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Abstract—Density evolution (DE) is one of the most powerful
analytical tools for low-density parity-check (LDPC) codes and
graph codes with message passing decoding algorithms. With
channel symmetry as one of its fundamental assumptions, density
evolution has been widely and successfully applied to different
channels, including binary erasure channels (BECs), binary
symmetric channels (BSCs), binary additive white Gaussian noise
(BiAWGN) channels, etc. This paper generalizes density evolution
for asymmetric memoryless channels, which in turn broadens
the applications to general memoryless channels, e.g., z-chan-
nels, composite white Gaussian noise channels, etc. The central
theorem underpinning this generalization is the convergence
to perfect projection for any fixed-size supporting tree. A new
iterative formula of the same complexity is then presented and the
necessary theorems for the performance concentration theorems
are developed. Several properties of the new density evolution
method are explored, including stability results for general asym-
metric memoryless channels. Simulations, code optimizations, and
possible new applications suggested by this new density evolution
method are also provided. This result is also used to prove the
typicality of linear LDPC codes among the coset code ensemble
when the minimum check node degree is sufficiently large. It is
shown that the convergence to perfect projection is essential to
the belief propagation (BP) algorithm even when only symmetric
channels are considered. Hence, the proof of the convergence to
perfect projection serves also as a completion of the theory of
classical density evolution for symmetric memoryless channels.

Index Terms—Asymmetric channels, density evolution (DE),
low-density parity-check (LDPC) codes, rank of random matrices,
sum–product algorithms, z-channels.

I. INTRODUCTION

S INCE the advent of turbo codes [1] and the rediscovery
of low-density parity-check (LDPC) codes [2], [3] in the

mid 1990s, graph codes [4] have attracted significant attention
because of their capacity-approaching error correcting capa-
bility and the inherent low-complexity ( or ,
where is the codeword length) of message passing decoding
algorithms [3]. The near-optimal performance of graph codes is
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generally based on pseudorandom interconnections and Pearl’s
belief propagation (BP) algorithm [5], which is a distributed
message-passing algorithm efficiently computing a posteriori
probabilities in cycle-free inference networks. Turbo codes can
also be viewed as a variation of LDPC codes, as discussed in
[3] and [6].

Due to their simple arithmetic structure, completely parallel
decoding algorithms, excellent error correcting capability [7],
and acceptable encoding complexity [8], [9], LDPC codes
have been widely and successfully applied to different chan-
nels, including binary erasure channels (BECs) [10]–[12],
binary symmetric channels (BSCs), binary-input additive white
Gaussian noise channels (BiAWGNCs) [3], [13], Rayleigh-
fading channels [14], Markov channels [15], partial response
channels/intersymbol interference channels [16]–[19], and bit-
interleaved coded modulation [21]. Except for the finite-length
analysis of LDPC codes over the BEC [22], the analysis of
iterative message-passing decoding algorithms is asymptotic
(when the block length tends to infinity) [13], [23]. Under the
optimal maximum-likelihood (ML) decoding algorithm, both
the finite-length analysis and the asymptotic analysis for LDPC
codes and other ensembles of turbo-like codes become tractable
and rely on the weight distribution of these ensembles (see,
e.g., [24]–[26]). Various Gallager-type bounds on ML decoders
for different finite LDPC code ensembles have been established
in [27].

In essence, the density evolution method proposed by
Richardson et al. in [13] is an asymptotic analytical tool for
LDPC codes. As the codeword length tends to infinity, the
random codebook will be more and more likely to be cycle
free, under which condition the input messages of each node
are independent. Therefore, the probability density of messages
passed can be computed iteratively. A performance concentra-
tion theorem and a cycle-free convergence theorem, providing
the theoretical foundation of the density evolution method,
are proved in [13]. The behavior of codes with block length

is well predicted by this technique, and thus degree
optimization for LDPC codes becomes tractable. Near optimal
LDPC codes have been found in [7] and [23]. In [16], Kavčić
et al. generalized the density evolution method to intersymbol
interference channels, by introducing the ensemble of coset
codes, i.e., the parity-check equations are randomly selected as
even or odd parities. Kavčić et al. also proved the corresponding
fundamental theorems for the new coset code ensemble.

Because of the symmetry of the BP algorithm and the
symmetry of parity-check constraints in LDPC codes, the de-
coding error probability will be independent of the transmitted
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codeword in the symmetric channel setting. Thus, in [13], an
all-zero transmitted codeword is assumed and the probability
density of the messages passed depends only on the noise
distribution. Nevertheless, in symbol-dependent asymmetric
channels, which are the subject of this paper, the noise distri-
bution is codeword dependent, and thus, some codewords are
more noise resistant than others. As a result, the all-zero code-
word cannot be assumed. Instead of using a larger coset code
ensemble as in [16], we circumvent this problem by averaging
over all valid codewords, which is straightforward and has
practical interpretations as the averaged error probability. Our
results apply to all binary input, memoryless, symbol-depen-
dent channels (e.g., z-channels, binary asymmetric channels
(BASCs), composite binary-input white Gaussian noise chan-
nels (composite BiAWGNCs), etc.) and can be generalized
to LDPC codes over or [28]–[30]. The theorem of
convergence to perfect projection is provided to justify this
codeword-averaged approach in conjunction with the existing
theorems. New results on monotonicity, symmetry, stability
(a necessary and a sufficient condition), and convergence rate
analysis of the codeword-averaged density evolution method
are also provided. Our approach based on the linear1 code
ensemble will be linked to that of the coset code ensemble
[16] by proving the typicality of linear LDPC codes when
the minimum check node degree is sufficiently large, which
was first conjectured in [21]. All of the above generalizations
are based on the convergence to perfect projection, which will
serve also as a theoretical foundation for the BP algorithms
even when only symmetric channels are considered.

This paper is organized as follows. The formulations of and
background on channel models, LDPC code ensembles, the BP
algorithm, and density evolution, are provided in Section II. In
Section III, an iterative formula is developed for computing the
evolution of the codeword-averaged probability density. In Sec-
tion IV, we state the theorem of convergence to perfect projec-
tion, which justifies the iterative formula. A detailed proof will
be given in Appenddix I. Monotonicity, symmetry, and stability
theorems are stated and proved in Section V. Section VI con-
sists of simulations and discussion of possible applications of
our new density evolution method. Section VII proves the typi-
cality of linear LDPC codes and revisits BP for symmetric chan-
nels. Section VIII concludes the paper.

II. FORMULATIONS

A. Symbol-Dependent Asymmetric Channels

The memoryless, symbol-dependent channels we consider
here are modeled as follows. Let and denote a transmitted
codeword vector and a received signal vector of codeword
length , where and are the th transmitted symbol and

1LDPC codes are, by definition, linear codes since only even parity-check
equations are considered. Nonetheless, by taking both even and odd parity-
check equations into consideration, the extended LDPC “coset” code has been
proven to have important practical and theoretical value in many applications
[16]. To be explicit on whether only even parity-check equations are consid-
ered or an extended set of parity-check equations is involved, two terms, “linear
LDPC codes” and “LDPC coset codes,” will be used whenever a comparison
is made, even though the adjective, linear, is redundant for traditional LDPC
codes.

