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robability forecasts in complex environments can benefit from combining the estimates of large groups of

forecasters (“judges”). But aggregating multiple opinions raises several challenges. First, human judges are
notoriously incoherent when their forecasts involve logically complex events. Second, individual judges may
have specialized knowledge, so different judges may produce forecasts for different events. Third, the credibility
of individual judges might vary, and one would like to pay greater attention to more trustworthy forecasts. These
considerations limit the value of simple aggregation methods like unweighted linear averaging. In this paper, a
new algorithm is proposed for combining probabilistic assessments from a large pool of judges, with the goal of
efficiently implementing the coherent approximation principle (CAP) while weighing judges by their credibility.
Two measures of a judge’s likely credibility are introduced and used in the algorithm to determine the judge’s
weight in aggregation. As a test of efficiency, the algorithm was applied to a data set of nearly half a million
probability estimates of events related to the 2008 U.S. presidential election (~16,000 judges). Compared with
unweighted scalable CAP algorithms, the proposed weighting schemes significantly improved the stochastic
accuracy with a comparable run time, demonstrating the efficiency and effectiveness of the weighting methods
for aggregating large numbers and varieties of forecasts.
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one event conditional upon another.! Including com-
plex events in queries to judges may thus potentially
improve the accuracy of aggregate forecasts.

1. Introduction
Decisions and predictions resulting from aggregating
information in large groups are generally considered

better than those made by isolated individuals. Prob- 1.1. Aggregation Principles and

ability forecasts are thus often elicited from a number Practical Algorithms
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of human judges whose beliefs are combined to form
aggregated forecasts. Applications of this approach
can be found in many different fields such as data
mining, economics, finance, geopolitics, meteorology,
and sports (for surveys, see Clemen 1989, Morgan and
Henrion 1990, Clemen and Winkler 1999). In many
cases, forecasts may be elicited for sets of events that
are logically dependent, e.g., the conjunction of two
events, and also each event separately. Such forecasts
are useful when judges have information about the
likely co-occurrence of events or the probability of

Combining probabilistic forecasts over both simple
and complex events requires sophisticated aggrega-
tion because coherence is desired. In particular, mere
linear averaging of the probabilities offered for a
given event may not yield a coherent aggregate. For
one thing, human judges often violate probability
axioms (e.g., Tversky and Kahneman 1983, Macchi

! Example events might include “President Obama will be reelected
in 2012,” “the U.S. trade deficit will decrease and the national sav-
ings rate will increase in 2011,” and “Obama will be reelected if the
U.S. unemployment rate drops below 8% by the end of 2011.”
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et al. 1999, Sides et al. 2002, Tentori et al. 2004), and
the linear average of incoherent forecasts is generally
also incoherent. Moreover, even if all the judges are
individually coherent, when the forecasts of a given
judge concern only a subset of events (because of spe-
cialization), the averaged results may still be incoher-
ent. Finally, if conditional events are included among
the queries, linear averaging will most likely lead to
aggregated probabilities that no longer satisfy the def-
inition of conditional probability or Bayes’ formula.

To address the foregoing limitations, a generaliza-
tion of linear averaging was discussed by Batsell
et al. (2002) and by Osherson and Vardi (2006). Their
idea is known as the coherent approximation prin-
ciple (CAP). The CAP proposes a coherent fore-
cast that is minimally different, in terms of squared
deviation, from the judges’ forecasts. Unfortunately,
the optimization problem required for the CAP is
equivalent to an NP-hard decision problem and has
poor scalability as the numbers of judges and events
increase. To circumvent this computational challenge,
Osherson and Vardi proposed a practical method for
finding coherent approximations, termed “simulated
annealing over probability arrays” (SAPA). However,
the simulated annealing needed for SAPA requires
numerous parameters to be tuned and still takes an
unacceptably long time for large data sets. In Predd
et al. (2008), the problem is addressed by devising an
algorithm that strikes a balance between the simplic-
ity of linear averaging and the coherence that results
from a full solution of the CAP. The Predd et al. (2008)
approach uses the concept of “local coherence,” which
decomposes the optimization problem into subprob-
lems that involve small sets of related events. This
algorithm makes it computationally feasible to apply
a relaxed version of the CAP to large data sets, such
as the one described next.

