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Abstract—A random number generator generates fair coin flips Here we explore the possibility of using source codes as
by processing deterministically an arbitrary source of nonideal random number generators. The rationale is that an incom-
randomness. An optimal random number generator generates pressible sequence must be random in some sense and thus an

asymptotically fair coin flips from a stationary ergodic source at timal d hich eliminat Il redund ¢
a rate of bits per source symbol equal to the entropy rate of the optimal source code (which eliminates all redundancy) mus

source. Since optimal noiseless data compression codes produc®Utput a “random” sequence. The problem of generating ran-
incompressible outputs, it is natural to investigate their capabili- dom bits has been studied in two settings: variable-length and
ties as optimal random number generators. In this paper we show fixed-length, according to whether the number of random bits
under general conditions that optimal variable-length source — ganarated depends on the source realization or not. This paper
codes asymptotically achieve optimal variable-length random bit f th iable-l th setti in int t
generation in a rather strong sense. In particular, we show _oc_:uses on _e variaple-length setling, as our maln_ln eres
in what sense the Lempel-Ziv algorithm can be considered an IS in constructive methods for random number generation, and

optimal universal random bit generator from arbitrary stationary  in particular, in universal methods. The Lempel-Ziv algorithm

ergodic random sources with unknown distributions. has been shown in [14] to be optimal in a certain sense to test
Index Terms—Data compression, entropy, Lempel-Ziv algo- Whether or not a source generates independent equiprobable
rithm, random number generation, universal source coding. bits. However, the problem of investigating how far from being

truly random is the output of a Lempel-Ziv algorithm (and
other optimal source codes) appears to be new.
In the variable-length setting the “ideal” definition of ran-
I N contrast to pseudorandom number generators whigbmness would be that, conditioned on the length of the output
produce zero entropy rate sequences, a random numpigfary sequence being all the I-length binary sequences
generator is a deterministic procedure to generate equiprobagdeur with probability2=!. The rate at which a variable-length
independent bits from a random sourée The problem generator produces random bits is the expected length of the
was initially addressed by von Neumann in [12] where th§inary output string per source symbol. However, we cannot
source Z was a Bernoulli source wittp # 1/2. More go very far with such a strict requirement of randomness.
efficient algorithms for generating random bits from a biasedonsider the simplest nontrivial setting: a memoryless source
coin were given by Hoeffding and Simons [6], Stout ang; with alphabet{a,b, ¢} such thatP(a) = 1/2, P(b) = 1/4,
Warren [9], and Peres [7]. Elias [4] showed that the entropihd P(c) = 1/4. The Huffman code for this source assigns
rate is an upper bound for the rate at which it is possibifie strings, 10, 11 to a, b, ¢, respectively. Thus a string of
to generate random bits from stationary sources and fousgurce symbols is mapped to a string! dfits, wherel ranges
an optimal random number generator from stationary finiteom » to 2n. The rate of bit generation is equal to the source
state, finite-order Markov sources without making use of théntropy (1.5 b/symbol). All generated bit strings of length

Markov source distribution (other than its order). A simpl@re equiprobable; however, the Huffman code generates only
algorithm to generate arbitrary distributions from a biased coin

with a known distribution was given by Han and Hoshi [5]. < n )21—n
The practically important problem of constructing a universal l=n

random number generator from arbitrary nonideal stationafterent strings of lengtti. Therefore, the Huffman encoder
sources has remained open. Vembu and Weftll] gave {oes not satisfy the “ideal” definition of randomness. The
fundamental limits on the rate at which random bits caRa¢ra| alternative advocated in a number of recent works is
be generated from an arbitrary source. In particular, it W§§ aqopt a distance measure between probability distributions
shown that for fixed-length random number generation thg,q require that the distance between the output distributions

maximum achievable rate is thef-entropy rate of the source qngitioned on the output length) and the ideal distribution
and for variable-rate random number generation the maximynishes as: — oo. The results of [11] show that for

achievable rate is thdiminf of the entropy rate of the yistance measures such as variational distance and normalized
source. The proof of achievability in [11] was constructivgjyergence the maximum rate of random number generation
but depended on knowing the source distribution. is equal to the source entropy rate for stationary ergodic
Manuscript received July 3, 1996; revised August 25, 1997. This worROUICeS. However, if we restrict attention to Va”a_ble'length
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Award IRI1-9457645 and NCR 9523805. _ o ___tance reveals that the problem we consider in this paper is
The authors are with the Department of Electrical Engineering, Princeton iahtf d . h b ised fi
University, Princeton, NJ 08544 USA (e-mail: verdu@princeton.edu). not as straightforward as It may have been surmised at first
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source, we can check that the variational distance (sum of fh®cesses since at this point we need not place consistency
absolute difference between all probability masses) betwesguirements on the finite-dimensional distributions.
the generated and ideal distributions of sequences of lengttWe denote the set of finite-length binary sequences by