Fig. 1. A realization of the code ensemble C (2; 3).

received signal, respectively, taking values in and the
reals, respectively. The channel is memoryless and is specified
by the conditional probability density function

Two common examples are as follows.

Example 1: [Binary Asymmetric Channels (BASC)]

if
if

where are the crossover probabilities and is the Dirac
delta function. Note: if , the above collapses to the
z-channel.

Example 2: [Composite BiAWGNCs]

if

if

which corresponds to a bit-level subchannel of the pulse am-
plitude modulation ( PAM) with Gray mapping.

B. Linear LDPC Code Ensembles

The linear LDPC codes of length are actually a special
family of parity-check codes, such that all codewords can be
specified by the following even parity-check equation in :

where is an sparse matrix in with the number
of nonzero elements linearly proportional to . To facilitate our
analysis, we use a code ensemble rather than a fixed code. Our
linear code ensemble is generated by equiprobable edge permu-
tations in a regular bipartite graph.

As illustrated in Fig. 1, the bipartite graph model consists of a
bottom row of variable nodes (corresponding to codeword bits)
and a top row of check nodes (corresponding to parity-check
equations). Suppose we have variable nodes on the bottom
and each of them has sockets. There are check
nodes on the top and each of them has sockets. With these
fixed nodes, there are a total of possible con-
figurations obtained by connecting these sockets
on each side, assuming all sockets are distinguishable.2 The re-

2When assuming all variable/check node sockets are indistinguishable, the
number of configurations can be upper-bounded by .
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sulting graphs (multigraphs) will be regular and bipartite with
degrees denoted by , and can be mapped to parity-check
codes with the convention that the variable bit is involved in
parity-check equation if and only if the variable node and
the check node are connected by an odd number of edges. We
consider a regular code ensemble putting equal prob-
ability on each of the possible configurations of the regular bi-
partite graphs described above. One realization of the codebook
ensemble is shown in Fig. 1. For practical interest, we
assume .

For each graph in , the parity-check matrix is an
matrix over , with if and only if there

is an odd number of edges between variable node and check
node . Any valid codeword satisfies the parity-check equation

. For future use, we let and denote the indices of the
th variable node and the th check node. denotes

all check nodes connecting to variable node and similarly
with .

Besides the regular graph case, we can also consider irregular
code ensembles. Let and denote the finite order edge degree
distribution polynomials

where or is the fraction of edges connecting to a degree
variable or check node, respectively. By assigning equal proba-
bility to each possible configuration of irregular bipartite graphs
with degree distributions and (similarly to the regular case),
we obtain the equiprobable, irregular, bipartite graph ensemble

. For example: .

C. Message Passing Algorithms and Belief Propagation

The message passing decoding algorithm is a distributed
algorithm such that each variable/check node has a processor,
which takes all incoming messages from its neighbors as
inputs, and outputs new messages back to all its neighbors.
The algorithm can be completely specified by the variable and
check node message maps, and , which may or may not
be stationary (i.e., the maps remain the same as time evolves)
or uniform (i.e., node independent). The message passing
algorithm can be executed sequentially or in parallel depending
on the order of the activations of different node processors.
Henceforth, we consider only parallel message passing algo-
rithms complying with the extrinsic principle (adapted from
turbo codes), i.e., the new message sending to node (or )
does not depend on the received message from the same node
(or ) but depends only on other received messages.

A BP algorithm is a message passing algorithm whose vari-
able and check node message maps are derived from Pearl’s
inference network [5]. Under the cycle-free assumption on the
inference network, BP calculates the exact marginal a poste-
riori probabilities, and thus, we obtain the optimal maximum
a posteriori probability (MAP) decisions. Let denote the
initial message from the variable nodes, and denote the
messages from its neighbors excluding that from the destination

node. The entire BP algorithm with messages representing the
corresponding log-likelihood ratio (LLR) is as follows:

(1)

(2)

We note that the BP algorithm is based only on the cycle-free
assumption3 and is actually independent of the channel model.
The initial message depends only on the single-bit LLR
function and can be calculated under asymmetric . As
a result, the BP algorithm remains the same for memoryless,
symbol-dependent channels.

Example: For BASCs

if
if

We assume that the BP is executed in parallel and each iteration
is a “round” in which all variable nodes send messages to all
check nodes and then the check nodes send messages back. We
use to denote the number of iterations that have been executed.

D. Density Evolution

For a symmetric channel and any message-passing algorithm,
the probability density of the transmitted messages in each it-
eration can be calculated iteratively with a concrete theoretical
foundation [13]. The iterative formula and related theorems are
termed “density evolution.” Since the BP algorithm performs
extremely well under most circumstances and is of great impor-
tance, sometimes the term “density evolution” is reserved for
the corresponding analytical method for BP algorithms.

III. DENSITY EVOLUTION: NEW ITERATIVE FORMULA

In what follows, we use the BP algorithm as the illustrative
example for our new iterative density evolution formula.

With the assumption of channel symmetry and the inherent
symmetry of the parity-check equations in LDPC codes, the
probability density of the messages in any symmetric message
passing algorithm will be codeword independent, i.e., for
different codewords, the densities of the messages passed differ
only in parities, but all of them are of the same shape [13,
Lemma 1].

In the symbol-dependent setting, the symmetry of the channel
may not hold. Even though the BP mappings remain the same for
asymmetric channels, the densities of the messages for different
transmitted codewords are of different shapes and the density
for the all-zero codeword cannot represent the behavior when
other codewords are transmitted. To circumvent this problem,
we average the density of the messages over all valid codewords.
However, directly averaging over all codewords takes

3An implicit assumption will be revisited in Section VII-B.
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Fig. 2. Illustrations of N and XXX ; l = 2.

times more computations, which ruins the efficiency of the itera-
tive formula for density evolution. Henceforth, we provide a new
iterative formula for the codeword-averaged density evolution
which increases the number of computations only by a constant
factor; the corresponding theoretical foundations are provided
in this section and in Section IV.

A. Preliminaries

We consider the density of the message passed from variable
node to check node . The probability density of this mes-
sage is denoted by where the superscript denotes the
th iteration and the appended argument denotes the actual

transmitted codeword. For example, is the density of
the initial message from variable node to check node
assuming the all-zero codeword is transmitted. is the
density from to in the second iteration, and so on. We also
denote by the density of the message from check node

to variable node in the th iteration.
With the assumption that the corresponding graph is tree-like

until depth , we define the following quantities. Fig. 2
illustrates these quantities for the code in Fig. 1 with
and .

• denotes the tree-like subset of the graph4

with root edge and depth , named
as the supporting tree. A formal definition is: is the
subgraph induced by , where

(3)

where is the shortest distance between node and
variable node . In other words, is the depth
tree spanned from edge . Let denote the
number of variable nodes in (including variable
node ). denotes the number of check nodes in

(check node is excluded by definition).
• denotes the set of all

valid codewords, and the information source selects each
codeword equiprobably from .

• and are the projections of codeword
on bit and on the variable nodes in the supporting tree

, respectively.
• denotes the set of all strings of length

satisfying the check node constraints in .

