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Nonparametric Output Prediction for
Nonlinear Fading Memory Systems
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Abstract—The authors construct a class of elementary nonpara-
metric output predictors of an unknown discrete-time nonlinear
fading memory system. Their algorithms predict asymptotically
well for every bounded input sequence, every disturbance se-
quence in certain classes, and every linear or nonlinear system
that is continuous and asymptotically time-invariant, causal,
and with fading memory. The predictor is based onkn-nearest
neighbor estimators from nonparametric statistics. It uses only
previous input and noisy output data of the system without any
knowledge of the structure of the unknown system, the bounds on
the input, or the properties of noise. Under additional smoothness
conditions the authors provide rates of convergence for the time-
average errors of their scheme. Finally, they apply their results
to the special case of stable linear time-invariant (LTI) systems.

Index Terms—Estimation, fading, filtering memory, identifica-
tion, nearest-neighbor, nonlinear, nonparametric, prediction.

I. INTRODUCTION

W E INTRODUCE an elementary algorithm which pre-
dicts the output of an unknown nonlinear discrete-time

system that satisfies certain generic regularity conditions, such
as continuity and approximate time-invariance, causality, and
fading memory. The algorithm only uses the past observed
input and noisy output data and works for every bounded input
sequence, every system in the class (without parametric and/or
structural assumptions), and a wide range of disturbances. In
this sense, the algorithm is “universal” in the terminology of
information theory and statistics. The algorithm we use to
achieve an asymptotically good predictor is an adaptation of
the well-known -nearest neighbor algorithm which has been
analyzed extensively in the nonparametric statistics, pattern
classification, and information theory literature [1], [10], [15].

Most previous work on output prediction has been para-
metric in nature. This encompasses many important areas in
linear systems theory. For example, the Kalman filter uses the
parameters of a linear system to construct a predictor in the
presence of unknown stochastic disturbances. Similarly, the
Luenberger observer uses the state-space matrices to construct
an observer of the unknown state. In adaptive control and other
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schemes, system parameters are estimated and a controller
is tuned online accordingly. In this paper, we are concerned
with nonparametricprediction. We construct a predictor of
the output of an unknown system assuming only generic
conditions, but without any knowledge (or even an estimate)
of system parameters.

Our nonparametric approach is in line with the work of
several authors. In particular, Greblickiet al. (e.g., [8], [9],
[12], and [13]) consider Hammerstein and Wiener systems
which are nonlinear systems composed of linear systems
coupled with memoryless nonlinearities. They consider these
systems driven by stationary or i.i.d. noise and show that
various nonparametric schemes can be used to estimate the
nonlinearity. In contrast, we impose only mild regularity
assumptions on the system without assuming any particular
system structure, and our algorithm works for any bounded
input sequence. Surprisingly, we provide a predictor for which
we prove that the pointwise prediction errors tend to zero,
even with the generality of our setup. The price we pay for
this generality is, of course, in the rate of convergence, which
is to be expected. In order to make statements about rates
of convergence, stronger assumptions must be placed on both
the plant and the input; or by making statements about the
time-average of the prediction errors, we need only impose
stronger conditions on the plant.

The role of prediction is also typically linked to that
of system identification. System identification is concerned
with using an algorithm to select a model from a model
class (generally by selecting the model that best explains the
measured data) so that the distance between the model and
the true plant is small in some metric. Traditionally, system
identification is ultimately used for control. The chosen model
is used to design or tune a controller for the underlying
system. Some recent work in system identification has focused
on the theoretical limits of identification algorithms in a
worst case setting, i.e., in which the output disturbances
are only assumed to be bounded (e.g., see [22], [11], [19],
[3], [17], and references cited therein). We consider both
worst case and stochastic noise models, but in the context
of prediction. Our results hold for a broad class of nonlinear
systems quite similar to that studied in [2] in the context
of worst case identification. In contrast with identification
results which require a “sufficiently rich” input sequence, we
show that prediction can be performed for arbitrary input
sequences. Also, since we do not provide explicit estimates of
the unknown system itself, we do not require any topological
structure on the class of systems, which is required from the
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outset for identification results. However, at present, we make
no claims as to how our approach is to be used for the purpose
of controller design. Rather, our focus here is simply on output
prediction.

