that for Z1 <<- Z < Zo d~bo/dZ < 0 and 
for Zo < Z <<. Z2 d g o / d Z  > 0. Again, once 
052(R) is obtained from the transcendental Eq. 
[1 8], inversion of the elliptic integrals yields 
the desired explicit starting solution ~0(Z, R) 
forZ1 ~< Z~< Z2. 

IV. BISPHERICAL COORDINATES 

A system of two unequal spheres of ra- 
dii a~, a2 and center-to-center separation Illl 
+ 112[, surface-to-surface separation H0, is 
conveniently parameterized in terms of  bi- 
spherical coordinate system (7). 

Let the interfocal distance a be defined by 

12 = a 2 + al  2 

122 = a 2 + a~ [201 

and upon elimination Ofll,/2, one obtains the 
parameter a in terms of  the physical param- 
eters of the system as 

2a = [11o(11o + 2al)(Ho + 2a2) 

X (1to + 2al + 2a2)]l/2(al + a2 + H0) -1. 

[211 

The bispherical coordinate system (u,)7, 05) 
is defined in terms of  the interfocal distance a 
and the Cartesian system (x, y, z). Explicitly 
one defines 

r = I x  2 q- y 2 ] 1 / 2  

05 = arctan( y /x)  

= tanh-~[2az/(a 2 + z 2 + r2)] 

= arctan[2ar/(z 2 + r 2 - a2)] [22] 

and the Cartesian system (x, y, z) takes the 
form 

u ----- [cosh ~t - cos )/]-1 

x = u a sin ~ cos 05 

y = u a sin )1 sin 4) 

z = u a sin u. [23] 

The range of the bispherical system is - ~  
< tz < ~ ,  0 < ) /< 7r, 0 ~< ~b ~< 27r. The surface 
# = ~ti is a sphere of  radius alcsch t~tl whose 
center is at (x, y, z) = (0, 0, a coth t~i), 
i =  1,2. 

When bispherical coordinate system is im- 
posed on Laplace's equation, one may employ 
separation of  variables to obtain the elemen- 
tary necessary solutions. Unfortunately the 
Helmholtz equation does not separate. It is 
precisely for this reason that a very accurate 
starting solution is needed, in order for an it- 
eration scheme to become useful. 

V. GREEN-FUNCTION FORMULATION 

Consider two continuous functions g~, g2, 
defined on and outside the two spheres, whose 
Laplacians/Xgl, Ag2 are defined as well. If  gl 
and g2 vanish at infinity, one may employ 
Green's identity as 

f dr[glAg2 -- g2Agl] 

f s  dS[gln.  XTg2 - -  gzn" XTgl] [24] 

where ~ is the exterior volume, S the total sur- 
face area, n the normal vector to the surface, 
~ ' g i  the gradient of gi and n.  Vgi = Ogi/On the 
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normal derivative ofgi at the surface. Equation 
[24] is used to generate solutions of Poisson's 
equation. 

Define the Green's function as the solution 
of 

AG = -4~rr(r - ro) [25] 

with r being the observation point, ro the 
source point, and b(r - r0) a Dirac delta func- 
tion whose volume integral is unity. Since [25] 
has many solutions, one must specify bound- 
ary conditions. Of  particular interest are the 
homogeneous boundary conditions, namely G 
vanishes on the surfaces of  the spheres. From 
this stage on, G is assumed vanishing on the 
boundaries, unless otherwise specified. 