4The calligraphic V in G = (V; E) denotes the set of all vertices, including
both variable nodes and check nodes. Namely, a node v 2 V can be a variable/
check node.

denotes any element of (the subscript is
omitted if there is no ambiguity). The connection between

, the valid codewords, and , the tree-satisfying
strings, will be clear in the following remark and in Def-
inition 1.

• For any set of codewords (or strings) , the average op-
erator is defined as

• With a slight abuse of notation for , we define

Namely, and denote the density av-
eraged over all compatible codewords with projections
being and , respectively.

Remark: For any tree-satisfying string , there
may or may not be a codeword with projection ,
since the codeword must satisfy all check nodes, but the string

needs to satisfy only constraints. Those check nodes
outside may limit the projected space to a strict

subset of . For example, the second row of in
Fig. 1 implies . Therefore, two of the four elements of

in Fig. 2 are invalid/impossible projections of on
. Thus, is a proper subset of .

To capture this phenomenon, we introduce the notion of a
perfectly projected .

Definition 1 (Perfectly Projected ): The supporting

tree is perfectly projected, if for any

(4)

That is, if we choose equiprobably, will appear

uniformly among all elements in . Thus, by looking
only at the projections on , it is as if we were choosing

from equiprobably and there were only check
node constraints and no others.

The example in Figs. 1 and 2 is obviously not perfectly
projected.

Since the message emitted from node to in the th iteration
depends only on the received signals of the supporting tree,

, the codeword-dependent actually depends

only on the projection , not on the entire codeword .
That is,

(5)
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An immediate implication of being a perfect projection
and (5) is

(6)

Because of these two useful properties (5) and (6), throughout
this subsection we assume that is perfectly projected. The
convergence of to a perfect projection in probability is
dealt with in Section IV. We will have all the preliminaries nec-
essary for deriving the new density evolution after introducing
the following self-explanatory lemma.

Lemma 1 (Linearity of Density Transformation): For any
random variable with distribution , if is
measurable, then is a random variable with distribu-
tion . Furthermore, the density trans-
formation is linear, i.e., if and ,
then .

B. New Formula

In the th iteration, the probability of sending an incorrect
message (averaged over all possible codewords) from variable
node to check node is

(7)

Motivated by (7), we concentrate on finding an iterative formula
for the density pair and . Throughout this
section, we also assume is tree-like (cycle free) and
perfectly projected.

Let denote the indicator function. By an auxiliary func-
tion

(8)

and letting the domain of the first coordinate of be ,
(2) for can be written as

(9)

Fig. 3. Illustration of various quantities used in Section III-B.

By (1), (9), and the independence among the input messages,
the classical density evolution for BP algorithms [23, eq.(9)] is
as follows:

(10)

(11)

where denotes the convolution operator on probability den-
sity functions, which can be implemented efficiently using the
Fourier transform. is the density transformation func-
tional based on , defined in Lemma 1. Fig. 3 illustrates many
helpful quantities used in (10), (11), and throughout this section.

By (5), (10), and the perfect projection assumption, we have

(12)

Further simplification can be made such that

(13)

where follows from (6), follows from (12), and fol-
lows from the linearity of convolutions. The fact that the sub-
trees generated by edges are completely disjoint im-
plies that, by the perfect projection assumption on , the
distributions of strings on different subtrees are independent. As
a result, the average of the convolutional products (over these
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strings) equals the convolution of the averaged distributions,
yielding . Finally, follows from the fact that the distribu-
tions of messages from different subtrees are identical according
to the perfect projection assumption.

To simplify , we need to define
some new notation. We use to represent for simplicity.
Denote by the collection of all

subtrees rooted at , , and by

the strings compatible to . We can then consider

containing the strings satisfying parity-check constraint given
, and

is the collection of the concatenations of substrings, in which
the leading symbols of the substrings are . All
these quantities are illustrated in Fig. 3.

Note the following two properties: i) For any , the mes-
sage from variable to check node depends only
on ; and ii) with the leading symbols
fixed and the perfect projection assumption, the projection on
the strings are independent, and thus, the
averaged convolution of densities is equal to the convolution of
the averaged densities. By repeatedly applying Lemma 1 and
the above two properties, we have

(14)

By (13), (14), and dropping the subscripts during the density
evolution, a new density evolution formula for

, is as follows:

With the help of the linearity of distribution transformations
and convolutions, the preceding equations can be further sim-
plified and the desired efficient iterative formulas become

The preceding formula can be easily generalized to the irreg-
ular code ensembles

(15)

which has the same complexity as the classical density evolution
for symmetric channels.

Remark: The above derivation relies heavily on the perfect
projection assumption, which guarantees that uniformly aver-
aging over all codewords is equivalent to uniformly averaging
over the tree-satisfying strings. Since the tree-satisfying strings
are well-structured and symmetric, we are on solid ground to
move the average inside the classical density evolution formula.

IV. DENSITY EVOLUTION: FUNDAMENTAL THEOREMS

As stated in Section III, the tree-like until depth and the pre-
fect projection assumptions are critical in our analysis. The use
of code ensembles rather than fixed codes facilitates the anal-
ysis but its relationship to fixed codes needs to be explored. We
restate two necessary theorems from [13], and give a novel per-
fect projection convergence theorem, which is essential to our
new density evolution method. With these theorems, a concrete
theoretical foundation will be established.

Theorem 1 (Convergence to the Cycle-Free Case, [13]): Fix
, , and . For any , there exists a constant such

that for all , the code ensemble satisfies

is cycle-free

where is the support tree as defined by (3).
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Theorem 2 (Convergence to Perfect Projection in Proba-
bility): Fix and . For any regular, bipartite, equiprobable
graph ensemble , we have

is perfectly projected

Remark: The above two theorems focus only on the proper-
ties of equiprobable regular bipartite graph ensembles, and are
independent of the channel type of interest.

Theorem 3 (Concentration to the Expectation, [13]): With
fixed transmitted codeword , let denote the number of wrong
messages (those ’s such that ). There exists a
constant such that for any , over the code ensemble

and the channel realizations , we have

(16)

Furthermore, is independent of , and thus is inde-
pendent of .

Theorem 3 can easily be generalized to symbol-dependent
channels in the following corollary.

Corollary 1: Over the equiprobable codebook , the code
ensemble5 , and channel realizations , (16) still
holds.

Proof: Since the constant in Theorem 3 is indepen-
dent of the transmitted codeword , after averaging over the
equiprobable codebook , the inequality still holds. That is,

Now we have all the prerequisite of proving the theoretical
foundation of our codeword-averaged density evolution.

Theorem 4 (Validity of Codeword-Averaged DE): Consider
any regular, bipartite, equiprobable graph ensemble
with fixed , , and . is derived from (7) and the
codeword-averaged density evolution after iterations. The
probability over equiprobable codebook , the code ensemble

, and the channel realizations , satisfies

5The only valid codeword for all code instances of the ensemble is the all-zero
codeword. Therefore, a fixed bit string is in general not a valid codeword for
most instances of the code ensemble, which hampers the averaging over the code
ensemble. This, however, can be circumvented by the following construction.
We first use Gaussian elimination to index the codewords 1; . . . ; 2 for any
code instance in the code ensemble. And we then fix the index instead of the
codeword. The statements and the proof of Theorem 3 hold verbatim after this
slight modification.

