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Abstract—We derive upper bounds on the transport capacity of
wireless networks. The bounds obtained are solely dependent on
the geographic locations and power constraints of the nodes. As
a result of this derivation, we are able to conclude the optimality,
in the sense of scaling of transport capacity with the number of
nodes, of a multihop communication strategy for a class of network
topologies.

Index Terms—Ad hoc wireless networks, cut-set bounds, multi-
hop, transport capacity.

I. INTRODUCTION

UNDERSTANDING network communication has re-
mained the holy grail of information theory; even the

simplest settings have largely uncharacterized capacity regions.
Recently, some progress in the study of wireless networks has
been made by asking questions coarser than precise achievable
rate regions. In particular, the seminal work of [4] introduced
the measure transport capacity: The total bit-meters per second
a network can reliably support. Further, the authors studied
the rate of growth of this performance measure as a function
of the network resource—the number of radios (equivalently,
nodes) themselves. The key result of [4] is to identify the rate
of growth of transport capacity of an -radio network using a
simple nearest neighbor multihop communication scheme.

In the multihop communication scheme, we treat simulta-
neous transmissions as interference, and so a successful trans-
mission over a distance means that there are no other trans-
missions in an area proportional to . There is now a (poten-
tial) tradeoff between a need to communicate long distances
and allowing many simultaneous transmissions. In a regular (or
close to regular) network it is optimal to always communicate
to nearest neighbors. With this, the transport capacity of regular
minimum-distance networks grows linearly in . It is not clear
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how much we are missing out by focusing on a simple multihop
store-and-forward communication strategy.

In irregular networks, there is crowding of nodes and the
transport capacity with multihop communication is reduced;
this is studied in a general framework in [6]. Again, it is not
clear if this reduction is due to our choice of the communication
strategy (multihop) or a fundamental property of the location of
the nodes. The goal of this paper is to provide an answer to these
questions by deriving some simple fundamental upper bounds
to the transport capacity. The bounds we provide are solely a
function of network topology, i.e., the geographic locations of
the nodes. As a by-product of this derivation, we will be able to
conclude the optimality of multihop communication for a large
class of networks (optimality in the sense of the same rate of
growth with the number of nodes). This is a strengthening of
the same conclusion arrived at in [12], which also studied the
performance of other nonmultihop communication schemes.

We study the following general wireless network: The re-
ceived signal at node at (slotted) time is

(1)

Here is the signal transmitted by node at time and
is independent and identically distributed (i.i.d. ) white

Gaussian noise. The multiplier is defined as

where , a stationary and ergodic stochastic process
that is independent for each pair of nodes , models the
small-scale fluctuations of frequency flat fading. For simplicity,
we assume that for all , , . The large-scale
variations are modeled explicitly through the decay of signal
level: A factor of from node to node , with de-
noting the (Euclidean) distance between the nodes and . The
parameter is the rate of signal decay,1 which is unity in free
space, with a single reflected path along with the line of sight,
and possibly greater than in crowded urban environments
[3].

We are interested in peer–peer communication, i.e., the nodes
are communicating among themselves. The focus of this paper

1The far-field signal decay is usually denoted by r . Here we have written
(1 + r ) to ensure that our model makes sense when nodes get close; i.e.,
the average received power is not more than the average transmit power.
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is to derive information-theoretic upper bounds to transport ca-
pacity, which is defined as

(2)

where the supremum is taken over all the feasible rate
matrices (a rate matrix is feasible if simultaneous
reliable communication at rates is possible, for all nodes
and ).

The only general upper bound in network information theory
is the cut-set bound ([1, Theorem 4], [2, Theorem 14.10.1]). Our
main result is to use a random cut-set to derive the following
upper bound on transport capacity. We consider two (disparate)
models of the wireless fading channel. If the channel variations
are “slow” enough so that coherent communication is possible,
we model this scenario by allowing full knowledge at each node
of the fading channels from all the other nodes. This is also
known as the full CSI scenario (channel state information at
both the transmitter and receiver nodes). In the scenario where
the channel is changing rapidly enough so that coherent com-
munication is not feasible, our model is to assume complete ig-
norance of the channel realizations by all the nodes. This is the
no-CSI model. Clearly, these are two extreme models but they
serve to cover the ranges of channel fluctuations and allow us
to make simple statements about the network communication
problem. Each node has an average transmit power constraint
(denoted by ).