Consider the Poisson equation 

AU = -4a-p [26] 

with p being the known charge density, and 
U is given on the spheres, namely 

U=ui onSi ,  i =  1,2. [27] 

One way to solve [26] is composed of  a so- 
lution of [26] with vanishing U on the surfaces, 
Ua, and a solution of  Laplace equation which 
satisfies [27], UL. Then U is given by 

u = ur~ + uL. [281 

If the solution of [25] is known, UH can be 
obtained immediately from [24] by identifying 
G ~ gl, Un = g2, and due to the vanishing of 
both functions on the surface, the RHS of [24] 
vanishes. Explicitly one obtains 

f [-G(r,  r0)p(ro) 

+ 6(r - r0)UH(ro)]d3ro = 0. [29] 

Equation [28], upon integration of the delta 
function yields 

Un(r) = f G(r, ro)p(ro)d3ro. [30] 

As [28] takes the form 

UL + f G(r, ro)o(r0)d3r. U 
d~ 

[31] 

To complete the determination of U~ one must 
also solve the Laplace equation for UL that 
satisfies [27]. A somewhat more efficient way 
of  obtaining U can be obtained from [24] di- 
rectly, again once G is known, using the 
boundary conditions [27] directly. More pre- 
cisely, one may define in [24] G = g~, U = g2 
to obtain 

[G(r, ro)AU + 6(r - 41r ro) U(r0)]d3r0 

- Ul f nt- ~TG(r, r0)dS 
d S  1 

[-72 f& hE" VG(r, ro)dS [32] 

and after the delta function integration [32] 
takes the form 

U(r)= f G(r, ro)p(ro)d3ro- U, fs (OG/On,) 

× dS/4rr - Uz fs2 (OG/On2)dS/4~r. [33] 

If one compares [33] and [31] and employs 
the uniqueness of  the solution, it is evident 
that the sum of the two surface integrals is 
actually UL. In other words, one has a choice 
between carrying out an integration of  the 
normal derivative of  the Green's function and 
direct solution of Laplace equation. However, 
in principle it is sufficient to obtain G, since 
U in [33] is dependent only on G and known 
functions, once p is identified properly. The 
iteration scheme thus takes the form 

¢/n+ l(r) = -K 2 f G(r, r0)sinh[~Pn (ro)]d3r0 

-I~P~fs(OG/On,)dS 

+~2fs2(OG/Onz)dS]/4~-. [34] 

At this juncture, it should be emphasized 
that all functions in the integrands are given 
in Cartesian coordinate systems. Since the it- 
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erations as well as the Green function are ex- 
pressed in bipolar system, the Jacobian must 
be employed upon change of variables. This 
will be done later on. It is straightforward to 
express gbo(r) in Cartesian system, even though 
it is originally obtained in cylindrical coordi- 
nates. 

VI. DETERMINATION OF THE 
GREEN-FUNCTION 

Fortunately, the general nonhomogeneous 
Green’s function 6 for two spheres is given in 
Morse and Feshbach (7) in bipolar coordinates 

f%, ?, 4, PO, lo, 40) = a-l 

X [(cash p - cos n)(cosh p. - cos no)]‘/2 

x Y?@ j. Em I” + ;; cos[m(d, - +0>1 n . 

X Pz(cos qo)P~(cos 7j)ee(“+1/2)tr-pot [35] 

with PF being Legendre functions and co = 1, 
Gn = 2 for wz > 0. A solution of Laplace’s 
equation H must be subtracted from (.?. If 
ffbd = &PI)~ &.d = &.Q) than 

G=6-H [361 

is the required homogeneous Green’s function. 
Since Laplace’s equation separates in bispher- 
ical coordinate system, a typical solution H,, 
is of the form 

I-r, = (cash p - cos #‘2P:(cos n) 

X exp[-+inQ t (n + 1/2)~]. [37] 

In other words, the most general solution H 
can be expressed as 

H = (cash h - cos v)I’~ 5 i P:(cos q) 
n=O m=O 

X ([&,e (n+l/% + B Inn e-(“+l/2h7cos md, 

+ [Gd (n+1/2)P + D,,e-(“+‘/2)F]sin m$j. 

