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Abstract—A random number generator generates fair coin flips
by processing deterministically an arbitrary source of nonideal
randomness. An optimal random number generator generates
asymptotically fair coin flips from a stationary ergodic source at
a rate of bits per source symbol equal to the entropy rate of the
source. Since optimal noiseless data compression codes produce
incompressible outputs, it is natural to investigate their capabili-
ties as optimal random number generators. In this paper we show
under general conditions that optimal variable-length source
codes asymptotically achieve optimal variable-length random bit
generation in a rather strong sense. In particular, we show
in what sense the Lempel–Ziv algorithm can be considered an
optimal universal random bit generator from arbitrary stationary
ergodic random sources with unknown distributions.

Index Terms—Data compression, entropy, Lempel–Ziv algo-
rithm, random number generation, universal source coding.

I. INTRODUCTION

I N contrast to pseudorandom number generators which
produce zero entropy rate sequences, a random number

generator is a deterministic procedure to generate equiprobable
independent bits from a random source The problem
was initially addressed by von Neumann in [12] where the
source was a Bernoulli source with More
efficient algorithms for generating random bits from a biased
coin were given by Hoeffding and Simons [6], Stout and
Warren [9], and Peres [7]. Elias [4] showed that the entropy
rate is an upper bound for the rate at which it is possible
to generate random bits from stationary sources and found
an optimal random number generator from stationary finite-
state, finite-order Markov sources without making use of the
Markov source distribution (other than its order). A simple
algorithm to generate arbitrary distributions from a biased coin
with a known distribution was given by Han and Hoshi [5].
The practically important problem of constructing a universal
random number generator from arbitrary nonideal stationary
sources has remained open. Vembu and Verdú [11] gave
fundamental limits on the rate at which random bits can
be generated from an arbitrary source. In particular, it was
shown that for fixed-length random number generation the
maximum achievable rate is the -entropy rate of the source
and for variable-rate random number generation the maximum
achievable rate is the of the entropy rate of the
source. The proof of achievability in [11] was constructive
but depended on knowing the source distribution.
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Here we explore the possibility of using source codes as
random number generators. The rationale is that an incom-
pressible sequence must be random in some sense and thus an
optimal source code (which eliminates all redundancy) must
output a “random” sequence. The problem of generating ran-
dom bits has been studied in two settings: variable-length and
fixed-length, according to whether the number of random bits
generated depends on the source realization or not. This paper
focuses on the variable-length setting, as our main interest
is in constructive methods for random number generation, and
in particular, in universal methods. The Lempel–Ziv algorithm
has been shown in [14] to be optimal in a certain sense to test
whether or not a source generates independent equiprobable
bits. However, the problem of investigating how far from being
truly random is the output of a Lempel–Ziv algorithm (and
other optimal source codes) appears to be new.

In the variable-length setting the “ideal” definition of ran-
domness would be that, conditioned on the length of the output
binary sequence being, all the -length binary sequences
occur with probability The rate at which a variable-length
generator produces random bits is the expected length of the
binary output string per source symbol. However, we cannot
go very far with such a strict requirement of randomness.
Consider the simplest nontrivial setting: a memoryless source

with alphabet such that
and The Huffman code for this source assigns
the strings , , to respectively. Thus a string of
source symbols is mapped to a string ofbits, where ranges
from to The rate of bit generation is equal to the source
entropy (1.5 b/symbol). All generated bit strings of length
are equiprobable; however, the Huffman code generates only

different strings of length Therefore, the Huffman encoder
does not satisfy the “ideal” definition of randomness. The
natural alternative advocated in a number of recent works is
to adopt a distance measure between probability distributions
and require that the distance between the output distributions
(conditioned on the output length) and the ideal distribution
vanishes as The results of [11] show that for
distance measures such as variational distance and normalized
divergence the maximum rate of random number generation
is equal to the source entropy rate for stationary ergodic
sources. However, if we restrict attention to variable-length
source codes as random number generators, variational dis-
tance reveals that the problem we consider in this paper is
not as straightforward as it may have been surmised at first
glance. Returning to the example of the memoryless ternary
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source, we can check that the variational distance (sum of the
absolute difference between all probability masses) between
the generated and ideal distributions of sequences of length

is

for which approaches for every If,
instead, we consider the normalized divergence between the
generated and ideal distributions we obtain

(1)

This means that for generated lengths other than those in the
neighborhood of , the normalized divergence does not
vanish as Fortunately, these “unfavorable” lengths
have vanishing probability. Indeed, normalized divergence
along with the elimination from consideration of unfavorable
generated lengths will serve as the basis for our definition
of random rate generation. Unlike variational distance such a
definition will lead to the demonstration that optimal source
codes are optimal random bit generators, while at the same
time being abona fidedefinition of randomness in the sense
that the Kolmogorov complexity of the output is maximal.