Main Result: The transport capacity is upper-bounded by

(3)

With no CSI at the nodes, we can sharpen the upper bound to

(4)

This upper bound on the transport capacity is entirely in terms
of the geographic locations and the power constraints of the
nodes. We see that the upper bound is quite robust to “small”
(in a network sense) fluctuations of the geographic locations of
the nodes. For example, removing one node from the network
does not alter the performance by much. Or if two specific nodes
were moved very close to each other, then again the upper bound
does not change by much.

This upper bound allows us to study scaling laws (rate of
growth of transport capacity with number of nodes) for spe-
cific network topologies. Consider minimum-distance networks
(with a minimum distance of, say , between any two
nodes) on a line and on a plane (a scenario studied in [12]).

1) The transport capacity of minimum-distance networks on
a line is upper-bounded by as long as . With
no CSI the same bound holds with .

2) The transport capacity of minimum-distance networks on
a plane is upper-bounded by as long as . With
no CSI the same bound holds with .

Here and are constants that depend on the actual node
locations; simple upper bounds to these constants are derived in

Section III. In a recent (and independent) work [13], the authors
show that a transport capacity of is achievable via multihop
communication in wireless networks with the time-varying
fading model expressed in (1) (see [13, Theorem 3.2]). Hence,
we can conclude that multihop communication is optimal in
the sense of scaling of transport capacity with the number
of nodes. This is a strengthening of the same result in [12],
which considered a simpler, time-invariant channel model and
required stronger conditions on . The essence of our derivation
is to argue that even when nodes team up (at the transmitter
side and at the receiver side), the spatial separation prevents
them from forming many parallel channels (in other words,
the spatial degrees of freedom are limited). A result similar in
spirit is arrived at independently in [7] for the sum-capacity of
the network, under a time-invariant channel model.

We can use our upper bound to study random networks and
show the robustness of this scaling law optimality of multihop
communication. In particular, when the nodes are randomly and
uniformly placed in an area growing linearly with the number
of nodes (on a line, the overall length is of order ), the trans-
port capacity is upper-bounded by for almost every
realization of node locations with no CSI at the nodes; with
full CSI at the nodes, the upper bound is . On the
other hand, multihop communication can achieve a transport ca-
pacity of order for almost every realization of node loca-

tions ([6, Sec. III]). In comparison to the dominant term (linear
growth in ) the logarithmic factors are small, which shows the
near optimality of multihop communication in this context of
random node locations.

Upon a closer look at the upper bound for transport capacity
in (2) and (3), we see the linearity of transport capacity in the
transmit power. Communication in a large network is primarily
interference limited and occurs at low signal-to-noise ratios
(SNRs); in this regime, linearity of SNR with respect to the
communication rate is a good approximation. If the nodes have
widely different power capabilities and this capability can be
tuned to specific network topologies, then the statement of our
main result may be too weak. To understand the role of power
constraints on transport capacity, we consider the following
scenario: there is only an overall transmit power constraint
(growing linearly with the number of nodes) and this can be
distributed among the nodes in any manner (that is suited to
the specific network topology). In this case, it turns out that
the number of spatial degrees of freedom that cooperation
between transmitting and receiving nodes can harness is ap-
proximately proportional to . This statement can be made
precise in the context of minimum-distance networks on both a
line and a plane. Minimum-distance networks with an overall
power constraint have a transport capacity upper-bounded by

. If the nodes have no CSI, then we can sharpen
this bound to . We have the same conditions on
the decay rate as in the individual power constraint scenario
mentioned earlier. Simple upper bounds to and are derived
in Section V.

The main result is derived in Section II. The scaling laws for
minimum-distance networks are studied in Section III. The role
of random node locations is studied in Section IV. We conclude
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with a discussion of the import of our results and list some open
questions.

II. MAIN RESULT

Suppose there are nodes in the network and each node is
power-limited to , . Let denote the distance between
the nodes and for . As stated in the Introduction, our
main result is the following theorem.

Theorem 2.1: Consider an arbitrary configuration of nodes
in the plane. With no CSI at the nodes, the transport capacity is
upper-bounded by

(5)

With full CSI at the nodes, the transport capacity is further
upper-bounded by

(6)

Proof: Suppose now that we divide the nodes by parti-
tioning into complementary sets and with cardinali-
ties and . There are two key ideas used in the proof.

