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1. Introduction

The classical two-armed bandit problem can be described in the context of findin
optimal choice between two slot machines, in which the reward distribution of each
chine is unknown. LetY 1

t andY 2
t denote the respective reward sequences at timet from

machines 1 and 2. The reward function is then defined as follows,

Wφ(t) =
t∑

τ=1

ατ

(
1{φτ =1}Y 1

τ + 1{φτ =2}Y 2
τ

)
,

where 1{·} is the indicator function,φτ , taking values in{1,2}, is the player’s strategy a
time τ , and{ατ } is a predefined discount sequence.

With the assumption that the distributions of{Y 1
τ } and{Y 2

τ } are unknown to the playe
the knowledge of which arm yields higher reward can only be gathered from samplin
arms often enough. However, this task of learning both arms inevitably limits the o
tunity of pulling the more rewarding arm. Our goal is to maximizeWφ(t) under various
conditions and discount sequences. Due to this inherent nature of coordinated learn
control, bandit problems have drawn much attention in various areas of statistics, c
learning, and economics, as in [1,7,9,14,18–21].

Typical optimality criteria include maximizing the expected reward limt→∞ E{Wφ(t)}
or maximizing the averaged expected reward limt→∞ E{Wφ(t)}/t . The former optimality
condition is usually considered either within a finite horizon setting:ατ = 1{τ�t0}, or with
an infinite geometric discount sequence:ατ = rτ , r < 1 [12,13], while the latter is more ap
propriate to situations with no discounting, namely,ατ = 1, ∀τ ∈ N. The unknown reward
distribution is often parametrized asFθ , where the rewards{Y 1

τ } and{Y 2
τ } are governed by

Fθ1 andFθ2. The decision maker has complete knowledge of the entire family{Fθ }θ∈�,
but the underlying parameter pair(θ1, θ2), taking values in�2, is unknown. Dynamic pro
gramming is the central technique for solving these problems. Further discussions
found in [7].

In this paper, we will focus on maximizing the averaged expected reward with no
counting, i.e.,ατ = 1, ∀τ ∈ N. Let µ1 andµ2 denote the expected returns of arms 1 an
under distributionsFθ1 andFθ2. By Wald’s lemma,E{Wφ(t)} can be rewritten as:

E
{
Wφ(t)

} = t · max{µ1,µ2} − |µ1 − µ2| · E
{
Tinf(t)

}
, (1.1)

whereTinf(t) is the total number of samples taken on the inferior arm up to timet . More
explicitly, Tinf(t) = ∑t

τ=1 1{φτ �= arg max(µ1,µ2)}. Since the term|µ1 − µ2| · E{Tinf(t)}
represents the expected cost of not knowing the preference betweenµ1 andµ2, it is often
called the “regret”, and is commonly considered in the literature of bandit problems
notational simplicity, in this paper, we will study the inferior sampling timeTinf(t). It is
worth noting that all expectations used in this paper depend on the unknownFθ1 andFθ2

and thus are functions of the parameter pairC0 = (θ1, θ2). Hence the termsE{Tinf(t)} and

EC0{Tinf(t)} are used interchangeably.
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1.1. Uniformly good rules

Lai and Robbins [19] considered bandit problems using a non-Bayesian min–m
proach with no discounting (i.e.,∀τ , ατ = 1), and in which the objective function
maxφ minθ1,θ2 EC0{Wφ(t)}. Recasting this problem in terms of minimizing the regret ra
than maximizing the rewards, this formalism leads to the following useful definition of
formly good rules.

Definition 1.1 (Uniformly good rules[19]). An allocation rule is uniformly good if fo
every possible(θ1, θ2) pair,EC0{Tinf(t)} = o(tα), ∀α > 0.

A log t lower bound on achievable regret has been proved for uniformly good
under various settings [5,18,19], and this is quoted as follows.

Theorem 1.1 (logt lower bound).For any uniformly good rule{φτ }, Tinf(t) satisfies

lim
t→∞ PC0

(
Tinf(t) � (1− ε) logt

KC0

)
= 1, ∀ε > 0, and

lim inf
t→∞

EC0{Tinf(t)}
logt

� 1

KC0

, (1.2)

whereKC0 is a constant depending onC0. If argmax(µ1,µ2) = 2, thenTinf(t) = T1(t) and
KC0 is defined1 as:

KC0 = inf
{
I (θ1, θ): ∀θ, µθ > µθ2

}
, (1.3)

whereI (θ1, θ) = Eθ1 log(dFθ1/dFθ) is the Kullback–Leibler(K-L) information number
betweenFθ1 andFθ , andµθ is the expected reward underFθ . The expression forKC0 for
the case in whicharg max(µ1,µ2) = 1 can be obtained by symmetry.

The asymptotic sharpness of the above lower bound is also proved in the above

Theorem 1.2 (Asymptotic sharpness).Under certain regularity conditions,2 the above
lower bound is asymptotically sharp. That is, given the family of possible distribu
{Fθ }, there exists a decision rule{φτ } such that for allC0 = (θ1, θ2),

lim sup
t→∞

EC0{Tinf(t)}
logt

� 1

KC0

,

whereKC0 is the same as defined in Theorem1.1.

1 Throughout this paper we will adopt the conventions that the infimum of the null set is∞, and 1/∞ = 0.
2 If the parameter space is finite, Theorem 1.2 always holds. If� is continuous, the required regularity cond
tions concern the unboundedness and the continuity ofµθ w.r.t. θ and the continuity ofI (θ1, θ) w.r.t. µθ .
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Remark. For arbitrary rules, one possible situation is that the decision rule sample
inferior arm afinite number of times (depending on the sample path), and thereafter
to the seemingly superior arm indefinitely. For such rules, we may have limt→∞ Tinf(t) <

∞ almost surely for certain values ofC0. However, since no forced sampling is perform
after a finite amount of time, one can prove thatEC′

0
{Tinf(t)} grows linearly for some othe

C′
0, and these rules are thusnotuniformly good. A uniformly good rule, on the other han

must always be skeptical, and keeps sampling the other arm infinitely often. Theore
guarantees that the probability of the inferior sampling timeTinf(t) exceeding logt/KC0

converges to one ast tends to infinity. In other words, the forced sampling times must g
at least on the order of log(t) with the minimum constant 1/KC0.

Henceforth we consider only uniformly good rules. As discussed, by limiting our f
to uniformly good rules, the possibility of almost sure finiteness ofTinf(t) is sacrificed,3

but acceptable performance is guaranteed for all possibleC0. Further results on uniforml
good rules within slightly different settings can be found in [2–6,15,16,19].

1.2. Bandit problems with side information

A common scenario in practice is that before making the decisionφt (at timet), another
random variableXt , taking values inX, can be observed. Suppose at time instantt , Xt = x.
The rewards(Y 1

t , Y 2
t ) are then governed by the conditional distributions4 Fθ1(·|Xt = x)

andFθ2(·|Xt = x), and have conditional expected returnµθ1(x) andµθ2(x). Additional
gain is expected once this new structure is exploited. It is worth noting that under thi
framework, the inferior sampling timeTinf(t) is defined slightly differently as

Tinf(t) =
t∑

τ=1

1
{
φτ �= arg max

(
µθ1(Xτ ),µθ2(Xτ )

)}
,

and the traditional two-armed bandit without side observationsXt can be viewed as
degenerate case in which the range ofXt contains only one element:X = {x0}.

This idea was first introduced by Woodroofe [24], where an independent and iden
distributed5 (i.i.d.) {Xτ } was considered. Contrary to the traditional bandit problems (w
out side information), Woodroofe proved that even a myopic approach becomes asy
ically optimal, assuming the governing conditional distributionsFθi

(·|Xt) are Gaussian
with meansθi + Xt and variances 1. Sarkar [22] extended the simple relationship in
to exponential families. [23] focused solely on i.i.d.{Xτ }, and various levels of asymptot

3 It will be shown in this paper that under certain scenarios, the almost sure finiteness ofTinf(t) can be recovered
by exploiting the side information.

4 The term “side observation” implies that the distribution ofXt depends on the upcoming rewardsY1
t andY2

t .
Nevertheless, sinceXt is observed before deciding which arm to pull, it is more convenient to reverse the
ditional probability using Bayes’ formula and viewXt as the basic quantity while letting the distributions ofY1

t

andY2
t depend on the value ofXt . Formal description of this underlying relationship among{Xτ }, {Y1

τ }, {Y2
τ },

and(θ1, θ2) can be found in Section 2.1.
5 In the literature of bandit problems, the commonly used term “i.i.d. side observation{Xτ }” refers to a mar-
ginally i.i.d. {Xτ }. Namely, after averaging over{Y1
τ } and{Y2

τ }, {Xτ } becomes an i.i.d. random process.
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τ }, {Y 2

τ })
into four separate categories, which included the results in [22,24] as special cases
approaches regarding side observations can be found in [10,17,25].

Results of [22–24] suggest that the benefits of side observations for bandit pro
are not due to therandomappearance of all valuesx of the i.i.d.{Xτ }, but rather are du
to theevenlydistributed appearance of all possiblex. In this paper, we further extract th
essential properties of “evenly distributed appearance” and investigate their effects
attainable results. Our results generalize the benefit of side observations to a wide r
non-i.i.d. processes.

1.3. Examples of uniformly good rules and side information

Here we provide several examples illustrating the benefits of side information.
SupposeY 1

t andY 2
t are two Bernoulli random variables, which denote the succes

transmitting a single information block over a communication channel at timet , under
different modulation techniques MD1 and MD2. The channel characteristics depend
unknown parameter pairC0 = (θ1, θ2), which might represent the propagation coefficien
the number of paths in a multipath channel, the K-factors of Rician channels, etc. Th
informationXt (not necessarily i.i.d.) might be a noisy measurement of the paramete
(θ1, θ2), or geographical information about the receiver, orXt could be a pair containin
both of these types of information. In the following examples, the range ofθ andx are sim-
plified as{1,2,3,4} or {1,2,3}, and the governing conditional distributionsFθ(·|Xt = x)

are Bernoulli with success probabilitypθ,x . The entire family of conditional distribution
can then be specified by a matrix(pθ,x), and we will discuss the following three example

Example 1.

