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Reliable object recognition is an essential part of most visual systems. Model-based
Ž .approaches to object recognition use a database a library of modeled objects; for a

given set of sensed data, the problem of model-based recognition is to identify and locate
the objects from the library that are present in the data. We show that the complexity of
model-based recognition depends very heavily on the number of object models in the
library even if each object is modeled by a small number of discrete features. Specifically,
deciding whether a discrete set of sensed data can be interpreted as transformed object
models from a given library is NP-complete if the transformation is any combination of
translation, rotation, scaling, and perspective projection. This suggests that efficient
algorithms for model-based recognition must use additional structure to avoid the
inherent computational difficulties. Q 1998 John Wiley & Sons, Inc.

1. INTRODUCTION

Many tasks of perceptual information processing that are easy and natural
for humans appear to be much harder for machines. For example, although
locating an object such as a pen on a table appears to us an easy task, it requires
the ability to identify many possible shapes of pens as such. These difficulties
can be avoided in many computer vision applications that take place in a
controlled environment. In these cases, it is assumed that the objects of interest
can be modeled and cataloged in a library. The problem of model-based
recognition can be informally described in the following way: Given a library of
modeled objects and sensed data, identify and locate the objects from the library
that are present in the data.

Reviews of the extensive literature on model-based recognition in computer
vision can be found in Refs. 3]5; more recent studies include Refs. 8 and 13.
The standard computational approach is to represent the modeled objects and
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the data in terms of discrete features so that the recognition can be solved as a
search problem. The results of previous work show that by applying rigidity
constraints in various ways, model-based recognition can be efficiently applied to
recognize objects even from partial views and in the presence of nonmalicious
noise. The relevant complexity parameter in such cases is the number of
features that model each object.

In this paper we analyze the case in which objects are represented by a
small number of features. The relevant complexity parameter in this case is the
number of objects. Instead of analyzing the performance of specific algorithms,
our approach is to apply techniques from complexity theory to identify cases in
which model-based recognition appears to be inherently difficult. Specifically, we

Žshow that the problem is NP-complete and, thus, its complexity modulo
.standard complexity assumptions, i.e., P / NP is exponential in the size of the

library.
Proving that a problem is NP-complete is a common technique in complex-

Žity analysis for identifying the problem as intrinsically difficult. In a well
.defined sense, an NP-complete problem is the most difficult problem in the

class NP, which includes many difficult problems such as the traveling salesman.
However, an NP-complete problem is not completely unapproachable; a stan-
dard method for coping with such problems is to identify easily solvable
subproblems. In the case of model-based recognition this corresponds to exploit-
ing additional structure of the modeled objects and the way they are viewed. For
more information on the theory of NP-completeness, see Ref. 6. For applica-
tions of NP-completeness results to vision tasks, see Refs. 14 and 12.

The results of this paper can be used to determine constraints that may
simplify model-based recognition. We will attempt to identify three types of
constraints: constraints that leave the problem NP-complete, constraints that

Ž .guarantee efficient polynomial algorithms, and constraints that make our
NP-completeness proofs inapplicable, so that they may simplify the problem.

1.1. Comparison with Previous Work

Grimson8,7 analyzed the complexity of model-based recognition for the
Ž .special important case of tree search. His results show that if all of the data

are known to have come from a single object, then the expected amount of
Ž .search is a low order polynomial in the number of model features . If, on the

other hand, the object may not be present, the complexity becomes exponential
Ž .in the number of model features .

Grimson’s results seem to imply that the search is always easy when objects
can be modeled by a small number of features. If objects are modeled by many
features, but they can be uniquely determined from a few, one can apply the
‘‘hypothesize and test’’ technique, which is the basic idea underlying alignment
methods,10 Hough transforms,11,2 and geometric hashing.13

Ž .The other relevant complexity parameter besides the number of features
Ž .is the library size. Previous work e.g., Refs. 8, 7, 10, and 13 considered cases in

which the library can be quite large and described implementations where the



LIMITATIONS OF MODEL-BASED RECOGNITION 433

Ž .Figure 1. Different possible interpretations of sensed data see text .

search is reduced to multiple search of single objects. The standard approach
when the library is large is to sequentially test each model in the library for
possible interpretations in the data. Once a correct interpretation is found, the
data corresponding to it can be removed from consideration and the process is
repeated on the remaining data. This ‘‘peel-off-one-at-a-time’’ technique gives
complexity that is at most quadratic in the library size.