1381 
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It is convenient to define 

Sk, = a-‘(cash /.Q, - cos qo) -l/2 

x EkPf(COS rlo)$=$ [39] 

where a is the interfocal distance given in [2 l]. 
The conditions H&Q) = G(pi), (i = 1, 2), 

together with the orthogonality of the Le- 
gendre functions yield the equations 

AM+ ew[-W+ Vh4& 
= Sklcos(bO)w{-(l + 1/2)PO1 [doal 

GI + emi-2U + ~/~M~H 

= S~~sin(k~o)exp[-(l f 1/2)~~~] [40b] 

exPt2(1+ l/2)N21& f B/c/ 

= Sk/cos(hO)exp[(l + l/%01 f40c1 

eXP[2(1+ 1/&‘21ckl+ Dk/ 

= Sk&(&O>exp[(~ + V2h01 Wdl 

with the solution 

or alternatively 

Wbl 

The solution H is therefore obtained as 

H = a-‘[(cash CL - cos q)(cosh go - cos qo)]1’2 

X53 
(n - in)! 

ndJ m=o Em (n + ml! 
cos[d4 - 4011 x pi? 
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× (cos 7)P,,m(cos 7o)[1 - e2(n+l/2)("2-*")] -1 

x {2 coshI(n + V2)(u  - uo)l 
_ e - ( n + l / 2 ) O , + u o - 2 u 2 ) _  e(n+~/2)o,+~o-2.,)}. [43] 

Combining [43] and [35] yields the desired 
homogeneous Green's function as 

G = a -1 

x [(cosh U - cos 7)(cosh #o - cos 7o)] */z 

_ ~ I (n - m)! cos[re(j, - 4'o)1 
n=O rn~O 

× / ' ~ ( c o s  n)PT(cos 7o)[e -("+I/2)u-~°1 

+ [1 - e2tn+a/2)("2-uO] -1 X (e -(n+l/2xu+"°-2u2) 

+ e (n+U2)(u+u°-2uD - -  2 cosh  

X [(n + I/2)(U - #o)])]} • [44] 

The solution eL of Laplace's equation that 
satisfies the boundary conditions ¢ = ¢i on S; 
is obtained in a similar fashion, taking into 
account the radial symmetry of  the system 
which induces independence of  ¢ (only the m 
= 0 term survives). After some labor ~PL takes 
the form 

eL = 4~(cosh u - cos 7?/2 

× ~ { [ ( e 2 ~ 2 1 / - 2 ) ; 2 ~ + ~ ) , , ) e  ¢"+1/2," 
n = O  

--2(n+ 1/2).2 

+ I,e-27;+-~2~7, Z- ~ . ~ 1  j 

P~(cos n)} [451 X 

where P~(cos 7) is the nth Legendre polyno- 
mial. 

VII. ANALYTICAL ITERATION SCHEME 

Consider the starting solution ~o as deter- 
mined in section III, expressed in bispherical 
coordinates, i.e., 

xI'0 -- ¢/o0Z, 7) [461 

and consider the charge density as 

p = -(1/4rr)sinh[~Po(/~, 7)]. [471 

Direct substitution of  [44], [471, [45] in [311 
taking into account the expression for the Ja- 
cobian 

J(Uo, no) = aSsin 7o(cosh uo - cos no) -3 [48] 

yield the first iterate ~I'10*, 7) as 

ql(u, 7) = CC(/~, 7) -- ~ duo dTo 
I 

F X dfho{sinh[~o(~o, no)]J(t~o, %) 

X G(#, 7, 4), #o, 7o, q~o)} [49] 

since both J(uo, 70) and ¢o(#o, n0) are $o in- 
dependent, the integration rico of  G term by 
term yields 27r6rn,0. It is another manifestation 
of  the importance of  an accurate starting so- 
lution. If one starts with ¢o dependent on $o, 
the convergence rate is extremely slow. In [49] 
one may replace ~ff#, 7) by ~j+l~,  7), ~o(~Z, 
7) by ~I'j(u, 7) and the desired iteration scheme 
emerges. Explicitly it takes the form 