(pθ,x) =
(0.4 0.3 0.6

0.5 0.5 0.5
0.6 0.7 0.4

)
.

Example 2.

(pθ,x) =
(0.4 0.3 0.2

0.5 0.5 0.5
0.6 0.7 0.8

)
.

Example 3.

(pθ,x) =



0.4 0.4 0.5
0.5 0.5 0.4
0.6 0.6 0.6
0.7 0.8 0.9


 .

Suppose{Xτ } is an i.i.d. (see footnote 5) sequence with its marginal uniformly dis

uted among{1,2,3}. For any parameterθ , if we ignore the side informationXt , the player
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is then facing a Bernoulli distribution with parameterpθ− := (pθ,1 + pθ,2 + pθ,3)/3. Sup-
pose the true parameter pairC0 = (θ1, θ2) equals(1,2) (unknown to the player). By
Theorem 1.1, limEC0{Tinf(t)}/ logt � 1/KC0, whereKC0 is 0.0358= I (p1−,p3−) for Ex-
ample 1, 0.3389= I (p1−,p3−) for Example 2, and 0.0564= I (p1−,p3−) for Example 3.

[23] shows that by exploitingXt , these logt lower bounds can be surpassed, and h
different levels of improvement. For Example 1, there exists a uniformly good ruφt

achieving bounded expected rewards: limt→∞ E{Tinf(t)} < ∞. For Example 2, the per
formance is still logt lower bounded, but a smaller constant 1/K ′

C0
can be achieved

lim EC0{Tinf(t)}/ logt � 1/K ′
C0

with K ′
C0

= I (p1,3,p3,3) = 0.8318. For Example 3, ther
exists a uniformly good rule admitting bounded limt→∞ E{Tinf(t)}.

[23] also demonstrates that the amount of improvement may depend on the un
value of (θ1, θ2). Within the setting of Example 3, if the unknown(θ1, θ2) equals(2,3)

instead of(1,2) (contrary to the previous discussion), it can be proved that no rule
achieve boundedE{Tinf(t)} and the minimum regret is still logt lower bounded. The bes
achievable constant in front of logt becomes 1/K ′

C0
with K ′

C0
= I (p2,3,p4,3) = 0.7507.

For comparison, the traditional logt lower bound (ignoring side observations) is logt/KC0,
KC0 = I (p2−,p4−) = 0.2716.

These three examples possess different internal structures and thus the side obse
provide different improvements. In Sections 3 through 6, we will show that these imp
ments over traditional bandit problems can be achieved with a more general class oXt ’s,
including but not limited to i.i.d. sequences, Markov chains, and fixed periodic seque

This paper is organized as follows. In Section 2, we provide a rigorous formul
of side-observation-aided bandit problems and give formal definitions of several
distribution” properties, examples of each such property, and relationships among th
Sections 3 through 6, we provide results for various relationships among{Xτ }, {Y 1

τ }, and
{Y 2

τ } with the satisfaction of the “even distribution” properties defined in Section 2.2
results in [23], obtained under the assumption of i.i.d.{Xτ }, hold as special cases und
this new framework, which includes many other side observation processes (e.g., M
chains and periodic sequences) as well. Section 7 provides a summary table and a
necessary condition concerning the extent of the benefit obtained from observing{Xτ }.
Section 8 concludes the paper.

2. Formulations

2.1. Side information

To characterize explicitly the correlation amongC0 = (θ1, θ2), {Xτ }, {Y 1
τ } and {Y 2

τ },
the probability distribution of the two-armed bandit with side observations is modell
follows. At timest1, . . . , tk , the joint probability distribution of(Xti , Y

1
ti
, Y 2

ti
)i=1,...,k is

Gt1,...,tk |C0(xt1, . . . , xtk )

k∏
i=1

Fθ1

(
y1
ti

∣∣xti

)
Fθ2

(
y2
ti

∣∣xti

)
, (2.4)

whereGt1,...,tk |C0(xt1, . . . , xtk ) is the finite cylinder distribution of the side informatio

{Xτ }, which may or may not depend onC0. Both families of distributions,{G···|C0}C0 and
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{Fθ(·|x)}θ , are known to the decision maker, and only the true value ofC0 is unknown.
There is few restriction onX and�, the ranges ofXt andθ . To significantly simplify the
notation, bothX and� are assumed to be subsets ofR.

Some useful notation is as follows.

MC0(x) := arg max
(
µθ1(x),µθ2(x)

)
,

which denotes the index of the more rewarding arm (having higher conditional exp
rewardµθi

(x)) given the side observationXt = x. For any configuration pairC0 = (θ1, θ2),
we may use 1(C0) := θ1 and 2(C0) := θ2 to denote the first and second coordinates of
configuration pairC0. For example,µ2(C0)(x) = µθ2(x) andF1(C0)(·|x) = Fθ1(·|x).

Remark 1. For example, a bandit problem with i.i.d. side observation sequence m
Gt1,...,tk |C0(xt1, . . . , xtk ) = ∏k

i=1 Gti |C0(xti ) = ∏k
i=1 Gt1|C0(xti ).

Remark 2. The concept of the i.i.d. bandit is now extended to the assumption that
ditioning on the sequence{Xτ }, {Y i

τ } is a sequence of independent rewards fori = 1,2.

2.2. Even distribution properties

Our goal is to extract the essential “evenly distributed” properties of a side obs
tion process that are beneficial to uniformly good rules. Three levels of evenly distri
properties will be formally defined in this subsection.

SupposeXt takes values in a finite state setX, and the relative frequency ofx up to time
t is denoted asfr(x, t) = (

∑t
τ=1 1{Xτ = x})/t .

Definition 2.1 (Evenly distributed inL1). {Xτ } is evenly distributed inL1 if

∀x ∈ X, π(x) := lim inf
t→∞ E

{
fr(x, t)

}
> 0.

Definition 2.2 (Evenly distributed in probability series). {Xτ } is evenly distributed “in
probability series” if there exists a strictly positive mappingπ(·) > 0, such that

∀x ∈ X, E

{ ∞∑
τ=1

1
{
fr(x, τ ) < π(x)

}}
< ∞.

This property automatically implies that∀x, lim inf t→∞ fr(x, t) � π(x) almost surely.

Definition 2.3 (Uniformly strongly evenly(u.s.e.) distributed inL1). {Xτ } is u.s.e. distrib-
uted inL1, if for any stopping timeT , the conditional expectation of the first hitting tim
of x afterT has a global upper bound. That is,∃B < ∞ such that

∀T , ∀x ∈ X, E
{
HT (x)|T }

� B,
whereHT (x) � inf{l > 0: XT +l = x}.
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It is easy to verify that these three properties hold for non-degenerate i.i.d. sequ
Markov chains, and fixed periodic sequences, which shows the generality of these
of distributions.

Remark. It can be shown that each of Definitions 2.2 and 2.3 implies Definition 2.1,
Definition 2.2 does not imply Definition 2.3. Whether Definition 2.2 can be derived f
Definition 2.3 remains an open problem.

The following four sections are devoted to determining even distribution propertie
are sufficient for different levels of improvement.

3. Case 1: direct information from side observations

In this setting, the side observationXt directly reveals information aboutC0 = (θ1, θ2).
As a result, the dilemma between learningC0 and control (sampling the superior arm) c
be solved by learningC0 from Xt and sampling the seemingly better arm,Y 1

t or Y 2
t . The

formal definition of this situation is given below and can be viewed as an identifia
condition.

Definition 3.1 (Direct information). If C0 �= C′
0, then∃t1, . . . , tk , such thatGt1,...,tk |C0 �=

Gt1,...,tk |C′
0
.

3.1. Scheme of separating learning and control

Since we are able to obtain information aboutC0 from {Xτ }, it is natural to sample onl
the seemingly better arm while leaving the learning task to{Xτ }. A corresponding contro
schemeφt can be described as Algorithm 1, an algorithm executed at time6 t .

Algorithm 1 (φt , the decision at timet)

1: Obtain an estimatêCt based on the side observationsX1, . . . ,Xt . 2: Setφt = M
Ĉt

(Xt ).

To further bound the performance of this scheme, we need the following conditio

Condition 3.1. For any fixedC0 and any convergent sequence{Ĉτ } → C0, there existsτ0
such that∀x ∈ X andτ > τ0, M

Ĉτ
(x) = MC0(x).

Example 4. Suppose� = R and X ⊂ R is finite. If ∀x ∈ X, µθ(x) is continuous with
respect toθ , then Condition 3.1 is satisfied.

Example 5. Suppose� andX are arbitrary subsets ofR. If Fθ(·|x) ∼ N (θx,1), a standard
Gaussian distribution with meanθx, then Condition 3.1 is satisfied.

6 “At time t ” means after observingXt but before the decisionφt is made. It is basically the moment when w

are determining the value ofφt .
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Theorem 3.1. Suppose both Definition3.1and Condition3.1are satisfied. For allC0 and
any sequence of estimates{Ĉτ }, there existsε > 0 such that Algorithm1 satisfies

lim
t→∞

EC0{Tinf(t)}∑t
τ=1 PC0(|Ĉτ − C0| > ε)

� 1.

A detailed proof is given in Appendix A.
The above theorem provides an upper bound on the best achievable expected

sampling time, and is illustrated in the following examples.

Example 6. Suppose{Xτ } is an i.i.d. sequence with marginal distributionGC0 on R, and
the mapping fromC0 to GC0 is one-to-one. Then by the large deviations theorem
R, there exists{Ĉτ } such that∀C0, ε > 0, limt→∞

∑t
τ=1 PC0(|Ĉτ − C0| > ε) < ∞. By

Theorem 3.1,∀C0, we have limt→∞ EC0{Tinf(t)} < ∞, and thus the proposed scheme
uniformly good.

Example 7. Suppose{Xτ } is a finite Markov chain with transition matrixAC0, and the
mapping fromC0 to AC0 is one-to-one. Then by similar reasoning as in the i.i.d. c
there exists a uniformly good rule such that∀C0, limt→∞ EC0{Tinf(t)} < ∞.

