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Noise Conditions for Prespecified Convergence
Rates of Stochastic Approximation Algorithms
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Abstract— We develop deterministic necessary and sufficient
conditions on individual noise sequences of a stochastic approximation
algorithm for the error of the iterates to converge at a given rate.
Specifically, supposef�ngf�ngf�ng is a given positive sequence converging
monotonically to zero. Consider a stochastic approximation algorithm
xn+1 = xn � an(Anxn � bn) + anenxn+1 = xn � an(Anxn � bn) + anenxn+1 = xn � an(Anxn � bn) + anen, where fxngfxngfxng is the iterate
sequence,fangfangfang is the step size sequence,fengfengfeng is the noise sequence,
and x�x�x� is the desired zero of the functionf(x) = Ax� bf(x) = Ax � bf(x) = Ax � b. Then, under
appropriate assumptions, we show thatxn � x� = o(�n)xn � x� = o(�n)xn � x� = o(�n) if and only
if the sequencefengfengfeng satisfies one of five equivalent conditions. These
conditions are based on well-known formulas for noise sequences:
Kushner and Clark’s condition, Chen’s condition, Kulkarni and
Horn’s condition, a decomposition condition, and a weighted averaging
condition. Our necessary and sufficient condition onfengfengfeng to achieve
a convergence rate off�ngf�ngf�ng is basically that the sequencefen=�ngfen=�ngfen=�ng
satisfies any one of the above five well-known conditions. We provide
examples to illustrate our result. In particular, we easily recover the
familiar result that if an = a=nan = a=nan = a=n and fengfengfeng is a martingale difference
process with bounded variance, thenxn � x� = o(nxn � x� = o(nxn � x� = o(n�1=2(log (n))�)(log (n))�)(log (n))�)
for any � >� >� >1=2.

Index Terms—Convergence rate, Kiefer–Wolfowitz, necessary and suf-
ficient conditions, noise sequences, Robbins–Monro, stochastic approxi-
mation.

I. INTRODUCTION

We consider a general stochastic approximation algorithm for
finding the zero of a functionf : H ! H, whereH is a general
Hilbert space (on the realsIR)

xn+1 = xn � anfn (1)

where xn 2 H is the estimate of the zero of the functionf ,
an is a positive real scalar called the step size, andfn 2 H
represents an estimate off(xn). The estimatefn is often written as
fn = f(xn)�en, whereen 2 H represents the noise in the estimate.
Typical convergence results for (1) specify sufficient conditions on
the sequencefeng (see [15] and references therein).

In this paper we are concerned with the rate of convergence
of fxng to x�, the zero of the functionf . To characterize the
convergence rate, we consider an arbitrary positive real scalar se-
quencef�ng converging monotonically to zero. We are interested
in conditions on the noise for whichxn converges tox� at rate�n;
specifically,xn�x� = o(�n). By writing xn�x� = o(�n) we mean
that ��1

n
(xn � x�) ! 0. As in some previous work on stochastic

approximation, instead of making probabilistic assumptions on the

Manuscript received September 5, 1997; revised April 9, 1998. This work
was supported in part by the National Science Foundation under Grants ECS-
9501652 and IRI-9457645.

E. K. P. Chong is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-1285 USA.

I-J. Wang is with the Research and Technology Development Center, The
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723-
6099 USA (e-mail: I-Jeng.Wang@jhuapl.edu).

S. R. Kulkarni is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA.

Communicated by P. Moulin, Associate Editor for Nonparametric Estima-
tion, Classification, and Neural Networks.

Publisher Item Identifier S 0018-9448(99)01417-0.

noise, we take a deterministic approach and treat the noise as an
individual sequence. This approach is in line with recent trends in
information theory and statistics where individual sequences have
been considered for problems such as source coding, prediction, and
regression.

In our main result (Theorem 2), we give necessary and sufficient
conditions on the sequencefeng for xn � x� = o(�n) to hold.
To illustrate our result, consider the special case wherean = 1=n.
Then, under appropriate assumptions,xn � x� = o(�n) if and
only if ( n

k=1 ek=�k)=n ! 0 (i.e., the long-term average of
fen=�ng is zero). In fact, our result provides a set of five equivalent
necessary and sufficient conditions onfeng, related to certain familiar
conditions found in the literature: Kushner and Clark’s condition,
Chen’s condition, Kulkarni and Horn’s condition, a decomposition
condition, and a weighted averaging condition (see [20] for a study
on these conditions and their relationship to convergence of stochastic
approximation algorithms).