In a very different context, a similar scheme is used in [18].
They consider the estimation of conditional probabilities for
stationary ergodic time series by looking at similar strings
from the past and averaging the next value after each string.
In contrast, in this paper, we focus on prediction of the
output of a nonlinear dynamical system driven by an arbitrary
bounded input. A similar algorithm is also used by Farmer
and Sidorowich ([6] and references therein) in the context
of predicting chaotic time series, although to our knowledge
performance statements such as those presented here have not
been shown. We suspect that the results in this paper can
be used to make rigorous performance statements of their
algorithm as well. Our work is also in the spirit of the work
of Federet al. [7] in which they construct a finite memory
predictor of the next outcome of a binary sequence. However,
the specific formulations are quite different in that we are in
a systems framework, we have access to the input sequence
which provides information about the unknown output, and
we focus on different algorithms.

In Section II we formulate the problem and precisely define
the class of systems, inputs, and noise under consideration.
In Section III, we introduce a class of data-dependent but
elementary nonparametric estimators and show (Theorem 1)
that with bounded input and noise sequences we can predict
pointwiseasymptotically well to within the level of the noise,
and that for stochastic noise, we can get asymptotically zero
mean square prediction error. In Section IV, we consider rates
of convergence. With only additional regularity conditions on
the system (Lipschitz continuity and rates on fading memory),
rates of convergence for the time-average of the prediction
errors can be obtained for every bounded input sequence
(Theorem 2). In order to get rates on the pointwise prediction
errors, additional conditions are needed on both the input
and the system. We show (Theorem 3) that if we impose
independence or stationarity assumptions on the inputs and
the additional conditions on the system, then a uniform rate
of convergence can be obtained for the pointwise prediction
errors. In Section VI we consider in more detail the special
case of stable linear time-invariant (LTI) systems.

II. FORMULATION AND PRELIMINARIES

We consider the online prediction of the output of an
unknown discrete-time system based on past inputs and noisy
output observations. Suppose an unknown discrete-time sys-
tem is driven by an input sequence We consider
the following sequential prediction problem. By time we
have observed the past inputs and corresponding
noisy outputs

where is the output of at time and represents
measurement noise. We then observe the inputat time

and produce an estimate of the uncorrupted output

Our goal is to have small estimation errors asincreases.
Precise conditions on the system the input and
the noise are given below.

We consider systems where
For a subset

we define the projection operator in the
natural way. We use the notation

for

for

for

for every Note that in this paper
we abuse consistency but conform to standard notation and
use some lowercase letters to mean vectors in (e.g.,

) and other lowercase letters may be constants or
whatever the context dictates. Similarly, uppercase letters may
be operators, vectors, or constants depending on the context.

Define the closed ball of radiusof a Banach space
as

We will mostly deal with the following balls:

where

and

We consider the online prediction of the output of an
unknown system that satisfies certain general regularity condi-
tions. The input may be any sequence in The measured
output is corrupted with an additive disturbance sequence,

The system model is

We consider both deterministic and stochastic disturbance
classes:

• with
• i.i.d. zero mean and finite variance.

We consider systems that satisfy the following properties,
where is the same parameter as the bound on the allowable
input sequences.

A1) is continuous (but not necessarily linear) on
, i.e., if

for
A2) For each there exists and

such that the output at all times
depends only on the previous input

components to within i.e.,

for all such that
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Condition A1) is straightforward. Condition A2) is an asymp-
totically time-invariant, causality, and fading memory condi-
tion. These conditions are fairly general and contain many
classes that are of common interest. For example, any stable
LTI causal discrete-time system satisfies A1) and A2), as
will be shown in Section VI. Also, Hammerstein and Wiener
systems [8], [12], [13] satisfy A2) and, if the nonlinear element
is continuous, A1).

III. PREDICTOR AND MAIN RESULT

Our first result is to construct a prediction algorithm that
achieves pointwise convergence. We exhibit an algorithm
which predicts the output of any unknown system in our class
subjected to any bounded input. At timewe have observed
all the past inputs together with and
we have observed noisy outputs We would
like to estimate the uncorrupted system output,, using an
algorithm that produces an estimate so that the prediction
errors tend to zero asymptotically.