Section II formalizes our definition of a rate-random bit
generator (RBG). Although this definition is different from
those introduced in [11], we show that the fundamental limits
proved in [11] for stationary ergodic sources also hold for the
new definition, namely, for every stationary ergodic source
there exist generators of random bits at the entropy rate, but not
at any higher rate. Unlike the definitions of [11], the definition
we give in Section II can be used to prove positive results on
optimal universal random bit generation.

In Section III, we show (under conditions more general
than stationarity and ergodicity of the source) that optimal
variable-length source codes (in the sense of probability or
expected length) are generators of random bits at the maximum
possible rate. Consequently, we show that Shannon, Huffman,
and Lempel–Ziv codes1 are optimal random bit generators
for stationary ergodic sources. The latter result establishes yet
another use of the celebrated Lempel–Ziv algorithm: optimal
universal random bit generation from a stationary ergodic
source.

Section IV shows that optimal random bit generators in the
sense of Section II generate strings with maximal Kolmogorov
complexity when driven by stationary ergodic sources.

II. PRELIMINARIES

We deal with discrete random sources, characterized by their
sequence of finite-dimensional distributions

where takes values in , and is a finite set. Note that
the sources we allow include but are not restricted to random

1Throughout this paper “Lempel–Ziv code” refers to the incremental
parsing scheme (LZ ’78) as described in [2].

processes since at this point we need not place consistency
requirements on the finite-dimensional distributions.

We denote the set of finite-length binary sequences by
and is the function that maps a

finite-length bit string to its length.

Definition 1: A sequence of deterministic mappings

is a rate- RBG for a source if there exists a sequence of
sets of positive integers such that the following conditions
are met:

[C1]

(2)

[C2]

(3)

and
[C3]

(4)

where has the equiprobable distribution on and
is restricted to

The above definition is a modified version of [11, Definition
4]; it requires that the average length of the output bit string
be sufficiently high [C2] and that conditioned on the length of
the output bit string, we get “almost” equiprobable bits [C3].
The notion of “almost” equiprobable is made precise by using
normalized divergence as a measure of distance from pure
random bits. Note that [C3] is equivalent to the condition on
the entropy of generated strings

Note that [C3] is a condition on “good” lengths (i.e., lengths
in ) and not on all output lengths. Also note that the the
summation in [C2] is only over the set of “good” lengths.
[C1] ensures that the probability that the generated length is
“good” tends to .

Definition 2: The maximum randomness rate of a
source is the supremum over for which there exists a
rate- random bit generator for the source

Definition 2 differs from [11, Definition 5]; it allows that
the set of “good” lengths be unknown to the random bit
generator. This turns out to be important in order to show that
the Lempel–Ziv algorithm is an optimal universal random bit
generator.

As in [11], the maximum randomness rate of a station-
ary ergodic source is equal to its entropy rate. First we
prove the following general converse. Note that this converse
strengthens the converse in [11] which itself strengthens the
converse in [4].
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Theorem 1: For any source we have

(5)

Proof: Suppose we have a rate-RBG
for the source Let Fix

and and select a sequence of sets of positive integers
such that for sufficiently large

(6)

and

(7)

Then we have

(8)

(9)

(10)

(11)

where (8) holds because conditioning reduces entropy and we
are not conditioning over all lengths; (9) holds since the
are deterministic mappings; and (10) as well as (11) hold for
sufficiently large due to (6) and (7). Since and
are arbitrary, we must have

Unlike [11, Definition 5], (5) does not hold with equality
for all sources because of condition [C1] in Definition 1. This
is shown by an example in Appendix I.

We will show in Section III that Shannon codes, Lem-
pel–Ziv codes, and Huffman codes can be used as random bit
generators to generate random bits (in the sense defined above)
from a stationary, ergodic source at the maximum possible rate.
Thus we have the following theorem.

Theorem 2: The maximum randomness rate of a stationary
ergodic source is equal to its entropy rate.

III. OPTIMAL SOURCE CODES AS

RANDOM NUMBER GENERATORS

In this section we derive two sufficient conditions on the
source so that optimal source codes generate random bits at
the maximum possible rate. To do so we must first formalize
the notion of optimal source codes.