Proof: We note tha is bounded between and . By
observing that

is cycle-free and perfectly projected

is cycle-free and

perfectly projected

and using Theorems 1 and 2, we have

Then by Corollary 1, the proof is complete.

The Proof of Theorem 2 will be included in Appendix I.

V. MONOTONICITY, SYMMETRY, AND STABILITY

In this section, we prove the monotonicity, symmetry, and
stability of our codeword-averaged density evolution method on
BP algorithms. Since the codeword-averaged density evolution
reduces to the traditional one when the channel of interest is
symmetric, the following theorems also reduce to those (in [23]
and [13]) for symmetric channels.

A. Monotonicity

Proposition 1 (Monotonicity With Respect to ): Let de-
note the bit-error probability of the codeword-averaged density
evolution defined in (7). Then , for all .

Proof: We first note that the codeword-averaged ap-
proach can be viewed as concatenating a bit-to-sequence
random mapper with the observation channels, and the larger
the tree structure is, the more observation/information the
decision maker has. Since the BP decoder is the optimal MAP
decoder for the tree structure of interest, the larger the tree
is, the smaller the error probability will be. The proof is thus
complete.

Proposition 2 (Monotonicity With Respect to Degraded Chan-
nels): Let and denote two different channel
models, such that is degraded with respect to (w.r.t.)

. The corresponding decoding error probabilities,

and , are defined in (7). Then for any fixed , we have

.
Proof: By taking the same point of view that the code-

word-averaged approach is a concatenation of a bit-to-sequence
random mapper with the observation channels, this theorem can
be easily proved by the channel degradation argument.

B. Symmetry

We will now show that even though the evolved density is de-
rived from asymmetric channels, there are still some symmetry
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properties inherent in the symmetric structure of BP algorithms.
We define the symmetric distribution pair as follows.

Definition 2 (Symmetric Distribution Pairs): Two prob-
ability measures and are a symmetric pair if for any
integrable function , we have

A distribution is self-symmetric if is a symmetric
pair.

Proposition 3: Let be a parity reversing func-
tion, and let and denote the resulting density
functions from the codeword-averaged density evolution. Then

and are a symmetric pair for all .

Remark: In the symmetric channel case, and
differ only in parity (Lemma 1, [13]). Thus,

is self-symmetric ([23, Theorem 3]).

Proof: We note that by the equiprobable codeword dis-
tribution and the perfect projection assumption and

act on the random variable , given by

where is the received signal on the subset and is the dis-
tribution over channel realizations and equiprobable codewords.
Then by a change of measure

(17)

This completes the proof.

Corollary 2:

is self-symmetric for all , i.e., is a symmetric
pair.

C. Stability

Rather than looking only at the error probability of the
evolved densities and , we also focus on its Cher-
noff bound

By letting and by (17), we have
. The averaged then becomes

(18)

We state three properties which can easily be derived from the
self-symmetry of . Proofs can be found in [31], [23], and
[30].

• .
• The density of is symmetric with re-

spect to .
• . This justifies the

use of as our performance measure.

Thus, we consider , the Chernoff bound of .
With the regularity assumption that
for all in some neighborhood of zero, we state the necessary
and sufficient stability conditions as follows.

Theorem 5 (Sufficient Stability Condition): Let

Suppose , and let be the smallest strictly posi-
tive root of the following equation

If for some , , then

if

if

where . In both cases: and
.

Corollary 3: For any noise distribution with Bhat-
tacharyya noise parameter , if there is no

such that

then will have arbitrarily small bit-error rate (BER) as
tends to infinity. The corresponding can serve as an inner

bound of the achievable region for general asymmetric memo-
ryless channels. Further discussion of finite-dimensional bounds
on the achievable region can be found in [30].

Theorem 6 (Necessary Stability Condition): Let
If , then .

• Remark 1: is the Bhattacharyya noise parameter
and is related to the cutoff rate by

. Further discussion of for turbo-like
and LDPC codes can be found in [25], [31], [30].
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• Remark 2: The stability results are first stated in [23]
without the convergence rate statement and the stability
region . Since we focus on general asymmetric channels
(with symmetric channels as a special case), our conver-
gence rate and stability region results also apply to the
symmetric channel case. Benefitting from considering its
Chernoff version, we will provide a simple proof, which
did not appear in [23].

• Remark 3: can be used as a stopping criterion for the
iterations of the density evolution. Moreover, is lower-
bounded by , which is a computationally
efficient substitute for .

Proof of Theorem 5: We define the Chernoff bound of the
density of the messages emitting from check nodes
in a fashion similar to

First consider the case in which . We then have

To simplify the analysis, we assume the all-zero codeword is
transmitted and then generalize the results to nonzero code-
words. Suppose the distributions of and are and

, respectively. The becomes

(19)

where the last inequality follows from the fact that
. Since any check node with

can be viewed as the concatenation of many check
nodes with , by induction and by assuming the all-zero
codeword is transmitted, we have

(20)

Since as in (18), the averaging over
all possible codewords does not change (20). By further incor-
porating the check node degree polynomial , we have

By (15) and the fact that the moment generating function of the
convolution equals the product of individual moment generating
functions, we have

which is equivalent to

(21)

The sufficient stability theorem follows immediately from (21),
the iterative upper bound formula.

Remark: Inequality (21) is a one-dimensional iterative
bound for general asymmetric memoryless channels. In [30],
this iterative upper bound will be further strengthened to

which is tight for BECs and holds for symmetric channels as
well.

Proof of Theorem 6: We prove this result by the erasure
decomposition technique used in [23].

The erasure decomposition lemma in [23] states that, for any
, and any symmetric channel with LLR distribution

, there exists a BEC with LLR distribution such
that is physically degraded with respect to . Furthermore,

is of the following form:

for all , where is the Dirac-delta measure centered at
. It can be easily shown that this erasure decomposition lemma

holds even when corresponds to an asymmetric channel with
LLR distributions , and computed from
(7).

We can then assign

and

to distinguish the distributions for different transmitted sym-
bols .

Suppose and . Then, for any
, such that . For simplicity, we assume

. The physically better BEC is described as above.
If during the iteration procedure (15) we replace the density

with , then the resulting density will be

and the averaged error probability is

(22)
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By the fact that is the Chernoff bound on
, the regularity condition and the Chernoff the-

orem, for any , there exists a large enough such that

With a small enough , we have . Thus,
with large enough , we have

With small enough or equivalently large enough , we have

However, by the monotonicity with respect to physically de-
graded channels we have, , which

contradicts the monotonicity of with respect to . From the
above reasoning, if , then , which
completes the proof.