The algorithm we propose is an adaptation of the-nearest
neighbor estimators from nonparametric statistics. The basic
idea of the algorithm is as follows. Take the most recent

inputs (where is a data-dependent parameter specified
in detail below) as a nominal vector in and find the
previous input substring of length that is nearest to it in the

sense. A natural estimate for would be the output
associated with the input vector that is nearest the nominal
vector. That is, find a time in the past when the most recent

inputs were most similar to the current inputs and use
the observed output at that time as our prediction. The idea
is that by the assumed continuity of the system, nearby inputs
should produce nearby outputs. If there was no noise in our
observations and if the parameter was chosen wisely, we
might expect that this algorithm would perform well. However,
this basic idea needs to be refined in several ways.

First, since the “order” of the system is assumed unknown
it is clear that we will need as if we
wish to drive prediction errors to zero. The reason we have
any hope of driving prediction errors to zero is due to the
assumption that the system has fading memory. Actually, the
fading memory assumption must be used in another way as
well. To avoid the effects of initial conditions, we should not
use input strings too close to time zero. Hence, the second
refinement is to introduce another parameterwhich tends to
infinity as and only search for nearby input strings that
occur after time The third refinement we need results from
the fact that our output observations are noisy. With random
noise, the output at the time associated with the nearest input
string may not necessarily give a good prediction. To average
out the noise in the output observations, we could search for a
number of past input strings that are close to the recent string
and average the corresponding outputs to form our prediction.
Thus, we introduce a third parameter,, which is the number
of “nearest neighbors” in the input string that we search for,
and we will need as (Actually, in the case
of worst case noise, averaging is not needed, and we can just
take .)

At time given and the parameters and
let be the set of all strings from the

past input sequence after time that are of length That is

Note that each is a vector in Let be the
index of the th nearest neighbor (NN) of (which
is the most recent string of inputs of length ) from
the set The first NN distance

satisfies

Similarly, is the th
smallest distance between and and
equals Consider the simple predictor

(1)

where is the output observation at

time
To complete the specification of the predictor, we need only

specify the choice of the parameters and as a func-
tion of Of course, to get asymptotically good predictions,
the parameters need to be chosen carefully. In particular, to
exploit the continuity of the system, we need the nearest
input strings to get closer and closer to the most recent input
string as An important quantity is the th nearest
neighbor distance which is
the distance between the most recent string of length
and the th nearest neighbor from past strings of length
occurring after time That is

We need to make sure that as Boundedness
of the input is crucial in this regard. With a boundedness
assumption, input strings of any fixed lengthbelong to a
compact subset of and it is this compactness that allows
a suitable choice of parameters to make

However, it can be shown that with any fixed choice of
the parameters and there is always a bounded
input for which
This is typical of data-independent algorithms [15], [20] and
is the reason one cannot get pointwise convergence with
such algorithms for arbitrary inputs. In such cases, one must
resort to making statements about the time-average of the
prediction errors. To overcome this problem, we use suitable
data-dependent choices of the algorithm parameters as in [14].
By choosing and to depend on the observed
input we can construct an algorithm for which

and In this case, we can show
that the pointwise prediction errors (and hence also the time-
average errors) converge to zero.
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Lemma 1: For every bounded sequence of inputs
if

and are defined by

then we have the following.

1)
2)
3)
4)

Proof: Let

We need only show that We will do this by
showing that for any we have for all
for some sufficiently large

Fix and take Consider the set of all
consecutive inputs strings of length after time denoted

Since for each the length input
strings are all elements of the hypercube
which is a totally bounded set. Let denote
balls of radius forming a finite cover of The
number of times a string falls in some ball with fewer
than previous elements from is bounded by

Hence, there is a finite such that for all
at least previous length input strings fall in the same

ball as the most recent string. In this case, at least
strings from are within of so that

Thus, for we have

The following theorem, our main result, describes the
asymptotic behavior of our data-dependent nonparametric
predictor. The algorithm does not need to know any of the
parameters used in the assumptions on the input, system, or
noise. The proof of this result is given in Section V.

Theorem 1: Consider the predictor given by (1) where
are chosen in a data-dependent manner according

to Lemma 1. Then for any for some and any
that satisfies A1) and A2), we have that:

1) for any

2) for any i.i.d. such that and

Notes:

• There is no uniform rate of convergence over the entire
input class.