% ~ ( u ,  7) = (cosh ~ - cos 7) I/2 

x ~ P . (cos  7)wj,.(~) I5o1 
n=0 

where Wj>(U) is given by 
t 3, e2(n+l/2)ul . t ,  \ 

, 1 5 |  ~ 2 - -  ~'1 . | e ( n +  l/2)u 
V¢),,, ( U ) = . .. ke 2T~¥ (ff )~ ~ ~ ). , ] 

/ .t, _ e-2(n+l/2)u2,L_ \ 
.151 ~ _ _ _ _  vz .le-( "+1/2)*' 

+ . , . . . ke_2(n+l /2 ) . ,  _ e - 2 ( n + l / 2 ) . 2 1  

K2a2 ~u2 

2 Tz.(uo)F.(u, ~zo)d~o [511 
1 

with ¢1, ¢2 being the boundary conditions and 
Tz. (#o), F .  (~, Uo) are given by 

F(#, p,o) = e --(n+ l l2)l*'-u°l 

-l- [1 - -  e2(n+ I /2)(u2-uO] - l { e - (n+1/2)("+"°-2~2)  

+ e (n+l /2) (u÷u°-2"O -- 2 cosh  

x [(n + V2)(u - u0)]} [521 
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Tj, k(Uo) = fo r 

sin n0Pk(COS no)sinh[~Vj(Uo, n0)]dno [53] × 
[cosh go - c o s  ~/o] 5/2 

The iteration [50] is a uniformly convergent 
scheme. However, the rate is largely dependent 
on the accuracy of the initial approximation. 
These mathematical details are beyond the 
scope of this paper, and will be reported else- 
where together with detailed numerical eval- 
uations and analysis of this approach. 

An alternative method was suggested by 
Tung (8). Since the approximation ~o of the 
linear system is an elementary function, one 
may iterate the Helmholtz instead of the PB 
equation thus improving on the starting so- 
lution of the desired equation. Then, after de- 
sired accuracy is achieved, [50] can be em- 
ployed with a faster convergent rate, or a sim- 
ple numerical scheme may be implemented 
in a similar fashion that the asymptotic per- 
turbation is obtained. These ideas are the sub- 
ject of future investigations. 

ACKNOWLEDGMENT 

The author (E.B.) would like to thank E. Matijevi6 for 
useful discussions regarding this paper, 

REFERENCES 

1. Derjaguin, B. V., Discuss. FaradaySoc. 18, 85 (1954); 
Kolloid-Z. 69, 155 (1934); Physiochim. Acta USSR 
10, 333 (1939); 14, 633 (1941). 

2, Verwey, E. J., and Overbeek, J. Th. G., "Theory of 
the Stability of Lyophobic Colloids." Elsevier, 
Amsterdam, 1948. 

3. Hoskin, N. E., Philos. Trans. R, Soc. Ser. A, 248, 433 
(1956); Hoskin, N. E., and Levine, S., Philos. 
Trans. R. Soe. Ser. A 248, 449 (1956). 

4. Prieve, D. C., and Ruckenstein, E., J. Theor. Biol. 56, 
205 (1976); J. Colloidlnterface Sci. 63, 317 (1978). 

5. Glendinning, A. B., and Russel, W. B., a r. Colloid In- 
terface Sci. 93, 95 (1983). 

6. Barouch, E., and Matijevi6, E., J. Chem. Soe. Faraday 
Trans. 1 81, 1797 (1985); Barouch, E., Matijevir, 
E., and Wright, T. H., 81, 189 (1985); Barouch, 
E., and Matijevir, E., J. Colloid Interface Sci. 105, 
552 (1985). 

7. Morse, P. M., and Feshbach, H., "Methods of Theo- 
retical Physics." McGraw-Hill New York, 1953. 

8. Tung, K, K,, private communication. 

Journal of CoUoid and Interface Science, Vol. 112, No. 2, August 1986 


