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Nonparametric Output Prediction for
Nonlinear Fading Memory Systems

S. R. Kulkarni, Senior Member, IEEEand S. E. Posner

Abstract—The authors construct a class of elementary nonpara- schemes, system parameters are estimated and a controller
metric output predictors of an unknown discrete-time nonlinear is tuned online according|y_ In this paper, we are concerned
fading memory system. Their algorithms predict asymptotically —\yith nonparametricprediction. We construct a predictor of
well for every bounded input sequence, every disturbance se- . .
guence in certain classes, and every linear or nonlinear system the (_)gtput of an. unknown system assuming only g_ener'c
that is continuous and asymptotically time-invariant, causal, conditions, but without any knowledge (or even an estimate)
and with fading memory. The predictor is based onk,-nearest of system parameters.
neighbor estimators from nonparametric statistics. It uses only  Qur nonparametric approach is in line with the work of

previous input and noisy output data of the system without any : :
knowledge of the structure of the unknown system, the bounds on several authors. In particular, Greblickt al. (e.g., [8], [9],

the input, or the properties of noise. Under additional smoothness [12], @nd [13]) consider Hammerstein and Wiener systems
conditions the authors provide rates of convergence for the time- Which are nonlinear systems composed of linear systems
average errors of their scheme. Finally, they apply their results coupled with memoryless nonlinearities. They consider these
to the special case of stable linear time-invariant (LTI) systems. systems driven by stationary or i.i.d. noise and show that
Index Terms—Estimation, fading, filtering memory, identifica- ~ various nonparametric schemes can be used to estimate the
tion, nearest-neighbor, nonlinear, nonparametric, prediction. nonlinearity. In contrast, we impose only mild regularity
assumptions on the system without assuming any particular
system structure, and our algorithm works for any bounded

) . input sequence. Surprisingly, we provide a predictor for which
W E INTRODUCE an elementary algorithm which preéye prove that the pointwise prediction errors tend to zero,

dicts the output of an unknown nonlinear discrete-timgyen with the generality of our setup. The price we pay for
system _thgt satisfies certz_;un generic _regul_anty cond|t|0r_1$, Sypky generality is, of course, in the rate of convergence, which
as continuity and approximate time-invariance, causality, 2id ;" pe expected. In order to make statements about rates
fading memory. The algorithm only uses the past observgdl .onyergence, stronger assumptions must be placed on both

input and noisy output data and works for every bounded inpidls pjant and the input; or by making statements about the
sequence, every system in the class (without parametric and{Qfe_average of the prediction errors, we need only impose
structural assumptions), and a wide range of disturbances.SH:brlger conditions on the plant

this sense, the algorithm is “universal” in the terminology of The role of prediction is also typically linked to that

information theory and statistics. The algorithm we use g o siem identification. System identification is concerned

achieve an asymptotically good predictor is an adaptation \?/Tth using an algorithm to select a model from a model

the well-knownk;, -nearest neighbor algorithm which has beegy, o (generally by selecting the model that best explains the
analy_z_ed _extensw_ely n th_e nonparametnc statistics, pattgd, oo red data) so that the distance between the model and
classification, and information theory literature [1], [10], [15]the true plant is small in some metric. Traditionally, system

M(.)St. previous wqu on output predlct|on. has been PaYentification is ultimately used for control. The chosen model
metric in nature. This encompasses many important area JNused to design or tune a controller for the underlying

linear s;t/stem? th?ory. For izxanj[ple, the:[ Ka:man fll(;t_artusgs;[ stem. Some recent work in system identification has focused
parameters of a finear system o construct a predictor in the theoretical limits of identification algorithms in a

presence of unknown stochastic disturbances. Similarly, tw%r?t case setting, i.e., in which the output disturbances

Luenberger observer uses the state-space matrices to conngac only assumed to be bounded (e.g., see [22], [11], [19]

an observer of the unknown state. In adaptive control and otrrg,[ [17], and references cited therein). We consider both
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outset for identification results. However, at present, we makdr goal is to have small estimation errors 5asncreases.

no claims as to how our approach is to be used for the purpdd®cise conditions on the systeih the inputug, uy,- - -, and
of controller design. Rather, our focus here is simply on outptite noisecy, ¢, -- are given below.
prediction. We consider systemdi: IR — IR*™ where R™ =

In a very different context, a similar scheme is used in [18].(uq, u1,---): u; € IR, 4 > 0}. For a subsef C {0,1,2,---},
They consider the estimation of conditional probabilities fawe define the projection operatdts: R — RI®! in the
stationary ergodic time series by looking at similar stringsatural way. We use the notation
from the past and averaging the next value after each string.