• The parameters used in the algorithm for the proof
depends on the actual input sequence, in contrast with

Theorem 2 (in the following section) in which the pa-
rameters are fixed and independent of the input sequence.
Of course, the choice of parameters used in Lemma 1 is
not the only one which will work. Many data-dependent
schemes can achieve the conclusion of Lemma 1 and
hence the result of Theorem 1.

• The upper bound for part 1 is clearly tight since errors of
at least can be forced by the noise sequence each time.

• With arbitrary bounded inputs and without Assumption
A1), no asymptotic prediction is possible.

IV. RATES OF CONVERGENCE OFPREDICITION ERRORS

The result of Theorem 1 shows that an appropriate data-
dependent predictor provides estimates of the uncorrupted
output such that the estimation errors converge to zero (for
i.i.d. noise). However, it is easy to verify that no uniform rate
of convergence is possible. The inability to obtain a uniform
convergence rate arises from two distinct and fundamental
reasons. One reason is that with arbitrary bounded inputs,
one can construct input sequences such that theth nearest
neighbor distance converges to zero arbitrarily slowly. In fact,
one can make the 1-NN distance converge to zero arbitrarily
slowly. Thus, although the predicted output will be an average
of outputs due to nearby inputs, we have no way of bounding
how close the inputs will be at any particular time. However,
even if we had such a bound, we still could not get a uniform
rate of convergence due to a second reason, which involves
the regularity of the unknown system. Namely, although
continuity implies that nearby inputs result in nearby outputs,
we need a stronger assumption, such as a Lipschitz condition,
to have a hope of getting rates. Also, although the system
is assumed to have fading memory, we need bounds on the
rate at which the memory fades in order to get bounds on the
prediction errors.

Thus, to obtain rates of convergence, we need assumptions
on the inputs that allow bounding the nearest neighbor dis-
tances and conditions on the system that give stronger versions
of Assumptions A1) and A2). A result of this type is provided
in Theorem 3 below. However, first we give a rate result of
a different sort. Namely, by considering the time-average of
the prediction errors, we can obtain uniform rates on the time-
average errors with assumptions only on the system (i.e., that
hold for all bounded inputs). The basic ideas of this result
will also be used for the pointwise rate result of Theorem 3.
Interestingly, the prediction algorithms used in this section
are of the same basic form as in Section III, but with the
added simplification that the parameters and need
only satisfy certain rate conditions but can be chosen in a
data-independent fashion.

The following stronger versions of Assumptions A1) and
A2) will be used to get the rate results in this section.

A1 ) There exists such that for all

A2 ) There exists and such that for
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for every such that

For example, as we will see in the final section, stable linear
systems with a decay rate on the impulse response satisfy
A1 ) and A2).

Fix nondecreasing sequences
and With these data-independent
specifications on the parameters and we use the
simple predictor (1).

Theorem 2: Consider the predictor given by (1) where
and are chosen data-independently as above. Then for

any for some and any that satisfies A1)
and A2), we have that:

1) for any

2) for any i.i.d. such that and

where and are well-defined
constants.

Notes:

• It can be shown that with the algorithm used in the proof
of Theorem 2, pointwise errors donot tend to zero for
all bounded input sequences. The problem is that the
parameters and were chosen at the outset,
independent of the inputs observed. In this case, one can
always find a system and construct an input sequence for
which the pointwise prediction errors do not converge to
zero. The construction simply makes sure that the input
is chosen so that the distance between the most recent
input string of length and its th nearest neighbor
does not converge to zero. This is the same the reason
that a time-average criterion was required in [15].

• The algorithm is completely data-independent as well as
independent of knowledge of the parameters in A1) and
A2 ).

• Interestingly, the same algorithm works regardless of the
noise class, although of course the mode of convergence
depends on the type of noise.

• The time-average nature of the statements in the theorem
arises not because of the noise but as a result of the
arbitrary bounded inputs that are allowed.

• This algorithm can be readily modified to allow cases in
which output data is missing. The only restriction is that
the number of omissions must be

Our next result is to obtain a pointwise rate of convergence
by imposing stationarity on the input sequence in addition
to the mentioned necessary assumptions on the system. We
will use a simple modification of the algorithm used in
Theorem 2 in order to exploit the stationarity of the input.
Specifically, instead of searching for nearest neighbors over
all strings of length we now take only the set

of nonoverlappingstrings of length from the past, i.e., we
search for nearest neighbors from the set
and The rest of the algorithm is the same.
With this modification, we obtain the following result, which
is proved in the following section.