lis {0,1}* and I: {0,1}* — N is the function that maps a
n finite-length bit string to its length.
2<1 - <l - )2 ) Definition 1: A sequence of deterministic mappings
forl =n,n+1,---,2n, which approacheg for every!. If, {¢n: A" — {0,1}"}
instead, we consider the normalized divergence between the ) ]
generated and ideal distributions we obtain is a ratefz RBG for a sourceZ if there exists a sequence of
sets,, of positive integers such that the following conditions
ez L, @ @ met
" [C1]
This means that for generated lengths other than those in the . " .
neighborhood of3n/2, the normalized divergence does not nh—lgo PU(¢n(27)) € Gn) =1 2)
vanish asn — oc. Fortunately, these “unfavorable” lengths [C2]
have vanishing probability. Indeed, normalized divergence
along with the elimination from consideration of unfavorable | n
L f = Pl(p,(ZT) =71) = 3
generated lengths will serve as the basis for our definition prata. Tezc; rPU(gn(27) = 1) = R @)

of random rate generation. Unlike variational distance such a

definition will lead to the demonstration that optimal sourcand

codes are optimal random bit generators, while at the samdC3]

time being abona fidedefinition of randomness in the sense 1 ]

that the Kolmogorov complexity of the output is maximal. lim sup max —D(¢a(Z,)||B") =0 4)
Section Il formalizes our definition of a raf@-random bit e "

generator (RBG). Although this definition is different fromwhereB" has the equiprobable distribution §6,1}" and Z”*

those introduced in [11], we show that the fundamental limits Z™ restricted to{z": I(¢,(z™)) = r}.

proved in [L1] for stationary ergodic sources also hold for the The above definition is a modified version of [11, Definition

hew definition, namely, for every stationary ergodic sourcg. it requires that the average length of the output bit string

there exist generators of random bits at the entropy rate, but pngt = =~ . "
at any higher rate. Unlike the definitions of [11], the definitioBe sufficiently high [C2] and that conditioned on the length of

> } L the output bit string, we get “almost” equiprobable bits [C3].
we give in Section Il can be used to prove positive results e notion of “almost” equiprobable is made precise by using
optimal universal random bit generation.

: . rlormalized divergence as a measure of distance from pure
In Section Ill, we show (under conditions more general

than stationarity and ergodicity of the source) that optim%Egdg::rc?;;'O']}k;t:nz]rzttgggs]tr';gegu'valem to the condition on

variable-length source codes (in the sense of probability or

expected length) are generators of random bits at the maximum L . H(¢p(Z)

possible rate. Consequently, we show that Shannon, Huffman, hrllriigf ,Ié%n T

and Lempel-Ziv codésare optimal random bit generators _ " . » .

for stationary ergodic sources. The latter result establishes g\@te that [C3] is a condition on *good” lengths (i.e., lengths

another use of the celebrated Lempel-Ziv algorithm: optim Gn) a}nd not on E}” output lengths. Also n“ote th"at the the

universal random bit generation from a stationary ergo mmation in [C2] is only over the set of “good Iengths..

source. C1] ensures that the probability that the generated length is
Section IV shows that optimal random bit generators in tHIQOOd" tends tol.

sense of Section Il generate strings with maximal Kolmogorov Definition 2: The maximum randomness rat&(Z) of a

=1

complexity when driven by stationary ergodic sources.  sourceZ is the supremum oveR for which there exists a
rate-R random bit generator for the source
Il. PRELIMINARIES Definition 2 differs from [11, Definition 5]; it allows that
We deal with discrete random sources, characterized by thiéie set of “good” length€7,, be unknown to the random bit
sequence of finite-dimensional distributions generator. This turns out to be important in order to show that
the Lempel-Ziv algorithm is an optimal universal random bit
Z ={Pz}7 generator.