1.2. Presidential Election Data

Previously published studies of the CAP and the algo-
rithms that implement it (e.g., Batsell et al. 2002,
Osherson and Vardi 2006, Predd et al. 2008) involve
no more than 30 variables and 50 judges. To fully test
the computational efficiency and practical usefulness
of the CAD, it is of interest to compare it to rival aggre-
gation methods using a large data set. The 2008 U.S.
presidential election provided an opportunity to elicit

a very large pool of informed judgments from knowl-
edgeable and interested respondents. In the months
prior to the election, we established a website to col-
lect probability estimates of election related events.
To complete the survey, respondents were encour-
aged to provide basic demographic information (gen-
der, party affiliation, age, highest level of education,
state of residence) as well as numerical self-ratings
of political expertise (before completing the survey)
and prior familiarity with the questions (after com-
pletion). The respondents were presented 28 ques-
tions concerning election outcomes involving seven
randomly selected states and were asked to estimate
the probability of each outcome. For example, a user
might be asked questions about simple events, such
as, “what is the probability that Obama wins Indi-
ana?” and also questions about complex events like,
“what is the probability that Obama wins Vermont
and McCain wins Texas?” or “what is the probabil-
ity that McCain wins Florida supposing that McCain
wins Maine?” The respondents provided estimates of
these probabilities with numbers from 0% to 100%. In
the end, nearly 16,000 respondents completed the sur-
vey, and approximately half a million estimates were
collected.

1.3. Goals of the Study

This is the first study in which the large size of the
data set allows us to fully evaluate the computational
efficiency of rival aggregation methods. The scope of
the study also raises the issue of the varied quality
of individual judges and the importance of weight-
ing them accordingly. Hence, our goal is to develop
an algorithm that can efficiently implement a relaxed
version of the CAP and at the same time allow judges
to be weighted by an objective measure of their credi-
bility. There is a long history of debate about whether
simple averages or weighted averages work better
(for review, see Winkler and Clemen 1992, Clemen
1989, Bunn 1985). We hope to demonstrate from our
study the superior forecasting gains that result from
combining credibility weighting with coherentization.
We will also show theoretically and empirically that
smart weighting allows particular subsets of events to
be aggregated more accurately. Last, we will compare
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the aggregated forecasts (of the simple events) gener-
ated from these weighted algorithms with the proba-
bilistic predictions provided from popular prediction
markets and poll aggregators.

1.4. Outline

The remainder of this paper is organized as follows.
In §2, we first introduce notation. Then we review
the CAP and a scalable algorithm for its approx-
imation. Performance guarantees for the algorithm
are also discussed. In §3, we propose the weighted
coherentization algorithm and define two penalty mea-
sures to reflect an individual judge’s credibility. We
also investigate the correlation between these mea-
sures and their accuracy measured by Brier score
(Brier 1950). Yet other measures of forecasting accu-
racy are introduced in §4, and they are used for
comparing weighted coherentization and other aggre-
gation methods. In §5, we show that coherent adjust-
ment can improve the accuracy of forecasts for logi-
cally elementary/simple events provided that judges
are good forecasters for complex events. We conclude
in §6 with a discussion of implications and extensions.

2. The Scalable Approach to
Applying the CAP

2.1. Coherent Approximation Principle

Let © be a finite outcome space so that subsets of
Q are events. A forecast is defined to be a mapping
from a set of events to estimated probability values,
ie, f: €—[0,1]", where €={E,, ..., E,} is a collec-
tion of events. Also we let 1;: @ — {0, 1} denote the
indicator function of an event E. We distinguish two
types of events: simple events and complex events
formed from simple events using basic logic and con-
ditioning.? Because subjective probability estimates of
human judges are often incoherent, it is commonplace
to have incoherence within a single judge and among
a panel of judges. To compensate for the inadequacy
of linear averaging when incoherence is present, the
coherent approximation principle was proposed by
Osherson and Vardi (2006) with the following defini-
tion of coherence.

2For ease of exposition in what follows, we often tacitly assume
that conditioning events are assigned positive probabilities by fore-
casters. If not, the estimates of the corresponding conditional events
will be disregarded.

DEerINITION 1. A forecast f over a set of events € is
probabilistically coherent if and only if it conforms to
some probability distribution on £, i.e., there exists a
probability distribution g on € such that f(E) = g(E)
for all E€ €.