Classical results on convergence rates are obtained by calculating
the asymptotic distribution of the processf��1n (xn � x�)g, where
some appropriate probabilistic assumption onfeng is imposed. Such
an approach was first taken by Chung [4], who studied the asymptotic
normality of the sequencef��1n (xn � x�)g (for appropriate choice
of �n). Sacks [18] later provides an alternative proof of Chung’s
result. These results provide a means of characterizing the rate of
convergence of stochastic approximation algorithms—they basically
assert that ifan = a=n, a > 0, then the rate of convergence for
the stochastic approximation algorithm is essentiallyO(n�1=2). In
[6], Fabian provides a more general version of such an asymptotic
distribution approach. Using weak convergence methods, Kushner
and Huang [12] provide even stronger results along these lines.

Recently, Chen presents results on convergence rates that do not
involve calculating asymptotic distributions (see [1] for a summary of
results). In particular, he provides rate results of the formxn�x� =
o(a�n), where0 < � � 1. Chen’s characterization of rates are similar
to ours, with�n = a�n.

Our results are based on a stochastic approximation algorithm, on
a general Hilbert space, of the form (1) withfn = Anxn � bn � en
and f(x) = Ax � b. Here,An and bn are estimates ofA and b,
respectively, whileen is the noise. Note that althoughf is affine,
the form of the stochastic approximation algorithm is not a special
case of the usually considered case withfn = f(xn)� en. Indeed,
the form of the algorithm we adopt has been widely studied (e.g.,
[8], [9], [19]; see also [10] for a survey of references on this form of
stochastic approximation algorithms). In our main result (Theorem 2),
we give necessary and sufficient conditions onfeng for the algorithm
to converge with a prespecified rate�n [i.e., xn � x� = o(�n)].
Our result therefore provides the tightest possible characterization of
the noise for a convergence rate of the formxn � x� = o(�n) to
be achievable, and has so far not been available. Moreover, ours is
the first to provide rate results for the general class of stochastic
approximation algorithms withfn = Anxn � bn � en. We believe
that our approach may be useful for obtaining similarly tight rate
results for the nonlinear case withfn = f(xn)�en (see Section V).

II. BACKGROUND: A CONVERGENCE THEOREM

To prove our main result on convergence rates, we first need
a convergence theorem for the stochastic approximation algorithm.
Consider the algorithm

xn+1 = xn � anAnxn + anbn + anen (2)
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wherexn is the iterate,an is the step size,en is the noise,An: H!
H is a bounded linear operator, andbn 2 H with bn ! b. Note that
the above is a stochastic approximation algorithm of the form (1)
with fn = Anxn � bn � en (see also [8], [10], [19] for a treatment
of convergence for a similar linear case).

We will need some assumptions for our convergence theorem. First,
we assume throughout that the step size sequencefang satisfies:

A1) an > 0; an ! 0, and 1

n=1 an = 1.

The above are standard requirements in all stochastic approximation
algorithms. Next, we consider conditions on the noise sequencefeng.

A. Noise Conditions

A central issue in studying stochastic approximation algorithms is
characterizing the noise sequencefeng for convergence. Here, we
give five conditions on the sequencefeng. Each condition depends
not only onfeng, but also on the step size sequencefang. As we
shall point out later, these five conditions are all equivalent and are
both necessary and sufficient for convergence of (2). In the statement
of the following conditions, we usek � k to denote the natural norm
on H, and convergence is with respect to this norm.

N1) For someT > 0

lim
n!1

sup
n�p�m(n;T )

p

i=n

aiei = 0

where

m(n; T )
�
= max fk: an + � � �+ ak � Tg:

N2)

lim
T!0

1

T
lim
n!1

sup
n�p�m(n;T)

p

i=n

aiei = 0:

N3) For any�; � > 0, and any infinite sequence of nonoverlap-
ping intervalsfIkg on IN = f1; 2; � � �g, there existsK 2 IN
such that for allk � K

n2I

anen < �
n2I

an + �:

N4) There exist sequencesf�ng and f�ng such thaten =
�n + �n for all n, �n ! 0, and n

k=1 ak�k converges.
N5)

lim
n!1

n

k=1

kek

n

k=1

k

= 0

where

n =

a1; if n = 1

an

n

k=2

1=(1� ak); otherwise.