" . . . As in [11], the maximum randomness rate of a station-
where Z™ takes values imM™, and A is a finite set. Note that ary ergodic source is equal to its entropy rate. First we

the sources we allow include but are not restricted to randqff,, e the following general converse. Note that this converse

1Throughout this paper “Lempel-Ziv code” refers to the incrementéﬁtrengther_ls the converse in [11] which itself strengthens the
parsing scheme (LZ '78) as described in [2]. converse in [4].
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Theorem 1:For any sourceZ we have Definition 4: A variable-length lossless source code is op-
timal for the sourceZ if for any 6 >0
V(Z) < lim 12 Ay (5)
Proof: Suppose we have a rafe-RBG {¢,: A" — Definition 5: A variable-length lossless source code for the
{0,1}*} for the sourceZ. Let L, = I(¢,(Z")). Fix e>0 sourceZ is mean-optimal if for anys > 0
andé > 0 and select a sequence of séts of positive integers . .
such that for sufficiently large: Ell(¢pn(Z")] < H(Z") +né
n for all sufficiently largen.
min M >1—c¢ (6) .
r€G,, r We now show that an optimal lossless source code generates
and random bits at the optimum rate.
1 Theorem 3: Consider a sourc& such that
= > rPU(¢a(Z") =1) = R=6. (7)
H(Z™
el H=1tim it 2 o (12)

n—oo n

Then we have . . .
If ¢ is an optimal lossless source code fBrthen ¢ is a

H(Z™) _ 1 " i rateH random bit generator.
0 Zn < H(Z;)Pr,,(r) (8) Proof: Let
> 15 HOAZ)) p ) Ly = {r: U(¢n(2")) = r, for somez" € A"} (13)
"G, ! I = {27 € A% (pn(2")) =7}
> LS - P () (10) and
" reG, L, = l((/)n(Zn))
z(1—e)(R-10) (11)

I,, is the set of possible output lengths at stage/,, .. is the
where (8) holds because conditioning reduces entropy and sihset ofA™ that is mapped to an output of length
are not conditioning over all lengths; (9) holds since the Note that
are deterministic mappings; and (10) as well as (11) hold for
sufficiently largen due to (6) and (7). Since>0 andé >0 Pr, (r)=Pzn(Jp ). (14)
are arbitrary, we must have
First we will show thatE[H (¢, (27, ))/Ln] — 1 asn — oc.

lim ian(Zn) > R. 0 Since the mapping
n—oo n
Unlike [11, Definition 5], (5) does not hold with equality ¢n: A" = {0,1}"

for all sources because of condition [C1] in Definition 1. This
is shown by an example in Appendix I. is one-to-one, we have

We will show in Section Il that Shannon codes, Lem-
pel-Ziv codes, and Huffman codes can be used as random bit H(¢n(21,)) = H(ZL,,).
generators to generate random bits (in the sense defined above)
from a stationary, ergodic source at the maximum possible refdX o
Thus we have the following theorem.

> 0. Let

I, =1, N [H(Z")(1-6),H(Z")(1+ )]
Theorem 2: The maximum randomness rate of a stationary

ergodic sourceZ is equal to its entropy rate. Then by the definition of an optimal code we have

. OPTIMAL SOURCE CODES AS P(L,el, N I;)—0 (15)

RANDOM NUMBER GENERATORS
. . . - . asn — oo.
In this section we derive two sufficient conditions on the Now (see (16)—(21) on the following page).
source so that optimal source codes generate random bits &, pound the second and third terms in the numerator of
the maximum possible rate. To do so we must first formali@l) we use the following elementary result.

the notion of optimal source codes.

Definition 3: A variable-length lossless source cagléor a
ranqom source, is alsequence of one-to-one fixed-length to 2Notice that a source may satisfy condition (12) and yet it may be such
variable-length mapping§p,, } whereg,, mapsA™ to {0, 1}*. that no optimal lossless source code exists.
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S[H22)] - 5 22

rel,
H(ZM)
> . 7
2> Prn=—
rell,
1
Z e 2 Pr.(nH(Z))
H (Z")(l +6) ;
P (r)
> Y Pl g
)1 +6 vep #E T Pon(27)
1
Pz (7)1 Pr (1)1
1; 4”2‘; 7 OgP 7; Ln Og PL ( )
- H(Z")(1+6)
1
- > > Pp(zog 55—~ — Y Pr.(r)log
’IEInﬂI’C "CJn P EI’ PL ( )

H(Z»)(1+ 6)

Lemma 1l:Let X be a random variable taking values on a BetlLet GG be a finite subset of. Then we have

1
%PX logP @ <PX(G)<10g|G|+IOgPX(G)).