In contrast, in this paper, we focus on prediction of thd0" S = {m,m+1,--- 0}, Pl pju = (W, Umg1, -5 tn)
output of a nonlinear dynamical system driven by an arbitraffor S = {n,n +1,---}, Py o)t = (Un, Uny1," ")

bounded input. A similar algorithm is also used by Farmefor 5 = {n}, P,u=u,

and Sidorowich ([6] and references therein) in the context

of predicting chaotic time series, although to our knowledder every v = (ug,u1,---) € IR™. Note that in this paper
performance statements such as those presented here hav&vacabuse consistency but conform to standard notation and
been shown. We suspect that the results in this paper esme some lowercase letters to mean vectordRiT (e.g.,

be used to make rigorous performance statements of theiy, z,«,v) and other lowercase letters may be constants or
algorithm as well. Our work is also in the spirit of the workwhatever the context dictates. Similarly, uppercase letters may
of Federet al. [7] in which they construct a finite memorybe operators, vectors, or constants depending on the context.
predictor of the next outcome of a binary sequence. However,Define the closed ball of radiusof a Banach spadet’, ||-||)

the specific formulations are quite different in that we are ias
a systems framework, we have access to the input sequence
which provides information about the unknown output, and
we focus on different algorithms. . . . ]

In Section Il we formulate the problem and precisely definveve will mostly deal with the following balls:
the class of systems, inputs, and noise under consideration s = {1 € ¢._: |[ul|.c <7} where |juljco = sup |us]
In Section lll, we introduce a class of data-dependent but i>0

B.X ={reX:|z|]| <r}.

elementary nonparametric estimators and show (Theorem_1
that with bounded input and noise sequences we can prerff\lcfj
pointwiseasymptotically well to within the level of the noise, BR" = {ueR": ||Juloo <}, L>1.
and that for stochastic noise, we can get asymptotically zero
mean square prediction error. In Section 1V, we consider ratesWe consider the online prediction of the output of an
of convergence. With only additional regularity conditions onnknown system that satisfies certain general regularity condi-
the system (Lipschitz continuity and rates on fading memorytjons. The input may be any sequencésif... The measured
rates of convergence for the time-average of the predictiontput is corrupted with an additive disturbance sequence,
errors can be obtained for every bounded input sequence IR>. The system model is
(Theorem 2). In order to get rates on the pointwise prediction
errors, additional conditions are needed on both the input y=H(w)
and the system. We show (Theorem 3) that if we impose z=y+e.
independence or stationarity assumptions on the inputs and ) o .
the additional conditions on the system, then a uniform ra e consider both deterministic and stochastic disturbance
of convergence can be obtained for the pointwise predicti& SSes:
errors. In Section VI we consider in more detail the special * ¢ € Bsfloo, With & > 0;
case of stable linear time-invariant (LTI) systems. * eq,c1,--- Ii.d. zero mean and finite variance.
We consider systems that satisfy the following properties,
wherer is the same parameter as the bound on the allowable
) . o input sequences.

we cons_lder ‘h‘? online prediction of the_output of an Al) H is continuous (but not necessarily linear) on
unknown discrete-time system based on past inputs and noisy Bylo, i€, |H(u) — H(u™)| noge g
output observations. Suppose an unknown discrete-time sys- e T s b

o ) : lw — v ||oo =3 0, for u,v v ... € Bho.
tem H is driven by an input sequenes, 1, - - - . We consider .
the following sequential prediction problem. By timewe A2) For eache>0, there existsT = T(c) = 1 a_nd
have observed the past inputs - - -, «,,—1 and corresponding L = L() 2 1 such that the output.at aI.I times
T n,m > 1 depends only on the previous input

noisy outputs L
y P components to withirg, i.e.,

Il. FORMULATION AND PRELIMINARIES

Ao ket [P H ()~ PoH) <
where ¥; is the output of H at time ¢ and ¢; represents
measurement noise. We then observe the inputat time
n and produce an estimafg, of the uncorrupted outpug,.

for all uw,v € Bl such thatP,_r41 mv
-P[n7L+l,n1U'-
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Condition Al) is straightforward. Condition A2) is an asymp- At time n, givenuy, - - -, u, and the parameters,, L,,, and
totically time-invariant, causality, and fading memory condif’,, let {U;(L,)}}_r, 4, be the set of all strings from the
tion. These conditions are fairly general and contain mamast input sequence after tirfig that are of lengthL,,. That is
classes that are of common interest. For example, any stable