Example 8. Consider the case in which{Xτ } is a deterministic sequence denoted
{xτ }C0. If the mapping fromC0 to {xτ }C0 is one-to-one, and� is finite, we can easily
find {Ĉτ } such that∀C0, ε > 0, limt→∞

∑t
τ=1 PC0(|Ĉτ − C0| > ε) < ∞. Hence∀C0,

limt→∞ EC0{Tinf(t)} < ∞, and the proposed scheme is uniformly good.

4. Case 2: best arm as a function of Xt

In Sections 4 to 6, we turn to another formalism for the interaction ofXt with the
bandits. In particular, here and in the following two sections, we consider the situ
in which the distribution of{Xt } is not a function ofC0, namely,Gt1,...,tk |C0 := Gt1,...,tk .
For convenience, we will assume throughout these three sections thatX ⊆ R. Three case
offering further refinements concerning the relationships betweenMC(x) andx will be
discussed separately (one in each section).

4.1. Formulation

In this section, we assume that the side observationXt is alwaysable to change th
preference order, formally defined as follows and illustrated in Fig. 1.

Definition 4.1 (Best arm is a function ofXt ). ∀C ∈ �2, there existx1, x2 ∈ X, such that
MC(x1) = 1 andMC(x2) = 2.
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Fig. 1. The best arm at timet is a function of the side observationXt . That is, for any possible pairC = (θ1, θ2),
the two curves,µθ1(x) andµθ2(x) (as a function ofx) always intersect each other.

Three necessary regularity conditions are as follows.

R1: X is finite.

R2: I (θ1, θ2|x) is finite and strictly positive for all possibleθ1, θ2, andx, where the condi
tional K-L information numberI (θ1, θ2|x) is defined as the K-L information betwee
the conditional distributionsFθ1(·|x) andFθ2(·|x).

R3: � ⊆ R, and∀x, µθ(x) is continuous as a function ofθ .

An example that satisfies these regularity conditions is as follows:

• � = (0,∞), X = {−1,1}, and the conditional reward distributionFθ(·|x) ∼ N (θx,1).

Remark. R1 embodies the idea of treatingXt as the index of several different bandit pro
lems, which also simplifies our proof. R2 ensures that all these different bandit pro
are non-trivial, i.e., they havenon-identicalarms.

4.2. Scheme with boundedlimt EC0{Tinf(t)}

Although no information aboutC0 is revealed through observingXt , significant im-
provement, i.e., bounded limt EC0{Tinf(t)}, can be obtained when the best arm is a func
of Xt . This is seen from the following result.

Theorem 4.1. Suppose the best arm is a function ofXt as in Definition4.1, and regularity
conditionsR1, R2, and R3 are satisfied. If the side observation sequence{Xτ } is evenly
distributed in probability series, then there exists a uniformly good rule{φτ } such that∀C0,

the expected inferior sampling time is bounded:
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∀C0, EC0

{
Tinf(t)

}
� lim

t→∞ EC0

{
Tinf(t)

}
< ∞.

Thelogt lower bound for traditional bandit problems is thus surpassed.

Remark. Although the side observationXt does not reveal any information aboutC0, the
even distribution ofXt on different valuesx results in the alternation of the best a
MC0(Xt ). With this alternation, it is then possible to always pull the seemingly b
arm M

Ĉt−1
(Xt ), and simultaneously sample both arms often enough. Since the info

tion about both arms will be implicitly revealed (through the alternation ofMC0(Xt )), the
dilemma of learning and control no longer exists, and this is where the major improve
(limt→∞ EC0{Tinf(t)} < ∞) comes from.

Algorithm 2 (φt+1, the decision at timet + 1)

Variables: Let T x
i (t) denote the total number of time instants until timet whenXτ = x and

armi has been pulled, i.e.,

T x
i (t) :=

t∑
τ=1

1{Xτ = x, φτ = i}, and x�
i := argmax

x

{
T x

i (t)
}
, T x�

i (t) := max
x

{
T x

i (t)
}
.

ConstructCt ⊆ �2 as follows:

Ct =
{
C = (θ1, θ2) ∈ �2: σ(C, t) � inf

{
σ(C, t): C ∈ �2} + 1

t

}
,

where

σ(C, t) := ρ
(
F1(C)

( · |x�
1

)
,L

x�
1

1 (t)
) + ρ

(
F2(C)

( · |x�
2

)
,L

x�
2

2 (t)
)
,

andLx
i (t) is the current empirical measure of rewards sampled from armi at those time

instants whenXτ = x. (Here,ρ denotes the Prohorov metric7 over distributions onR.)
After constructingCt , arbitrarily chooseĈt ∈ Ct .

Algorithm:

1: if t + 1 � 6 then
2: φt+1 = t + 1 mod 2.
3: else if ∃i such thatTi(t) <

√
t + 1 then

4: φt+1 = i.
5: else
6: φt+1 = M

Ĉt
(Xt+1).

7: end if

Note that lines 1 and 2 guarantee that in line 3, there is at most onei satisfyingTi(t) <√

t + 1.
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An example scheme{φτ } achieving limt EC0{Tinf(t)} < ∞ is described in Algorithm 2
The intuition behind Algorithm 2 is as follows. Since the forced sampling mecha

(in line 3) guarantees that each arm will be sampled often enough, at leastO(t1/2), the
expected duration of{|Ĉt − C0| > ε} is bounded. As a result, most of the timeĈt andC0
will have the same arm preference andTinf(t) will be mostly contributed to by choice
φt+1 = i (line 4) instead of choicesφt+1 = M

Ĉt
(Xt+1) (line 6). However, if we apply

Algorithm 2 to traditional bandit problems, this forced sampling mechanism (line 3
evitably results inO(t1/2) inferior samplings, which is too often for a uniformly goo
rule. But when applied to a side-observation-aided bandit problem, the alternating
of MC0(x) in Definition 4.1 and the even distribution property of{Xτ } make the myopic
approachφt+1 = M

Ĉt
(Xt+1) automatically sample both arms evenly. BothT1(t) andT2(t)

will grow linearly with t , and the forced sampling mechanism will rarely be triggered
a result, limt→∞ EC0{Tinf(t)} is finite in Algorithm 2. A detailed analysis is provided
Appendix B.

5. Case 3: best arm is not a function of Xt

Following Section 4, we assume thatXt reveals no information aboutC0, i.e.,GC0 = G.
In this section, we consider the case in which∀C0, Xt neverchanges the preference ord
This setting is illustrated in Fig. 2 and is formally defined as follows.

Definition 5.1 (Best arm is not a function ofXt ). Given anyC = (θ1, θ2), the preferred
arm MC(x) is constant for all possiblex ∈ X. That is, we can useMC as shorthand fo
MC(x).

Fig. 2. The best arm at timet is not a function of the side observationXt . That is, for any possible pair,(θ1, θ2),
the two curves,µθ1(x) andµθ2(x), do not intersect each other. In this case, we can postpone our samplin

the most informative time instants.
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Within the three regularity conditions:

R1: X is finite,
R2: ∀θ1, θ2, x, the conditional K-L information numberI (θ1, θ2|x) is finite and strictly

positive, and
R4: the parameter space� ⊆ R can be relabelled,8 so that∀x, the conditional expecte

rewardµθ(x) is strictly increasing with respect toθ ,

we can still obtain improvements over the traditional bandit problems in this case.
An example that satisfies these regularity conditions is as follows.

• � = (1,∞), X = {1,2,3}, and the conditional reward distributionFθ(·|x) ∼ N (θx,1).

5.1. logt lower bound

Unlike the situation in Section 4, the side observationXt is not able to alter the pref
erence armMC0(x), so the dilemma between learning and control still exists. For
situation, a logt lower bound with a new constant was proved in [23] for bandit pr
lems with i.i.d. side observation{Xτ }. Since the same proof applies to arbitrary rand
processes{Xτ }, we restate the logt lower bound theorem [23, Theorem 5, p. 13] for ge
eral random processes{Xτ }.
Theorem 5.1 [23, Theorem 5, p. 13].Suppose that for all possibleC0, the best armMC0(x)

is constant for allx as in Definition5.1, and the regularity conditionsR1, R2, andR4 are
satisfied. For any uniformly good rule{φτ }, Tinf(t) is lower bounded by

lim
t→∞ PC0

(
Tinf(t) � (1− ε) logt

KC0

)
= 1, ∀ε > 0, and

lim inf
t→∞

EC0{Tinf(t)}
logt

� 1

KC0

, (5.1)

whereKC0 is a constant depending onC0. If MC0 = 2, thenTinf(t) = T1(t). The constan
KC0 can be expressed1 as follows.

KC0 = inf{θ : θ>θ2}
sup
x∈X

{
I (θ1, θ |x)

}
. (5.2)

The expression forKC0 for the case in whichMC0 = 1 can be obtained by symmetry.

Note that by the convexity of the Kullback–Leibler information, we have

sup
x

I (θ1, θ |x) �
∫

I (θ1, θ |x)Gt,C0(x)dx � I (θ1, θ).

8 This relabelling gives us the convenience that the order of(µθ1(x),µθ2(x)) is the same as that of(θ1, θ2).

This condition is imposed simply for convenience.
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As a result, the new constant 1/KC0 in (5.2) is no larger than the old constant in (1.3)
traditional bandit problems. This shows that the additional side informationXt improves
the decision in the bandit problem, which of course it must.

5.2. Scheme achieving the lower bound

To construct a tractable scheme achieving the logt lower bound (5.1), we first need th
following assumptions.

A1: The parameter space� is finite.
A2: The side observations{Xτ } are u.s.e. distributed inL1.
A3: The value of the game,

inf{θ : θ>θ2}
sup
x∈X

{
I (θ1, θ |x)

} = sup
x∈X

inf{θ : θ>θ2}
{
I (θ1, θ |x)

}
,

exists.9

We then consider a specific subset of uniformly good rules for traditional bandit
lems, which was introduced in [3] for the case of a finite parameter space�. This type
of decision rule possesses the following three properties when being applied to trad
bandit problems.

1. After timet , an estimatêCt = (θ̂1, θ̂2) is constructed and is used to make the decis
φt+1. To be more explicit,Ĉt is generated by the results forτ ∈ [1, t], andφt+1 is a
function ofĈt .