The main argument that we make in this paper is that the peel-off-one-at-
a-time technique may not give the right interpretation of the data. In fact, the
complexity of the search is most likely exponential in the library size even if the
number of modeled features is a small constant. A situation where the straight-
forward peel-off approach may not work is illustrated in the following example.
Let L be a library with a single modeled object, a square. The objects to be
identified are squares and the sensed data are given as points along edges of the
square. Consider the case shown in Figure 1. What appears to be the most
dominant object is the outer square. If it is first detected and its points are
removed, the rest of the points cannot be reliably interpreted as squares. A
more reasonable interpretation that explains the entire data is the interpreta-
tion of four inner squares.

1.2. Paper Organization

The paper is organized as follows. Precise definitions for an object, a
library, and a picture of sensed data are given in Section 2. Section 3 discusses
the case in which the picture contains shifted and rotated objects from the
library. It is shown that worst case exponential complexity is likely even if each
object can be uniquely characterized by three points. Similar results for the
more realistic cases in which the viewed objects can be shifted, rotated, and
scaled objects from the library are presented in Section 3. The worst case
exponential complexity proof requires that each object is modeled by six points.
In most real-world situations the viewed objects are obtained as perspective
projections of three-dimensional objects. Unfortunately, the general case of
perspective projections includes extreme cases that may destroy or create
geometric relations. The results of Section 4 generalize the results of Section 3



SCHWEITZER AND KULKARNI434

to perspective projections under the assumption that these projections do not
accidentally create geometric relations. Some implications of the results are
discussed in Section 6.

2. PRELIMINARY DEFINITIONS

We consider situations in which objects can be modeled in terms of sets of
local features. A local feature is a simple geometric shape, and an object is

Ždescribed by a set of local features and their location in space. The results of
.this paper hold for arbitrary interpretations of ‘‘simple’’ and ‘‘local.’’ Commonly

used features are points, lines, angles, etc. An example is shown in Figure 2,
Ž . Ž .where a triangle is described in terms of a straight lines, b corners, and

Ž .c points along its edges.

DEFINITION. An object description by local features is a set of t pairs:

² : ² : ² :O s f , X , f , X , . . . , f , X� 41 1 2 2 t t

where for 1 F i F t, f is a local feature and X is its location relatï e to a fixedi i
coordinate system.

DEFINITION. A library is a set of object descriptions.

DEFINITION. A picture is sensed data gï en as a set of local features and their
location is space.

Model-Based Object Recognition Problem. For a family of coordinate transforma-
tions C, a library L, and a picture of sensed data P given as the set of pairs

² : ² :P s f , X , . . . , f , X� 41 1 m m

Figure 2. Examples of local features describing a triangle.
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determine a disjoint partition of P into objects from L, i.e., subsets O , . . . , O1 q
such that:

Ž .i For i / j O l O s B.i j
Ž .ii P s O j ??? j O .1 q
Ž .iii For 1 F i F q there is c g C that transforms an object from L into O .i i

Our main result is that model-based recognition under translations, rota-
Ž .tions, and stable perspective projections is NP-complete. The proofs are based

Ž .on a reduction from exact co¨er by three sets X3C that is known to be
Ž .NP-complete see Ref. 6, p. 221 .

Exact Co¨er by Three-Sets Problem. The following exact cover by three sets
problem, referred to as X3C, is NP-complete:

Instance: A set E of m elements and a collection C of three-element subsets of E.
Question: Does C contain an exact cover for E, i.e., a subcollection C9 ; C such

that every element of E occurs in exactly one member of C9?
Comment: X3C remains NP-complete even if no element occurs in more than three

subsets in C, but is solvable in polynomial time if no element occurs in more
than two subsets. The related exact co¨er by two-sets problem is solvable in
polynomial time.

3. THE CASE OF TRANSLATION AND ROTATION

In this section we analyze the complexity of recognizing objects that are
assumed to be translated and rotated models from a given library.

THEOREM 1. Let L be a library of objects and let P be a picture. The decision
problem of whether P can be described as a disjoint union of translated and rotated
objects from L is NP-complete. The problem remains NP-complete e¨en if each
library object is described by three points.

Proof. Membership in NP is obvious. To show that the problem is NP-complete
we reduce X3C to it.