Remark: From the sufficient stability condition, for those
codes with , the convergence rate is exponential in ,
i.e., BER . However, the number of bits in-
volved in the tree is , which is
usually much faster than the reciprocal of the decrease rate of
BER . As a result, we conjecture that the av-
erage performance of the code ensemble with will have
bad block-error probabilities. This is confirmed later in Fig. 5(b)
and theoretically proved for the BEC in [32]. The converse is
stated and proved in the following corollary.

Corollary 4: Let denote the block-error probability
of codeword length after iterations of the BP algorithm,
which is averaged over equiprobable codewords, channel real-
izations, and the code ensemble . If and sat-
isfying and

Proof: This result can be proven directly by the cycle-free
convergence theorem, the super-exponential bit convergence
rate with respect to , and the union bound.

A similar observation is also made and proved in [25], in
which it is shown that the interleaving gain exponent of the
block-error rate is , where is the number of parallel
constituent codes. The variable node degree is the number of
parity-check equations (parity-check subcodes) in which a vari-
able bit participates. In a sense, an LDPC code is similar to
parity-check codes interleaved together. With , good in-
terleaving gain for the block-error probability is not expected.

VI. SIMULATIONS AND DISCUSSION

It is worth noting that for asymmetric channels, different
codewords will have different error-resisting capabilities. In
this section, we consider the averaged performance. We can
obtain codeword-independent performance by adding a random
number to the information message before encoding and then
subtracting it after decoding. This approach, however, intro-
duces higher computational cost.

A. Simulation Settings

With the help of the sufficient condition of the stability the-
orem (Theorem 5), we can use to set a stopping criterion for
the iterations of the density evolution. We use the 8-bit quan-
tized density evolution method with being the domain
of the LLR messages. We will determine the largest thresholds
such that the evolved Chernoff bound hits within
100 iterations, i.e., . Better performance can
be achieved by using more iterations, which, however, is of less
practical interest. For example, the 500-iteration threshold of
our best code for z-channels, 12 B (described below), is ,
compared to the 100-iteration threshold . Five different
code ensembles with rate are extensively simulated, in-
cluding regular codes, regular codes, 12A codes,
12B codes, and 12C codes as follows:

• 12A: 12A is a rate- code ensemble found by
Richardson, et al. in [23], which is the best known degree
distribution optimized for the symmetric BiAWGNC,
having maximum degree constraints and

. Its degree distributions are

• 12B: 12B is a rate- code ensemble obtained by min-
imizing the hitting time of in z-channels, through
hill-climbing and linear programming techniques. The
maximum degree constraints are also and

. The differences between 12A and 12B are
1) 12B is optimized for the z-channels with our code-
word-averaged density evolution, and 12A is optimized
for the symmetric BiAWGNC. 2) 12B is optimized with
respect to the hitting time of (depending on )
rather than a fixed small threshold. The degree distribu-
tions of 12B are

• 12C: 12C a rate- code ensemble similar to 12B, but
with being hardwired to , which is suggested by the
convergence rate in the sufficient stability condition. The
degree distributions of 12C are
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TABLE I
THRESHOLDS OF DIFFERENT CODES AND CHANNELS, WITH PRECISION 10

Fig. 4. Asymptotic thresholds and the achievable regions of different codes in
binary asymmetric channels.

Four different channels are considered, including the BEC,
BSC, z-channel, and BiAWGNC. Z-channels are simulated by
binary asymmetric channels with very small
and different values of . Table I summarizes the thresh-
olds with precision . Thresholds are not only presented
by their conventional channel parameters, but also by their
Bhattacharyya noise parameters (Chernoff bounds). The
column “stability” lists the maximum such that

, which is an upper bound on the values
of decodable channels. Further discussion of the relationship
between and the decodable threshold can be found
in [30].

From Table I, we observe that 12A outperforms 12B in
Gaussian channels (for which 12A is optimized), but 12B is
superior in z-channels for which it is optimized. The above
behavior promises room for improvement with codes optimized
for different channels, as was also shown in [14].

Fig. 4 demonstrates the asymptotic thresholds of these codes
in BASCs with the curves of 12A and 12B being very close
together. It is seen that 12B is slightly better when

or . We notice that all the achievable regions of
these codes are bounded by the symmetric mutual information
rate (with a a priori distribution), which was also

suggested in [16]. The difference between the symmetric mu-
tual information rate and the capacity for asymmetric channels
is generally indistinguishable from the practical point of view.
For example, in [33], it was shown that the ratio between the
symmetric mutual information rate and the capacity is lower
bounded by . [34] further proved that the absolute
difference is upper-bounded by 0.011 bit/symbol. Further dis-
cussion of capacity achieving codes with nonuniform a priori
distributions can be found in [35] and [29].

Fig. 5(a) and (b) considers several fixed finite codes in z-chan-
nels. We arbitrarily select graphs from the code ensemble with
codeword lengths and . Then, with these
graphs (codes) fixed, we find the corresponding parity matrix

, use Gaussian elimination to find the generator matrix , and
transmit different codewords by encoding equiprobably selected
information messages. Belief propagation decoding is used with
40 iterations for each codeword. 10 000 codewords are trans-
mitted, and the overall bit/block-error rates versus different
are plotted for different code ensembles and codeword lengths.
Our new density evolution predicts the waterfall region quite ac-
curately when the BERs are of primary interest. Though there
are still gaps between the performance of finite codes and our
asymptotic thresholds, the performance gaps between different
finite-length codes are very well predicted by the differences be-
tween their asymptotic thresholds. From the above observations
and the underpinning theorems, we see that our new density evo-
lution is a successful generalization of the traditional one from
both practical and theoretical points of view.

Fig. 5(b) exhibits the block error rate of the same 10 000-
codeword simulation. The conjecture of bad block-error proba-
bilities for codes is confirmed. Besides the conjectured
bad block-error probabilities, Fig. 5(a) and (b) also suggests that
codes with will have a better error floor compared to
those with , which can be partly explained by the com-
paratively slow convergence speed stated in the sufficient sta-
bility condition for codes. 12C is so far the best code we
have for . However, its threshold is not as good as those
of 12A and 12B. If good block-error rates and low error floor
are our major concerns, 12C (or other codes with ) can
still be competitive choices. Recent results in [36] shows that the
error floor for codes with can be lowered by carefully ar-
ranging the degree– variable nodes in the corresponding graph
while keeping a similar waterfall threshold.

Fig. 6(a) and (b) illustrates the BERs versus different BASC
settings with 2000 transmitted codewords. Our computed
density evolution threshold is again highly correlated with the
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Fig. 5. Bit/block-error rates versus � with fixed � = 0:00001. Computed thresholds for symmetric mutual information rate, (3; 6), 12A, 12B, and 12C codes
are 0:2932;0:2305; 0:2710;0:2730; and 0:2356, respectively. Forty iterations of BP algorithms were performed. 10 000 codewords were used for the simulations.
(a) Bit-error rates, (b) Block-error rates.

Fig. 6. Bit-error rates versus � for � = 0:01 and � = 0:7. The DE thresholds of (12A, 12B, 12C, (3;6)) are (0:2346;0:2332;0:2039;0:1981) for � = 0:01
and (0:1202;0:1206;0:1036;0:0982) for � = 0:07. Forty iterations of BP algorithms were performed. 2000 codewords were used for the simulations. (a) 12A
and 12B. (b) 12C and regular (3;6) codes.

performance of finite-length codes for different asymmetric
channel settings.