Using Lemma 1 twice along with the fact thet,| < |A[" and|J,, .| < |A|" for everyr € I, we have
Z Z PZn z IOg <P%> S PLn(In n I;Lc) <27110g|A| +10g ﬁ)
L, NI 27 € dy r 7 (2") L., (In ")

Thus we have

> > Pz(e)log < Pznl(zn)>

1, 1617101’04”6‘]71 ”
11Im su
b H(Z")(1+96)

1
PLn (In n I;Lc) <27’L IOg |A| + IOg m)

oy
< lim sup H(Z)(1+96)

=0

where (24) follows from (12) and (15).
Similarly we upper-bound the third term in the numerator of (21) using Lemma 1 to get

> P (r)log <ﬁ)

. rcll,
sy N + 9)
1
Pr, (I )<10g(2H(Z")6 +1)+log Py (I )>
o
< lim sup H(ZY(1+06)
=0

where the equality follows because of (12).
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(20)
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(22)

(23)
(24)

(25)

(26)
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Thus using (21), (24), and (27) we have

H(%(Zzn))} J 1
L, “1+6

lim infF [

n—oo
Since

E{%} <1

for eachn and sinces > 0 was arbitrary we have

P LA
Fix ¢> 0. Define
Kn(e):{Tefn: m¢n—m>1—e}. (29)

We will show by contradiction thaf;,, (K,(¢)) — 1 as
n — oo. Suppose there exists> 0 such thatPr (K, (e)) <
1 — « infinitely often. SinceH (¢,(Z7 )) < L, we have

p[Hn(2L)

I }S(l—e)a—i—(l—a):l—ae
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where (35) holds for sufficiently large Sincee >0 andj3 >0
were arbitrary, (30), (31), and (35) imply that the source code
¢ is a rateH RBG. Since we have seen that the maximum
randomness rate of a source satisfies

V(Z) < lim ian(Z )
the source code) generates bits at the maximum possible
rate. |

We now show that a mean-optimal source code generates
random bits at the optimal rate. Recall that th&entropy rate
of a sourceZ, H(Z) is the largest extended real number
that satisfies for alb >0
1 1
lim Pzn| —log———
oo 7 <n % Py (27
Theorem 4: Consider a sourc& such thatZ™ takes values
in A™ and

Sa—é):().

H(Z)>0. 37)

If ¢ is a mean-optimal source code f@rthen ¢ is a rateH
RBG.

infinitely often. But this contradicts (28), and so there is no 4 proof of this theorem will make use of the following

a >0 such thatPy, (K,(¢)) < 1 — « infinitely often. Thus
lim Pr, (K,(e) =1.
Let

H(Z™
H' =lim sup ( )
n—oo n
Now fix >0 ande>0. Let v = 5/H’. Note thaty >0
since H' < oo. Let

Gle) = Knle) 0 [H(z")(1- %),H(Z")(l + %)]

By the definition of K, (¢) in (29) we have

L H@(2)
reK, (e) T

>1—¢€

for eachn and thus

DB _
reG,(e) r

(30)

for eachn. Also sincePr, (K,(¢)) — 1 asn — oo and
Pr, ([H(Z™)(1 = (v/2)), H(Z") (1 + (v/2))]) — 1

asn — oo we have

nh_I)r;o Pr (Gn(e)) =1. (31)
Thus
1 H(Z™) v
= rPr (r) > 1—--= Pr (r) (32)
7’LT€§;(E) " ( 2 r€G,(€)
H(zZ™
=27 G Do) 6
> B8 b (G - PEED (3
> lim_ ng(nZ") -p (35)
=H-p (36)

result.

Lemma 2: Consider a source with Z™ taking values in
A™ such thatH(Z) = « > 0. Suppose thap is a variable-
length mean-optimal source code for the source. If there exists
a set of sources-strings C,, such that for any > 0

LS gy pa ) 2 12

Z2neCy

-5  (38)

for all sufficiently largen then Pz~ (C,) — 1 asn — oo.

Proof: We will proceed by contradiction. Suppose that
there existg? > 0, such thatPz- (Cy5) > 3 for all n € I where
I is an infinite set of integers. Let

S, = {2 € A" Pgu(27) < 273/,

By the definition ofH(Z) we havePz.(S,) — 1 asn — oc.
So we must have

Pz (CS N Sn)>§

for sufficiently largen € I. Now

1 1
=Y Pr(Uz") = P (C 0 S)= Y
n
ZmeCENS, 2 eCENS,
Pz (zn) n
BN RLGCE)
(39)
H(ZJ.
, H c;nmsn) Par(CE (1 5,)
(40)
os (000
> \2 P
n 2
> 308 (42)
16

where (41) follows from [3, Problem 1.1.10].
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Equation (42) along with (38) with = 3«3/32 contradicts
the fact thatp is a mean-optimal code faZ. Thus we must
have Pz (C,) — 1 asn — oo. O