LTI causal discrete-time system satisfies Al) and A2), as Uj(Ln) = Plj—r, 41,510

will be shown in Section VI. Also, Hammerstein and Wiene

. : : ote that each/;(L,) is a vector inIR™. Let ml! be the
;Ssysc‘:tsrzrt]iigi)]ﬂglzkl[)l?)] satisfy A2) and, if the nonhnearelemerﬁtﬂdex of theith nearest neighbor (NN) o¥/,,(L,) (which

is the most recent string of inputs of length,) from
the set{l/;(L,)};—7, . The first NN distanced,,(1,L,) =

lll. PREDICTOR AND MAIN RESULT dn(1, L, Tosu, - -, up) satisfies
Our first result is to construct a prediction algorithm that dn(1,L,)= min ||Uy(L,) — U;j(Ly)|lco
achieves pointwise convergence. We exhibit an algorithm Tusysn
which predicts the output of any unknown system in our class = [[Un(Ln) = UmL” (L)oo
subjected to any bounded input. At time we have observed = max |up—j;—u o |
all the past inputguo, w1, - - -, u,—1) together withu,,, and 0=i<lm e

we have observed noisy outputs), 1, - -, zn—1). We would - Similarly, d,,(i,L,) = dp(i, Ln, Tp; o, -+, up) is the ith
like to estimate the uncorrupted system outpit, using an smallest distance betweeli,(L,) and {U;(L,)}"_% and

. . DL j=Ty
algorithm that produces an estimae so that the prediction equals||U,,(L,)—U_ 1:1(Ly)||os- Consider the simpjle predictor
errors tend to zero asymptotically. :

m,

The algorithm we propose is an adaptation of thenearest 1 &
neighbor estimators from nonparametric statistics. The basic Yn =1 Z i 1)
idea of the algorithm is as follows. Take the most recent "=l

L,, inputs (whereL,, is a data-dependent parameter specifi§ghere » ;=P 1 H(u) 4+ e is the output observation at
in detail below) as a nominal vector ilR“" and find the i " T

previous input substring of length,, that is nearest to it in the

supnorm sense. A natural estimate fgy, would be the output itv the choi th I 4T ¢
associated with the input vector that is nearest the nomir"f‘;ﬂec'fyt e choice of the parametéss, Ly, andZ;, as a func-

vector. That is, find a time in the past when the most recett” of n. Of course, to get asymptotically good pred_lctlons,
L,, inputs were most similar to the curredt, inputs and use the parameters need to be chosen carefully. In particular, to

the observed output at that time as our prediction. The id8§PIOit the continuity of the system, we need the nearest

is that by the assumed continuity of the system, nearby inpﬂ??_”t strings to get clt_)ser and closer_to Fhe most recent input
should produce nearby outputs. If there was no noise in F!nﬂbasndf oo.elAn_lmdporlianzqu;thlty is thek,,th E,e?]r?St
observations and if the parametey, was chosen wisely, we N€'9MPOr istancel,, = dn (K, Ln, Tn; uo, -+ un) which is

might expect that this algorithm would perform well. Howevell,he distance between the most recent string of lenfth

this basic idea needs to be refined in several ways. and th_ek"th nea_rest neighbo_r from past strings of lendth
First, since the “order” of the system is assumed unknovfcurmng after imeZ;,. That is
it_is clear_that we will need.,, — oo asn — oo if we (ks L, T, -+ ) = [[Un (L) = Uy (L) oo
wish to drive prediction errors to zero. The reason we have
any hope of driving prediction errors to zero is due to thé/e need to make sure thd — 0 asn — oo. Boundedness
assumption that the system has fading memory. Actually, thé the input is crucial in this regard. With a boundedness
fading memory assumption must be used in another way assumption, input strings of any fixed lengthbelong to a
well. To avoid the effects of initial conditions, we should notompact subset dR”, and it is this compactness that allows
use input strings too close to time zero. Hence, the secomduitable choice of parameters to make— 0.
refinement is to introduce another param@tgmhich tendsto ~ However, it can be shown that with any fixed choice of
infinity asn — oo and only search for nearby input strings thathe parameters,,, L,,, and 7,,, there is always a bounded
occur after timer;,. The third refinement we need results fromnput wg, u1, - -+ for which d,,(k,, Ly, T; ug, - -+, u,) 7 0.
the fact that our output observations are noisy. With randofhis is typical of data-independent algorithms [15], [20] and
noise, the output at the time associated with the nearest infutthe reason one cannot get pointwise convergence with
string may not necessarily give a good prediction. To averagach algorithms for arbitrary inputs. In such cases, one must
out the noise in the output observations, we could search foresort to making statements about the time-average of the
number of past input strings that are close to the recent stripgediction errors. To overcome this problem, we use suitable
and average the corresponding outputs to form our predictiatata-dependent choices of the algorithm parameters as in [14].
Thus, we introduce a third parametgy,, which is the number By choosing k,,, L,, and 7,, to depend on the observed
of “nearest neighbors” in the input string that we search fonput wo,---,u,, We can construct an algorithm for which
and we will needk,, — 0 asn — oo. (Actually, in the case k,,L,,T, — o andd, — 0. In this case, we can show
of worst case noise, averaging is not needed, and we can jhstt the pointwise prediction errors (and hence also the time-
take k, = 1)) average errors) converge to zero.