We close this section by highlighting two applications of our
results.

1) Error Floor Analysis: “The error floor” is a characteristic
of iterative decoding algorithms, which is of practical im-
portance and may not be able to be determined solely
by simulations. More analytical tools are needed to find
error floors for corresponding codes. Our convergence
rate statements in the sufficient stability condition may
shed some light on finding codes with low error floors.

2) Capacity-Approaching Codes for General Nonstan-
dard Channels: Various very good codes (capacity
approaching) are known for standard channels, but very
good codes for nonstandard channels are not yet known.

It is well known that one can construct capacity-
approaching codes by incorporating symmetric-
information-rate-approaching linear codes with the
symbol mapper and demapper as an inner code [29],
[35], [37]. Understanding density evolution for gen-
eral memoryless channels allows us to construct such
symmetric-information-rate-approaching codes (for
asymmetric memoryless channels), and thus to find
capacity-approaching codes after concatenating the inner
symbol mapper and demapper. It is worth noting that in-
tersymbol interference channels are dealt with by Kavčić
et al. in [16] using the coset code approach. It will be of
great help if a unified framework for asymmetric channels
with memory can be found by incorporating both coset
codes and codeword averaging approaches.
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Fig. 7. Comparison of the approaches based on codeword averaging and the coset code ensemble. (a) Linear code ensemble versus asymmetric channels. (b) Linear
code ensemble versus symmetrized channels. (c) Coset code ensemble versus asymmetric channels.

VII. FURTHER IMPLICATIONS OF GENERALIZED

DENSITY EVOLUTION

A. Typicality of Linear LDPC Codes

One reason that asymmetric channels are often overlooked
is we can always transform an asymmetric channel into a
symmetric channel. Depending on different points of view,
this channel-symmetrizing technique is termed the coset code
argument [16] or dithering/the independent and identically dis-
tributed (i.i.d.) channel adapter [21], as illustrated in Fig. 7(c)
and (b). Our generalized density evolution provides a simple
way to directly analyze the linear LDPC code ensemble on
asymmetric channels, as in Fig. 7(a).

As shown in Theorems 5 and 6, the necessary and sufficient
stability conditions of linear LDPC codes for asymmetric chan-
nels, Fig. 7(a), are identical to those of the coset code ensemble,
Fig. 7(c). Monte Carlo simulations based on finite-length codes

[21] further show that the codeword-averaged per-
formance in Fig. 7(a) is nearly identical6 to the performance of
Fig. 7(c) when the same encoder/decoder pair is used. The above
two facts suggest a close relationship between linear codes and
the coset code ensemble, and it was conjectured in [21] that the
scheme in Fig. 7(a) should always have the same/similar perfor-
mance as those illustrated by Fig. 7(c). This short subsection is

6That is, it is within the precision of the Monte Carlo simulation.

devoted to the question whether the systems in Fig. 7(a) and (c)
are equivalent in terms of performance. In sum, the performance
of the linear code ensemble is very unlikely to be identical to that
of the coset code ensemble. However, when the minimum

is sufficiently large, we can prove that their performance
discrepancy is theoretically indistinguishable. In practice, the
discrepancy for is 0.05%.

Let and de-
note the two evolved densities with aligned parity, and similarly
define and . Our
main result in (15) can be rewritten in the following form:

(23)

Let denote the corresponding bit-error probability of
the linear codes after iterations. For comparison, the traditional
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Fig. 8. Density evolution for z-channels with the linear code ensemble and the coset code ensemble.

formula of density evolution for the symmetrized channel (the
coset code ensemble) is as follows:

(24)

where

Similarly, let denote the corresponding bit error
probability.

It is clear from (24) that when the channel of interest is
symmetric, namely, , then

for all

However, for asymmetric channels, since the variable-node it-
eration involves convolution of several densities given the same

value, the difference between and will
be amplified after each variable node iteration. Hence, it is very
unlikely that the decodable thresholds of linear codes and coset
codes will be analytically identical, namely

Fig. 8 demonstrates the traces of the evolved densities for the
regular code on z-channels. With the one-way crossover
probability being , the generalized density evolution for

TABLE II
THRESHOLD COMPARISON p OF LINEAR AND COSET LDPC

CODES ON Z-CHANNELS

linear codes is able to converge within 179 iterations, while the
coset code ensemble shows no convergence within 500 itera-
tions. This demonstrates the possible performance discrepancy,
though we do not have analytical results proving that the latter
will not converge after further iterations. Table II compares the
decodable thresholds such that the density evolution enters the
stability region within 100 iterations. We notice that the larger

is, the smaller the discrepancy is. This phenomenon can
be characterized by the following theorem.

Theorem 7: Consider asymmetric memoryless channels and
a fixed pair of finite-degree polynomials and . The shifted
version of the check node polynomial is denoted as
where . Let denote the evolved density from the
coset code ensemble with degrees , and

denote the averaged density from the linear code ensemble with
degrees . For any , in
distribution for all , with the convergence rate for each
iteration being for some .
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Corollary 5 (The Typicality Results for Z-Channels): For any
, there exists a such that

Namely, the asymptotic decodable thresholds of the linear and
the coset code ensemble are arbitrarily close when the minimum
check node degree is sufficiently large.

Similar corollaries can be constructed for other channel
models with different types of noise parameters, e.g., the in
the composite BiAWGNC. A proof of Corollary 5 is found in
Appendix III.

Proof of Theorem 7: Since the functionals in (23) and (24)
are continuous with respect to convergence in distribution, we
need only to show that

(25)

where denotes convergence in distribution. Then, by in-
ductively applying this weak convergence argument, for any
bounded , in distribution for all

. Without loss of generality,7 we may assume
and prove the weak convergence of distributions on the domain

on which the check node iteration becomes

Let denote the density of given that the distribution
of is and let similarly correspond to .
Similarly, let and denote the output distributions on

when the check node degree is . It is worth noting
that any pair of and can be mapped bijectively to the

LLR distributions and .
Let , de-

note the Fourier transform of the density . Proving (25) is
equivalent to showing that

However, to deal with the strictly growing average of the “limit
distribution,” we concentrate on the distribution of the normal-
ized output instead. We then need to prove that

7We also need to assume that 8x; P (x)(m = 0) = 0 so that
ln coth j j 2 almost surely. This assumption can be relaxed by separately
considering the event that m = 0 for some i 2 f1; . . . ; d � 1g.

We first note that for all is the averaged distribu-

tion of when the inputs are governed by
satisfying . From this observation, we can derive
the following iterative equations:

By induction, the difference thus becomes

(26)

By Taylor’s expansion and the BASC decomposition argument
in [30], we can show that for all , , and for all
possible and , the quantity in (26) converges to zero with
convergence rate for some . A detailed
derivation of the convergence rate is given in Appendix IV. Since
the limit of the right-hand side of (26) is zero, the proof of weak
convergence is complete. The exponentially fast convergence
rate also justifies the fact that even for moderate

, the performances of linear and coset LDPC codes
are very close.