Definition 3: A variable-length lossless source codefor a
random source , is a sequence of one-to-one fixed-length to
variable-length mappings where maps to

Definition 4: A variable-length lossless source code is op-
timal for the source if for any

Definition 5: A variable-length lossless source code for the
source is mean-optimal if for any

for all sufficiently large

We now show that an optimal lossless source code generates
random bits at the optimum rate.2

Theorem 3: Consider a source such that

(12)

If is an optimal lossless source code for then is a
rate- random bit generator.

Proof: Let

for some (13)

and

is the set of possible output lengths at stage is the
subset of that is mapped to an output of length

Note that

(14)

First we will show that as
Since the mapping

is one-to-one, we have

Fix Let

Then by the definition of an optimal code we have

(15)

as
Now (see (16)–(21) on the following page).
To bound the second and third terms in the numerator of

(21), we use the following elementary result.

2Notice that a source may satisfy condition (12) and yet it may be such
that no optimal lossless source code exists.
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(16)

(17)

(18)

(19)

(20)

(21)

Lemma 1:Let be a random variable taking values on a setLet be a finite subset of Then we have

Using Lemma 1 twice along with the fact that and for every we have

Thus we have

(22)

(23)

(24)

where (24) follows from (12) and (15).
Similarly we upper-bound the third term in the numerator of (21) using Lemma 1 to get

(25)

(26)

(27)

where the equality follows because of (12).
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Thus using (21), (24), and (27) we have

Since

for each and since was arbitrary we have

(28)

Fix Define

(29)

We will show by contradiction that as
Suppose there exists such that

infinitely often. Since we have

infinitely often. But this contradicts (28), and so there is no
such that infinitely often. Thus

Let

Now fix and Let Note that
since Let

By the definition of in (29) we have

for each and thus

(30)

for each Also since as and

as we have

(31)

Thus

(32)

(33)

(34)

(35)

(36)

where (35) holds for sufficiently large Since and
were arbitrary, (30), (31), and (35) imply that the source code

is a rate- RBG. Since we have seen that the maximum
randomness rate of a source satisfies

the source code generates bits at the maximum possible
rate.

We now show that a mean-optimal source code generates
random bits at the optimal rate. Recall that the-entropy rate
of a source is the largest extended real number
that satisfies for all

Theorem 4: Consider a source such that takes values
in and

(37)

If is a mean-optimal source code for then is a rate-
RBG.

The proof of this theorem will make use of the following
result.

Lemma 2: Consider a source with taking values in
such that Suppose that is a variable-

length mean-optimal source code for the source. If there exists
a set of source -strings such that for any

(38)

for all sufficiently large then as
Proof: We will proceed by contradiction. Suppose that

there exists , such that for all where
is an infinite set of integers. Let

By the definition of we have as
So we must have

for sufficiently large Now

(39)

(40)

(41)

(42)

where (41) follows from [3, Problem 1.1.10].



VISWESWARIAH et al.: SOURCE CODES AS RANDOM NUMBER GENERATORS 467

Equation (42) along with (38) with contradicts
the fact that is a mean-optimal code for Thus we must
have as

Proof of Theorem 4:We define and as in
the proof of Theorem 3.

Fix Define the set of “bad” output lengths

Our objective is to show that

(43)

and

(44)

Since is a mean-optimal source code, (44) will follow if
we can show that for any

(45)

for sufficiently large
Let us proceed by contradiction: assume there exists

such that (45) is not satisfied for where is an infinite
set of integers.

Now consider a new source code for the source To
code we code using a Huffman code and then
prefix that code with a code for the length We code by
repeating every bit in the binary expansion oftwice and
then ending the description with a . Thus is coded using
at most bits. For example, would be coded as

. Thus we have a prefix code for the sourceNow
the average length of the new code is

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

where (50) follows because the average code length when
is coded by a Huffman code is upper-bounded by ,
(52) follows because of the concavity of the logarithm, and
(53)–(55) hold for

Since is a prefix code for the average length in (46) is
lower-bounded by This is contradicted by (55). Thus
(45) is established; (45) implies (44) and due to Lemma 2,
(45) also implies (43) and the theorem is proved.