The noise conditions above have been widely studied in the
literature. The first four are proven to be equivalent in [20], while
the fifth is shown to be equivalent also to the first four conditions
in [21]. Condition N1) is the well-known condition of Kushner and
Clark [13], while N2) is a version of a related condition by Chen
[2]. Condition N3) was studied by Kulkarni and Horn in [11], related

to a “persistently disturbing” noise condition. Condition N4) was
suggested in [13, p. 29] (see also [2], [3], [15, p. 11], and [14] for
applications of the condition). Condition N5) is a weighted averaging
condition (see [19] and [21]). For convenience and without loss of
generality, we assume in N5) thatan < 1 for all n. A special case
of this condition (withan = 1=n) is considered in [5] and [10],
where the weighted averaging condition reduces to regular arithmetic
averaging (i.e.,k = 1 for all k).

For convenience, we define the following terminology.
Definition 1: Let fang be a step size sequence. We say that a noise

sequencefeng is small with respect tofang if feng satisfies any of
the conditions N1)–N5) with associated step size sequencefang.

Next, we assume that the sequencefAng satisfies:

B1) fAn � Ag is small with respect tofang, whereA: H ! H
is a bounded linear operator withinffRe �: � 2 �(A)g > 0,
where�(A) denotes the spectrum ofA.

B2)

lim sup
n!1

n

k=1

kkAkk

n

k=1

k <1:

In the above, the sequencefng is as defined in condition N5).
Assumptions B1) and B2) are standard in results for stochastic
approximation algorithms of the type (2); see, for example, [8], [10],
[19], [21], where (B1) is expressed as( n

k=1 kAk)=(
n

k=1 k)!
A. Note that in B1), the smallness of the sequence of operators
fAn � Ag is with respect to the induced operator norm (on the
space of bounded linear operators). Likewise, in B2), the norm on
Ak is the induced operator norm.

B. Convergence Theorem

We are now ready to state the convergence theorem that will be
used in the proof of our main result. We use the notationx� = A�1b
for the unique solution toAx� = b, i.e., the desired zero of the
function f(x) = Ax � b.

Theorem 1: Let fxng be generated by the stochastic approxima-
tion algorithm (2). Suppose conditions A1), B1), and B2) hold. Then,
xn ! x� if and only if feng is small with respect tofang.

Proof: The proof follows from, [20, Th. 1] and [21, Th. 4].

III. CONVERGENCE RATES

In this section, we state and prove our main result (Theorem 2),
which provides conditions on the noise sequence that guarantee a
given rate of convergence. Recall that we are considering a stochastic
approximation algorithm

xn+1 = xn � anAnxn + anbn + anen: (3)

Let f�ng be a given positive real sequence converging monotonically
to zero. We are interested in conditions onfeng for which xn ! x�

at the prescribed rate of�n; specifically,xn � x� = o(�n).
First, we need some assumptions on the sequencef�ng.

G1)
��1n (bn � b)! 0:

G2)
(�n � �n+1)=(an�n)! c; wherec 2 IR:

Assumption G1) can in fact be relaxed (see remarks following
the proof of Theorem 2), but suffices in many standard scenarios.
Assumption G2) is also fairly weak, requiring that the convergence
rate off�ng be related to the step sizefang. In the remarks following
the proof of Theorem 2, we indicate how G2) can be relaxed. Note
that in the standard case wherean = an��, a > 0, 0 < � � 1,
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and �n = n� ,  > 0, we havec = 0 if � < 1, and c = =a if
� = 1. To see this

�n � �n+1
an�n

=
n� � (n+ 1)�

an��n�

=
n

an��(n+ 1)
1 +

1

n



� 1

=
n

an��(n+ 1)


n
+ o

1

n

=
n

n+ 1


 + o(n�1)=n�1

an1��
:

We need one more assumption onf�ng. We use the following
definition.