time mﬁ.
To complete the specification of the predictor, we need only
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Lemma 1: For every bounded sequence of inputs Theorem 2 (in the following section) in which the pa-

o, U,y 0F Ky = kp(uo, -, un), Ly = Ly(uo, -, up), rameters are fixed and independent of the input sequence.
and7,, = T, (ug, - -,u,), are defined by Of course, the choice of parameters used in Lemma 1 is
1 1 1 not the only one which will work. Many data-dependent
(kn, L, T,) = argmin & + I + T schemes can achieve the conclusion of Lemma 1 and
(&, L,T) hence the result of Theorem 1.

+ dn(k, L, Tiu0, -~ -, un) « The upper bound for part 1 is clearly tight since errors of
then we have the following. at leasts can be forced by the noise sequence each time.
1) Entio, - tin) —noos 0O * With arbitrary bom_mded !nputs_and W!thout Assumption

2) L(tg, -1 1un) —nse 0. A1), no asymptotic prediction is possible.
3) Tn(U'Ov T U’n) “n—ooo Q.
4) dn(kn, Lo, T; 0, -, tn) —noco 0. IV. RATES OF CONVERGENCE OFPREDICITION ERRORS
Proof: Let The result of Theorem 1 shows that an appropriate data-
11 1 dependent predictor provides estimates of the uncorrupted
Jp= min -+ — 4+ = +d(k, L, T;ug, -, u,). output such that the estimation errors converge to zero (for

wLD kL T i.i.d. noise). However, it is easy to verify that no uniform rate
We need only show thdtm,, .., J, = 0. We will do this by of convergence is possible. The inability to obtain a uniform
showing that for any >0, we haveJ, <e, for all » > ny, convergence rate arises from two distinct and fundamental
for some sulfficiently largeng. reasons. One reason is that with arbitrary bounded inputs,

Fix ¢ >0 and takek,L,7 >4/e. Consider the set of all one can construct input sequences such thakle nearest

consecutive inputs strings of length after time 7", denoted neighbor distance converges to zero arbitrarily slowly. In fact,
uf’T,ug’T, ---. Since|u;| < r for eachi, the lengthL input one can make the 1-NN distance converge to zero arbitrarily
strings are all elements of the hypercuper,r]* C IRY  slowly. Thus, although the predicted output will be an average
which is a totally bounded set. L8, ---, By(,s) denote of outputs due to nearby inputs, we have no way of bounding
balls of radiuse/8 forming a finite cover of[—r,7]%. The how close the inputs will be at any particular time. However,
number of times a string, " falls in some ball with fewer even if we had such a bound, we still could not get a uniform
thank previous elements fromleT7 .. .7uf_{ is bounded by rate of convergence due to a second reason, which involves
kN (e/8). Hence, there is a finiteo such that for alln > no  the regularity of the unknown system. Namely, although
at leastk previous lengthL input strings fall in the same continuity implies that nearby inputs result in nearby outputs,
¢/8 ball as the most recent string. In this case, at IdastWe need a stronger assumption, such as a Lipschitz condition,

strings fromw;"" -~ w["| are within¢/4 of w7, so that 10 have a hope of getti.ng rates. Also, although the system
dy(k, L, T;ug, - u,) < ¢/4. Thus, forn > ny we have is assumed to have fading memory, we need bounds on the
11 1 rate at which the memory fades in order to get bounds on the

J, < =+ 7 + T +dn(k, L, Tug, -+ ) <. prediction errors.

Thus, to obtain rates of convergence, we need assumptions
. . ~ ® onthe inputs that allow bounding the nearest neighbor dis-
The following theorem, our main result, describes the, oq ang conditions on the system that give stronger versions
asymptotic behavior of our data-dependent nonparametgCass mptions A1) and A2). A result of this type is provided
predictor. The algorithm does not need to know any of g Theorem 3 below. However, first we give a rate result of
parameters used in the assumptions on the input, systemg Qfiferent sort. Namely, by considering the time-average of
noise. The proof of this result is given in Section V. the prediction errors, we can obtain uniform rates on the time-
Theorem 1: Consider the predictofy, } given by (1) where gyerage errors with assumptions only on the system (i.e., that
kn, Ly, Ty, are chosen in a data-dependent manner accordifglq for all bounded inputs). The basic ideas of this result
to Lemma 1. Then for any € B,/ for somer < oo and any || also be used for the pointwise rate result of Theorem 3.