1) We can bound the sum-rate of communication across a
given cut by the capacity of a point-to-point, fading ad-
ditive white Gaussian noise (AWGN) channel with
transmit and receive antennas.

2) We can use a random straight line to geographically par-
tition the nodes and then average the bound over the dis-
tribution of this line to arrive at a bound on transport
capacity.

We begin with the no-CSI model. Now suppose that after we
partition into and , a genie provides CSI to only the
nodes in . Clearly, more information can only result in a
larger rate. The assumption that only the nodes in know
the channel realizations is equivalent to the assumption of re-
ceiver-only CSI in a multiple-input multiple-output (MIMO)
channel . For any given cut-set partition, the
sum rate of communication across the cut is then upper-bounded
by the capacity of such a MIMO channel

(7)

Here we have normalized the variance of the background
AWGN to unity. If we model the processes as inde-
pendent and the stationary distribution to be symmetric around
the origin, then one can show that the optimal covariance
matrix is diagonal, i.e., the maximum in (7) is attained with

for . This result has been
shown in somewhat different ways in the literature [5], [9]–[11].
We provide a simple proof in the Appendix for completeness
(expressed as (35)). Evaluating (7) for this diagonal and
using the fact that the determinant of a Hermitian matrix is

at most as large as the product of its diagonal entries (the
Hadamard inequality), we obtain the following:

(8)

(9)

The last two steps are obtained by applying Jensen’s inequality
and the fact that . Now suppose that this parti-
tioning of was accomplished by a uniformly random straight
line, geographically splitting the network into and . Since
there is a finite number of nodes, we can circumscribe them by
a circle, the radius of which we will denote by .

Suppose that this random line is parameterized by polar
coordinates which are each independently and uniformly
distributed over and , respectively (see Fig. 1).
Then it is easy to show that the probability of a uniformly
random line cutting any two nodes is exactly .

This also follows from the following classical result from sto-
chastic geometry (see [8]): Let be a bounded convex set in
and be a curve of finite length. Then, the expected number
of times a random line intersects is equal to ,
where is the length of the curve and is the
perimeter of the set .

Here is a circle of radius and is the line joining the
nodes and . This result allows us to express transport ca-
pacity (2) as the supremum (over all feasible rate vectors) of
the (scaled) average of the sum-rates of communication across
all cuts generated by a uniformly random line. If we let de-
note the indicator function of the event (defined to be one if

is true and zero otherwise), and let denote the expectation
operator with respect to the distribution of the cut-sets
generated by the uniformly random line, we can express this fact
in the following way:

(10)

Here we used the fact that

implies that

since, given a random line realization, the assignment of
is unique up to a permutation, both permutations

being equally likely. Scaling (10) by and taking the
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Fig. 1. Uniformly random line L partitioning the n-node network.

supremum over all feasible rate matrices , one
arrives at the transport capacity as defined in (2). Thus, we can
find upper bounds on by first upper-bounding the sum-rate
across each cut and then averaging (and scaling) this bound
over all cuts. In particular, from (9) we have that

thus proving the first part of the theorem.
We now turn to the full CSI model. Here, full CSI is available

at both the transmitter and receiver in a MIMO channel. Thus,
the sum-rate bound on the communication across the cut, for a
given partition, now takes the form

(11)

Here is the th row of . Every principal minor of a posi-
tive semidefinite matrix is nonnegative. Every principal minor
of a positive semidefinite (p.s.d.) matrix is nonnegative. In par-
ticular, if is a p.s.d. matrix then . We use this
fact to get

Substituting this calculation in (11) and using the independence
of the small-scale variations between different channels (and

our normalization of the average amplitude of the small-scale
variations to unity) we arrive at a bound on the sum-rate

(12)

As before, we average (12) over the cut-sets by observing that
the probability that the node and the pair of nodes are cut
by a uniformly random line cannot be larger than the probability
of cutting either the nodes and or nodes and . We pick
the smaller of the two probabilities, , for the upper
bound. Multiplying the resulting average by , we obtain
(6), thus proving the theorem.

III. SCALING LAWS FOR MINIMUM-DISTANCE NETWORKS

In this section, we look at the applicability of our upper
bounds on transport capacity derived in Section II to some
specific network topologies. In particular, we consider min-
imum-distance networks, where any pair of nodes is separated
by a distance at least . We consider networks on a
line and on a plane. Our main goal is to characterize the rate of
growth of the upper bounds to transport capacity as a function
of the number of nodes. We denote as a uniform upper bound
to the average transmit power constraints of the radios.