With a panel of judges each evaluating a (poten-
tially different) set of events, the CAP achieves coher-
ence with minimal modification of the original judg-
ments, which can be mathematically formulated as
the following optimization problem:

min 3 3 (f(E) ~ f(E))’

i=1 Ee%; (1)
s.t. f is coherent.

Here we assume a panel of m judges, where ¢,
denotes the set of events evaluated by judge i; the
forecasts {f;}/L, are the input data, and f is the output
of (1), which is a coherent aggregate forecast for the
events in € =\/_, €,.

2.2. A Scalable Approach

Although the CAP can be framed as a constrained
optimization problem with |€| optimization variables,
it can be computationally infeasible to solve using
standard techniques when there is a great number
of judges forecasting a very large set of events (e.g.,
our election data set). In addition, the nonconvex-
ity introduced by the ratio equality constraints from
conditional probabilities might lead to local minima
solutions. In Predd et al. (2008), the concept of local
coherence was introduced, motivated by the fact that
the logical complexity of events that human judges
can assess is usually bounded, typically not going
beyond a combination of three simple events or their
negations. Hence, the global coherence constraint can
be well approximated by sets of local coherence
constraints, which in turn allows the optimization
problem to be solved using the successive orthogonal
projection (SOP) algorithm (for related material, see
Censor and Zenios 1997, Bauschke and Borwein 1996).
Below, we reproduce the definition of local coherence
and the formulation of the optimization program.

DErFINITION 2. Let f: € — [0, 1] be a forecast, and
let 7 be a subset of €. We say that f is locally coherent
with respect to the subset F if and only if f restricted
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Table 1 Local Coherence Example
€ E E, EANE, EVE, EI|E
f 08 05 0.2 0.9 0.4

to 7 is probabilistically coherent, i.e., there exists a
probability distribution g on € such that g(E) = f(E)
forall E€F.

We illustrate this via Table 1. We see that f is not
locally coherent with respect to ¥, ={E,, E,, E; A E,}
because f(E;) + f(E,) — f(E; AE,) > 1, whereas f is
locally coherent with respect to ¥, ={E;, E,, E; V E,}
and 7; ={E,, E; AE,, E, | E,}. Note that f is not glob-
ally coherent (namely, coherent with respect to €) in
this example, because global coherence requires that
f be locally coherent with respect to all ¥ C €.

With the relaxation of global coherence to local
coherence with respect to a collection of sets {7},
the optimization problem (1) can be modified to

min 3" 3 (f(E) - F(E)’

f® D, (2)

s.t. f is locally coherent w.r.t. ¥, VIi=1,..., L.

We can consider solving this optimization problem
as finding the projection onto the intersection of the
spaces formed by the L sets of local coherence con-
straints so that the SOP algorithm fits naturally into
the judgment aggregation framework.

The computational advantage of this iterative algo-
rithm is that the CAP can now be decomposed into
subproblems that require the computation and update
of only a small number of variables determined by
the local coherence set 7. If the local coherence set
consists of only absolute® probability estimates, the
subproblem becomes essentially a quadratic program,
where analytic solutions exist. If the local coherence
set involves a conditional probability estimate that
imposes a ratio equality constraint, the subproblem
can be converted to a simple unconstrained opti-
mization problem after substitution. Both cases can
be solved efficiently. So the trade-off between com-
plexity and speed depends on the selection of the

3 Absolute is used here to refer to events that are not conditional.
Therefore, negation, conjunction, and disjunction events are all
absolute.

local coherence sets {#,}l_,, which is a design choice
that an analyst needs to make. Note that when each
set includes only one event, the problem degener-
ates to linear averaging, and on the other hand, when
all events are grouped into one single set, this case
becomes the same as requiring global coherence. For-
tunately, we can often approximate global coherence
using a collection of local coherence sets in which
only a small number of events are involved, because
complex events in most surveys are formed with the
consideration of the limited logical capacity of human
judges and therefore involve a small number of sim-
ple events.

It is also shown in Predd et al. (2008) that, regard-
less of the eventual outcome, the scalable approach
guarantees stepwise improvement in stochastic accu-
racy (excluding forecasts of conditional events) mea-
sured by Brier score, or “quadratic penalty,” which is
defined as follows:

1

Ee€%

BS(f) =

So we choose {7}, based on each complex event
and the corresponding simple events to achieve effi-
cient and full coverage on €. However, it should be
noted that there is no theoretical guarantee that step-
wise improvement and convergence in accuracy hold
for the SOP algorithm when it is applied to condi-
tional probability estimates. Nevertheless, empirically
we still observe such improvement, as will be shown
in §4 below.