H that satisfies A1) and A2), we have that: Interestingly, the prediction algorithms used in this section
1) for anye € Bl are of the same basic form as in Section Ill, but with the
lim sup [yn — G| < 6 added simplification that the parametéss L, andZ,, need
n_mp Yn = Ynl = only satisfy certain rate conditions but can be chosen in a
2) for any iid. ep,er,--- such that Ee; = 0 and data-independent fashion. ,
Eleif? < o0 The following stronger versions of Assumptions Al) and
) A2) will be used to get the rate results in this section.
nlggo E(yn —9n)" =0, A1) There existsd(, « >0 such that for alks, v € B,.£o,
Notes: [ (u) — H(v)|loo < K|lu—v]|S.
e There is no uniform rate of convergence over the entire .
input class g A2’) There existsC' > 0, 0< p< 1, and T such that for

e The parameters used in the algorithm for the proof n,m>T

depends on the actual input sequence, in contrast with |P, H(u) — P, H(v)| < Cp*
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for every w,v € B,fw such thatP,,_rii,,jv = of nonoverlappingstrings of lengthZ,, from the past, i.e., we
P41 n)u search for nearest neighbors from the §&4(L,,): j = iL,
For example, as we will see in the final section, stable line@PdZ;, + L, < j < n}. The rest of the algorithm is the same.

systems with a decay rate on the impulse response sati$fifh this modification, we obtain the following result, which
Al’) and AZ). is proved in the following section.

Fix nondecreasing sequencés = 1082 n, T, = logn, Theorem 3: Consider the predictor given by (1) whekg,
and L, = \/10g((n — T,)/k,). With these data-independentl; and L,, are chosen data-independently and the nearest
specifications on the parameteks, L,, and T, we use the neighbors are selected from the set of nonoverlapping strings
simple predictor (1). as described above. Then for ai¥ that satisfies AY) and
Theorem 2: Consider the predictor given by (1) whekg, A2'), we have that for any stationamny, u1, - - - € R, and any
T., and L,, are chosen data-independently as above. Then féid. co,¢1, - -+ such thatEe; = 0 and Ee;[* < oo
any« € B,.4., for somer < oo and anyH that satisfies A2 , 1\

and AZ), we have that;

logn
1) for anye € Bslo

wherey = min{«, —logp}.

N
1 N M 2m Notes:
NZ|yn—yn|§5+F§5+m C
n=1 N S ¢ A similar statement can be made fimdependentnputs
2) for any iid. co el - such that Be; = 0 and ug, u1, - - - With a weaker form of Al such as in [10].
Elej)* <o
feil” < oc V. PROOFS OF THEOREMS
N
1 N 2 212
AT E n - In 2 < <
v r; [yn = Gnl” < 15 =l N A. Proof of Theorem 1

Proof: From (1), the prediction error at any time
wherey = min{«, —log p} andn, 1, are well-defined gatisfies

constants. .

Notes: [ = Gn] . .

« It can be shown that with the algorithm used in the proof _ R e R U
of Theorem 2, pointwise errors duwot tend to zero for = P H n = Epp H () kn, ;C’"Ei]
all bounded input sequences. The problem is that the ke ke
parametersk,, Ly, and T;, were chosen at the outset, < |p, H(u)— 1 ZP o H(u)| + 1 Ze .
independent of the inputs observed. In this case, one can K = " K = ™

always find a system and construct an input sequence for = .J; + J, (2)
which the pointwise prediction errors do not converge to
zero. The construction simply makes sure that the inpwpere J1 :_‘]"1 and ‘]_2 - ‘]"_2 are the two terms on the
is chosen so that the distance between the most recﬂgpt'hand side of the mequgllty.

input string of lengthL,. and its k,.th nearest neighbor _ "€ first show that/, — 0. Fix ¢> 0. LetT" = T(¢c) andL =

does not converge to zero. This is the same the reas%t)hbﬁ asin Assumpt|on>A2). Frorgjll_emma L there>e£d§15
that a time-average criterion was required in [15]. such thatl’, (uo, -~ -, un) 2 T(€) and Ly, (uo, -+ un) 2 L(e)

; : : ln > Nj.

e The algorithm is completely data-independent as well ggr all n = IV, T L oL .
independent of knowledge of the parameters ir)Ahd Consider the mapping/**-*: R* — IR defined by
A2"). H"TE(v) = PrypH(ug, -, ug, vy, UL, Upg L1, )

« Interestingly, the same algorithm works regardless of thﬁgi

va

; 0w, T, L ; L
noise class, although of course the mode of convergenc at is, the mapplng‘{ on inputv € IR .repla.ces the
depends on the type of noise. ues ofu between timesl” + 1 and 7’ + L (inclusive) by