Corollary 3.1: Suppose the nodes lie on a line at a distance
of at least from each other. With no CSI at the nodes,
the transport capacity is upper-bounded by

for all . With full CSI at the nodes, the transport capacity
is upper-bounded by

(13)

as long as . Here , a finite number for
, is the Riemann-zeta function and

Proof: We first consider a regular linear network in which
the consecutive nodes are equally spaced on the real line with
node at for .2 For
such a configuration of nodes, for . We
evaluate the expression (5) by observing that choosing
yields the largest inner sum (over all )

2Since we are deriving an upper bound we can always, if necessary, add an-
other node to make n odd.
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Now suppose the nodes are arbitrarily positioned on a line with
being the smallest distance between any two nodes. Then

we can move the nodes in by shrinking the distance between
any two consecutive ones down to so that for ,

. Consequently, the upper bound to transport capacity
is largest for the regular linear network and we have shown the
first part of the corollary.

Let us turn to the full CSI model. Again, it suffices to consider
regular linear networks. Since now the nodes have full CSI we
must evaluate the expression (6). We again observe that setting

yields an inner sum (over all other nodes , ) larger than
for any other node . Thus,

(14)

We are interested in , the decay rate even in free space,
where we have the lower Riemann sum

(15)

Using (15) to upper-bound the inner sum in (14), we get

(16)

The above constant is well defined for all : It is
upper-bounded by and decreases monoton-
ically to zero as grows. Here is arbitrary. Denoting the
constant in (16) by we obtain the statement of our claim
in (13).

The following corollary establishes a similar result for planar
networks.

Corollary 3.2: Suppose that the nodes lie on a plane at a
distance of at least from each other. With no CSI at
the nodes, the transport capacity is upper-bounded by

for . With full CSI at the nodes, the transport capacity
is upper-bounded by

(17)

for .
Proof: Consider an arbitrary planar network with min-

imum distance and let us begin with the no-CSI

model. To upper-bound the transport capacity we need to
evaluate the expression in (5)

(18)

We pick one of the nodes, say , and wish to evaluate the inner
sum (over all ) in (5). The value of this quantity will
depend upon the actual geographic configuration of the nodes.
However, we can find an upper bound to it by counting the
greatest possible number of nodes at any given distance from

. Observe that at a distance of from there are at most
nodes. Suppose that we move the nodes lying in the an-

nulus formed by circles of radius and to a
distance of from node . Since there are at most

such nodes, the overall number of nodes at distance
from node cannot be larger than . Note
that moving nodes closer to only further upper-bounds the
quantity . Continuing from (18), our upper

bound on transport capacity is

This proves the first part of the corollary.
Now consider the full CSI model. This time we evaluate the

expression (6) to bound the transport capacity. We use the same
counting arguments as those used in the proof of the first state-
ment of this corollary to get

(19)

Since the only difference here from (14) is that is reduced by
, we have shown the claim in (17).

IV. SCALING LAWS FOR RANDOM NETWORKS

In the previous section, we considered arbitrary linear and
planar network configurations under the assumption that no two
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nodes can be closer than a distance of . To test the
robustness and generality of our approach, we introduce random
perturbations in the locations of the nodes. As a first step to
tackling this problem, we observe the following simple result, a
proof of which can be found in [6, Sec. III].

Given a random process and functions and ,
we will use the shorthand notation to mean the
following:

for all but finitely many

Lemma 4.1: Suppose there are urns and we are given
indistinguishable balls to distribute among them. Further, sup-

pose that we are equally likely to place any of the balls in any
of the urns. Let represent a realization of
the locations of balls in urns, i.e., let be the number of
balls that fall in urn . Thus, is a random process, in-
dexed by , of realizations of ball locations. Then, we have that

.

We now proceed to apply this result to linear and planar
random networks. Let denote the random process of
realizations of network configurations, indexed by the number
of radios . We will write to emphasize the fact that
the transport capacity is a function of this random process.