3. Weighted Coherent Adjustment

As suggested in Predd et al. (2008), the scalable
CAP approach might be extended to “allow judges
to be weighted according to their credibility.” We
now propose an aggregation method that minimally
adjusts forecasts to achieve probabilistic coherence
while assigning greater weight to potentially more
credible judges. This is of particular interest when
the number of judges and events is large and the
credibility of the original estimates can vary consid-
erably among judges. Even though the exact forecast-
ing accuracy can be measured only after the true out-
comes are revealed, it is reasonable to assume that
accuracy of the aggregated result can be improved if
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larger weights are assigned to “wiser” judges selected
by a well-chosen credibility measure.

Let w; be a weight assigned to judge i. We use w; as
a scaling factor to control how much the ith judge’s
forecast is to be weighted in the optimization prob-
lem. It is easy to show that minimizers of the follow-
ing three objective functions are equivalent:

L YL (w; Xees, (f(E) — fi(E)*);

2. Y ke ((Zi:Eeréﬁi wi)f(E)Z =23 ke, w; f(E)f(E)),
where €=V, €, is the union of all events;

3. Yree Z(E)(f(E) = f(E))?, where Z(E)=Yrce, w;
is a normalization factor and f (BE)=X iz, w; fi(E)/
Z(E) is the weighted average of estimates from judges
who have evaluated event E.

Hence, we can revise (2) to the following opti-
mization problem by incorporating the weighting of
judges:

min 3 Z(E)(f(E) — f(E)?
Ec% (4)

s.t. f is locally coherent w.r.t. ¥, VIi=1,..., L.

3.1. Measures of Credibility
Studies on the credibility of human judges reveal
that weights can be determined by investigating
judges” expertise and bias (Birnbaum and Stegner
1979). However, such information might be difficult
to obtain, especially in a large-scale survey. As an
alternative, judges can be encouraged to report their
confidence in their own judgments, before and after
the survey. Unfortunately, subjective confidence often
demonstrates relatively low correlation with perfor-
mance and accuracy (for discussion, see, e.g., Tversky
and Kahneman 1974, Mabe and West 1982, Stankov
and Crawford 1997). This phenomenon is also con-
firmed by our presidential election data set, as will be
shown below. Nor do our election data include multi-
ple assessments of the same judge through time; his-
torical performance or “track record” is thus unavail-
able as a measure of credibility.

The goal of the present study is thus to test
weighted aggregation schemes for situations in which

¢ there is a large number of judges whose expertise
and bias information cannot be measured because of
required anonymity or resource constraints;

¢ self-reported credibility measures are unreliable;

* we have data for only one epoch, either because
the events involved are one-off in nature or because

the track records of the individual judges are not
available; and

* each judge evaluates a significant number of
events, both simple and complex.

Within this framework, we propose two objective
measures of credibility following the heuristics that
can be informally described as follows:

1. more coherent judges are more credible in their
forecasts;

2. judges whose estimates are closer to consensus
are more credible in their forecasts.

3.2. Incoherence Penalty

The first heuristic is partially motivated by de Finetti’s
(1974) theorem, which says that any incoherent fore-
cast is dominated by some coherent forecast in terms
of Brier score for all possible outcomes. Thus, we
might expect that the more incoherent the judge, the
less credible the forecast. Moreover, coherence is a
plausible measure of a judge’s competence in proba-
bility and logic, as well as the care with which she/he
responds to the survey. We therefore define a mea-
sure of distance of the judge’s forecast from coher-
ence. This measure will be termed incoherence penalty
(IP). It is calculated in two steps. First, we compute
the minimally adjusted coherent forecast of the indi-
vidual judge. Second, we take the squared distance
between the coherentized forecast and the original
forecast. Note that the first step is a special case of
solving (1) with only one judge. Formally, incoherence
penalty can be defined as follows.

DErFINITION 3. For a panel of m judges, let f; be the
original forecast on €; given by judge i, and let f/* be
the coherence-adjusted output from solving the CAP
on the single judge space (f;, ¢;). The incoherence
penalty of judge i is defined as IP; =Y ;. (f{" — f))*.