« The time-aver nature of th ments in the theor P}R_se ofv and returns the putput of systefh on this_ input
© time-average nature of the statements in the theo étenmeTJr L. By Assumption A1),H*“I(.) is continuous
np

arises not because of the noise but as a result of I T ;
on [—r,7]" and so compactness of the domain implies that in

arbitrary bounded inputs that are allowed. ct H*T7(.) is uniformly continuous orj—, 1] (e.g., see
* This algorithm can be readily modified to allow cases i ) B o
Is algori "y m W :_E Corollary 2.4.6]). Hence, there exists> 0 such that for

tho mumber of omissons Must b)Y € [l we RaveH" 1) - HU L) <
. , o whenever|v; — vz2||c < 8. Again using Lemma 1, there exists
Qur ne>.<t result.ls to.obtam a pq|ntW|se rate of cqnverggpg@ such thatd,, (kn, L, To; o, - -+, un) < 6 for all n > Na.
by imposing stationarity on the mput_ sequence in addition Define the vectorsl”! € B,/ as
to the mentioned necessary assumptions on the system. We ‘
will use a simple modification of the algorithm used in P[o,T]vM = Poru
Theorem 2 in order to exploit the stationarity of the input.
Specifically, instead of searching for nearest neighbors over
all strings{U;(L,,)} of length L,,, we now take only the set

Prrir1.000 = Py r41 00yt

P[T+1:T+L]U[i1 = F)[mgf,]—L-I-l,mEj]}u. (3)
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Also, define the vectorl®! € B,/ as B. Proof of Theorem 2

Proof: The pointwise prediction error is bounded by

Pyl =P
[0, [o, 7% Jn1 + Jn2 @s in (2). Now using (3)

P[:P4-L4-1,o<>)v[01 = Pirg141,000%

0] _ .
Pryrrr1)0™ = P g . Jo = ki (P, H(u) — P,H(vll)
Now, for anyn > max{Ni, N>}, we can bound/; as =1
follows: + P H@) = P H(u)) ‘
k
1 d
Jy=|PyH(u)— — > P 1 H(u) ki
by &=t” M 1 [i]
i=1 < . (PoH(u) — P, H(u'")| + e, (5)
< |P.H(u) - PT+LH(U[O1)‘ i=1
| & wheree,, = Cpt». By Al’) we have that
+ PT+LH(U[O1) — k_ ZPT-I—LH(UM))‘ K ko,
=1 = ol
. k. . k. Jnl < kn ; dn(Lanan) + €n
+ D PrecHE) — = > P o H(u) < Kd® (b, L, To) + en. (©)
=1 =1
=Jii+Ji2+Jis The prediction error in summary is

where.J; 1, Jio, Ji 3 are the three terms on the right-hand|yn — Gin| < Ju1 + Juz < Kd3 (k. Ln, 1) + Cp™ + Jpo.
side of the inequality. Sincea > N, we haveT, > T

and L, > L. Therefore, from A2) we get/;; < ¢ and For the first statement in the theoreh, < 6, and so we only

.

need show thatl/N) XX_; J,.; — 0 at the rate specified. To

Jis < e To bound Jyz, let wl! = Priypypol? for his end. th , : - X , .
i =0,1, -, k,. Thenwl] € R" and are simply Substringst is end, the main step is as follows. It was shown in [15] that
of length L of the nearest neighbor strings. Sinece> Ny we N
have d,, (K, L. T uos - - yun) <6 and sinceL, > L this  — Z d% (kn, Ln, T,
S 0 _ il fae N £
implies ||w wi||<é fori =1, -, k,. Hence n=1
1 & kn afbx
k o :
1 = . S AT dn(k]\T7L]\T,T]\T) S /31< )
Ji2=|PrypH) — T ZPT+LH(UM))‘ N nzz:l N-Tn
=1
k.. where3; is a constant that depends only erfthe bound on
= |H®T L (0l — 1 ZH“’TL(wW) the inputs). By constructiod? = log((n — 1},)/k,), and so
ky - we get
=1
< lin‘l)z |H'11,,T,L(w[01) _ H'U,,T,L(w[i}” ) N . N
<<k, - Jn <3 —al, c= Lo, <A L
- N; 1 < Pl N;p < By

by the uniform continuity ofF*T-X(.) and the choice of. wherep; = max{p,c=*} <1 andf = 2max{/;,2C}. Next
Thus, .J; < 3¢ for any n > max{Ny, N»}, and sincec > 0 note that

was arbitrary, we have thdim,, .., J; = 0. L ) log((n=T0)/kn) _ plog log((n—Ty)/kn)
1