Remark 1: Consider any nonperfect message distribution,
namely, such that . A persistent reader

may notice that , namely, as
becomes large, all information is erased after passing a check
node of large degree. If this convergence (erasure effect) occurs
earlier than the convergence of and , the
performances of linear and coset LDPC codes are “close” only
when the code is “useless.”8 To quantify the convergence rate,
we consider again the distributions on and their Fourier trans-
forms. For the average of the output distributions , we
have

(27)

8To be more precise, it corresponds to an extremely high-rate code and the
information is erased after every check node iteration.
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By Taylor’s expansion and the BASC decomposition argument,
one can show that the limit of (27) exists and the conver-
gence rate is . (A detailed derivation is included in
Appendix IV.) This convergence rate is much slower than
the exponential rate in the Proof of Theorem 7.
Therefore, we do not need to worry about the case in which the
required for the convergence of and is

excessively large so that .

Remark 2: The intuition behind Theorem 7 is that when the
minimum is sufficiently large, the parity-check constraint
becomes relatively less stringent. Thus we can approximate the
density of the outgoing messages for linear codes by assuming
all bits involved in that particular parity-check equation are
“independently” distributed among , which leads to
the formula for the coset code ensemble. On the other hand,
extremely large is required for a check node iteration to
completely destroy all information coming from the previous
iteration. This explains the difference between their conver-
gence rates: versus .

Fig. 9 illustrates the weak convergence predicted by The-
orem 7 and depicts the convergence rates of

and

Our typicality result can be viewed as a complementing the-
orem of the concentration theorem in [16, Corollary 2.2], where
a constructive method of finding a typical coset-defining syn-
drome is not specified. Besides the theoretical importance, we
are now on a solid basis to interchangeably use the linear LDPC
codes and the LDPC coset codes when the check node degree is
of moderate size. For instance, from the implementation point
of view, the hardware uniformity of linear codes makes them a
superior choice compared to any other coset code. We can then
use the fast density evolution [38] plus the coset code ensemble
to optimize the degree distribution for the linear LDPC codes.
Or instead of simulating the codeword-averaged performance of
linear LDPC codes, we can simulate the error probability of the
all-zero codeword in the coset code ensemble, in which the ef-
ficient LDPC encoder [8] is not necessary.

B. Revisiting the Belief Propagation Decoder

Two known facts about the BP algorithm and the density
evolution method are as follows. First, the BP algorithm is op-
timal for any cycle-free network, since it exploits the indepen-
dence of the incoming LLR message. Second, by the cycle-free
convergence theorem, the traditional density evolution is able
to predict the behavior of the BP algorithm (designed for the
tree structure) for iterations, even when we are focusing on a
Tanner graph of a finite-length LDPC code, which inevitably
has many cycles. The performance of BP, predicted by den-
sity evolution, is outstanding so that we “implicitly assume”
that the BP (designed for the tree structure) is optimal for the
first iterations in terms of minimizing the codeword-averaged
BER. Theoretically, to be able to minimize the codeword-av-
eraged BER, the optimal decision rule inevitably must exploit
the global knowledge about all possible codewords, which is,
however, not available to the BP decoder. A question of in-
terest is whether BP is indeed optimal for the first iterations?

Fig. 9. Illustration of the weak convergence ofQ (0) andQ (1). One
can see that the convergence of Q (0) and Q (1) is faster than the
convergence of (Q (0) +Q (1))=(2) and � .

Namely, with only local knowledge about possible codewords,
whether BP has the same performance as the optimal detector
with the global information about the entire codebook and un-
limited computational power when we are only interested in the
first iterations? The answer is a straightforward corollary to
Theorem 2, the convergence to perfect projection, which pro-
vides the missing link regarding the optimality of BP when only
local observations (on the are available.

Theorem 8 (Local Optimality of the BP Decoder): Fix
. For sufficiently large codeword length , almost all instances

in the random code ensemble have the property that the BP de-
coder for after iterations, , coincides with the
optimal MAP bit detector , where is a fixed in-
teger. The MAP bit detector uses the same number
of observations as in but is able to exploit the global
knowledge about the entire codebook.

Proof: When the support tree is perfectly pro-
jected, the local information about the tree-satisfying strings is
equivalent to the global information about the entire codebook.
Therefore, the extra information about the entire codebook does
not benefit the decision maker, and .
Theorem 2 shows that converges to perfect projection
in probability, which in turn implies that for sufficiently large
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, BP decoder is locally optimal for almost all instances of the
code ensemble.

Note: Even when limiting ourselves to symmetric memory-
less channels, this local optimality of BP can only be proved9

by the convergence to perfect projection. Theorem 8 can thus
be viewed as a completion of the classical density evolution for
symmetric memoryless channels.

VIII. CONCLUSION

In this paper, we have developed a codeword-averaged density
evolution, which allows analysis of general asymmetric memo-
ryless channels. An essential perfect projection convergence the-
orem has been proved by a constraint propagation argument and
by analyzing the behavior of random matrices. With this per-
fect projection convergence theorem, the theoretical foundation
of the codeword-averaged density evolution is well established.
Most of the properties of symmetric density evolution have been
generalized and proved for the codeword-averaged density evo-
lution on asymmetric channels, including monotonicity, distri-
bution symmetry, and stability. Besides a necessary stability
condition, a sufficient stability condition has been stated with
convergence rate arguments and a simple proof.

The typicality of the linear LDPC code ensemble has been
proved by the weak convergence (w.r.t. ) of the evolved densi-
ties in our codeword-averaged density evolution. Namely, when
the check node degree is sufficiently large (e.g., ), the
performance of the linear LDPC code ensemble is very close
to (e.g., within 0.05%) the performance of the LDPC coset code
ensemble. One important corollary to the perfect projection con-
vergence theorem is the optimality of the BP algorithms when
the global information about the entire codebook is accessible.
This can be viewed as a completion of the theory of classical
density evolution for symmetric memoryless channels.

Extensive simulations have been presented, the degree distri-
bution has been optimized for z-channels, and possible appli-
cations of our results have been discussed as well. From both

9The existing cycle-free convergence theorem along does not guarantee the
local optimality of BP.

practical and theoretical points of view, our codeword-averaged
density evolution offers a straightforward and successful gener-
alization of the traditional symmetric density evolution for gen-
eral asymmetric memoryless channels.

APPENDIX I
PROOF OF THEOREM 2

We first introduce the following corollary.

Corollary 6 (Cycle-Free Convergence): For a sequence
, we have for any

-

Proof of Theorem 2: In this proof, the subscript will
be omitted for notational simplicity.

We notice that if for any is perfectly projected,
then so is . Choose . By Corollary
6, we have

is perfectly projected

is perfectly projected

is perfectly projected is cycle-free

is cycle-free

is perfectly projected is cycle-free

We then need only to show that

is perfectly projected is cycle-free

(28)

To prove (28), we take a deeper look at the incidence matrix (the
parity-check matrix) , and use the regular code as our il-
lustrative example. The proof is nonetheless general for all reg-
ular code ensembles. Conditioning on the event that the graph
is cycle-free until depth , we can transform into the form
of (29) (see the bottom of the page) by row and column swaps.