IV. SHANNON, HUFFMAN, AND LEMPEL–ZIV CODES

We first introduce some notation. Let us denote the se-
quences of mappings corresponding to the Shannon, Huffman,
and the Lempel–Ziv codes by and respectively.
By “Lempel–Ziv code” we mean the LZ’78 incremental pars-
ing scheme as described in [2].

We can now state and prove our results establishing that
Shannon, Huffman, and Lempel–Ziv codes are optimal random
bit generators.

Theorem 5: Let be a source with The Shan-
non code is a random bit generator generating bits at the
maximum possible rate,

Proof: We use Theorem 4 to prove the result. Since the
source satisfies the required conditions, we only have to
check that the Shannon code is mean-optimal. This is true since
the Shannon code is lossless and from [2, Theorem 5.4.3] we
have

Thus the Shannon code satisfies all the assumptions required
in Theorem 4.

Theorem 6: Let be a source with The
Huffman code is a random bit generator that generates bits
at the maximum possible rate.

Proof: We use Theorem 4 to prove the result. Since the
source satisfies the required conditions, we only have to
check that the Huffman code is mean-optimal. This is true
since the Huffman code is lossless and from [2, Theorems
5.4.1 and 5.8.1] we have

Thus the Huffman code satisfies all the assumptions required
in Theorem 4.
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Theorem 7: Let be a stationary, ergodic source with a
finite entropy rate The Lempel–Ziv code is a rate-
RBG.

Proof: First we note that since is a stationary, ergodic
source with finite entropy rate , (12) is satisfied. We now
verify that the Lempel–Ziv code is an optimal lossless source
code. The Lempel–Ziv code is lossless and so the mapping

is a one-to-one mapping for each Thus we only need
to check that the code is optimal in the sense of Definition
4. Fix

Consider the set

The number of binary sequences with length smaller than
is Thus we have

(56)

Stationary ergodic sources satisfy the asymptotoc equipartition
property (AEP) and for sources that satisfy the AEP it can
be shown that if a sequence of sets satisfies (56) then

as Also from [2, Theorem 12.10.2],
we have

as Since as , we have

as For sufficiently large and
so we have

as
Thus the Lempel–Ziv code satisfies all the assumptions

required in Theorem 3.

Remark: For our proof of the optimality of the Lempel–Ziv
code we require [2, Theorem 12.10.2]. In the proof of that
theorem it is assumed that if the number of phrases in the
parsing of the input is , then bits will be needed to
code a pointer to a phrase. Since the number of phrases is
not knowna priori, we can use the Elias code or any other
universal coding of the integers to either i) code the pointers
directly, or ii) first code the number of pointers and then use

bits to code the pointer to a phrase. Using either of these
schemes does not affect the result in [2, Theorem 12.10.2] as
a result of the asymptotic optimality of the Elias code [1,
Theorem 1] or other universal codes [1].

To conclude this section, we consider the problem of
determining the set of good sequences of lengths. From
the viewpoint of the user of the random number generator, it
would be convenient to know which output lengths ought to be
discarded because they do not correspond to almost-fair coin
flips. As we saw in Definition 1, the choice of is not unique.
However, this choice is not crucial since the probability that
the output length belongs to is guaranteed to converge to

as ; thus a user of the random number generator who

would not discard any generated sequence would fail to obtain
almost-fair coin flips with at most asymptotically vanishing
probability.

For Shannon–Fano codes operating with a known memory-
less source with entropy , the sequence of sets (cf. (13))

(57)

satisfies the conditions in Definition 1 for any going to
zero sufficiently slowly (Appendix II). In this case, (57) gives
a simple rule for the user of the Shannon–Fano code to discard
output lengths that do not belong to Note that if an output
length belongs to for a fixed , Definition 1 does not offer
any guarantee that it is a “good” length, since this notion is
only defined asymptotically.

The choice in (57) does not satisfy the condition in Def-
inition 1 for every optimal random number generator. For
example, consider the trivial case where the source already
generates fair coin flips and the random bit generator is such
that it appends a to the input string unless it is the all-
zero string, in which case it leaves the string unchanged.
This mapping generates random bits at the optimal rate. The
sequence which satisfies the typicality condition in
(57) cannot belong to for all because

if
Even if we restrict ourselves to the Shannon–Fano code we

cannot expect that the choice in (57) remains good beyond
the class of stationary ergodic sources. For example, consider
a coin with bias probability uniformly distributed in .
Then, (57) evaluated at fails to satisfy [C1] in
Definition 1 for any as We can still find a
simple description of a valid (cf. (13))

(58)

The validity of this choice of is shown in Appendix II.
In the universal setting when the source is unknown, and an

optimal universal source code (e.g., the Lempel–Ziv algorithm)
is used, a good on-line estimate of the entropy of the source
is where is the length of the output sequence due to
an input of length If we were to substitute with
in (57), then would include all output lengths, thereby
possibly violating condition [C3] in Definition 1.