Theorem 3: Consider the predictor given by (1) where
and are chosen data-independently and the nearest

neighbors are selected from the set of nonoverlapping strings
as described above. Then for any that satisfies A1) and
A2 ), we have that for any stationary and any
i.i.d. such that and

where
Notes:

• A similar statement can be made forindependentinputs
with a weaker form of A1) such as in [10].

V. PROOFS OFTHEOREMS

A. Proof of Theorem 1

Proof: From (1), the prediction error at any time
satisfies

(2)

where and are the two terms on the
right-hand side of the inequality.

We first show that Fix Let and
be as in Assumption A2). From Lemma 1, there exists

such that and
for all

Consider the mapping defined by

That is, the mapping on input replaces the
values of between times and (inclusive) by
those of and returns the output of system on this input
at time By Assumption A1), is continuous
on and so compactness of the domain implies that in
fact is uniformly continuous on (e.g., see
[5, Corollary 2.4.6]). Hence, there exists such that for
any we have
whenever Again using Lemma 1, there exists

such that for all
Define the vectors as

(3)
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Also, define the vector as

Now, for any we can bound as
follows:

where are the three terms on the right-hand
side of the inequality. Since we have
and Therefore, from A2) we get and

To bound let for
Then and are simply substrings

of length of the nearest neighbor strings. Since we
have and since this
implies for Hence

by the uniform continuity of and the choice of
Thus, for any and since
was arbitrary, we have that

The above analysis is common to both statements of the
theorem. To conclude the two statements in the theorem we
need only study the behavior of For the first statement,

and hence completing the claim. (Observe
that we do not need the fact that for this part.) For
the second statement, observe that since theare i.i.d. with
zero mean and finite variance, we have

(4)

Then since by Lemma 1 This completes
the proof.

B. Proof of Theorem 2

Proof: The pointwise prediction error is bounded by
as in (2). Now using (3)

(5)

where By A1 ) we have that

(6)

The prediction error in summary is

For the first statement in the theorem, and so we only
need show that at the rate specified. To
this end, the main step is as follows. It was shown in [15] that

where is a constant that depends only on(the bound on
the inputs). By construction , and so
we get

where and Next
note that

where and is a well-defined con-
stant. The second statement in the theorem is similar. First

(7)

From (4), we have Next, as in the
derivation above, we have
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where is a constant. Using the definitions of and
we get

where are constants.

C. Proof of Theorem 3

Proof: The proof is much the same as for the second
statement in Theorem 2, except that we are not taking the
time-average and that the input sequence is stationary. From
(7), we also have that and need to bound

From (6)

We now find the rate for which To do
this we note that we have taken the set ofnonoverlapping
strings of length from the past, There will be

rather than such strings. The key to this refinement
is that this set of nonoverlapping strings are in fact stationary
vectors in and hence is the nearest
neighbor distance between stationary random vectors
in This is a known quantity and can be shown [15] to
satisfy

which goes to zero as long as This
is satisfied since and As in the
proof of Theorem 2, it is now straightforward to verify the
rate in the theorem.

VI. L INEAR SYSTEMS

In this section we consider a special class of systems that
satisfy A1) and A2), namely the class of stable causal LTI
discrete-time systems. The system model is

(8)

where is the convolution operator, is the measured output,
is a noise sequence, and
In the following corollary of Theorem 2 we show that every

linear system (8) satisfies A1) and A2), and we obtain rates
of convergence for various special cases.

Corollary 1: Using the predictor from Theorem 1 we have
that for any any and for any i.i.d.
such that and

Using modified algorithms we obtain

with rates of convergence as follows.

• If with known, then

• If then

• If then the

Proof: A1) is immediate by linearity

To show A2), fix By stability there exists such
that

Take such that
then

The convergence statement in the corollary then follows from
Theorem 1, since this class of systems satisfies A1) and A2).