AAA =

1 1 1 1 1 j j

� � � � � �j� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �j� �

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

1 j 1 1 1 1 j

� � � � � �j� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �j� �

j 1 j � � �

(29)
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Using to denote the Kronecker product (whether it represents
convolution or Kronecker product should be clear from the con-
text), (29) can be further expressed as shown by the first expres-
sion at the top of the page, where denotes the identity

matrix, is the incidence matrix of the

equiprobable, bipartite subgraph, in which all variable
nodes have degree , 80 check nodes have degree , and

check nodes have degree . Conditioning on a more
general event that the graph is cycle-free until depth
rather than , we will have the second expression at the top
of the page, where corresponds to the incidence matrix of
the cycle-free graph of depth . is the incidence matrix
with rows (check nodes) in and having degree
and . For convenience, we denote the blocks in as

Then is not perfectly projected if and only if there exists
a nonzero row vector such that

(30)

and

is not in the row space of

or equivalently is not in (31)

Equations (31) and (30) say that there exists a constraint on
the variable nodes of , which is not from the linear com-
bination of those check node equations within , but rather
is imposed by the parity-check equations outside . It can
be easily proved that if the matrix is of full row rank, then

no such exists and is perfectly projected.10 Instead of
proving is of full rank, we take a different approach, which
takes care of the constraint propagation.

From (30), we know that, for to exist, there must exist
a nonzero row vector such that

(32)

and

(33)

From (33), the ’s in must be aligned such that four neigh-
boring bits should have the same value; for example,

Any nonzero satisfying (32) is generated by . By ap-
plying the row symmetry in , we see that the ’s in any are
uniformly distributed among all these bits. Therefore,
conditioning on the event that there exists a not-all-one satis-
fying (32), the probability that satisfies (33) is

satisfies (33) satisfies (32) and is not

the 's in are aligned satisfies (32) and is not

there are ones in

(34)

The last inequality follows from the assumption that is neither
all-zero nor all-one. The reason why we can exclude the case
that is all-one is that, if is odd, then there is an even number

10Unfortunately, is not of full row rank. We can only show that with

sufficiently large n, the row rank of converges to the number of rows
minus one by methods similar to those in [39]. A simple constraint propagation
argument is still necessary for this approach.
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of ’s in each column of . Since there is only one in each
column of , by (30), an all-one can only generate an
all-zero , which puts no constraints on . If is even,
by the same reasoning, an all-one will generate of the form

Nevertheless, when is even, this specific type of is in the
row space of , which does not fulfill the requirement in (31).
From the above reasoning, we can exclude the all-one .

Let denote the number of rows of minus .
The number of vectors satisfying (32) is upper-bounded by

. By (34), Proposition 4 (which will be formally stated and
proved later), and the union bound, we have

is not perfectly projected is cycle-free

satisfying (30) and (31)

which satisfies (32) and (33) but is not all-one

satisfies (33) satisfies (32) and is not

# of is smaller than

# of is larger than

(35)

To prove the case , we focus on the probability that the
constraints propagate two levels rather than just one level, i.e.,
instead of (28), we focus on proving the following statement:

is perfectly projected is cycle-free

Most of the analysis remains the same. The conditional proba-
bility in (34) will be replaced by

is able to propagate two levels satisfying (32)

propagates the second level

propagates the first level satisfying (32)

propagates the first level satisfying (32)

and 's to propagate the second and first levels

where the inequality marked follows from an analysis of
the minimum number of bits required for the constraint propa-
gation similar to that for the single-level case. By this stronger
inequality and a bounding inequality similar to that in (35), we
thus complete the proof of the case for all regular codes
of practical interest.

Note: This constraint propagation argument shows that the
convergence to a perfectly projected tree is very strong. Even

for codes with redundant check node equations (not of full row
rank), it is probabilistically hard for the external constraints to
propagate inside and impose on the variable nodes within .
This property is helpful when we consider BP decoding on the
alternative graph representation as in [40].

We close this appendix by stating the proposition regarding
, the number of linearly dependent rows in . The proof

is left to Appendix II.

Proposition 4: Consider the semiregular code ensemble
generated by equiprobable edge permutation

on a bipartite graph with variable nodes of degree , and
and check nodes with respective degrees and

. The corresponding parity-check matrix is . With
denoting the number of linearly dependent rows in , i.e.,

, we have

which automatically implies

for any .

Corollary 7: Let denote the rate of a regular LDPC code
ensemble , i.e., , where
is the corresponding parity-check matrix. Then converges to

in , i.e.,

Proof: It is obvious that . To show that

we let and rewrite

By Proposition 4 and the fact that , we have
. This completes the proof.

A stronger version of the convergence of with respect to
the block length can be found in [39].

APPENDIX II
PROOF OF PROPOSITION 4

We finish the proof of Proposition 4 by first stating the fol-
lowing lemma.

Lemma 2: For all , we have

Proof: By Stirling’s double inequality

we can prove

which immediately leads to the desired inequality.
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Proof of Proposition 4: By the definition of , we have
total # of codewords , where .

Then

# of codewords of weight

Using the enumerating function as in [41], [39] and define
as

the above quantity can be further upper bounded as follows.

(36)

where the second inequality follows from Lemma 2 and the third
inequality follows from the fact that the binary entropy function

is upper-bounded by .
By defining

the summation in (36) is upper-bounded11 by

By simple calculus, is attained when
. Since , the summation in (36) is bounded

by for all , and therefore,

The proof is complete.

APPENDIX III
PROOF OF COROLLARY 5

We prove one direction that

11The range of i is expanded here from a discrete integer set to a continuous
interval.

The other direction that can be
easily obtained by symmetry.

By definition, for any , we can find a sufficiently large
such that for a z-channel with one-way crossover prob-

ability is in the interior of
the stability region. We note that the stability region depends
only on the Bhattacharyya noise parameter of , which is
a continuous function with respect to convergence in distribu-
tion. Therefore, by Theorem 7, there exists a such that

is also in the stability region. By the definition of the
stability region, we have , which implies

. The proof is thus complete.

APPENDIX IV
THE CONVERGENCE RATES OF (26) AND (27)

For (26), we will consider the cases that and sepa-
rately. By the BASC decomposition argument, namely, all asym-
metric channels can be decomposed as the probabilistic com-
bination of many BASCs, we can limit our attention to simple
BASCs rather than general memoryless asymmetric channels.
Suppose and correspond to a BASC with
crossover probabilities and . Without loss of generality, we
may assume because of the previous assumption
that . We then have

and

By Taylor’s expansion, for , (26) becomes

which converges to zero with convergence rate .
For , we have

which converges to zero with convergence rate ,
where satisfies . Since the conver-
gence rate is determined by the slower of the above two, we
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have proven that (26) converges to zero with rate
for some .

Consider (27). Since we assume that the input is not perfect,
we have . For , by Taylor’s expansion,
we have

which converges to

with rate . For , we have

which converges to zero with rate . Since the
overall convergence rate is the slower of the above two, we have
proven that the convergence rate is .
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