The above analysis is common to both statements of the P =P =
theorem. To conclude the two statements in the theorem we n— T, \ 8"
need only study the behavior of. For the first statement, = <10g )

e € Bst,, and hencel; < §, completing the claim. (Observe
that we do not need the fact that — oo for this part.) For = <10g
the second statement, observe that sincecthare i.i.d. with

zero mean and finite variance, we have

n—1,
ky

—
) < na(logn) 7

wherey = min{log(1/p),«} andns is a well-defined con-

| & 2 stant. The second statement in the theorem is similar. First
E[J3]=E|— i N
[/:] kn i=1 ! |Yn — yn|2 < 2J51 + 2‘]52- (7
k 2 .
1 & var(eg) From (4), we haveE[J;,] < var(ep)/k,. Next, as in the
T2 ZE |‘3m£;']|2 < L (4)  derivation above, we have
o=l " )
2 H H 1 d 2 2L~
ThenE[J2] — 0 since by Lemma %,, — oc. This completes ~ > T2 < Bapt
the proof. n=1
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where 35 is a constant. Using the definitions &f, and %, Corollary 1: Using the predictor from Theorem 1 we have
we get that for anyu € 5,4, anyh € ¢1, and for any i.i.deg, eq, - - -
N such thatEe; = 0 and E|e;|? < oo,
1 N
n=1
< VIR TTR) 4Vzr(60) Using modified algorithms we obtain
N N
N-—Ty\ ?" 4 var(egp) 1 Ely. — 4. 12 =
< Bo( log 4 Y > Elyn — nl* = O[f(N)] = 0
- /2< & kn ) log? N N =
< % with rates of convergence as follows.
10g2” k—]\ o If h € {g € £1: gr =0Vk > L} with L known, then
N —
m f(n) = O(n=2/1+2),
Sl > e If h € {g € fy: AL, gp, = 0 VE > L}, then f(n) =
og”’ N 3
O(1/log™ n).
wherefs, 7, are constants. m cIfh e {g e s gl < Bp*}, then the f(n) =
O(1/log? n).
C. Proof of Theorem 3 Proof: Al) is immediate by linearity

Proof: The proof is much the same as for the second ||H(w) — H(v)||oo = [|H(u — 0)|loo < ||]|1]|t — ¥||oo-
statement in Theorem 2, except that we are not taking the
time-average and that the input sequence is stationary. Frdsnshow A2), fixe > 0. By stability there existd, > 1 such
(7), we also have thak[J2,] = O(1/k,) and need to bound that
E[J2]. From (6)

|hi| < e/2r.
E[J21] = O(E[d2* (kn, Ln)] + p*"). ;

We now find the rate for whictE[d2%(k,, L,)] — 0. To do Takew,v € B.ls such thatP,_r41,mv = FPln—r41,n],
this we note that we have taken the setnmioverlapping then

strings of lengthL,, from the past{U;(L,)}. There willbe |p r(y) — P, H ()|

n/L,, rather thann, such strings. The key to this refinement

is that this set of nonoverlapping strings are in fact stationary — _ zn: ity — zm:hﬂ/m—i
vectors inIR“" and henced, (k,,L,) is the k, nearest = =
neighbor distance between/L,, stationary random vectors -1 n m
in IR™*. This is a known quantity and can be shown [15] to = Z Ri(tn—i — Upmi) + Zhiun—i — Zhﬂ}m_i
satisfy i=0 i=1 i=1.
BJd2% (ko Ln)] = O((hn Ly /) ™) = |2 hittni = 3 hivm—s
r=1L =L
which goes to zero as long ds,/log(n/k,L,) — 0. This oo
is satisfied sincd? = logn/k, andk, = log>n. As in the < 27’2 |hi] <e.
proof of Theorem 2, it is now straightforward to verify the i=L

rate in the theorem. The convergence statement in the corollary then follows from

Theorem 1, since this class of systems satisfies A1) and A2).
VI. LINEAR SYSTEMS For rates of convergence, we need to check conditioriy Al
rz]';m[d AZ2). It is straightforward thatv = 1 and thatK = ||]|;.
e now need to find a relationship betweesnd L by looking
at the restrictions on the tails of the impulse response. If the
system has an impulse response of known lenbththen
p = 0.Using L,, = L, the rate of convergence is then

In this section we consider a special class of systems t
satisfy A1) and A2), namely the class of stable causal L
discrete-time systems. The system model is

y=hxu
r=y+e (8) Ol(kn/n)*"* +1/ky].

wheres is the convolution operator, is the measured output,Using &, = n% (L2 gives a rate of convergence
e is a noise sequence, amde /;. O(n~2/UAD) If L is unknown, then we use
In the following corollary of Theorem 2 we show that evenyl,, = O(logn/loglogn) which satisfiesL,, — oo and
linear system (8) satisfies Al) and A2), and we obtain rateszn/L, — oo and is eventually large enough so that
of convergence for various special cases. Y2, |kl = 0. Using k, = n?/(kn+2) the rate is
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O(n=2/Lat2)y = O(1/(log® n)). If |hi| < Bp* then note estimateh("™ of & is constructed whereby

that for eachL N
lim sup ||2™) — h|j; <26

n—oc
o>
Z |hi] < ipl’, in the case in which the noise is uniformly boundeddbyA
i=L 1=0p predictor can be extracted from this in the obvious way