Proof of Theorem 4:We definel,, J,,, and L, as in
the proof of Theorem 3.
Fix ¢ > 0. Define the set of “bad” output lengths

B,(¢) = {r € I,: H(7Zn) <1- e}

Our objective is to show that

lim Pr, (Bn(e))=0 (43)
and
. 1
nh—1>205 Z rPr. (r)=0. (44)
ré€B., (e)

467

< > rPr(r)+2log <Z rPr, (7’)>
rely,

rel,
+5—¢ Z rPr (r) (52)
r€By (€)
€D €D
SH(Z)-FT—i-QIOg H(Z)-i-T
+5—¢ Z rPr, (1) (53)
r€By (€)
ned ned
SH(Z”)-FT-FQIOg H(Zn)“rT
+5—nebd (54)
< H(z") - "2 (55)

where (50) follows because the average code length viien

Since ¢ is a mean-optimal source code, (44) will follow ifis coded by a Huffman code is upper-boundedd{Z ") + 1

we can show that for any >0

! Z rPr (r) >

n
r€B,(e)°

(45)

for sufficiently largen.

Let us proceed by contradiction: assume there exXist®)
such that (45) is not satisfied far € I where! is an infinite
set of integers.

Now consider a new source coggé for the sourceZ. To

(52) follows because of the concavity of the logarithm, and
(53)—(55) hold forn € I.

Since¢’ is a prefix code foZ the average length in (46) is
lower-bounded byH (Z™). This is contradicted by (55). Thus
(45) is established; (45) implies (44) and due to Lemma 2,
(45) also implies (43) and the theorem is proved. |

IV. SHANNON, HUFFMAN, AND LEMPEL-ZIV CODES
We first introduce some notation. Let us denote the se-

codez" € J,, we codeZz using a Huffman code and thenquences of mappings corresponding to the Shannon, Huffman,

prefix that code with a code for the lengthWe coder by
repeating every bit in the binary expansion roftwice and
then ending the description with@. Thusr is coded using
at most2logr + 4 bits. For examplep would be coded as
11001101. Thus we have a prefix code for the sougeNow
the average Iength of the new code is

S U ) P (27) (46)
AT
= Z Z NPz (") (47)
rcl, z2nCJy -
- YT e
rEB, (€) 2" E€EJn r
+ Y D U E)Pre() (48)
r€B,(e)° 2"EJn 1
PZn (Zn)
— P . l / Vn
j Z Ly, (7) ‘HZ (¢ (7 )) PLn (7)
rEB,, (€) 2 Edn v
, Py (2")
T Py W) ooy (49)
rE€Bn(e)" S Lo
< Y PL(nr(l-—o+1+2logr+4)
rEB., (¢)
+ Y Pr.(n)(r+2logr+4) (50)
rEB,(e)°
< Z rPr (r)+2 Z P (r)logr
rel, rel,
+5—c¢ Z rPr, (1) (51)
r€By (€)

and the Lempel-Ziv codes by, ¢ and g% respectively.
By “Lempel-Ziv code” we mean the LZ'78 incremental pars-
ing scheme as described in [2].

We can now state and prove our results establishing that
Shannon, Huffman, and Lempel-Ziv codes are optimal random
bit generators.

Theorem 5:Let Z be a source withH(Z) > 0. The Shan-
non code is a random bit generator generating bits at the
maximum possible ratey (7).

Proof: We use Theorem 4 to prove the result. Since the
source 7 satisfies the required conditions, we only have to
check that the Shannon code is mean-optimal. This is true since
the Shannon code is lossless and from [2, Theorem 5.4.3] we
have

Ell(¢n(Z")] < H(Z") + 1.

Thus the Shannon code satisfies all the assumptions required
in Theorem 4. |

Theorem 6:Let Z be a sourceZ with H(Z)>0. The
Huffman code is a random bit generator that generates bits
at the maximum possible rate.

Proof: We use Theorem 4 to prove the result. Since the
sourceZ satisfies the required conditions, we only have to
check that the Huffman code is mean-optimal. This is true
since the Huffman code is lossless and from [2, Theorems
5.4.1 and 5.8.1] we have

E[l(¢y(Z2™)] < H(Z") + 1.

Thus the Huffman code satisfies all the assumptions required
in Theorem 4. |
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Theorem 7:Let Z be a stationary, ergodic source with avould not discard any generated sequence would fail to obtain
finite entropy rateH > 0. The Lempel-Ziv code is a ratd- almost-fair coin flips with at most asymptotically vanishing
RBG. probability.