We note that a nonsquared deviation measure can
also be used. For example, we tested absolute devi-
ation, and it yielded similar forecasting accuracy to
that obtained by using squared deviation.

Because the number of events to be evaluated by
one judge is usually moderate because of specializa-
tion and time constraints (e.g., there are 7 queries on
simple events and 28 questions altogether in our pres-
idential election forecast study), fI* can be efficiently
computed using, for example, SAPA (see Osherson
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Figure 1 Correlation Plot (15,940 Judges): Brier Score vs.
Incoherence Penalty
BS vs. IP: rp = 0.495
0.7 1
0.6 LI x
0.5 - ot ok " x x x
@ |, L
aQ |x X Xy X &( . o Xk % x
o 0.4 % o
o
8 x x x5 X X xx
. 03 * x N x
Q x
= x x

T T 1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Incoherence penalty (IP)

Table 2 Mean Brier Scores of Judges by Quartiles of IP
First Second Third Fourth
quarter quarter quarter quarter

Incoherence penalty 0-0.025 0.025-0.133 0.133-0.432 0.432-3.153
Mean Brier score 0.056 0.088 0.123 0.153

and Vardi 2006) or the scalable algorithm we reviewed
in §2.

To test the hypothesis that coherent judges in the
election study are more accurate, we computed the
correlation between each judge’s incoherence penalty
and her Brier score (N = 15,940). We expect a positive
coefficient because the Brier score acts like a penalty.
In fact, the correlation is 0.495; see the scatter plot in
Figure 1. A quartile analysis is given in Table 2, where
we see a decrease in accuracy between quartiles.

3.3. Consensus Deviation

Forecasts based on the central tendency of a group
are often better than what can be expected from sin-
gle members, especially in the presence of diver-
sity of opinion, independence, and decentralization
(Surowiecki 2004). It may therefore be expected that
judges whose opinions are closer to the group’s cen-
tral tendency are more credible. To proceed formally,
we use the linear average as a consensus proxy and
define consensus deviation (CD) as follows.

DEFINITION 4. For a panel of m judges, let f; be the
original forecast given by judge i. For any event E € €;,

Figure 2 Correlation Plot (15,940 Judges): Brier Score vs.
Consensus Deviation
BS vs. CD: rep = 0.543

0.7

0.6 1 x

051 i * i
a x x,( . x : N x
o x ox &% xx X%
o 0.4 x y S
o & e T X
[&] oK o X e x
0.3 9 3 Eoxx e x X X
0 3 xxx *

0 0.5 1.0 1.5 2.0 25 3.0 3.5
Consensus deviation (CD)

Table 3 Mean Brier Scores of Judges by Quartiles of CD
First Second Third Fourth
quarter quarter quarter quarter
Consensus  0.005-0.078 0.078-0.130 0.130-0.240  0.240-3.376
deviation
Mean Brier 0.074 0.081 0.100 0.165
score

welet fP(E)= (Xj:eer, f;(E))/Ng, where N is the num-
ber of judges that evaluate the event. Then the consen-
sus deviation of judge i is CD; =Y e, (fP(E) — fi(E))?).

Again, we use our presidential election data to
test the relationship between consensus deviation and
forecast accuracy. Because the number of estimates for
some complex events is small, we compute consen-
sus deviation relative to simple events only.* Across
judges, the correlation between CD and Brier score is
0.543; Figure 2 provides a scatter plot. Table 3 shows
that accuracy declines between quartiles of CD.”

*On average, each simple event was evaluated over a thousand
times, which is far greater than the average number of estimates
for a complex event. The exact average number of estimates for an
event of a particular type can be found in Table 6.

® However, we note that the empirical success seen from the election
data set might not be replicated when the sample size is small
and/or the sample is unrepresentative or biased.
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Table 4 Comparison in Predicting Power of Credibility Measures for Table 5 The Weighted CAP Algorithm Using IP or CD
Accuracy
Input: Forecasts {f;}7", and collections of events {%,}7"
Pre-Conf.2 Post-Conf.? IP CcD Step 1: Compute t; and w; for all judges
, 0154 0262 0.495 0543 Step 2: (ésgzﬁste the normalizer Z(E) and weighted average f(E) for all
R? 0.024 0.069 0.245 0.295

aSelf-reported confidence before the survey.
bSelf-reported confidence after the survey.