2. The expected duration over whicĥCt �= C0 is finite,10 namely,

lim
t→∞ EC0

{
t∑

τ=1

1
{
Ĉτ �= C0

}}
< ∞.

3. The expected duration over whicĥCt = C0 and φt �= MC0 is upper bounded b
logt/KC0, namely,

lim
t→∞

EC0

{∑t
τ=1 1{Ĉτ = C0, φτ+1 �= MC0}

}
logt

� 1

KC0

,

whereKC0 is defined1 as inf{θ : θ>θ2} I (θ1, θ) if MC0 = 2.

9 A sufficient condition for the existence of the value of the game is thatθ is the dominant factor (compare
to x) in determining the conditional distributionsFθ (·|x). In many cases of interest, the parameter plays a m
critical role in determining the distribution than the side observationx. Therefore this condition on the value
the game is a reasonable assumption and is generally satisfied.
10 In this paper, we use the convention that{Ĉt �= C0} represents both the cases thatĈt does not exist, and tha

Ĉt exists but does not equalC0.
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Definition 5.2 (Tight decision ruleφt ). A decision ruleφt , for a traditional bandit problem
(without side observations) with finite�, is tight if it possesses the above three propert

Obviously, a tight ruleφt is uniformly good and meets the logt lower bound onTinf(t)

in Theorem 1.1. The detailed construction of a tightφt can be found in [3]. In this
subsection, the tightφt ’s (for traditional bandit problems) will serve as constituent co
ponents in a composite decision ruleΦt dealing with the side-observation-aided ban
problems.

Suppose|X| = k < ∞. Using the values ofXt , we can partition the observed rewar
Y 1

t (or Y 2
t ) into k sub-sequences, corresponding to differentx ’s. Consider the sub-sequen

obtained whenXt = x0. At those time instants, the decision maker is facingFθ1(·|x0) and
Fθ2(·|x0), and thus this sub-sequence can be viewed as resulting from a traditional
problem with the family of possible distributions being{Fθ(·|x0)}θ . For eachx0, we use
Bx0 to denote the corresponding sub-bandit problem.

For example, ifX1X2X3X4 · · · = xaxbxaxc · · ·, then after timet = 4, we have 2 sample
in Bxa , 1 sample inBxb

, and 1 sample inBxc . One straightforward composite decisi
rule Φt is to apply a tightφx,t on each sub banditBx . The resulting composite rule
uniformly good but does not yield sharp results matching the new logt lower bound in
Eq. (5.1).

Let Ĉx,t denote the corresponding estimates of the tight constituentφx,t . A more so-
phisticated composite ruleΦt for the side-observation-aided bandits is constructed a
Algorithm 3, and is asymptotically optimal.

Theorem 5.2 (Asymptotic optimality).Suppose for all possibleC0, MC0(x) does not vary
with respect tox. With the regularity conditionsR1, R2, R4, and assumptionsA1, A2,

Algorithm 3 (Φt+1, the decision at timet + 1)

1: if not all Ĉx,t are identical,then
2: Φt+1 ← φXt+1,t+1.
3: else
4: DenoteĈt = (θ̂1, θ̂2) as the common estimate for allBx . Without loss of generality,

we may assumeM
Ĉt

= 2. The case thatM
Ĉt

= 1 can be obtained by symmetry.

5: if Xt+1 �= x∗ := argmaxx inf{θ : θ>θ̂2} I (θ̂1, θ |x), then
6: Φt+1 ← M

Ĉt
(Xt+1).

7: else
8 Φt+1 ← φXt+1,t+1.
9: end if

10: end if

A tie-breaking mechanism is necessary while evaluating “argmax” in line 5, and a n
choice of a randomized tie-breaking mechanism is sufficient for rigorous analysis.
ever, to minimize the distraction of this minor point, we assume here that no tie

during the execution of this algorithm.
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A3, the composite11 rule Φt described in Algorithm3 achieves thelogt lower bound in
Eq. (5.1), that is,

lim sup
t→∞

EC0{Tinf(t)}
logt

� 1

KC0

.

ThisΦt is thus asymptotically optimal.

The intuition behind this result is that having different side information valuesx is like
having several related bandit machinesBx ’s. EachBx has its own reward distribution pa
(Fθ1(·|x),Fθ2(·|x)), but all theseBx ’s share the same common, but unknown, configura
pair (θ1, θ2). The information obtained from one machine is thus applicable to the
machines. If arm 2 is always better than arm 1, we wish to sample arm 2 most of th
(the control part), and force sample arm 1 once in a while (the learning part). Wit
help of the side informationXt , we can postpone our forced sampling (learning) to
most informative machineXt = x∗ = arg maxx inf{θ : θ>θ̂2} I (θ1, θ |x). With the assumption
of the existence of the value of the game, this compositeΦt thus achieves the new consta
in the logt lower bound. A detailed analysis of this case is provided in Appendix C.

6. Mixed case

It is worth noting that the main difference between Sections 4 and 5 is that in one
Xt alwayschanges the preference order, while in the other case,Xt neverchanges the
order. A much more general case is a mixture of these two cases, which will be disc
in this section and which leads to the main result of this paper.

Definition 6.1 (Mixed condition). As illustrated in Fig. 3, for someC ∈ �2, MC(x) is not
a function ofx, i.e.,MC(x) := MC . For the remainingC, there existx1 andx2 such that
MC(x1) = 1 andMC(x2) = 2. For future reference, if suchx1 andx2 exist, we say the
configuration pairC0 is implicitly revealing.

Example. � = (0,∞), X = {−1,1} and the conditional reward distributionFθ(·|x) ∼
N (θ2 − θx,1). ThenC0 = (θ1, θ2) = (0.1,0.2) is implicitly revealing, butC0 = (0,10) is
not.

11 To perform a rigorous analysis, the constituentφx,t must be fully encapsulated in Algorithm 3. Namely, on
those samples obtained from performingΦt+1 ← φXt+1,t+1 (lines 2 and 8) can be counted as valid samp
for φx,t . In other words, the time instants when we letΦt+1 ← M

Ĉt
(Xt+1) (line 6) must be excluded from

the computation ofĈx,t andφx,t+1. Otherwise it may spoil the tightness of the originalφx,t+1. For example,
supposeX1X2X3X4 · · · = xaxbxaxc · · ·. At time instants 1 and 2, we have executedΦt+1 ← φXt+1,t+1, while
at time instants 3 and 4,Φt+1 ← M

Ĉt
(Xt+1) is executed. Then from the sub-bandit-problem point of view,

have only one sample inBxa , one sample inBxb
, and no samples inBxc , and only those samples can be used
generate the corresponding value ofĈx,t andφx,t+1. Samples made at time instants 3 and 4 will be discarded.
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Fig. 3. For some(θ1, θ2) the best arm is a function ofx, i.e., µθ1(x) and µθ2(x) intersect each other as
Section 4. For the remaining(θ1, θ2) the best arm is not a function ofx, i.e.,µθ1(x) andµθ2(x) do not intersect
each other as first described in Section 5.

Without knowledge of the authentic underlying configurationC0, we do not know
whetherC0 is implicitly revealing or not. In view of the results of Sections 4 and 5,
would like to find a scheme that has limt→∞ E{Tinf(t)} < ∞ when being applied to an un
known but implicitly revealingC0, and achieves the logt lower bound when the unknow
C0 is not implicitly revealing. Within the following two regularity conditions R1 and R

R1: X is finite, and
R2: ∀θ1, θ2, and x, the conditional K-L information numberI (θ1, θ2|x) is finite and

strictly positive,

we can achieve this goal.

6.1. Lower bound

Similar to Theorem 5.2, a logt lower bound onE{Tinf(t)} is obtained for uniformly
good rules, and is formally stated as follows.

Theorem 6.1. Suppose the side observation sequence{Xτ } is evenly distributed inL1, and
the mixed condition in Definition6.1, and regularity conditionsR1 and R2 are satisfied.
For any uniformly good rule, if the authentic parameter pairC0 is not implicitly revealing
thenEC0{Tinf(t)} is logt lower bounded:

lim
t→∞ PC0

(
Tinf(t) � (1− ε) logt

KC0

)
= 1, ∀ε > 0, and

EC0{Tinf(t)} 1

lim inf
t→∞ logt

�
KC0

, (6.1)
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whereKC0 is a constant depending onC0. If MC0 = 2, we haveTinf(t) = T1(t), and the
constantKC0 is

KC0 = inf{θ : ∃x0, s.t. µθ (x0)>µθ2(x0)}
sup
x

{
I (θ1, θ |x)

}
.

The expression forKC0 for the case in whichMC0 = 1 can be obtained by symmetry.

[23] proved a similar version of Theorem 6.1 for i.i.d.{Xτ }, and one can easily modif
the proof there by exploiting the assumption that{Xτ } is evenly distributed inL1.

6.2. Scheme achieving the lower bound

With the following three assumptions:

A1: the parameter space� is finite,
A2: the side observations{Xτ } are u.s.e. distributed inL1,
A4: the value of the game,

inf{θ : ∃x0, µθ (x0)>µθ2(x0)}
sup
x∈X

{
I (θ1, θ |x)

} = sup
x∈X

inf{θ : µθ (x)>µθ2(x)}
{
I (θ1, θ |x)

}
,

exists,

we are able to construct schemes achieving bounded limt→∞ E{Tinf(t)} < ∞ when being
applied to implicitly revealingC0 or otherwise achieving the logt lower bound in Theo-
rem 6.1. One instance is the composite control schemeΦt described in Algorithm 4, the
details of which are described in the following paragraphs.

The sub-bandit machinesBx , the corresponding tight decision rulesφt , and the estimat
Ĉx,t are as defined in Section 5.2, along with a number of newly-introduced counter
tually |X| · |�2|2 counters). These new counters are namedctr(x,C′,C′′) and are initially
set to zero. ThëCt used in Algorithm 4 is an estimate ofC0 generated from the samplin
whenΦt+1 ← M

Ĉt
(Xt+1) is active, namely, when line 10, 14, or 19 is executed. On

other hand, those samples whenΦt+1 ← φx,t+1 is active, namely, when line 2, 8, or 2
being executed, are used to generateĈx,t andφx,t+1.