Definition 2: A scalar sequencefang is said to havebounded
variation if 1

n=1 jan+1 � anj < 1.
The additional assumption onf�ng is as follows.

G3) The sequencesf�n+1=�ng and f�n=�n+1g have bounded
variation.

Assumption G3) is technical. In fact, the assumption cannot be
relaxed (see remark following Lemma 1 below). Note that G3) holds
for any sequencef�ng of the form�n = n� ,  > 0.

Next, we introduce an additional assumption on the operatorA.

B3) inffRe �: � 2 �(A � cI)g > 0, where I is the identity
operator and�(A� cI) denotes the spectrum ofA � cI.

To satisfy B3) in the case whereA 2 IRd�d, we need the
eigenvalues ofA to all exceedc. In cases wherec = 0, assumption
B3) reduces to B1).

With the above assumptions, we are ready to state our main result.
Theorem 2: Let fxng be generated by the stochastic approxi-

mation algorithm (3). Assume that assumptions A1), B1)–B3), and
G1)–G3) hold. Then,xn � x� = o(�n) if and only if fen=�ng is
small with respect tofang.

The basic idea of the proof of Theorem 2 is to express the sequence
f��1n (xn � x�)g using a recursion that is essentially (3) with noise
sequencefen=�ng. The desired result then follows from applying
Theorem 1.

To prove Theorem 2, we need the following technical lemma.
Lemma 1: Consider a step size sequencefang. Let fsng be a

positive sequence such thatfsng andf1=sng have bounded variation.
Define ân = snan. Then, the following hold.

1) If fang satisfies A1), then so doesfâng.
2) A sequencefêng is small with respect tofang if and only if

fêng is small with respect tofâng.

Proof: Note thatfsng and f1=sng having bounded variation
implies thatsn converges to some positive real number. Thus, part 1)
is trivial. Part 2) follows from [21, Lemma 3].

Remark: Part 2) can in fact be strengthened as follows. LetLa be
the set of sequences that are small with respect tofang, andLâ be the
set of sequences that are small with respect tofâng. Then, we have
La = Lâ if and only if fsng andf1=sng have bounded variation.

Using the above lemma, we can now prove Theorem 2.
Proof of Theorem 2:Substitutingx̂n = ��1n (xn� x�) into (3),

we obtain

x̂n+1 =
�n
�n+1

x̂n � an�
�1
n An(�nx̂n + x�) + an

bn
�n

+ an
en
�n

= x̂n � an
�n
�n+1

An �
1

an(�n=�n+1)

�n
�n+1

� 1 x̂n

+ an
�n
�n+1

(A�An)x
� +

en
�n

+ an
�n
�n+1

��1n (bn � b):

Write ân = an(�n=�n+1), ên = (A � An)x
� + en=�n, b̂n =

��1n (bn � b), and

Ân = An �
�n � �n+1

an�n
I:

Then, we have

x̂n+1 = x̂n � ânÂnx̂n + ânb̂n + ânên

where b̂n ! 0 by assumption G1). Note that by Lemma 1-1),
fâng satisfies A1). Also, note that by assumption G2), the sequence
fÂn�(A�cI)g is small with respect tofang (using [20, Lemma 2]),
and hence also with respect tofâng, by virtue of assumption G3)
and Lemma 1-2). Thus, by assumption B3),fÂng satisfies condition
B1) with respect tofâng [where the operatorA in B1) is taken to
meanA � cI here]. Moreover, by writing

kÂnk � kAnk+
�n � �n+1

an�n

we see thatfÂng satisfies condition B2) with respect tofâng. Hence,
by Theorem 1, we conclude thatx̂n ! 0 if and only if fêng is small
with respect tofâng, which holds if and only iffen=�ng is small
with respect tofâng, by definition of ên and assumption B1) (we
use the fact that difference between two small sequences is also a
small sequence). By assumption G3) and Lemma 1-2), we obtain the
desired result.

Remark:

• Assumption G1) can be relaxed tof��1n (bn� b)g is small with
respect tofang. The proof above can be easily modified to
accommodate this relaxed assumption by including��1n (bn� b)
into ên. The same line of argument as above can then be used.

• Similarly, assumption G2) can be relaxed tof(�n �
�n+1)=(an�n) � cg is small with respect to fang.
Note that the condition limn!1 ( n

k=1 k(�k �
�k+1)=(ak�k))=(

n
k=1 k) < 1 is automatically implied.