For rates of convergence, we need to check conditions A1)
and A2). It is straightforward that and that
We now need to find a relationship betweenand by looking
at the restrictions on the tails of the impulse response. If the
system has an impulse response of known lengththen

Using the rate of convergence is then

Using gives a rate of convergence
If is unknown, then we use

which satisfies and
and is eventually large enough so that

Using the rate is
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If then note
that for each

The result follows from Theorem 2 by using

VII. SUMMARY AND REMARKS

The prediction algorithm introduced in this paper is in fact
representative of a class of alternative but similar algorithms.
For simplicity, we chose to illustrate our ideas using an
adaptation of the nearest neighbor algorithm. However, many
of the arguments can be extended easily using other techniques
from the consistent nonparametric regression literature such
as the kernel and partitioning estimators (e.g., [21], [12], and
[20]). There has also been related work in the information the-
ory literature on universal prediction for arbitrary sequences,
although the results are somewhat different in nature than the
results presented here. There, the performance is compared
to the best predictor from a given class of predictors. In the
present paper, we do nota priori restrict the form of the
predictor, but instead we make an assumption on the outputs
to be predicted and try to achieve asymptotically optimal
prediction when the system generating the outputs is not
known. It would be interesting to compare these approaches
and/or attempt to obtain results in the spirit of the information
theoretic results in the present formulation.

We now make some comments on the relationship between
our prediction schemes to system identification. We first point
out that the notion of identification of a system generally
requires that some topological structure be imposed on the
model class. For example, in the context of stable linear
systems it is common to consider the systems to be elements
of (e.g., [22]). In addition, it is known that we require
sufficiently rich input sequences (e.g., Galois sequences or
persistency of excitation conditions) in order to identify the
system (e.g., see [22], [17], and [16]). In contrast, our pre-
diction scheme does not require any topological structure,
works for nonlinear systems, and works for any bounded
input sequence. The difference arises because in identification
one needs to “explore the entire state space,” whereas for
prediction the behavior of the system only along the input
sequence needs to be known. In a sense, this idea is captured
in Lemma 1, which shows that for any bounded input sequence
eventually there is sufficient data for prediction. In fact for
nonrich input sequences (that do not excite the system in many
ways) prediction should be even easier. On the other hand, it
is clear that identification is impossible if data is gathered only
in a small region or low-dimensional subpace of all possible
inputs.

An obvious issue that needs to be addressed in more
detail is the relationship between good identification and
good prediction. Certainly good identification implies good
prediction. For example, from the work in [22] a system

estimate of is constructed whereby

in the case in which the noise is uniformly bounded byA
predictor can be extracted from this in the obvious way

leading to a prediction error of

if This gives

(9)

In Theorem 1 we obtained a bound of on the
which improves the result in (9). Although good identification
does imply good prediction, our prediction scheme is an
improvement and works for every bounded input sequence
(independent of the bound).

For the converse, we argue that our predictor when subjected
to a “rich” input leads to a notion of identification. We first
need to impose a topology on the system class. Take a-
compact subset of nonlinear systems that satisfy A1)
and A2). Define the class of input sequencesthat have the
following “richness” property:

• is the set of all bounded inputs such that
for any we have that

implies that

Note that in the case of stable linear systems,contains the
set of Galois sequences. Now if we apply an input belonging to

then our prediction algorithm is in fact excluding systems
that are away from the true system. We suspect that an
Occam’s Razor-type algorithm similar to that used by Tse
et al. [22] can be used to construct an identifier for these
systems. It seems that the class of “rich” inputs leading to
good identification are precisely those inputs for which the
prediction algorithm has slow convergence properties. The
question of finding interesting nonlinear system classes with
interesting “rich” input classes remains to be seen.

A somewhat different question involves the connection
between this prediction algorithm and adaptive control. At
present no claims are made as to how some version of the
present algorithm might be used for control, but one might
expect that if one can predict well one should also be able
to control well. In fact, one might argue that in control
(as with prediction) one is interested in the behavior of the
system on the current input rather than on all possible inputs
as in system identification. However, the central problem
in this case is selecting an appropriate input (to satisfy the
control objective) from the family of all admissible inputs.
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It is precisely this selection problem that seems to require
some sort of search over the input space which is more like
the identification problem. Nevertheless, it may be possible
to devise a strategy that alternates or trades-off learning
phases with control phases, particularly if suitable assumptions
restricting the behavior of the system are imposed. It may be
interesting to pursue such directions.
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