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Abstract—This paper proposes a new algorithm based on the
Context-Tree Weighting (CTW) method for universal compression
of a finite-alphabet sequence xn1 with side information y

n

1 available
to both the encoder and decoder. We prove that with probability
one the compression ratio converges to the conditional entropy rate
for jointly stationary ergodic sources. Experimental results with
Markov chains and English texts show the effectiveness of the al-
gorithm.

Index Terms—Arithmetic coding, conditional entropy, context
tree weighting method, hidden Markov process, source coding, uni-
versal lossless data compression.

I. INTRODUCTION

I N this paper, we study the problem of universal lossless com-
pression with side information. That is, we wish to encode

the sequence where both the encoder and decoder know a
side information sequence . Assuming the two sources are
jointly stationary and ergodic, we would like to encode at
a compression rate equal asymptotically to the conditional en-
tropy rate , which is the fundamental limit that fol-
lows by straightforward extension of the Shannon–McMillan
theorem. Notice that both the encoder and decoder know the
side information , but neither know anything about the joint
or individual distributions of and .

In several applications, side information known to both the
encoder and decoder is available. For example, when two remote
users and have identical copies of a file and wants to
convey an edited version of the file to , the side information
is the original file. Universal compression with side information
is also useful in data exchange protocols (see [4]). For example,
in Algorithm B proposed in [4], there are three stages in data
exchange between two users. In the first stage, a noisy version
of is transferred. In the second stage, further communication
between the two parties is needed to ensure that an exact copy
of is decoded. Once both parties have an exact copy of , in
the third stage, can be encoded at a rate slightly higher than

. The compression algorithm with side information can
be used in the third stage to complete the data exchange process.
Other applications include multiresolution image coding where
one may use low-resolution images as side information for high-
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resolution images [11], and lossless compression of video [3]
where previous frames are used as the side information.

Zero-error encoding for memoryless sources with side infor-
mation at the decoder only was initially studied in [17]. In al-
most lossless compression, the celebrated Slepian–Wolf–Cover
result [10], [5] shows that side information at the encoder does
not decrease the asymptotic minimal compression rate. In con-
trast, when strictly lossless compression is required, the condi-
tional entropy is not achievable if the side information is not
available at the encoder [1], [8], [9].

Universal compression with side information known to both
the encoder and decoder has been studied in [12], where the
following “conditional” version of the Lempel–Ziv algorithm
was proposed.

1) Fix a window size and transmit the first symbols
without compression.

2) Parse the sequence of joint symbols by the sliding-
window Lempel–Ziv algorithm. Let be the largest in-
teger such that a copy of occurs in the cur-
rent window . Let the copy begin at position
start Define the new window to be .

3) Represent the th phrase which consists of
the matched portion and the last symbol

. The length of the phrase can be represented using
bits. The starting point of the

match can be specified using
bits, where

4) Repeat steps 2) and 3) as necessary until the sequence is
exhausted.

A conditional multilevel pattern matching (CMPM) gram-
mar-based code was proposed in [18].1 It was proved that
the worst case redundancy per sample is upper-bounded by

. The MPM code transforms the data sequence
into a grammar, which is then compressed by the zero-order
adaptive arithmetic code. The MPM grammar with parameter

is as follows. At top level , the sequence is partitioned
into blocks of length . From left to right, each block is labeled
either by “ ” if it is the first appearance or by an integer pointing
to its first appearance. Then the following steps are performed
at subsequent levels. At level .

1) Each block labeled by “ ” in the previous level is parti-
tioned into subblocks of length . Then concatenate all
blocks of length .

1Recently, the related problem of universal refinement source coding was
studied in [7] using refinement of grammars.
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Fig. 1. Context tree with D = 2 of joint source (x; y). We encode x , where i = 9. A branch from depth d� 1 to depth d corresponds to (x ; y ; y );
d = 1; 2.

2) From left to right, every first-appearing distinct block is
labeled by “ .” Subsequent appearances are labeled by an
integer pointing to its first appearance.

The conditional MPM is performed on . At level we
get the following.

1) Each block labeled by “ ” in the previous level is parti-
tioned into subblocks of length . Then concatenate all
blocks of length .

2) Visit every -block from left to right, and label all identical
-blocks with the same integer and all distinct -blocks

with distinct integers with increasing order, starting with
.