For example, supposeX1X2X3X4 · · · = xaxbxaxc · · · and at time instants 1 and
Φt+1 ← φx,t+1 (lines 2, 8, 21), while at time instants 3 and 4,Φt+1 ← M

Ĉt
(Xt+1) (lines

10, 14, 19). As a result, after four pulls of the bandit machine, we have one sampleBxa

to generateĈxa,4, one sample inBxb
for Ĉxb,4, and no samples inBxc for Ĉxc,4. At the

same time, we have a total of one sample inBxa , no samples inBxb
and one sample inBxc

being used to generatëC4.
We will prove that with any “good”C̈t , Algorithm 4 will result in a bound-achievingΦt .

The definition of a “good”C̈t is as follows.

Definition 6.2 (Good estimatëCt ). An estimateθ̈ is good if there exista, b > 0 such that

the mis-detection probabilityPθ (θ̈ �= θ) � a exp(−bN), whereN is the number of samples
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Algorithm 4 (Φt+1, the decision at timet + 1)

1: if not all Ĉx,t are identical,then
2: Φt+1 ← φXt+1,t+1.
3: else
4: DenoteĈt = (θ̂1, θ̂2) as the common estimate for allBx .
5: if Ĉt is implicitly revealing,then
6: if C̈t �= Ĉt (including the cases thaẗCt does not exist),then
7: if ctr(Xt+1, Ĉt , C̈t ) is even,then
8: Φt+1 ← φXt+1,t+1.
9: else

10: Φt+1 ← M
Ĉt

(Xt+1).
11: end if
12: ctr(Xt+1, Ĉt , C̈t ) ← ctr(Xt+1, Ĉt , C̈t ) + 1.
13: else
14: Φt+1 ← M

Ĉt
(Xt+1).

15: end if
16: else
17: Without loss of generality, we may assumeM

Ĉt
= 2. The case in whichM

Ĉt
= 1

can be obtained by symmetry.
18: if Xt+1 �= x∗ := arg maxx inf{θ : µθ (x)>µ

θ̂2
(x)} I (θ̂1, θ |x), then

19: Φt+1 ← M
Ĉt

(Xt+1).
20: else
21: Φt+1 ← φXt+1,t+1.
22: end if
23: end if
24: end if

that θ̈ is based upon. An estimate pairC̈t = (θ̈1, θ̈2) is goodif θ̈1 andθ̈2 are good estimate
for θ1 andθ2 respectively.12

Theorem 6.2 (Asymptotic optimality).Suppose the mixed condition in Definition6.1, the
regularity conditionsR1 andR2, and the assumptionsA1, A2, andA4 are satisfied. With
the tight constituentφx,t , and a good estimatëCt , theΦt described in Algorithm4 either
has bounded inferior sampling time, or achieves thelogt lower bound in Theorem6.1,
depending on whether or not the unknown underlying configuration pairC0 is implicitly
revealing.

The intuition behind Theorem 6.2 is exactly the mixture of our previous discus
on the pure cases. When the unknownC0 is implicitly revealing, the evenly distribute
side informationXt will direct the player to sample both arms often enough, which le
12 By the large deviations principle and the regularity condition R2, a good estimateC̈t generally exists.
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to boundedE{Tinf(t)}. If the underlyingC0 is not implicitly revealing, then postponin
the forced sampling will reduce the constant 1/KC0 in front of the logt lower bound.
A detailed proof is given in Appendix D.

7. A note on the necessity of the even distribution properties

In Sections 4 through 6, we have discussed the benefits of having side obser
under various situations. The main results are summarized in Table 1. Since all
given conditions are sufficient, the question naturally arises as to whether these
distributed properties are necessary for the various levels of improvement.

Table 1
Summary of the relationships betweenXt andY i

t

Characterization Regularity conditions Even distribution
conditions

Results for allC0 ∈ �2

∀C1 �= C2, GC1 �= GC2 As Ĉt → C0, ∀x,
M

Ĉt
(x) = MC0(x)

∃{φτ } such that
lim EC0{Tinf(t)}/∑

P(|Ĉτ − C0| > ε) � 1

All C0 ∈ �2 haveGC0 = G,
and are implicitly revealing

(i) X is finite,
(ii) ∀θ1 �= θ2, x,

I (θ1, θ2|x) > 0,
(iii) ∀x, µθ (x) is
continuous w.r.t.θ

{Xτ } is evenly distributed
in probability series

∃{φτ } such that
lim EC0{Tinf(t)} < ∞

∀C0 ∈ �2, GC0 = G;
noC0 ∈ �2 is implicitly
revealing

(i) X is finite,
(ii) ∀θ1 �= θ2, x,

I (θ1, θ2|x) > 0

The performance of any
uniformly good{φτ } is
lower bounded by
lim EC0{Tinf(t)}/log t �
1/KC0, whereKC0 �
infθ supx I (θ1, θ |x)

(i), (ii), and
(iii) � is finite,
(iv) the existence of
the value of the game

{Xτ } is u.s.e. distributed
in L1

∃{φτ } such that
lim EC0{Tinf(t)}/log t �
1/KC0, namely{φτ }
achieves the lower bound

∀C0 ∈ �2, GC0 = G;

in �2, someC0 are implicitly
revealing and some are not

(i) X is finite,
(ii) ∀θ1 �= θ2, x,

I (θ1, θ2|x) > 0

{Xτ } is evenly distributed
in L1

If C0 is not implicitly
revealing, the performanc
of any uniformly good
{φτ } is lower bounded by
lim EC0{Tinf(t)}/log t �
1/KC0, whereKC0 �
infθ supx I (θ1, θ |x)

(i), (ii), and
(iii) � is finite,
(iv) the existence of
the value of the game

{Xτ } is u.s.e. distributed
in L1

∃{φτ } s.t. if C0 is
implicitly revealing (i.r.),
lim EC0{Tinf(t)} < ∞;
if C0 is not i.r.,{φτ }
achieves the lower bound
lim EC0{Tinf(t)}/log t �
1/K
C0
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Suppose{Xτ } reveals no information aboutC0, as in Sections 4 to 6. We need som
minimal amount of even distributedness to guarantee the benefit of a side observa
quence, as the following result states.

Theorem 7.1 (Common necessary condition).For the achievability results in Theo
rems4.1, 5.2, and6.2 to hold for all distribution families{Fθ(·|x)} (satisfying the charac
terization and regularity conditions), we must have

∀x, P(∃τ, s.t. Xτ = x) > 0.

Note that the condition∀x, P(∃τ, s.t.Xτ = x) > 0 is the weakest even distribution pro
erty we have introduced.

If there existsx0 such thatP(∃τ, s.t.Xτ = x0) = 0, then the range of the side observat
can be reduced to the positive support ofXt . The benefit of the characterization propert
(helpful structure betweenXt , Y i

t ) may degenerate to another case with new supportX′ =
X\{x0}, which severely affects the attainable results. Take Example 1 in Section 1
example, the implicitly revealingC0 = (θ1, θ2) = (1,2) is no longer implicitly revealing
if the supportX = {1,2,3} is reduced to{1,2}. The achievableE{Tinf(t)} thus becomes
O(logt) lower bounded, rather thanO(constant). Theorem 7.1 shows that the benefit
side observations indeed comes from the even distribution properties.

8. Conclusions

It has been shown in [23] that observing additional i.i.d. side information can imp
sequential decisions in bandit problems. To further explore the origins of this imp
ment, in this paper we have extracted basic properties of the side observation pro
and proved their efficacy for bandit problems. When the side observationXt reveals
information aboutC0, with a scheme separating the learning and control tasks by
serving {Xτ } for learning, and playing armM

Ĉt
(Xt ) for control, we have proved tha

limt→∞ E{Tinf(t)} < ∞ for many types of{Xτ }.
If the side observation does not provide information about the configurationC0, three

cases have been considered: (1) the best arm is a function ofXt , as in Section 4; (2) the be
arm is not a function ofXt , as in Section 5; and (3) the mixed case as in Section 6. Fo
{Xτ }, regular/evenappearances of allx ∈ X guarantee that we can fully use the benefic
structure/relationship between the side observation{Xτ } and the reward process{Y i

τ }. It has
been shown in [23] that for i.i.d.{Xτ }, case (1) leads to bounded expected inferior s
pling time, case (2) leads to asymptotically sharp logt lower bound, and case (3) leads
logt lower bound for someC0, and bounded expected inferior sampling time for otherC0.
And in this paper (Sections 4 through 6), these results have been successfully gene
to arbitrary side observation sequences{Xτ } possessing different levels of “regular/ev
appearance” properties. Consequently, a much more general class of side observa
quences, including Markov chains, and all deterministic periodic sequences, has th
impact on bandit problems as those of i.i.d. sequences. The idea of usingXt as an index

of sub-bandit-machines has been implemented in this paper by introducing a composite
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decision rule and assuming the existence of the value of a game on the Kullback–L
divergence.

Finally, we have also provided a simple necessary condition, namely∀x, P(∃τ, s.t.
Xτ = x) > 0, which is essential for a side observation sequence to fully exploit th
herent structure betweenXt andY i

t .

Appendix A. Proof of Theorem 3.1

For each underlying configuration pairC0 = (θ1, θ2), define the error setCe as follows.

Ce :=
⋃
x∈X

{
C ∈ �2: MC(x) �= MC0(x)

}
. (A.1)

Let Ce denote the closure ofCe. By Condition 3.1, we have thatC0 is not in Ce and
there existsε > 0 such thatCe ⊆ {C: |C − C0| > ε}. For anyt � 1,

PC0

(
φt �= MC0(Xt )

) = PC0

(
M

Ĉt
(Xt ) �= MC0(Xt )

)
� PC0

(∃x,M
Ĉt

(x) �= MC0(x)
)

= PC0

(
Ĉt ∈ Ce

)
� PC0

(
Ĉt ∈ Ce

)
� PC0

(∣∣Ĉt − C0
∣∣ > ε

)
,

and

EC0

{
Tinf(t)

} =
t∑

τ=1

EC0

{
1
{
φτ �= MC0(Xτ )

}}

�
t∑

τ=1

PC0

(∣∣Ĉτ − C0
∣∣ > ε

)
.