Theorem 4.2: Suppose that is a collection of nodes
whose locations are independently and uniformly distributed on
a straight line of length . With no CSI at the nodes, we have
that

for all . With full CSI at the nodes, we have that

as long as .
Proof: Suppose that the nodes in the network have

no CSI and that their locations are uniformly and independently
distributed on the line segment . We will use letters and

to denote the nodes (and, interchangeably, their locations)
in , and to denote the cardinality of set . Identifying
the urns in Lemma 4.1 with the intervals , we get that

for each .
Suppose that, given a fixed , we move the nodes lying

in to the point if or to the point if .
At the remaining points in we add nodes, since this
can also only further increase transport capacity. The result is a
regular linear network with at most (in the sense of “ ”)
nodes at distance from , for each . We now use this
construction of regular networks to upper-bound expression (5)
for the random network

(20)

Here, as before, we use to denote . The in-
equality (20) was obtained by observing that choosing
yields the largest inner sum (over ). Note that the bound is valid
only for . Thus, the first part of the theorem is proved.

Now suppose the nodes have full CSI. A procedure identical
to the one described above is used to generate, for each

, a regular linear network with at most nodes at each
distance from . We then proceed to upper-bound (6)

(21)

Inequality (21) was obtained using the observation that choosing
yields the largest inner sum (over all , ). With the

notation from (16) we get that, for

which proves the second part of the theorem.

Theorem 4.3: Suppose that is a collection of nodes
whose locations are independently and uniformly distributed on
a square of area . With no CSI at the nodes, we have that

as long as . With full CSI at the nodes, we have that

as long as . Here

is a finite number for .
Proof: Assume that the nodes have no CSI. Suppose that

we partition the square (of area ) in which the network lies,
into squarelets , each of unit area. This forms a
regular grid

Identifying the urns in Lemma 4.1 with the squarelets , we
get that for each . Now, pick any
vertex . Suppose that we move the nodes that fall in each
squarelet of onto the squarelet vertex that is the closest, in
the Euclidean sense, to . At the remaining “empty” vertices in

we add nodes, since this can also only further increase
transport capacity. This will result in a regular planar network
but with multiple nodes at each vertex. In particular, there will
be at most (in the sense of “ ”) nodes at each vertex in
some subset , at most nodes at each vertex in
the complement of in , and at most nodes at (see
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Fig. 2. The grid for a random network on a plane. As indicated by the
arrows, the nodes in each squarelet are moved to the squarelet vertex closest to
vertex vvv.

Fig. 2). In other words, the largest possible number of nodes at
any is

Now, let be the central node. Then we see that on the square
of perimeter centered at there are vertices, for

. By inspecting Fig. 2 we see that four of these
vertices will have at most nodes and the rest,
vertices, will have at most nodes. Suppose that we move all
of the nodes at these vertices onto the circle of radius centered
at . Then we will get a total of at most nodes
at each distance from . We then have,
starting from (5), the following sequence of upper bounds:

(22)

We thus arrive at the claimed upper bound, for

Now suppose that the network nodes have full CSI. A proce-
dure identical to the one described above is used to generate, for
each , a regular planar network with at most (in the sense
of “ ”) nodes at each vertex . We then have

Here the last step follows from observing the similarity to (21)
with replaced by . Thus, the condition on for the upper
bound to hold is now .

V. SCALING LAWS FOR NETWORKS WITH A TOTAL

POWER CONSTRAINT

We have considered networks in which the nodes are individ-
ually power limited and have observed essentially scaling
of upper bounds to transport capacity of minimum distance and
random networks. In this section, we would like to study the sen-
sitivity of this scaling law to individual power constraints of the
nodes. In particular, we allow arbitrary distribution of power to
the radios in the network (constraining the total transmit power
to grow linearly in the number of radios). We will see that with
this extra degree of flexibility, approximately parallel
channels can be created in the cut-set bound. As before, we
begin with linear networks then moving on to planar networks.

Theorem 5.1: Suppose the nodes lie on a line at a distance of
at least from each other. Further, the signal decay pa-
rameter . With no CSI at the nodes, the transport capacity
is upper-bounded by

With full CSI at the nodes, the transport capacity is upper-
bounded by

Proof: We begin with no CSI at the nodes. Suppose that
the nodes are allowed to distribute a total power of among
each other. Then, by partitioning the network with a uniformly
random line , we will observe a total power of, say, in
and in . Examining (10), we observe that
transport capacity can also be expressed as the supremum (over
all achievable rates) of

where denotes the expectation operator with respect to the
distribution of the line . Now, applying the MIMO channel
bound with a total power constraint of to the first sum-rate
in the above we expression we obtain

where . A similar expression is true for the
second term but with replaced by and replaced by