3) For each distinct -block , visit every -block corre-
sponding to , and label the first appearance of each dis-
tinct -block by “ ” and subsequent appearances by the
integer pointing to the first appearance.

The CMPM grammar is then encoded by a conditional arith-
metic coder.

In this paper, we propose a compression algorithm with side
information known to both encoder and decoder based on the
Context Tree Weighting (CTW) principle [14], [16]. The details
of the algorithm are presented in Section II. In Section III, we
show that for jointly stationary ergodic sources, the compression
rate achieved by the algorithm converges to the conditional en-
tropy rate. Implementation issues (particularly for sources with
large alphabets) are discussed in Section IV. Finally, experi-
mental results on randomly generated sources and on English
text files are presented in Section V.

II. ALGORITHM

The CTW method updates a context tree and uses a weighting
scheme to calculate a weighted probability, which is a mix-
ture of estimated probabilities assuming different models. The
weighted probability at the root of the context tree is the coding

probability fed to the arithmetic coder. The context of the cur-
rent symbol is a suffix of the past symbols. In a context tree, the
path from any node to the root corresponds to a context, with the
most recent past symbol represented by the branch closest to the
root. An important notion in our algorithm is that in coding the
th symbol , the concept of context is extended to include both

the past observations and the future symbols . In the
following, we discuss in detail how to build the context tree and
calculate the coding probability in our algorithm.

The context tree uses the joint symbol (see
Fig. 1). In the context tree with maximum order , each node
stores the counts of symbol in the corresponding context,
as well as the estimated probability and the weighted proba-
bility . The context here includes both past symbols of
and future symbols of . If the current symbol is , in
order to find the th-order context, we have to take branches ac-
cording to for . Thus, the path
from a node at depth to the root corresponds to the context

. Therefore, each node stores counts and
has branches.

The Basic Algorithm (conditioning on the past symbols
, the current symbol and the future symbols ):

For the current symbol , we perform
the following steps.

1) Travel through the context tree according to
, until a leaf

node is reached. Notice that both encoder and decoder
have access to past symbols and future symbols

, as long as past symbols are decoded correctly.
(In the basic algorithm, both encoder and decoder are
assumed to know and . This assumption
is removed in the extended algorithm discussed later.)

2) Travel back from the leaf to the root. In each node in the
updating path, select an -vector of counts where



4010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 9, SEPTEMBER 2006

, and calculate the conditional probability for .
The estimated probability of node is updated

(1)

The count of in node is updated

(2)

Then the weighted probability of node is updated

(3)

where is the depth of node , and is the set
of children nodes of .

3) Once the weighted probability at the root is obtained, it is
fed to the arithmetic coder to encode .

Notice both encoder and decoder have access to , so the de-
coder can follow the same steps and recover . For the example
shown in Fig. 1, the leaf node has counts . Since

, we should select the first and third counts . (In
Fig. 1, the selected counts in the updating path are highlighted.)
The counts translate to probability , which are the
statistics for the symbol at the leaf node. The internal node
has counts . Since , we should select the counts

. The root node has counts . Since we
should select the counts .

The extended CTW method [16] has unbounded memory
length and achieves asymptotic optimality for all stationary
ergodic sources. Our conditional compression algorithm can
also be extended in the same way. Note that it is unnecessary
to maintain further children nodes of a unique node, which
corresponds to a context that has occurred only once so far.

The Extended Algorithm (conditioning on the past symbols
, the current symbol and the future symbols ):

For the current symbol , we perform
the following steps.

1) Travel through the extended context tree according to
until a null node is en-

countered, which corresponds to a context that has never
occurred so far. New nodes are added to the context
tree during this step. The unknown past and
unknown future are padded with symbol . This null
node becomes a unique node since the current context now
occurs for the first time.

2) Travel back to the root. In each node in the updating path,
select an -vector of counts where , and
calculate the conditional probability for . The estimated
probability of node is updated

(4)

The count of in node is updated

(5)

Then the weighted probability of node is updated

if is unique

otherwise
(6)

where is the set of children nodes of in the ex-
tended context tree. Note that there are two special nodes in

symbolized by , which represent the unknown
past and unknown future , respectively. If
a context occurs in the beginning or in the end of ,
then its children nodes include the special node(s), whose
estimated/weighted probabilities are simply .