Proof: First we note that sinc is a stationary, ergodic  For Shannon—Fano codes operating with a known memory-
source with finite entropy ratd > 0, (12) is satisfied. We now less source with entrop¥, the sequence of sets (cf. (13))
verify that the Lempel-Ziv code is an optimal lossless source
code. The Lempel-Ziv code is lossless and so the mapping
¢L is a one-to-one mapping for eaeh Thus we only need
to check that the code is optimal in the sense of Definiti
4. Fix 6§>0.

Consider the set

Gn={rel|r—nH| <né,} (57)

satisfies the conditions in Definition 1 for ardy, going to
%o sufficiently slowly (Appendix Il). In this case, (57) gives
a simple rule for the user of the Shannon—Fano code to discard
output lengths that do not belong €%,. Note that if an output
S, = {2 € A" U($E(Z™)) < H(Z™) — né}. length belongs t@x,, for a fixedn, Definition 1 does not offer
any guarantee that it is a “good” length, since this notion is
The number of binary sequences with length smaller thanonly defined asymptotically.
is 2(E+t1) — 1. Thus we have The choice in (57) does not satisfy the condition in Def-
15,,| < 2H(Z")=ne+1 (56) inition 1 for every optimal random number generator. For
= ’ example, consider the trivial case where the source already

Stationary ergodic sources satisfy the asymptotoc equipartiti@@nerates fair coin flips and the random bit generator is such
property (AEP) and for sources that satisfy the AEP it cdfiat it appends & to the input string unless it is the all-
be shown that if a sequence of sefs satisfies (56) then Z€ro string, in which case it leaves the string unchanged.

P7(S,) — 0 asn — oco. Also from [2, Theorem 12.10.2], This mapping generates random bits at the optimal rate. The
we have sequencegr, = n} which satisfies the typicality condition in

(57) cannot belong t@7,, for all n because
Pz ({U¢n(Z7) < n(H +6)}) — 1

1 .
—D(pa(Z2)||B") = 1

asn — oo. Since(H(Z™)/n) — H asn — oo, we have

Pgn <{7 €A™ g|l(¢n (")) = H(Z")| < 7}) -1 Even if we restrict ourselves to the Shannon—Fano code we
o cannot expect that the choice in (57) remains good beyond
asn — oo. For sufficiently largen, (H(Z")/n)>(H/2)and the class of stationary ergodic sources. For example, consider
so we have a coin with bias probability uniformly distributed if0, 1].
(L7 n. Loy _ ny| < n Then, (57) evaluated & = 0.5 log, e fails to satisfy [C1] in
Por ({27 € A% |1(9(2")) = H(Z")| < H(Z7)8}) — 1 Definition 1 for anyé$,, — 0 asn — oco. We can still find a

asn — oo. simple description of a valid7,, (cf. (13))
Thus the Lempel-Ziv code satisfies all the assumptions s o
required in Theorem 3. O G ={r € L1 2 V/n}. (58)

Remark: For our proof of the optimality of the Lempel-ziv The validity of this choice of,, is shown in Appendix II.
code we require [2, Theorem 12.10.2]. In the proof of that In the universal setting when the source is unknown, and an
theorem it is assumed that if the number of phrases in tRBtimal universal source code (e.g., the Lempel-Ziv algorithm)
parsing of the input is;,, thenlog ¢, bits will be needed to is used, a good on-line estimate of the entropy of the source
code a pointer to a phrase. Since the number of phrasedSig-/n Wherer, is the length of the output sequence due to
not knowna priori, we can use the Elias code or any othein input of lengthn. If we were to substitutet? with r,, /n
universal coding of the integers to either i) code the pointef (57), thenG,, would include all output lengths, thereby
directly, or ii) first code the number of pointers and then ugessibly violating condition [C3] in Definition 1.
log ¢,, bits to code the pointer to a phrase. Using either of these
schemes does not affect the result in [2, Theorem 12.10.2] s KoLMOGOROV COMPLEXITY OF THE OUTPUT OF AN RBG

a result of the asymptqtic optimality of the Elias code [1, We will use the same notation for Kolmogorov complexity
Theorem 1|] gr Ot::.er unlv_ersal codes [1]d h bl as in [2]. K(2™) denotes the Kolmogorov complexity of
d To conclu he te'z SE?tIOI’],dWG consider ftle prho em §e sequence™ and K(z"|n) denotes the the Kolmogorov
heter_mlnlng t efsh n O g?oh seqlijences 0 bengt S Fro"?:,omplexity of 2™ given its lengthn. We will show that if
the viewpoint of the user of the random number generator, I, 5o generating random bits according to Definition 1 then