. U = Pn(fl("_l) * 1)
The result follows from Theorem 2 by usig= B/(1 — p).

m leading to a prediction error of
lin =y = [Pa (R 5w — hox )
VIl. SUMMARY AND REMARKS < IR s — b oo

The prediction algorithm introduced in this paper is in fact < IR = Ry |ulloo < r||RY — Ry
representative of a class of alternative but similar algorithm|§. c
For simplicity, we chose to illustrate our ideas using an Y
adaptation of the nearest neighbor algorithm. However, many lim sup |4, — y| < 2r6. 9
of the arguments can be extended easily using other techniques nTeo
from the consistent nonparametric regression literature suehTheorem 1 we obtained a bound éfon the limsup
as the kernel and partitioning estimators (e.g., [21], [12], anehich improves the result in (9). Although good identification
[20]). There has also been related work in the information theees imply good prediction, our prediction scheme is an
ory literature on universal prediction for arbitrary sequenceisnprovement and works for every bounded input sequence
although the results are somewhat different in nature than tedependent of the bound).
results presented here. There, the performance is comparedor the converse, we argue that our predictor when subjected
to the best predictor from a given class of predictors. In the a “rich” input leads to a notion of identification. We first
present paper, we do nat priori restrict the form of the need to impose a topology on the system class. Take a
predictor, but instead we make an assumption on the outpotsnpact subseft’, p) of nonlinear systems that satisfy Al)
to be predicted and try to achieve asymptotically optimaind A2). Define the class of input sequengthat have the
prediction when the system generating the outputs is rfetlowing “richness” property:
known. It would be interesting to compare these approaches y is the set of all bounded inputs € B,/ such that
and/or attempt to obtain results in the spirit of the information  for any G, H € (X, p), we have that
theoretic results in the present formulation.

We now make some comments on the relationship between lim sup |PG(u) — PoH(u)| <6
our prediction schemes to system identification. We first point nee
out that the notion of identification of a system generally implies that
requires that some topological structure be imposed on the p(G,H) < 6.
model class. For example, in the context of stable linear ’ -
systems it is common to consider the systems to be elemeNtste that in the case of stable linear systetdig;ontains the
of 4 (e.g., [22]). In addition, it is known that we requireset of Galois sequences. Now if we apply an input belonging to
sufficiently rich input sequences (e.g., Galois sequencesifrthen our prediction algorithm is in fact excluding systems
persistency of excitation conditions) in order to identify théhat are26 away from the true system. We suspect that an
system (e.g., see [22], [17], and [16]). In contrast, our pr&ccam’s Razor-type algorithm similar to that used by Tse
diction scheme does not require any topological structum, al. [22] can be used to construct an identifier for these
works for nonlinear systems, and works for any boundexystems. It seems that the class of “rich” inputs leading to
input sequence. The difference arises because in identificatgmod identification are precisely those inputs for which the
one needs to “explore the entire state space,” whereas foediction algorithm has slow convergence properties. The
prediction the behavior of the system only along the inpgjuestion of finding interesting nonlinear system classes with
sequence needs to be known. In a sense, this idea is captiméstesting “rich” input classes remains to be seen.
in Lemma 1, which shows that for any bounded input sequenceA somewhat different question involves the connection
eventually there is sufficient data for prediction. In fact fobetween this prediction algorithm and adaptive control. At
nonrich input sequences (that do not excite the system in mamgsent no claims are made as to how some version of the
ways) prediction should be even easier. On the other handpiiesent algorithm might be used for control, but one might
is clear that identification is impossible if data is gathered onbxpect that if one can predict well one should also be able
in a small region or low-dimensional subpace of all possibte control well. In fact, one might argue that in control
inputs. (as with prediction) one is interested in the behavior of the

An obvious issue that needs to be addressed in maygstem on the current input rather than on all possible inputs
detail is the relationship between good identification arms in system identification. However, the central problem
good prediction. Certainly good identification implies gooth this case is selecting an appropriate input (to satisfy the
prediction. For example, from the work in [22] a systencontrol objective) from the family of all admissible inputs.

B.{,. This gives
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It is precisely this selection problem that seems to requires]

some sort of search over the input space which is more like
the identification problem. Nevertheless, it may be possible

to devise a strategy that alternates or trades-off learning
phases with control phases, particularly if suitable assumptio[ﬁ§]
restricting the behavior of the system are imposed. It may be

interesting to pursue such directions.
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