3) The weighted probability at the root is fed to the arithmetic
coder to encode .

III. ANALYSIS

In this section, we give our main results on the optimality
of the compression algorithms with side information proposed
in this paper. Following the technique in [14], Theorem 1 pro-
vides an upper bound on the compression ratio using the basic
CTW method with maximal memory length . Theorem 2 as-
serts asymptotic optimality of the algorithm using the extended
CTW method.

Theorem 1: For jointly stationary and ergodic , using
the conditional CTW with a maximum memory length , we
have

(7)

almost surely, where is the code length to compress
sequence with side information .

Proof: Let be the coding proba-
bility of with side information . (We assume both encoder
and decoder also know and .) Let

where is the actual conditional probability.
Let be a function of an -dimensional vector defined

as follows: and

(8)

where

(9)

For any
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(10)

where is the estimated probability of node
are the counts stored in node , and is a vector

of integers.
The second term in (10) can be bounded by

(11)

(12)

where

:
: (13)

The first inequality (11) follows from of [14, eq. (11)] and

(14)

where and , for , which is proved
in Appendix A. The inequality (12) follows from the fact that
function is convex.

The first term in (10) can be bounded by

(15)
To see this, by the recursive weighing formula (3), we have

(16)

where is the number of states (leaf nodes) of the tree source
, and is the number of children of any internal node. The

right-hand side of (16) is the number of nodes (including in-
ternal nodes and leaves) of . To obtain (15), we just let

and .
By using the arithmetic coder, the codeword length

divided by the sequence length is upper-bounded by

(17)

By (10), (12), (15), and (17) we have

(18)

Since

(19)

almost surely, we have

(20)

almost surely, for any .

Following the analysis in [16], we now give a result on the
conditional compressor based on extended CTW which elimi-
nates the restriction on the maximal memory length.

Theorem 2: For jointly stationary and ergodic , using
the conditional extended CTW with unbounded memory length,
we have

a.s. (21)

where is the code length to compress sequence
with side information .

Proof: For any , due to the weighting formula (6),
we have

(22)

where is the coding probability of with side in-
formation , and is the number of symbols
in for which the full context is not available, including the
first symbols and the last symbols. We have
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(23)

(24)

The first inequality follows from (22), the second inequality fol-
lows from (14), and the third inequality follows from the fact
that the function is convex. For jointly stationary ergodic
sources, we have

a.s. (25)

By using the arithmetic coder, we have

(26)

Therefore,

(27)

almost surely, for any . Since

(28)

(see Appendix B), we have that the limsup of the conditional
compression rate is upper-bounded by the conditional entropy
rate

(29)

Notice that even if forms a finite-order Markov chain,
still depends on an infinite number of future symbols ,

and the upper bound is larger
than . In practice, the basic CTW method with finite
memory length performs almost as well as the extended CTW
method.

IV. IMPLEMENTATION

For sources with large alphabets, the number of links (to chil-
dren nodes) and the number of counts stored in each node are
very large. (Assuming an alphabet size of , the number of
links stored in a node is and the number of counts

stored in a node is .) We can dynamically allo-
cate space for nodes, links, and counts, but it still takes a large
amount of memory to build the context tree even with a mod-
erate memory length . In practice, the CTW approach may
exhibit poor performance if the alphabet size is too large [2],
[13]. In fact, the redundancy bounds in (18) and (24) will be too
large and practically useless.

There are several techniques discussed in [6], [15] to improve
the CTW method for sources with large alphabets, which can
also be used in the implementation of the conditional CTW al-
gorithm.

1) Since the CTW method works best for binary sources, it is
appealing to use a multilevel approach where we decom-
pose symbols into bits, with separate context trees for each
bit of the symbol. The context of each bit consists of all
earlier bits of the current symbol as well as all earlier sym-
bols. For the multilevel CTW [15], the root of the context
tree for the th bit has branches, while the number of
branches of an internal node equals the alphabet size. The
counts of ’s and ’s are stored in each node. Weighting
takes place at internal nodes, which are symbol boundaries.
For the multilevel conditional CTW, we build a context tree
for each bit of the symbol and each different symbol of

(so there are totally context trees), and the
number of branches of an internal node equals (see
Fig. 2).

2) Hashing can be used to reduce the required memory and
save space for pointers to children nodes.