Essentially the same proof as above goes through in this case.

IV. EXAMPLES

In this section, we provide examples to illustrate our main result,
Theorem 2. We assume throughout this section that B1)–B3), and
G1) hold.

A. Random Noise Sequence

We give an example wherefeng is a random process.
Proposition 1: Supposefeng is a martingale difference process

with E(e2n) � �2, �2 2 IR. Let an = n�� with � > 1=2. Then,
xn � x� = o(n�(��1=2)+�) a.s. for any� > 0.

Proof: We apply Theorem 2 with�n = n�(��1=2)+�, � > 0.
Note thatfang satisfies A1) andf�ng satisfies G2) and G3).

Now, the processf n
k=1 akek=�kg is a martingale (with respect

to the filtration generated byfe1; � � � ; eng). Moreover, we have

E

n

k=1

akek=�k

2

=

n

k=1

a2kE(e2k)=�
2
k � �2

n

k=1

k�(1+2�) <1:

Hence, by the martingale convergence theorem, we conclude that
n
k=1 akek=�k converges. Thus,feng satisfies condition N4), and

the desired result follows from Theorem 2.
For the case where� = 1 in Proposition 1, we have that

xn � x� = o(n�1=2+�) for any � > 0, which is consistent with
the early rate results of [4] and [18]. We conjecture that the result
in Proposition 1 can be sharpened to a rate of the formo(n��=2+�),
with appropriate assumptions onfeng.
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An alternative stronger rate result can in fact be obtained

xn � x� = o(n�(��1=2)(log (n))�) a.s.

where� > 1=2 (as before) and� > 1=2. Here, it is again straight-
forward to show thatf�ng = fn�(��1=2)(log (n))�g satisfies G2)
and G3). Following the argument in the proof above, we have

E

n

k=1

akek=�k

2

=

n

k=1

a2kE(e2k)=�
2
k

��2
n

k=1

1

n(log(n))2�
<1

(see [16, Th. 3.29]), from which the result follows. For the� = 1
case, we obtainxn � x� = o(n�1=2(log (n))�), which is consistent
with almost sure rate results obtained by the law of the iterated
logarithm (see, e.g., [7, p. 845] for the Robbins–Monro case, and
[9, p. 120] for a linear multivariable algorithm for adaptive filtering).

B. Kiefer–Wolfowitz Algorithm

The Kiefer–Wolfowitz algorithm is a stochastic approximation
algorithm designed for minimization using finite differences. Specif-
ically, supposeJ: IRd ! IR is a function with minimizerx�. The
Kiefer–Wolfowitz algorithm for findingx� is given by

xn+1 = xn � an
J+n � J�n

2cn

wherecn is a “perturbation” parameter such thatcn ! 0, andJ+n and
J�n are vectors of noisy measurements of the functionJ at perturbed
points. Specifically, theith components ofJ+n andJ�n are defined by

J+n (i) =J(xn + cn�i)� e+n (i)

J�n (i) =J(xn � cn�i)� e�n (i)

where�i is the unit vector in theith coordinate direction.
In the literature on Kiefer–Wolfowitz algorithms, it is well known

(e.g., [13, p. 252]) that the rate of convergence withan = an�1 and
cn = cn�1=6 is essentiallyO(n�1=3), obtained using asymptotic
distribution calculations with appropriate probabilistic assumptions
(see also [7] and [17] for almost sure versions of the rate result based
on the law of the iterated logarithm). Here, we show that our rate
result is consistent with the rate ofn�1=3 above.

Proposition 2: SupposeJ is a positive definite quadratic function,
and feng satisfies the same conditions as in Proposition 1. Let
an = n�� with � > 1=2, andcn = n� with ��  � 1=2 > 0 and
�� 3� 1=2 � 0. Then, for the Kiefer–Wolfowitz algorithm above,
we havexn � x� = o(n�(���1=2)+�) a.s. for any� > 0.