V. KOLMOGOROV COMPLEXITY OF THE OUTPUT OF AN RBG

We will use the same notation for Kolmogorov complexity
as in [2]. denotes the Kolmogorov complexity of
the sequence and denotes the the Kolmogorov
complexity of given its length We will show that if
we are generating random bits according to Definition 1 then
with high probability the output sequences have a Kolmogorov
complexity per unit length close to. This is interesting
because from [2] we have that if
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then the sequence will pass all computable statistical tests
for randomness.

Theorem 8: If a code is a rate- RBG for a stationary
ergodic source with entropy rate then

in probability as
Proof: Fix We will first show that

(59)

as First of all, since is a random bit generator
we can, for any find a sequence of sets as
in Definition 1 with the required properties. We fix

and and consider the corresponding
Now consider

and for fixed

Then we have

(60)

(61)

(62)

Thus (substituting in the value of

Now since as , we have

as Since if

we can choose small enough so as to have a contradiction.
Thus

Since as we have (59).
Now again fix We will show that any set

with satisfies

(63)

as

Now fix Let be the sequence of sets as in
Definition 1. Then we have

(64)

(65)

(66)

(67)

Fix Let

We also have

(68)

We split the the right side of (68) into sums over three sets
and We will now apply Lemma 1

to each of the terms. Thus we have

(69)

(70)

and

(71)

Combining inequalities (69)–(71) we have for sufficiently
large

(72)

If

then for sufficiently small , (67) and (72) are contra-
dictory since as Thus we must
have
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Now fix and consider the sets

or

Now and so using (59) and (63) we
have

(73)

as From [2, eq. (7.8)] we have

where is a constant independent of Thus for

Since was arbitrary we have for any

as

APPENDIX I

We now give an example of a source whose entropy rate is
bit and its maximum randomness rate is zero.
Consider a source such that takes values in where

Let

and all the strings with only ’s and ’s have the same
probability All other strings occur with probability

. The entropy rate of this nonergodic source is

Thus the intrinsic randomness rate of this source as defined
in [11] is .

Consider an arbitrary random number generator For
Condition [C1] in the definition to be satisfied it is clear that for
all sufficiently large , we must have
Select any The maximum of over all

such that is

Thus if is to satisfy Condition [C3] we must have for
any and for sufficiently large

(74)

Since is a positive integer, (74) implies that for all
but finitely many

Let the number of sequences that are mapped to a string of
length (other than from ) be To make sure

that for sufficiently large we need for any ,
for sufficiently large

If this is the case then for sufficiently large

(75)

(76)

Thus for sufficiently large

was arbitrary and thus there is no RBG that generates
bits at the required rate.

Note that for this source, neither Theorem 3 nor Theorem
4 apply, as there is no optimal source code (in the sense of
Definition 1) for it and

APPENDIX II

In this appendix we consider Shannon–Fano codes for two
sources where we can give explicit descriptions of valid
sequences of sets

First we consider the case of a biased coin with bias
Let the sequence of sets be as defined in (57). If an output
length belongs to then the input sequences which map
to that length must have ’s where satisfies

(77)

This implies

(78)

We may have input strings with different number of’s
mapping to the same length but the number of ’s has to
belong to Thus using the concavity of the entropy function
and the fact that sequences with the same number of’s are
equally likely we have

(79)

Since we have taken we have for sufficiently large

(80)

for some Applying Stirling’s formula to the above
equation we have that

(81)

for any sequence Using the remark after [3, Lemma
2.12] we also have condition [C1] in Definition 1 satisfied if
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we take so that as Thus the rule for
choosing in (57) works when sufficiently slowly.

We now consider a coin with bias probability uniformly
distributed in . We will show that the following choice
of is valid for this source

(82)

The probability of any particular sequence of lengthwith
’s is

Thus if we have an output length any sequence which maps
to this length must have ’s where satisfies

Using the concavity of the entropy function and the fact that
sequences with the same number of’s are equally likely we
have

Thus if , then

(83)

It is easy to verify that with this choice of , condition [C1]
in Definition 1 is satisfied. Thus we have a valid choice of
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