3) The zero-redundancy estimator for binary sources

: for
: for
: for
: for

(30)
can be used to replace the Krichevski–Trofimov estimator
in order to reduce the parameter redundancy for a source
that generates ’s and ’s only.

The computational complexity of the basic algorithm in Fig. 1
is , because for each symbol, we have
to update tree nodes, and there are counts in each tree
node. The factor is due to the arithmetic coding. The
computational complexity of the improved algorithm in Fig. 2
is , because for each symbol, we have to up-
date context trees, but each one stores counts of ’s
and ’s only. The improved algorithm takes more space, be-
cause it essentially keeps context trees and the number
of pointers to children in each tree node is the leading term

. However, if a hashing technique is used to store tree
nodes, then we do not have to store pointers and the number of
counts in each tree node is instead of , in which case
the improved algorithm does not use much more space. For the
extended algorithm with unbounded memory, the tree depth
should be replaced by the sequence length in the worst case
in the computational complexity, and the space needed grows
linearly with .

In the experimental results in Section V, we find these tech-
niques very useful in dealing with sources with large alphabets.
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Fig. 2. Example of multilevel context tree. jX j = jYj = 8;D = 2.

In the special case that we know is observed through a
discrete memoryless channel and want to compress given ,
instead of conditioning on the past symbols of , we con-
dition only on the past symbols of and future symbols of .
In that case, the number of branches of an internal node is re-
duced to , since we condition on the past symbols of
and the current and future symbols of . We show in Section V
that this modification also improves the compression ratio.

V. SIMULATIONS

Example 1: We test the same example as in [18], and compare
our method with the algorithm therein. is a binary Markov
chain with the transition matrix

and we construct the hidden Markov chain
where is independent and identically distributed (i.i.d.)
with the probability of symbol being . We have

. When and . Fig. 3
shows the compression ratio as a function of data size of both
our algorithm and the CMPM algorithm. The compression ratio
can also be seen as an estimate of the conditional entropy rate.

Example 2: With the same processes used in Example 1, we
now interchange the roles of and , with taking the role of
side information. Note that

. In Fig. 4, we test the case when there is a lag between
both sequences: “sync ” means that we have advanced the
sequence by positions.

Example 3: We test the algorithm on English texts. Let
be the original copy of a novel, and be a noisy version of
the novel ( observed through a discrete memoryless channel).
We use the algorithm to estimate both and ,
assuming where is i.i.d. noise independent of

. In this case, it is easy to calculate . Since

we do not know the statistics of we do not know ,
but expect it to be less than . In our experiment, the
corrupted symbol is either the original symbol with probability

, or corrupted to any other symbol with equal probabilities.
The novel we use is Emma by Jane Austen. Conditional com-

pression ratios versus sequence lengths are shown in Fig. 5,
where . We have found that other novels yield sim-
ilar results (not shown here), and the estimate of does
converge to the true value. In addition, the estimate of
is consistently smaller than the estimate of .

APPENDIX A

We prove that

(31)

where and , for by extending the
proof in [14, Appendix B] to the nonbinary alphabet case.

Let

(32)

For any , consider

(33)

where

(34)

and

(35)
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Fig. 3. Compression rates with side information of the processes in Example 1, as a function of length. Conditional entropy H(XjY ) = 0:469. The dashed
(upper) curve corresponds to the CMPM algorithm and the solid (lower) curve corresponds to our CTW-based algorithm.

Fig. 4. Example 2. Compression ratio via CTW. Conditional entropyH(Y jX) = 0:3075. The lower (solid) curve corresponds to the case where both sequences
are synchronized. The upper (dashed) curves correspond to the case where the side information is advanced by one and two samples, respectively.
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Fig. 5. Example 3. Compression ratio of Emma via multilevel conditional CTW. The channel parameter is p = 0:99, and the entropy of the noise is H(W ) =
H(Y jX) = 0:1278. The lower (dashed) curve corresponds to encoding the original source with noisy side information, while the upper (solid) curve corresponds
to encoding the noisy source with the original source as side information.

for . The derivatives are

(36)

for , and

(37)

for and . Since and
, we have

(38)

for . Therefore,

(39)

APPENDIX B

First, we prove the upper bound

(40)

On the other hand, the limit

(41)

exists, and we have

(42)

The left-hand side of (42) converges to the same limit as in (41),
when . Therefore,

(43)
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