Proof: For convenience, letfn be the vector whoseith compo-
nent is(J(xn+ cn�i)�J(xn� cn�i))=(2cn), en the vector whose
ith component ise+n (i)� e�n (i), andbn = rJ(xn)� fn. Then, we
can write the Kiefer–Wolfowitz algorithm as

xn+1 = xn � anrf(xn) + anbn + an
en
2cn

:

For J a positive definite quadratic function,rf is linear and B1)
and B2) hold. Moreover, it is straightforward to show thatbn ! 0.
To complete the proof, we set�n = n�(���1=2)+� and proceed as
in the proof of Proposition 1.

From the above result, we see that the best rate is achieved with
 = (�� 1=2)=3, whence�n = n�2=3�+1=3+�. For the case where
� = 1, we have thatxn � x� = o(n�1=3+�) for any � > 0, which is
consistent with the well-known rate results as mentioned earlier.

As in the last section, we can strengthen the above result by taking
the rate sequence�n = n�(���1=2)(log (n))� to obtain

xn � x� = o(n�(���1=2)(log (n))�) a.s.

with � > 1=2. For the� = 1 case, this result is consistent with the
almost sure rate results in [17, p. 186] and [7, p. 848] based on the
law of the iterated logarithm for a one-dimensional Kiefer–Wolfowitz
algorithm.

C. Chen’s Rate Condition

In [1], Chen gives sufficient conditions for the convergence rate to
be a�n, where0 < � � 1, i.e.,xn � x� = o(a�n). In particular, Chen
imposes the following condition on the noise sequencefeng.

CH) There exists�n and�n such thaten = �n + �n for all n,
�n = o(a�n), and n

k=1 a
1��
k �k converges.

Using Theorem 2, we now show that condition CH) above is in
fact both necessary and sufficient forxn � x� = o(a�n). Note that
Chen’s result in [1] applies to algorithms withfn = f(xn) � en
with general nonlinearf (in contrast to ours, which is of the form
fn = Anxn � bn � en).

Proposition 3: Suppose the assumptions of Theorem 2 hold. Then,
xn�x� = o(a�n) with 0 < � � 1 if and only if condition CH) holds.

Proof: Setting�n = a�n and applying Theorem 2 with condition
N4), we find thatxn�x� = o(a�n) if and only if there exists�0n and
�0n such thata��

n en = �0n + �0n for all n, �0n ! 0, and n
k=1 ak�

0

k

converges. Setting�n = a�n�
0

n and�n = a�n�
0

n, the desired result
follows from observing that

�0n ! 0 , �n = o(a�n)

and
n

k=1

ak�
0

k converges ,

n

k=1

a1��
k �k converges:

V. FINAL REMARKS

We have provided a tight characterization on the noise sequence of
a stochastic approximation algorithm for the convergence to achieve
a prespecified rate sequence. Our result applies in a general Hilbert
space setting, with affinef . It is of interest to do the same with general
f in the usual setting, i.e., withfn = f(xn)�en. We believe that our
approach will be useful in dealing with this case as well. Specifically,
we will need to modify the proof of Theorem 2 along the following
lines. First, consider the algorithm

xn+1 = xn � anf(xn) + anbn + anen

where bn ! 0. Then, the derivation of the recursion involving
x̂n = ��1n (xn � x�) in the proof of Theorem 2 will proceed as

x̂n+1 =
�n
�n+1

x̂n � an�
�1
n f(�nx̂n + x�) + an

bn
�n

+ an
en
�n

= x̂n � an
�n
�n+1

��1n f(�nx̂n + x�)

�
1

an(�n=�n+1)

�n
�n+1

� 1 x̂n

+ an
�n
�n+1

bn + an
�n
�n+1

en
�n

:

Similar to before, we writêan = an(�n=�n+1), ên = en=�n,
b̂n = ��1n bn, and

fn(x̂n) = ��1n f(�nx̂n + x�)�
�n � �n+1

an�n
x̂n

so that we have

x̂n+1 = x̂n � ânfn(x̂n) + ânb̂n + ânên:

We then apply a convergence theorem for a stochastic approximation
algorithm of the above form and follow the argument in the proof of
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Theorem 2. Note that the sequence of functionsffng above converges
(pointwise) to the linear functionf(x) = (A � cI)x. We are not
currently aware of any convergence result for the above form of
stochastic approximation algorithm. However, once such a result is
obtained, our rate result will then apply in the general nonlinear case,
using the above argument.
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