� 4Let E, C be an instance of the X3C problem, where C is a collection of
three-element subsets of the m elements e , . . . , e g E. We begin by construct-1 m
ing a picture P of m points p , . . . , p on the x axis. The location of p is at the1 m 1
origin, the point p is at distance m2 q 1 from p , the point p is at distance2 2 3
m2 q 2 from p , etc. See the illustration in Figure 3. Let f : E ª P denote the2
mapping of elements in E to points in P. For 1 F i F m we have

i i y 1Ž .
2f e s a point at location x s i y 1 m q 1Ž . Ž . Ž .i 2

Clearly, f is 1]1 and onto, so that the inverse mapping is well defined. We now
create the library L from the three-element subsets in C. For a three-set
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Figure 3. The picture in the proof of Theorem 1.

composed of the elements e , e , e we add to L an object described by thea b g

Ž . Ž . Ž .three points f e , f e , f e . The object generated by the elements e , e , ea b g 2 4 5
is shown in Figure 4.

To prove the NP-complete result it remains to show that P is a disjoint
union of rotated and translated objects from L if and only if C contains an
exact cover of E. The following proof makes use of Lemma 1 which is proved at
the end of this section.

� 4Let C9 ; C be an exact cover of E. For each triplet e , e , e g C9 definei i i1 2 3

O s f e , f e , f eŽ . Ž . Ž .� 4i i i i1 2 3

so that O g L. Since C9 is a cover of E and f is onto, we have P s D O .i i i
Since C9 is exact and f is 1]1, we have O l O s B for i / j.i j

Conversely, let C be the family of coordinate translations and rotations,
and assume for each O g L the existence of c g C such thati i

Ž . Ž . Ž .i For i / j, c O l c O s B.i i j j
Ž . Ž .ii P s D c O .i i i

From Lemma 1 it follows that c must be the identity transformation, i.e.,i
Ž . Ž . � 4c O s O , so that c O g L. For O s p , p , p definei i i i i i i i i1 2 3

y1 y1 y1 � 4T s f p , f p , f p , C9 s T .Ž . Ž . Ž .Ž .i i i i i1 2 3

Ž . y1 Ž .From ii and the fact that f is onto, it follows that C9 is a cover. From i
and the fact that fy1 is 1]1, it follows that C9 is an exact cover. B

LEMMA 1. Let O be an object from the library defined in the proof of Theorem 1
and let O9 be an object defined by three points from the picture in the proof of
Theorem 1. If O can be mapped by translation and rotation to O9, then O s O9.

Figure 4. A typical object in the proof of Theorem 1.
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Proof. Without loss of generality, let O be described by the points p , p , pi i i1 2 3

and let O9 be described by the points p , p , p , where i - i - i andj j j 1 2 31 2 3

j - j - j . Since the objects are one-dimensional, a transformation taking O to1 2 3
O9 involves either zero rotation or a 1808 rotation. We show that the transfor-
mation must be with zero rotation and zero translation.

First, suppose the transformation involves no rotation. Then the distance
between p and p is the same as the distance between p and p . Fromi i j j1 2 1 2

Ž .Eq. 1 we have

j j y 1 y j j y 1 i i y 1 y i i y 1Ž . Ž . Ž . Ž .2 2 1 1 2 2 1 12 2j y j m q s i y i m qŽ . Ž .2 1 2 12 2

Ž . Ž Ž . Ž ..Set s i, j s j j y 1 y i i y 1 r2, so that the above equation can be written
as

2j y j y i y i m s s i , i y s j , j . 2Ž . Ž . Ž . Ž . Ž .2 1 2 1 1 2 1 2

Ž . 2 < Ž . Ž . < 2Clearly, 0 - s i, j - m for 1 F i - j F m and s i , i y s j , j - m , but1 2 1 2
Ž . 2since the right-hand side of Eq. 2 is divisible by m , it must equal 0 and we

have

s i , i s s j , jŽ . Ž .1 2 1 2
3Ž .

j y j s i y i2 1 2 1

Ž .The unique solution to the system 3 with j , j as the unknowns is j s i and1 2 1 1
j s i . Since in pure translation the distance between p and p is the same as2 2 i i1 3

the distance between p and p , the same derivation gives j s i , so thatj j 3 31 3

O s O9.
It remains to show that a transformation taking O to O9 cannot involve

rotation. Suppose, on the contrary, that O is mapped to O9 by a transformation
involving nonzero rotation. As mentioned above, this rotation must be 1808.
However, then the distance between p and p is the same as the distancei i1 2

between p and p , and the distance between p and p is the same as thej j i i3 2 2 3

distance between p and p . Using the same derivation as above, we get j s i ,j j 1 32 1

j s i and j s i , but since j - j and i - i , we have a contradiction. B2 2 3 1 1 3 1 3

4. TRANSLATION ROTATION AND SCALING

This section generalizes the results of Section 3 to transformations that may
include scaling in addition to translation and rotation.