. We first claim that the optimal covariance matrix of this
maximization problem is again diagonal, allowing the reduc-
tion of the constraint set to all p.s.d. diagonal matrices
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for which the trace constraint is satis-
fied (see (39) in the Appendix for the justification). We also note
that the nonzero eigenvalues of are equal to the nonzero
eigenvalues of so that

Applying the Hadamard bound and Jensen’s inequality and then
adding the two sum-rate terms we get (23) at the bottom of the
page, where we have used to denote the powers of the nodes
in , and where we have defined the set

Now, allowing , and collecting the two terms
we obtain a further upper bound

(24)

(25)

Since the function that is being maximized is concave and is
defined on a convex compact set, the maximum value is also
given by the dual problem

Here is the Lagrangian of the primal problem and is
given by

(26)

We have used to denote . Classical water-
pouring of over tells us that the maximum of
over is given by

(27)

Here we have defined and the function
if and zero otherwise.

As in Section III, it suffices to consider a regular linear net-
work with nodes spaced by a distance of exactly .
Further, we only focus on because, according to (24),
the smaller the node separation, the greater the upper bound on
transport capacity. Note that for a linear regular network at
we have that . Thus, by the upper Riemann
sum

(28)

We choose and use (28) to obtain

(29)

Substituting this calculation into the upper bound in (25), we
obtain the statement of the theorem.

Now consider the full CSI model. The usual bound on the
sum-rate of communication from to is

Here we have, again, used to denote the th row of . Now
note that, for any given row vector , the maximum of

over all p.s.d. matrices with unit trace constraint is

achieved by . Therefore,

Now, using Jensen’s inequality to further upper-bound the sum-
rates in both directions across the cut and then averaging the
result over the distribution of the cut, we arrive at

Just as in the proof of the first part of the theorem, we can further
upper-bound transport capacity by letting to
get

(30)

(23)
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We substitute the approximation (28) into the preceding expres-
sion, and bound the resulting sum with the following integral:

Observing that for linear networks, we obtain the state-
ment of the theorem.

Theorem 5.2: Suppose the nodes lie on a plane at a distance
of at least from each other. With no CSI at the nodes,
the transport capacity is upper-bounded by

for and with . With full CSI at the nodes, the
transport capacity is upper-bounded by

for .
Proof: We begin with the no-CSI model first and follow

the derivation used in the proof of the first part of Theorem 5.1
to arrive at

(31)

Consider an arbitrary straight-line cut of the circle of radius
containing the nodes. Consider a new configuration of

nodes in for which the quantity

is maximized for each while still honoring the minimum
distance property. Then the bound (31) on the sum-rate of com-
munication across this cut will be larger than that of any other
node configuration in . To maximize our upper bound on

Fig. 3. Hexagonal packing of nodes for n = 25.

overall transport capacity, we would like a single-network con-
figuration to have this property for all possible straight-line cuts.
Such a minimum-distance network configuration must have the
property that each node be surrounded by the greatest possible
number of nodes at a distance of from it. To see that this
must be so, suppose that there exists a node, call it , which has
one fewer than the maximum number of nodes at distance
from it. Suppose further that the node that is missing, call it ,
is actually at a distance of from , for . Then
we can choose to partition the network with a straight line that
cuts and and intersects the circle of radius around .
Clearly, the value of for this cut is less than what it would be
if was exactly away from . Thus, for a network con-
figuration to be optimal in the sense of maximizing the bound
on transport capacity, it must have such a “dense” packing of
nodes.

Now, at a distance of from each node there can be at
most six other nodes that are also at a distance of from each
other. Since this is true for each node, the network configuration
that maximizes our bound on transport capacity is the hexagonal
packing of nodes in the plane (see Fig. 3). We now proceed to
upper bound the transport capacity of such a network.