This completes the proof.

Appendix B. Proof of Theorem 4.1

We defineCe similarly to (A.1). The necessary result [23, Lemma 1, p. 23] is quote
follows.

Lemma B.1 [23, Lemma 1, p. 23].With the regularity conditions specified in Section4,
∃a1, a2 > 0 such that ( ) ( {

x� x� })

PC0 Ĉt ∈ Ce � a1 exp −a2 min T1 (t), T2 (t) .
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Analysis of the scheme.By the definition ofCe, when Ĉt is not in Ce, the estimate
is accurate enough that the myopic decision is simply the optimal decision, name∀x,
M

Ĉt
(x) = MC0(x). Hence we have

{
φt+1 �= MC0(Xt+1)

} = {
φt+1 �= MC0(Xt+1), Ĉt ∈ Ce

}
∪ {

φt+1 �= MC0(Xt+1), Ĉt /∈ Ce

}
⊆ {

Ĉt ∈ Ce

} ∪ {
φt+1 �= MC0(Xt+1), Ĉt /∈ Ce

}
� At+1 ∪ Bt+1. (B.1)

By the definition of the allocation rule and induction ont , it can be shown tha
∀i ∈ {1,2}, ∀t � 6, Ti(t) �

√
t , so that mini T x�

i (t) �
√

t/|X|. By Lemma B.1, we have
PC0(At+1) � a1 exp(−a2

√
t/k), and hence

∑∞
t+1=7 PC0(At+1) < ∞.

ForBt+1, we have

Bt+1 = {
φt+1 �= MC0(Xt+1), Ĉt /∈ Ce

}
= {

φt+1 = 1 �= MC0(Xt+1), Ĉt /∈ Ce

} ∪ {
φt+1 = 2 �= MC0(Xt+1), Ĉt /∈ Ce

}
� B1

t+1 ∪ B2
t+1,

whereB1
t+1 andB2

t+1, correspond toφt+1 = 1,2 separately. We then have

B1
t+1 = {∃s ∈ [√

t, t − 1
]

s.t.Ĉs ∈ Ce, φt+1 = 1 �= MC0(Xt+1), Ĉt /∈ Ce

}
∪ {∀s ∈ [√

t, t
]
, Ĉs /∈ Ce, φt+1 = 1 �= MC0(Xt+1)

}
⊆ {∃s ∈ [√

t, t − 1
]

s.t.Ĉs ∈ Ce

} ∪ B1.1. (B.2)

This inequality comes from modifying the first term of the union and usingB1.1 as short-
hand. To further boundB1.1, we need some new notation:

N1 :=
∑

s∈[1,t]
1
{
MC0(Xs) = 1

}
,

N1→2 :=
∑

s∈[1,t]
1
{
MC0(Xs) = 1, φs = 2

}
and

N2→1 :=
∑

s∈[1,t]
1
{
MC0(Xs) = 2, φs = 1

}
.

From the definition, we haveT1(t) = N1 −N1→2 +N2→1. Suppose∀s ∈ [√t, t], Ĉs /∈ Ce,

which is the first condition ofB1.1, and we notice the following inequalities,
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N1→2 + N2→1 =
∑

s∈[1,
√

t]
1
{
φs �= MC0(Xs)

} +
∑

s∈[√t+1,t]
1
{
φs �= MC0(Xs)

}

�
√

t +
∑

s∈[√t+1,t]
1
{
φs �= M

Ĉs−1
(Xs)

}

� 2
√

t + 1. (B.3)

The equality is obvious and the first inequality is true since∀s ∈ [√t, t], Ĉs /∈ Ce and
thusM

Ĉs
(·) = MC0(·). The second inequality follows from the fact that the total num

of forced samples up to timet cannot be greater than
√

t + 1, so the number of time
φs �= M

Ĉs−1
(Xs) is smaller than

√
t + 1.

If the second condition ofB1.1, φt+1 = 1 �= M
Ĉt

(Xt+1), is satisfied, it implies that th
player performs the forced sampling at timet + 1, or equivalentlyT1(t) <

√
t + 1. Since

∀i, Ti(t) �
√

t , it follows thatT1(t) = N1 − N1→2 + N2→1 = √
t . Combining the result in

(B.3), we conclude that

B1.1 ⊆ {
N1 � 3

√
t + 1

}
=

{ ∑
s∈[1,t]

1
{
MC0(Xs) = 1

}
� 3

√
t + 1

}
. (B.4)

Let X1
C0

:= {x ∈ X: MC0(x) = 1} denote the set of the possible values of the side ob
vation such that arm 1 is favorable. From (B.2) we have

P
(
B1

t+1

)
�

( ∑
s∈[√t,t−1]

P
(
Ĉs ∈ Ce

)) + P
(
B1.1)

�
∑

s∈[√t,t−1]
a1e

−a2
√

s + P

(∑
s∈[1,t] 1{Xs ∈ X1

C0
}

t
� 3

√
t + 1

t

)
, (B.5)

where the second inequality follows from the application of Lemma B.1 to the first t
while the second term follows from (B.4). By simple algebra, we have

∞∑
t+1=7

∑
s∈[√t,t−1]

a1e
−a2

√
s < ∞. (B.6)

And by the assumption that{Xτ } is evenly distributed in probability series, we have

∞∑
P

(∑
s∈[1,t] 1{Xs ∈ X1

C0
}

� 3
√

t + 1
)

< ∞. (B.7)

t+1=7

t t
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From (B.5), (B.6), and (B.7), we conclude

∞∑
t+1=7

P(Bt+1) �
∞∑

t+1=7

(
P
(
B1

t+1

) + P
(
B2

t+1

))
< ∞,

and by (B.1),

lim
t→∞ E

{
Tinf(t)

}
� 6+

∞∑
t+1=7

(
P(At+1) + P(Bt+1)

)
< ∞,

which completes the analysis.

Appendix C. Proof of Theorem 5.2

We need the following lemma for the later proof.

Lemma C.1. Consider a random process{Xτ } and a sequence of stopping time pa
{(Sj , Tj )}, where for allj ∈ N, Sj < Tj � Sj+1 are stopping times taking values inN.
Denote

sum :=
∞∑

j=1

(Tj − Sj + 1) and U := sup{j ∈ N: Sj < ∞}.

If bothSj andTj are∞, defineTj − Sj + 1= 0.
Suppose for someB < ∞ and K < ∞, we haveE{U} � K , and ∀j , E{Tj −

Sj + 1|Sj } � B. It follows thatE{sum} � B · K < ∞.

Proof. The proof is similar to that of Wald’s Lemma. Using the convention that 0·∞ = 0,
we rewritesum in the following form:

sum =
∞∑

j=1

1{Sj < ∞}(Tj − Sj + 1)

⇒ E{sum} =
∞∑

j=1

E
{
1{Sj < ∞} · E{Tj − Sj + 1|Sj }

}

�
∞∑

j=1

B · E
{
1{Sj < ∞}}

= B

∞∑
P(U � j) = B · K. �
j=1
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With the help of Lemma C.1, we prove Theorem 5.2 by making the following a
ments.

Argument 1. The expected duration over whicĥCt does not exist is finite, i.e.,

lim
t→∞ E

{
t∑

τ=1

1
{
Ĉτ does not exists

}}
< ∞.

For simplicity, we use1{Ĉt } = 0 as shorthand notation for the condition thatĈt does not
exist.

Argument 2. The expected duration over whicĥCt �= C0 is finite, i.e.,

lim
t→∞ E

{
t∑

τ=1

1
{
Ĉτ �= C0

}}
< ∞.

Argument 3. The expected duration over whicĥCt = C0 andΦt+1 �= MC0(Xt+1) is upper
bounded bylogt/KC0, i.e.,

lim
t→∞

E
{∑t

τ=1 1{Ĉτ = C0,Φτ+1 �= MC0(Xτ+1)}
}

logt
� 1

KC0

,

whereKC0 = inf{θ : θ>θ2} supx I (θ1, θ |x) if MC0 = 2.

Proof of Argument 1. To discuss stopping times, we first define the filtrationFt in an
explicit way, that is,Ft is theσ -algebra generated by the past outcomes of the rew
1{Φτ = 1}Y 1

τ + 1{Φτ = 2}Y 2
τ for τ ∈ [1, t], and the observationsXτ for τ ∈ [1, t + 1]. For

instance, by definition we havêCt ∈ Ft , Xt+1 ∈Ft andφt+1 ∈ Ft .
For anyx ∈ X, we iteratively define the stopping time pairsSx,j andTx,j as follows.

Sx,j := inf

{
t > Sx,j−1: Xt = x, 1

{
Ĉt

} = 0, and either 1
{
Ĉt−1

} = 1

or X =
⋃

s∈(Sx,j−1,t)

{Xs}
}
,

and

Tx,j := inf

{
t > Sx,j : either 1

{
Ĉt

} = 1 or X =
⋃

{Xs}
}
,

s∈(Sx,j ,t]
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whereSx,0 = 0. Note thatSx,j andTx,j are basically dividing the duration over whic
1{Ĉt } = 0 into disjoint13 intervals, withx specifying the value of the side observationXt

at the leading time instantSx,j . We then have

∞∑
τ=1

1
{
1
{
Ĉτ

} = 0
}

�
∑
x

∑
j∈N

(Tx,j − Sx,j + 1).

Since

Tx,j � inf

{
t > Sx,j : X =

⋃
s∈(Sx,j ,t]

{Xs}
}
,

and by the assumption that{Xτ } is u.s.e. distributed inL1, there existsB < ∞ such that
∀x, j , E{Tx,j − Sx,j + 1|Sx,j } < B. If we can show

∀x, E
{
sup{j ∈ N: Sx,j < ∞}} < ∞, (C.1)

then by Lemma C.1, we have

E

{ ∞∑
t=1

1
{
1
{
Ĉt

} = 0
}}

< ∞.

We prove Eq. (C.1) by case study. For anyx, j , and timet := Sx,j , since 1{Ĉt } = 0 and
Xt = x, we must have one of the following two cases.