W.OUId be convenient to know which output lengths ought to lWith high probability the output sequences have a Kolmogorov
discarded because they do not correspond to almost-fair Ceg}nplexity per unit length close td. This is interesting

flips. As we saw in Definition 1, the choice Gf, is not unique. p . - <o from [2] we have that if
However, this choice is not crucial since the probability that
the output length belongs #G,, is guaranteed to converge to lim K(2"|n)

=1
1 asn — oc; thus a user of the random number generator who n—oo 1
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then the sequence will pass all computable statistical tests Now fix ¢ >0, 6 > 0. Let G,, be the sequence of sets as in

for randomness. Definition 1. Then we have

Theorem 8:1f a code ¢ is a rateH RBG for a stationary H($(Z™) > Z P (r)H($(Z7)) (64)
ergodic source with entropy raté then B rEGn 7

K@) _ | = Y e fED (e

W¢(Zm)) reG,,
in probability asn — oc. >(1—¢) > rPr(r) (66)

Proof: Fix v > 0. We will first show that reGy

>(1—en(H -9). (67)

Pz ({27 U (") > n(H +7)}) — 0 (59)

asn — oo. First of all, since¢ is a random bit generator
we can, for anye> 0,8 >0 find a sequence of set§,, as Sn = A{p(z"): Up(2")) < n(H + )}
in Definition 1 with the required properties. We fix =
~v/2(H + ~) and§ > 0 and consider the correspondigg,.

Now consider
= D Puzn
En = {2": U(¢(2")) >n(H +7), U(p(z")) € Gu} Pl
We split the the right side of (68) into sums over three sets

B,,B; N S, andB; N S:. We will now apply Lemma 1
to each of the terms. Thus we have
>H a}

Fix o> 0. Let

We also have

1
Mg g ey @

and for fixeda >0

1
Fn:{z": Hp(z")<n(H +7), —log —

no e S Py (82" log 5
B. P¢(Zn)(</)(z"))

Then we have

H(Z") > Pre(E)H(Z3 ) + Po(B)H(ZE)  (60) < Fotz)(BuJnldl =)
Sl z - = Py(zy(Bn)log Py z+)(By) (69)
> Pyo(En)H(P(Z5, ) + Pzn (Fn)H(ZE, ) (61)
2 Pz (Ep)n(H +’Y)(1 — ) 1
. . - Pyzny(p(2")) log 5————==
4 Py (F)(log Pon (Fo) + (H — a)n).  (62) Bgﬂ:sn o) @ Dos e
Thus (substituting in the value af < Pyzny(Br, N Spn(H +a)+1
n - P n (BC n Sn) log P, n (BC n Sn) (70)
H(Z d(Z™) n 2 d(Z™) n
") 5 (Ba)(H+2)
" Y op (F)log Pye(F) 29
n n ) 1l0g n n
+ Pz (F,)(H = ) + =2 A i |
n Z Pyzny(d(2 ))logm
Now since Py, (G,) — 1 asn — oo, we have BRNSy
< Pyzn(By N Sp)n
Pgn(En) + Pzn(Fn) — 1 — Pyzny(BE N 88)log Pyczey(BE N SS). (71)
asn — oc. Since lim (H(Z")/n) = H, if Combining inequalities (69)—(71) we have for sufficiently
large n
lim sup Pz-(E,)>0
e HOEZY) _ gy
H i H H dict s qS(Z”)( n)( ’7)
we can chooser small enough so as to have a contradiction. .
Thus g + Pyzey(BE 0 S)(H +a) +a. (72)

lim PZn (En) =0.

lim sup Py(z=)(B,) >0
Since Pr, (G,) — 1 asn — oo we have (59). n—oo
Now again fixy > 0. We will show that any seB,, C ¢(A™)

then for sufficiently smalle >0, (67) and (72) are contra-
with |B,| < 2"(#=7) satisfies y o >0, (67) (72)

dictory since Py(z+)(Sn) — 1 asn — oc. Thus we must
have
Pyzmy(Ba) = 0 (63)

lim Pyzny(B,) = 0.

asn — oo, n—o0o
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Now fix v >0 and consider the sets thatr,, € G, for sufficiently largen we need for any > 0,
" " for sufficiently largen
Hy = {2 K(¢(2")) 2 n(H =), n(H =) Y 1
<U(@(2") < n(H +7)} > =,

D, ={z": K(¢(z")) <n(H — ) or 2ntt = 2

((p(z")) <n(H =)}

If this is the case then for sufficiently large

n eon 2" —m,

Now |D,| < 2(2"(H=1+1) and so using (59) and (63) we  L[{¢n(Z" D <1+ (log(2" —mu) +1+46)— =
have (75)
Pz (H,) — 1 (73) <1+ (n+2+logd+6)6. (76)