THEOREM 2. Let L be a library of objects and let P be a picture. The decision
problem of whether P can be described as a disjoint union of translated, rotated, and
scaled objects from L is NP-complete. The problem remains NP-complete e¨en if
each library object is described by six points.
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Proof. Membership in NP is obvious. To show that the problem is NP-complete
we reduce X3C to it.

� 4Let E, C be an instance of the X3C problem. We begin by constructing
a two-dimensional picture Q as a disjoint union of two pictures: Q s P j P9.
The pictures are defined by the two 1]1 and onto mappings f : E ª P and
u : E ª P9:

f e s a point at x s i y 1 m2 q i i y 1 r2, y s 0Ž . Ž . Ž .i
4Ž .

u e s a point at x s i y 1 m2 q i i y 1 r2, y s dŽ . Ž . Ž .i

See the illustration in Figure 5. We now create the library L from the
Ž .three-element subsets of C. For e , e , e we add to L an object described bya b g

Ž . Ž . Ž . Ž . Ž . Ž .the six points u e , u e , u e , f e , f e , f e . The object generated bya b g a b g

the elements e , e , e is shown in Figure 6.2 4 5
To complete the proof it remains to show that Q is a disjoint union of

translated, rotated, and scaled objects from L if and only if C contains an exact
cover of E. The following proof makes use of Lemma 2, which will be proved at
the end of this section.

� 4Let C9 ; C be an exact cover of E. For each triplet e , e , e g C9 definei i i1 2 3

O s u e , u e , u e , f e , f e , f eŽ . Ž . Ž . Ž . Ž . Ž .� 4i i i i i i i1 2 3 1 2 3

so that O g L. Since C9 is a cover of E, and f, u are onto P and P9,i
respectively, Q s P j P9 s D O . Since C9 is exact and f, u are 1]1, O li i i
O s B for i / j.j

Conversely, let C be the family of coordinate translations, rotations, and
scaling and assume for each O g L the existence c g C such that:i i

Ž . Ž . Ž .i For i / j, c O l c O s B.i i j j
Ž . Ž .ii Q s D c O .i i i

Figure 5. The picture in the proof of Theorem 2.
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Figure 6. A typical object in the proof of Theorem 2.

From Lemma 2 it follows that c is the identity transformation, so thati
Ž . � X X X 4c O g L. For O s p , p , p , p , p , p , where it is assumed without loss ofi i i i i i i i i1 2 3 1 2 3

generality that p , p , p have zero y coordinates, definei i i1 2 3

y1 y1 y1 � 4T s f p , f p , f p , C9 s T .Ž . Ž . Ž .� 4i i i i i1 2 3

Ž . y1 Ž .From ii and the fact that f is onto E, it follows that C9 is a cover. From i
and the fact that fy1 is 1]1, it follows that C9 is an exact cover. B

LEMMA 2. Let O be an object from the library defined in the proof of Theorem 2
and let O9 be an object defined by six points from the picture in the proof of
Theorem 2. If O can be mapped by translation, rotation, and scaling to O9, then
O s O9.

Proof. Let O be generated by e , e , e . Let u , u , u be the points of O9 thati i i 1 2 31 2 3
Ž . Ž . Ž .are mapped to u e , u e , u e , respectively. Then u , u , u are collinear.i i i 1 2 31 2 3

Similarly, let ¨ , ¨ , ¨ , be the points of O9 that are mapped to1 2 3
Ž . Ž . Ž .f e , f e , f e , respectively. Then ¨ , ¨ , ¨ are collinear. Sincei i i 1 2 31 2 3
Ž . Ž . Ž .u e , u e , f e form a right triangle, u , u , ¨ form a right triangle, so thati i i 1 2 11 2 1

the triplets u , u , u and ¨ , ¨ , ¨ are not on the same line in the picture.1 2 3 1 2 3
Therefore, it must be that one triplet lies on the line y s 0 and the other triplet
lies on the line y s d. Since the distance between the lines in the library object
is d, the transformation involves no scaling.

It remains to show that the transformation involves no translation and
rotation, and this follows from Lemma 1 when applied to the points u , u , u1 2 3

� Ž . Ž . Ž .4and the library of objects defined by the triplets of points u e , u e , u e .i i i1 2 3

B
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5. THE CASE OF PERSPECTIVE PROJECTION

A perspective projection is the mapping p : RR3 ª RR2 given by

X Y
x s f y s f 5Ž .