• Ĉx,t �= C0:
– If 1{Ĉt−1} = 0, thenΦt ← φx,t . By the assumption that the constituentφx,t is tight,

the expected duration of the event{Xt = x,Φt ← φx,t , Ĉx,t �= C0} must be finite.
So this case can only contribute finite expectation.

– If 1{Ĉt−1} = 1, the only condition resulting in 1{Ĉt } = 0 is thatĈx,t−1 is destroyed
after timet , which in turn impliesXt = x andΦt ← φx,t . By the assumption o
tight φx,t , the expected duration of the event{Xt = x,Φt ← φx,t , Ĉx,t �= C0} must
be finite. So this case can only contribute finite expectation.

• Ĉx,t = C0: By observing sup{j ∈ N: Sx,j < ∞} � sup{j ∈ N: Tx,j < ∞} + 1, we
choose to show the latter has bounded expectation.
SupposeTx,j < ∞, and note that 1{Ĉt } = 0 implies there existsx′ �= x such that
Ĉx′,t �= C0. There are only two sub-cases as follows.
– ∃t ′ ∈ (Sx,j , Tx,j ] such thatXt ′ = x′ andĈx′,t ′−1 �= C0.
– XTx,j

= x andĈx,Tx,j
�= Ĉx,t = C0.

13 In some cases, the intervals may overlap with each other, but the overlap can only happen at the en

which does not affect the validity of the proof.
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The reason why there are only two sub-cases follows because if there exists no st ′,
thenĈx′,s remains unchanged within the interval(Sx,j , Tx,j ]. So the only situation in
which Tx,j < ∞ is whenĈx,t is destroyed atTx,j . Since for alls ∈ (Sx,j , Tx,j ] the
decision rule isΦs ← φXs,s , we then have

sup{j ∈ N: Tx,j < ∞} �
∞∑

τ=1

1
{
Xτ = x, Φτ ← φx,τ , Ĉx,τ �= C0

}

+
∑

x′: x′ �=x

∞∑
τ=1

1
{
Xτ+1 = x′, Φτ+1 ← φx′,τ+1, Ĉx′,τ �= C0

}
.

By the assumption of tight constituentφx,t , the above must have finite expectation.

From the previous discussions, we have provedE{sup{j ∈ N: Sx,j < ∞}} < ∞ and Argu-
ment 1. �
Proof of Argument 2. Consider a fixedC′ := (θ ′

1, θ
′
2) �= C0 and set

x∗ := arg max
x

inf
{θ : θ>θ ′

2}
I
(
θ ′

1, θ |x)
.

We then iteratively define the stopping time pairsSC′,j andTC′,j as follows.

SC′,j := inf
{
t > SC′,j−1: Ĉt = C′, and either 1

{
Ĉt−1

} = 0,

or Ĉt−1 �= C′, or Xt = x∗},
and

TC′,j := inf
{
t > SC′,j : either 1

{
Ĉt

} = 0, or Ĉt �= C′, or Xt = x∗},
whereSC′,0 = 0. Note thatSC′,j andTC′,j are basically dividing the duration of the eve
{Ĉt �= C0} into disjoint intervals whileC′ is specifying the value of the common estima
Ĉt during those intervals. Then we have

∞∑
t=1

1
{
Ĉt �= C0

}
�

∑
C′ �=C0

∑
j∈N

(TC′,j − SC′,j + 1).

Since

TC′,j � inf
{
t > SC′,j : Xt+1 = x∗},

and by the assumption that{Xτ } is u.s.e. distributed inL1, there existsB < ∞ such that
∀x, j , E

{
TC′,j − SC′,j + 1|SC′,j

}
< B. If we can show{ }
∀x, E sup{j ∈ N: SC′,j < ∞} < ∞,
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we
then by Lemma C.1, we haveE{∑∞
t=1 1{Ĉt �= C0}} < ∞.

By observing sup{j ∈ N: SC′,j < ∞} � sup{j ∈ N: TC′,j < ∞}+1, we choose to show
the latter has bounded expectation. We first observe that there is some redundanc
definition of TC′,j since whenĈt exists, the only possible situation under whichĈt will
change is whenXt = x∗. SoTC′,j can be rewritten as follows.

TC′,j := inf
{
t > SC′,j : Xt = x∗}.

By this new definition, ifTC′,j < ∞, we haveXTC′,j = x∗, Ĉx∗,TC′,j −1 = C′ �= C0, and
s ∈ (SC′,j , TC′,j ], ΦTC′,j s ← φx∗,TC′,j . Using these facts, we have

sup{j ∈ N: TC′,j < ∞} �
∞∑
t=1

1
{
Xt+1 = x∗, Φt+1 ← φx∗,t+1, Ĉx∗,t �= C0

}
.

By the assumption of tight constituentφx,t , the above has finite expectation and we h
proved Argument 2. �
Proof of Argument 3. SupposeC0 = (θ1, θ2). Without loss of generality, we may assum
MC0 = 2 and letx∗ = arg maxx inf{θ : θ>θ2} I (θ1, θ |x). We then have

t∑
τ=1

1
{
Ĉτ = C0, Φτ+1 �= MC0(Xτ+1)

}

=
t∑

τ=1

1
{
Ĉτ = Ĉx∗,τ = C0, Xτ+1 = x∗, Φτ+1 ← φx∗,τ+1 �= MC0(Xτ+1)

}

�
t∑

τ=1

1
{
Ĉx∗,τ = C0, Xτ+1 = x∗, Φτ+1 ← φx∗,τ+1 �= MC0(Xτ+1)

}
.

By the assumptions of tight constituentφx,t and the existence of the value of the game,
have

lim
t→∞

E
{∑t

τ=1 1{Ĉτ = C0,Φτ+1 �= MC0(Xτ+1)}
}

logt
� 1

KC0

,

where

KC0 = inf{θ : θ>θ2}
I
(
θ1, θ |x∗) = inf{θ : θ>θ2}

sup
x

I (θ1, θ |x).
The proof of Argument 3, and thus that of Theorem 5.2, is complete.�
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Appendix D. Proof of Theorem 6.2

With the help of Lemma C.1, we prove Theorem 6.2 by proving the following a
ments.

Argument 1. The expected duration over whicĥCt does not exist is finite, namely,

lim
t→∞ E

{
t∑

τ=1

1
{
Ĉτ does not exists

}}
< ∞.

Again we use 1{Ĉt } = 0 as shorthand for the situation in whichĈt does not exist.

Argument 2. The expected duration over whicĥCt �= C0 is finite, namely,

lim
t→∞ E

{
t∑

τ=1

1
{
Ĉτ �= C0

}}
< ∞.

Argument 3. If C0 is implicitly revealing, the expected duration over whichĈt = C0 and
Φt+1 �= MC0(Xt+1) is finite, namely,

lim
t→∞ E

{
t∑

τ=1

1
{
Ĉτ = C0, Φτ+1 �= MC0(Xτ+1)

}}
< ∞.

Argument 4. If C0 is not implicitly revealing, the expected duration over whichĈt = C0
andΦt+1 �= MC0(Xt+1) is upper bounded by logt/KC0, namely,

lim
t→∞

E
{∑t

τ=1 1{Ĉτ = C0,Φτ+1 �= MC0(Xτ+1)}
}

logt
� 1

KC0

,

whereKC0 = inf{θ : ∃x0, µθ (x0)>µθ2(x0)} supx I (θ1, θ |x) if MC0 = 2.

With the above four arguments, it is straightforward to show that theΦt described in
Algorithm 4 satisfies the statements in Theorem 6.2.

Proof of Argument 1. This proof follows word by word the proof of Argument 1 in Ap
pendix C. �
Proof of Argument 2. Since

∞∑
1
{
Ĉt �= C0

} =
∑ ∞∑

1
{
Ĉt = C′ �= C0

}
,

t=1 C′ �=C0 t=1
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we would like to prove that for anyC′ �= C0,
∑∞

t=1 1{Ĉt = C′ �= C0} has finite expectation
For thoseC′ that are not implicitly revealing, the proof follows word by word the proof
Argument 2 in Appendix C.

So we may assume thatC′ is implicitly revealing, and by conditioning on whether
not Ĉt = C̈t , we have

∞∑
t=1

1
{
Ĉt = C′ �= C0

} =
∞∑
t=1

1
{
Ĉt = C′ �= C0, C̈t �= Ĉt

}

+
∞∑
t=1

1
{
Ĉt = C′ �= C0, C̈t = Ĉt

}
.

These two summations will be considered separately. Note that when considering th
mateĈt �= C′, there are always the situations in which an estimateĈt does not exist or the
case in whichĈt exists but does not equalC′. In the following proof,{Ĉt �= C′} is used as
shorthand for both of these situations.

Let C′′ �= C′ denote another implicitly revealing parameter pair, and construct the
ping time pairsSx,C′,C′′,j andTx,C′,C′′,j iteratively as follows.

Sx,C′,C′′,j := inf
{
t > Sx,C′,C′′,j−1: Xt+1 = x, Ĉt = C′, C̈t = C′′,

and eitherĈt−1 �= C′, or C̈t−1 �= C′′, or Xt �= x
}
,

and

Tx,C′,C′′,j := inf
{
t > Sx,C′,C′′,j : eitherĈt �= C′, or C̈t �= C′′, or Xt+1 = x

}
,

whereSx,C′,C′′,0 = 0. Note thatSx,C′,C′′,j andTx,C′,C′′,j are basically dividing the duratio
over which{Ĉt = C′, C̈t = C′′} into disjoint intervals whenx specifies the value of the sid
observationXt+1 at the leading time instant of those intervals. Thus we have

∞∑
t=1

1
{
Ĉt = C′ �= C0, C̈t �= Ĉt

} =
∑
C′′

∞∑
t=1

1
{
Ĉt = C′, C̈t = C′′}

�
∑
x,C′′

∑
j∈N

(Tx,C′,C′′,j − Sx,C′,C′′,j + 1).