Thus for sufficiently largen

K@) 2 K($() — 2logl($(z")) — ¢ BlOnZ] g5

n

asn — oo. From [2, eq. (7.8)] we have

wherec is a constant independent of. Thus forz" € H,  §>0 was arbitrary and thus there is no RBG that generates

K(z(H(2" n(H —~) = 2log(n(H + _e bits at the required rate.
(U =") 2> ( 7) Gt 7)) . Note that for this source, neither Theorem 3 nor Theorem

I{(p(zn - H+ ; : :
(¢(=")) n( ”) 4 apply, as there is no optimal source code (in the sense of
Since~ >0 was arbitrary we have for ang > 0 Definition 1) for it and H(Z) = 0.
K(p(z")[l(p(z")))
PZn <{Zn: >1—/3 — 1
U(p(2)) APPENDIX
In this appendix we consider Shannon—Fano codes for two
asn — oc. O . . o .
sources where we can give explicit descriptions of valid
sequences of sets,,.
APPENDIX | First we consider the case of a biased coin with piasl /2.
We now give an example of a source whose entropy ratelist the sequence of set$, be as defined in (57). If an output
% bit and its maximum randomness rate is zero. lengthr,, belongs to(,, then the input sequences which map
Consider a sourcZ such thatZ™ takes values im™ where to that lengthr,, must havem 0's wherem satisfies
A = {a,b,c}. Let 1
1 Hlog ﬁ—‘ - nh(p)‘ < né,. (77)
PZ”(avav"'va):_ pm(l_p)
2 . .
) ) This implies
and all the strings with only’s and ¢’'s have the same
probability 2—(*+1), All other strings occur with probability
0. The entropy rate of this nonergodic source is meT. 2 k _ ‘ bn +1/n (78)
") n 1-p
lim H(Z") = L o8
n—oo n 2

Thus the intrinsic randomness rate of this source as deﬁnvevg may have input strings with different nurr?ber o5
in [11] is 1/2. mapping to the same length, but the number of)’s has to
Consider an arbitrary random number generaggr For belong toT},. Thus using the concavity of the entropy function

Condition [C1] in the definition to be satisfied it is clear that fo?‘nd tlTe Ifsclt that shequences with the same numbeéfsaére
all sufficiently largen, we must havé({¢,,(a,a,---,a)) € G,. equally fikely we have

Select anyr,, € G,. The maximum ofH (¢,(Z; )) over all n ) n

¢y, such thatl(¢,(a™)) = r, is H(¢n(Zr,)) 2 min log { . ). (79)
1 + 110g2(27‘n —1). Since we have taken<1/2 we have for sufficiently large
2 2

Thus if {¢,} is to satisfy Condition [C3] we must have for H(¢n(2})) > log <n(p fcé )> (80)

any € >0 and for sufficiently largen
for some ¢>0. Applying Stirling’s formula to the above

1 + loig(22” ) >1—e (74) equation we have that
Tn Tn
H(p, (27
Sincer,, is a positive integer, (74) implies that = 1 for all lim M =1 (81)
n—od 7’n

but finitely manyn.
Let the number of sequences that are mapped to a stringafany sequence,, € G,,. Using the remark after [3, Lemma
lengthr,, (other than from(a, a, - - -, a)) bem,,. To make sure 2.12] we also have condition [C1] in Definition 1 satisfied if
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we takeé,, so that\/né, — oc asn — oc. Thus the rule for

choosingG,, in (57) works whens,, — 0 sufficiently slowly.
We now consider a coin with bias probability uniformly

distributed in[0, 1]. We will show that the following choice

(1]

of G, is valid for this source [2]
Gn={re€l,;:r>+n}. (82) 13
The probability of any particular sequence of lengttwith 4]
m 0's is
[5]
_
N
6
(n+1) <m) (6]
Thus if we have an output lengtty any sequence which maps 7
to this length must have: 0’'s wherem satisfies [8]
1< 10g(n+1)<n> < 7. o
m
[10]

Using the concavity of the entropy function and the fact that
sequences with the same numbeO&f are equally likely we

have 1]
H(¢pn(Z7)) 2 mn — 1 = log(n + 1). [12]
Thus if r, € G,, then
H(pn(Z0 23]
lim H(en(Zr,) =1. (83)
n—oo Tn [14]

It is easy to verify that with this choice @¥,,, condition [C1]
in Definition 1 is satisfied. Thus we have a valid choic&hf.
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