Z Z

This assumes the standard setup where the camera is at the origin, pointing
directly up the Z axis. The reference frame is oriented as the image plane,
which is located at distance f from the origin; see, e.g., Ref. 9. Unlike
translation, rotation, and scaling, perspective projection may destroy geometric
properties by merging lines and points, and create linear relations when they do
not exist. In the extreme case, any object far enough from the image plane is
projected into a single point in a finite resolution picture. To eliminate such
cases it is necessary to impose some conditions on the projection. This was
previously done, for example, in the work of Huffman and Waltz on the
automatic interpretation of line drawings.1 We define stable perspective projec-
tion views as follows:

DEFINITION. A stable perspectï e projection of a scene satisfies the following
properties:

Ž .i Distinct three-dimensional feature points are mapped into distinct two-dimensional
feature points.

Ž .ii Noncollinear three-dimensional feature points are mapped into noncollinear two-
dimensional feature points.

Observe that a small perturbation of the viewing point of an unstable
perspective projection always gives a stable perspective projection.

THEOREM 3. Let L be library of three-dimensional objects and let P be a
two-dimensional picture gï en as a set of local features and their two-dimensional
location. The decision problem of whether P can be described as a stable perspectï e
projection of a disjoint union of translated and rotated objects from L is NP-
complete. The problem remains NP-complete e¨en if each library object is described
by 12 points.

Proof. Membership in NP is obvious. To show that the problem is NP-
complete, we reduce X3C to it.

� 4Let E, C be an instance of the X3C problem. We begin by constructing
the two-dimensional picture Q s P j P j P j P , where1 2 3 4

P s f e ; 1 F i F m for 1 F j F 4Ž .� 4j j i

f e s a point at x s i y 1 m2 q i i y 1 r2, y s 0Ž . Ž . Ž .1 i

f e s a point at x s i y 1 m2 q i i y 1 r2, y s m3Ž . Ž . Ž .2 i
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f e s a point at y s i y 1 m2 q i i y 1 r2, x s y1Ž . Ž . Ž .3 i

f e s a point at y s i y 1 m2 q i i y 1 r2, x s m3 q 1Ž . Ž . Ž .4 i

Thus, the points are on the edges of a planar rectangle.
We now create the library L from the three-element subsets of C. For

Ž .e , e , e we add to L an object described by the 12 three-dimensional pointsi i i1 2 3
� zŽ . 4f e ; 1 F j F 4, 1 F t F 3 , wherej i t

f z e s a point at X s i y 1 m2 q i i y 1 r2, Y s 0, Z s fŽ . Ž . Ž .1 i

f z e s a point at X s i y 1 m2 q i i y 1 r2, Y s m3 , Z s fŽ . Ž . Ž .2 i

f z e s a point at Y s i y 1 m2 q i i y 1 r2, X s y1, Z s fŽ . Ž . Ž .3 i

f z e s a point at Y s i y 1 m2 q i i y 1 r2, X s m3 q 1, Z s fŽ . Ž . Ž .4 i

Ž zŽ .. Ž .Observe that the perspective projection p f e s f e for 1 F j F 4. Itj i j i
remains to show that the picture Q is a stable perspective projection of a
disjoint union of translated and rotated objects from L if and only if C contains
an exact cover of E. The following proof makes use of Lemma 3, which will be
proved at the end of this section.

� 4Let C9 ; C be an exact cover of E. For each triplet e , e , e g C9 definei i i1 2 3

O as the three-dimensional object described by the 12 three-dimensional pointsi
� zŽ . 4f e ; 1 F j F 4, 1 F t F 3 , so that O g L. Since C9 is a cover of E, and fj i i jt

Ž .are onto P , respectively, Q s D p O . Since C9 is exact and f are 1]1,j i i j
Ž . Ž .p O l p O s B for i / j.i j

Conversely, let C be the family of coordinate translations and rotations,
and assume for each O g L the existence of c g C such thati i

Ž . Ž Ž .. Ž Ž ..i For i / j, p c O l p c O s B.i i j j
Ž . Ž Ž ..ii Q s D p c O .i i i

Ž .From ii and Lemma 3 it follows that c is the identity transformation, so thati
Ž . � j j j 4c O g L. Set O s p , p , p for 1 F j F 4, where we assume without loss ofi i i i i i1 2 3

generality that p j were generated by f z. Definei jt

y1z j � 4T s f p : 1 F j F 4, 1 F t F 3 , C9 s T .Ž . Ž .½ 5i j i it

Ž . Ž z.y1From ii and the fact that f is onto E, it follows that C9 is a cover. Fromj
Ž . Ž z.y1i and the fact that f is 1]1, it follows that C9 is an exact cover. Bj