Since

Tx,C′,C′′,j � inf
{
t > Sx,C′,C′′,j : Xt+1 = x

}
,

and by the assumption that{Xτ } is u.s.e. distributed inL1, there exists aB < ∞ such that
∀x, j , E{Tx,C′,C′′,j − Sx,C′,C′′,j + 1|Sx,C′,C′′,j } < B. It we can show that

{ }
∀x,C′′, ∃K, E sup{j ∈ N: Sx,C′,C′′,j } < K,
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s

as
and thus by Lemma C.1, we haveE{∑∞
t=1 1{Ĉt = C′ �= C0, C̈t �= Ĉt }} < ∞.

Let t := Sx,C′,C′′,j . By the definition of Algorithm 4, for oddj the decision rule result
in Φt+1 ← φXt+1,t (since at timet , ctr(x,C′,C′′) = j − 1). Thus we have

sup{j ∈ N: Sx,C′,C′′,j < ∞} =
∞∑

j=1

1{Sx,C′,C′′,j < ∞}

� 2
∞∑

τ=1

1
{
Xt+1 = x, Ĉt = C′ �= C0, C̈ = C′′, Φt+1 ← φx,t+1

}
.

By the assumption of tightφx,t , the above right-hand side has finite expectation.
For the case in whicĥCt = C̈t = C′ �= C0, we construct the stopping time pairs

follows.

Sx,C′,j := inf

{
t > Sx,C′,j−1: Xt+1 = x, Ĉt = C̈t = C′, and eitherĈt−1 �= C′,

or C̈t−1 �= C′, or {1,2} =
⋃

s∈(Sx,C′,j−1,t]

{
MC′(Xs)

}}
,

and

Tx,C′,j := inf

{
t > Sx,C′,j : eitherĈt �= C′, or C̈t �= C′,

or {1,2} =
⋃

s∈(Sx,C′,j ,t]

{
MC′(Xs)

}}
,

whereSx,C′,0 = 0. We then have

∞∑
t=1

1
{
Ĉt = C̈t = C′ �= C0

}
�

∑
x∈X

∑
j∈N

(Tx,C′,j − Sx,C′,j + 1).

Since

Tx,C′,j � inf

{
t > Sx,C′,j : X =

⋃
s∈(Sx,C′,j ,t]

{Xs}
}
,

and by the assumption that{Xτ } is u.s.e. distributed inL1, there exists aB < ∞ such that
∀x,C′, j , E{Tx,C′,j − Sx,C′,j + 1|Sx,C′,j } � B. If we can show

∀x ∈ X, E
{
sup{j ∈ N: Sx,C′,j < ∞}} < ∞, (D.1)

∑

then by Lemma C.1, we haveE{ ∞

t=1 1{Ĉt = C̈t = C′ �= C0}} < ∞.
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s

is
We prove Eq. (D.1) by case study. Without loss of generality, we may as
MC′(x) = 1, for any fixedx andC′. Recalling that 1(C) denotes the first coordinate
the configuration pairC, we consider the cases as follows.

• 1(C′) �= 1(C0): Since aftert = Sx,C′,j , Φt+1 = M
Ĉt

(Xt+1) = MC′(x) = 1, we then
have

sup{j ∈ N: Sx,C′,j < ∞}

=
∞∑

j=1

1{Sx,C′,j < ∞}

�
∞∑

τ=1

1
{
Xt+1 = x, 1

(
C̈t

) = 1
(
C′) �= 1(C0), Φt+1 ← MC′(x) = 1

}
� D1.

Since every time the event{Xt+1 = x,1(C̈t ) = 1(C′) �= 1(C0),Φt+1 ← MC′(x) = 1}
occurs, the effective sample size of arm 1 (used to generateC̈t ) increases by one
BecauseC̈t is agoodestimate, the expectation ofD1 must be bounded. Thus, this ca
can at most contribute finite expectation.

• 1(C′) = 1(C0): This condition implies that 2(C′) �= 2(C0). By noting that sup{j ∈
N: Sx,C′,j < ∞} � sup{j ∈ N: Tx,C′,j < ∞} + 1, we prove that the latter can have
most finite expectation. IfTx,C′,j < ∞, it follows that we have eitherMC′(XTx,C′,j ) =
2 or 1(C̈Tx,C′,j ) �= 1(C0). As a result,

sup{j ∈ N: Tx,C′,j < ∞}

=
∞∑

j=1

1{Tx,C′,j < ∞}

�
∞∑

τ=1

1
{
Xτ = x, 1

(
C̈τ

) �= 1(C0), Ĉτ = C′, Φτ ← MC′(x) = 1
}

+
∑

x′: MC′ (x′)=2

∞∑
τ=1

1
{
Xτ+1 = x′, 2(C̈τ ) �= 2(C0), Ĉτ = C′, Φτ+1 ← MC′(x) = 2

}
.

Since the estimatëCt is good, each infinite sum in the above equation has finite
pectation. Thus we have proved that this case can contribute at most finite expec

From our treatment of the three cases:Ĉt is not implicitly revealing,Ĉt is implicitly
revealing butĈt �= C̈t , and Ĉt = C̈t is implicitly revealing, the proof of Argument 2 i
complete. �
Proof of Argument 3. WhenĈt = C0, the only situation of sampling the inferior arm

C̈t �= Ĉt = C0. For any fixedC′ �= C0, construct the stopping time pairs as follows.
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v-

n.
:
sed
es
SC′,j := inf

{
t > SC′,j−1: Ĉt = C0, C̈t = C′, and eitherĈt−1 �= C0, or C̈t−1 �= C′,

or {1,2} =
⋃

s∈Sj−1,t−1

{
MC0(Xs)

}}
,

whereSC′,0 = 0 and

Sj−1,t−1 := {
s ∈ (SC′,j−1, t − 1]: the lineΦs ← MC0(Xs) is active

}
.

ForTC′,j , we have

TC′,j := inf

{
t > SC′,j : eitherĈt �= C0,or C̈t �= C′,or {1,2} =

⋃
s∈Sj,t

{
MC0(Xs)

}}
.

SinceSC′,j andTC′,j partition the duration over which{Ĉt = C0, C̈t = C′} into disjoint
intervals, we then have

∞∑
t=1

1
{
Ĉt = C0 �= C̈t

}
�

∑
C′ �=C0

∞∑
t=1

1
{
Ĉt = C0, C̈t = C′}

�
∑

C′ �=C0

∑
j∈N

(TC′,j − SC′,j + 1).

By line 7 in Algorithm 4, for anyXt+1 = x, Ĉt = C0, C̈t = C′, the decision ruleΦt+1
is alternating betweenφx,t andMC0(x). As a result, we have

TC′,j � inf
{
t > SC′,j : ∀x ∈ X, ∃s1 �= s2 ∈ (SC′,j , t] s.t.Xs1 = Xs2 = x

}
.

By the assumption that{Xτ } is u.s.e. distributed inL1, there exists aB < ∞ such that
∀C′, j , E{TC′,j − SC′,j + 1|SC′,j } � B. If we can show

∀x ∈ X,C′, E
{
sup{j ∈ N: SC′,j < ∞}} < ∞,

then by Lemma C.1, we haveE{∑∞
t=1 1{Ĉt = C0 �= C̈t }} < ∞.

Since sup{j : SC′,j < ∞} � sup{j : TC′,j < ∞}+1, equivalently, we can focus on pro
ing E{sup{j ∈ N: TC′,j < ∞}} < ∞. For anyj ∈ N, let t ′ := TC′,j < ∞. Then one of the
following situations must be true.

• Φt ′ ← φXt ′ ,t ′ : The only situation under which we can haveΦt ′ ← φXt ′ ,t ′ is Ĉ′
t �= C0.

Since the constituentφx,t is tight, this part contributes at most bounded expectatio
• Φt ′ ← MC0(Xt ′): There are two ways in which the interval will end in this situation

– {1,2} = ⋃
s∈Sj,t

{MC0(Xs)}: In this case, both the samples of arm 1 and arm 2 u
by C̈t must have increased by 1. SinceC̈t is a good estimate, this portion contribut

at most bounded expectation.
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we
– C̈t ′ �= C′: Without loss of generality, we may assume{1} = ⋃
s∈Sj,t

{MC0(Xs)}. Two
sub-cases are as follows:
– 1(C′) �= 1(C0): Since Sj,t ′ is not empty, there exists ans such thatΦs ←

MC0(Xs) = 1. Thus the number of samples from arm 1 used to generateC̈t must
increase by 1 during the interval[SC′,j , TC′,j ]. By the assumption thaẗCt is good,
that portion contributes at most finite expectation.

– 1(C′) = 1(C0): First we observe that in this case,t ′ ∈ Sj,t ′ , which implies
Φt ′ ← MC0(Xt ′). For eachj , the number of samples of arm 1 (used byC̈t ) in-
creases by at least one. We also note thatC̈t ′ �= C̈t ′−1 = C′ and 1(C̈t ′) �= 1(C0).
Combining the above observations and the assumption thatC̈t is good, this por-
tion can contribute at most bounded expectation.

From the above discussions, we have

E

{ ∞∑
t=1

1
{
Ĉt = C0 �= C̈t

}}
< ∞. �

Proof of Argument 4. SupposeC0 = (θ1, θ2), MC0 = 2 and let x∗ = arg maxx
inf{θ : µθ (x)>µθ2(x)} I (θ1, θ |x). We then have

t∑
τ=1

1
{
Ĉτ = C0, Φτ+1 �= MC0(Xτ+1)

}

=
t∑

τ=1

1
{
Ĉτ = Ĉx∗,τ = C0, Xτ+1 = x∗, Φτ+1 ← φx∗,τ+1 �= MC0(Xτ+1)

}

�
t∑

τ=1

1
{
Ĉx∗,τ = C0, Xτ+1 = x∗, Φτ+1 ← φx∗,τ+1 �= MC0(Xτ+1)

}
.

By the assumptions of tight constituentφx,t and existence of the value of the game,
have

lim
t→∞

E
{∑t

τ=1 1{Ĉτ = C0,Φτ+1 �= MC0(Xτ+1)}
}

logt
� 1

KC0

,

where

KC0 = inf{θ : µθ (x∗)>µθ2(x∗)} I
(
θ1, θ |x∗)

= inf{θ : ∃x0, µθ (x0)>µθ2(x0)}
sup
x

I (θ1, θ |x).
The proof of Argument 4 is then complete.�
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