As before, it suffices to consider the center-cut. The enumer-
ation of the nodes in is top-to-bottom and according to the
pattern indicated in the figure. We claim that there is a bound
on that, as a function of , changes value only when

changes value. To see this, observe that for nodes ,
the closest node in is at a distance of . Likewise, for
nodes , the closest receiving node is at a
distance of , and so on. In particular, for , we
have that

To see this, we use a bounding procedure similar to the one in the
proof of Corollary 3.2: We pick any node in the given set and
note that there can be at most nodes at distance

from . Note that we can always extend the hexagonal
pattern by adding more nodes to ensure that this bound holds
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for all . In general, for any , we can
write

We can then further upper-bound the above expression by rec-
ognizing it as a Riemann sum

(32)

Further, we have an upper bound to the transport capacity by
choosing

in the Lagrange dual (cf. (26))

(33)

Observe that the number of nonzero terms in the above sum is
the same as the number of values of for which the argument of
the function is greater or equal to one. This number is no
more than . Thus, we have

Noting that for hexagonally arranged planar net-
works, we get the desired bound on transport capacity.

Now the nodes have full CSI and we only look at the regular
planar network (hexagonally arranged as in Fig. 3). We follow
the same steps as those used to derive an upper bound for the
linear regular network under full CSI in Theorem 5.1, to arrive
at the expression (30), which is replicated here for convenience

(34)

Here for planar networks is upper-bounded as, from (32)

where we have defined the constant . If we substitute

this upper bound for in (34), and note that for planar
networks, we get

We can upper-bound this sum with an integral, just as in (28),
to obtain

Performing the change of variable and restricting
ourselves to , we continue to upper-bound the integral

VI. DISCUSSION

We have applied our simple upper bounds to transport ca-
pacity to calculate an upper bound to scaling laws for certain
class of network topologies. While this bound matched the
scaling law with a simple multihop communication scheme,
care must be exercised in interpreting this result. In particular,
the preconstants for the lower bound and the upper bound to
the transport capacity are different and have to be taken into
consideration when constructing the communication strategy.

A key aspect to our study of scaling laws has been the con-
sideration of minimum-distance networks (or random networks
over a large area). The scenario where there is a crowding of
nodes in a fixed area is interesting and our upper bound tech-
niques are not useful in this setting; essentially spatial degrees
of freedom can be generated by close-by nodes. On the other
hand, the multihop communication strategy is interference-lim-
ited and the performance scales with area. More precisely, for a
fixed area, the upper bound using the cut-set technique yields a
scaling law of order while the multihop communication
yields a scaling law of order . Resolving this huge gap, either



JOVIČIĆ et al.: UPPER BOUNDS TO TRANSPORT CAPACITY OF WIRELESS NETWORKS 2565

by careful upper bound techniques or by cleverer communica-
tion strategies, remains an open problem.

APPENDIX

OPTIMALITY OF DIAGONAL COVARIANCE MATRICES

is a random matrix with mutually independent
entries (i.e., the real and imaginary parts of the entries of are
all independent). Further, we have that the marginal distribu-
tion of each of these random variables is symmetric around the
origin. Then consider the following claim:

(35)

Here we have written as the diagonal matrix with the th di-
agonal element equal to . The function being maximized is
strictly concave and the set over which it is maximized is convex
and compact. Thus, the maximization is attained and the max-
imal value is characterized by the Kuhn–Tucker conditions. The
Lagrangian for this problem is

The Lagrange variables for the diagonal and positive definite
constraints on the input are the nonnegative diagonal matrix

and positive semidefinite , respectively. The Kuhn–Tucker
conditions for the optimality of are

and

The derivative constraint can be rewritten as

(36)

Our main observation is that

(37)

is a nonnegative diagonal matrix. If we can show this, then we
are done: the choice and to the nonnegative diagonal
matrix in (37) satisfies the Kuhn–Tucker conditions in (36) with

. Consider the off-diagonal th element of
the matrix in (37), writing the th column of by

(38)

Here we have written

and used the matrix inversion lemma

whenever the terms exist. Now observe that , , are all
independent. Thus, conditioned on , we can use the symmetry
of the distributions of the elements of , around the origin
to claim that the right-hand side of (38) is equal to zero. This
justifies the claim in (35).

We can also make a related statement about the optimality of
diagonal covariance matrices for the no-CSI capacity with an
overall power constraint. In particular, consider the following
claim (analogous to (35)):

(39)

In other words, we can restrict the space of covariance ma-
trices from the cone of positive semidefinite matrices to the cone
of nonnegative diagonal matrices ( in (39) denotes a diag-
onal matrix). The proof of (39) follows in much the same way
we showed (35). The key component of the proof is to show
that with a diagonal , the Kuhn–Tucker conditions reduce to
those where the input space was already restricted to be diag-
onal matrices.
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