LEMMA 3. Let O be a three-dimensional object from the library defined in the
proof of Theorem 3 and let O9 be an object defined by 12 points from the picture in
the proof of Theorem 3. If O can be mapped by translation rotation and stable
perspectï e projection to O9, then the mapping is the identity mapping.
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ŽProof. We use the following properties of perspective projection see, e.g.,
.Ref. 9, Chap. 13 :

Ž .a Collinear three-dimensional points are projected into collinear two-dimensional
points.

Ž .b If the projection of parallel three-dimensional lines is parallel two-dimensional
lines, then the three-dimensional lines are parallel to the image plane.

Let O be generated by e , e , e . Let L be the three-dimensional line ofi i i j1 2 3zŽ . zŽ . zŽ .the rotated and translated points f e , f e , f e for 1 F j F 4, so thatj i j i j i1 2 3

L is parallel to L and L is parallel to L . Let u1, u2, u3 be the points of O91 2 3 4 j j j
zŽ . zŽ . zŽ . 1 2 3that are mapped to f e , f e , f e , respectively. Then u , u , u arej i j i j i j j j1 2 3

collinear for 1 F j F 4, and since the projection is stable, the four triplets are on
four different lines in the picture. The picture has exactly four lines with at least
three points. These lines are y s 0, y s m3, x s y1, and x s m3 q 1. There-
fore, the four triplets come from these four lines.

Let l be the projection of L for 1 F j F 4, l intersects with two lines fromj j 1
� 4l , l , l , and is parallel to the third. Since L intersects with L and L , l2 3 4 1 3 4 1
intersects with l , l and is parallel to l . Thus, we have two parallel lines L , L3 4 2 1 2
that are projected into parallel lines. Therefore, both L and L must be1 2
parallel to the image plane; let Z and Z be their depth. From the same1 2
arguments, the lines L , L are parallel to the image plane; let Z , Z be their3 4 3 4
depth. Since L intersects with both L and L , we have Z s Z s Z s Z .3 1 2 1 2 3 4

We conclude that all points of the translated and rotated object O have the
Ž .same distance from the image plane. From Eq. 5 it follows that in this case the

distance from the image plane has the effect of scaling the object. Thus, Lemma
Ž .3 follows from Lemma 2 when applied to the library of objects defined by f e ,j i1

Ž . Ž . 1 2 3f e , f e and the six points u , u , u for 1 F j F 2. Bj i j i j j j2 3

6. IMPLICATIONS

In this section we briefly mention constraints that can potentially simplify
model-based recognition and other constraints that leave the problem NP-
complete.

Local features other than a point: With no additional structure this can only make the
problem more difficult. However, with additional structure of the local features,
the problem may be solvable in polynomial time. For example, straight lines may

Ž .have an additional constraint that their ends meet see Fig. 2 .
Occlusion: Without additional structure this can only make the problem more

difficult. However, with additional constraints such as convexity this makes our
NP-completeness proofs inapplicable, so that it may potentially simplify the
problem.

A small number of feature points: If each library object can be uniquely described by
two points, the problem of model-based recognition can be solved in polynomial
time by matching techniques.

A large number of feature points: Without additional structure this can only make the
problem more difficult. However, if it is assumed that small subsets of these
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points determine a unique object from the library, then the problem is solvable
Ž 13.in polynomial time. This is the essential assumption in geometric hashing.

Almost distinct subsets: If the distance between every pair of feature points uniquely
Ž .determines two or less objects, the problem is polynomially solvable. If this

Ž .distance determines three or more objects, the problem is still NP-complete.
This follows from the comment in the definition of X3C.

Dimensionality: Notice that the results of Theorem 1 also hold for translation and
rotation in two and three dimensions. Similarly, the results of Theorem 2 also
hold for three dimensions.

7. CONCLUDING REMARKS

We have shown that the problem of model-based recognition is NP-com-
plete. Thus, there is little hope for performance guaranteed algorithms that can
solve the problem efficiently. However, it may still be possible that easy
subclasses of the problem can be characterized by additional structure of the

Ž . Ž .modeled objects e.g., convexity and the way they are viewed e.g., occlusion .
Our results can help determine what constraints are potentially useful.

The work of the first author was supported in part by the National Science
Foundation under Grant IRI-9309135.
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