3.4. Comparison with Self-Reported
Confidence Measures

In our 2008 presidential election forecast study, we
asked each respondent to rate his or her level of
knowledge of American politics before the survey and
his or her prior familiarity with the events presented
in the questions after the survey, both on a scale from
0 to 100. These two measures allowed us to roughly
learn how confident a judge was in forecasting the
election-related events before and after seeing the
actual questions. We computed the correlation coef-
ficient and the coefficient of determination between
Brier score and the two self-reported confidence mea-
sures. The results are summarized in Table 4, which
shows that self-reported confidence predicts stochas-
tic accuracy less well than either incoherence penalty
or consensus deviation.

3.5. Exponential Weights Using Credibility
Penalty Measures
To capture the relationship between accuracy and
credibility (as measured inversely by incoherence
penalty and consensus deviation), we rely on the fol-
lowing exponential weight function. Given the expo-
nential form of the weighting function, extremely
incoherent (or consensus-deviant) judges are given
especially low weights.

DEFINITION 5. Let t be either the incoherence penalty
or the consensus deviation. Let the weight function
w: R,y — R, be defined as

w(t)=e*, where A >0 is a design parameter. (5)

The shape of the exponential function confines
weights to the unit interval. To spread them rela-
tively evenly across that interval, we chose A so that a
weight of 0.5 was assigned to the judge with median
credibility according to IP (and likewise for CD). This
sets A =5.2 for IP and A =5.3 for CD. The incoherence

Step 3: Design {7}t for/=1,-.. L
Step4: Letf,=f
fort=1,---,T
for/=1,.--,L
f = argmin Y., Z(E)(F(E) — f,_(E))?
s.t. fis locally coherent w.rt. &,
Output: f;

penalty and consensus deviation medians can be seen
from Table 2 and Table 3. Later we will see that a sen-
sitivity analysis reveals little impact of modifying A.

3.6. The Weighted CAP Algorithm
Now we have all the pieces for weighted CAP algo-
rithms. The two versions to be considered may be
termed the incoherence-penalty weighted CAP (IP-CAP)
and the consensus-deviation weighted CAP (CD-CAP).
Their use is summarized in Table 5.

Note that the computational efficiency is achieved
by a smart choice of local coherence sets {7},
because the complexity of the optimization is deter-
mined by the size of F,. Within the innermost loop,
only the probability estimates of events involved in
7, are revised and updated. The number of iterations
T is a design parameter that needs to be tuned. As
T — oo, our algorithm converges to the solution to
(4). In practice, the convergence takes place within a
few iterations, and T =10 is often adequate for this
purpose. The potential accuracy gain over the simple
CAP (sCAP) will come from the weighting effects, as
the forecasts from less credible and presumably less
accurate judges are discounted.

4. Experimental Results

In the previous section, we presented an algorithm
that enforces approximate coherence and weights
individual judges according to two credibility penalty
measures during aggregation. In this section, we
use our presidential election data set to empirically
demonstrate the computational efficiency and fore-
casting accuracy gains of the IP-CAP and CD-CAP
compared to rival aggregation methods.
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Table 6 Statistics of Different Types of Events
Event type p pAg  pvqG  plg  pAGAS pvagvS  plgAas  pAaqls
No. of questions? 7 3 3 3 3 3 3 3
Avg. no. of estimates® 1,115.8 9.8 9.8 9.8 1.2 1.6 1.6 1.2
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aNumber of questions of a particular type in a questionnaire.
®Average number of estimates for one event of a particular type in the election data set.

4.1. Data

Compared to the previously collected data sets used
by Osherson and Vardi (2006) and Predd et al. (2008),
the presidential election data set is richer in three
ways:® (i) the total number of judges (15,940 respon-
dents completed our survey); (ii) the number of sim-
ple events (50 variables, one for each state of the
union), which induces an outcome space ) of size
2%; and (iii) the number of different event types
(three-term conjunction, disjunction and conditional
events are also included). Table 6 lists all the event
types as well as the number of questions of each
particular type in one questionnaire and the average
number of estimates for one event of a particular type
in the pooled data set. Note that p, g, and s, represent
simple events or their corresponding complements,
which are formed by switching candidates.”

The data set consists of forecasts from only the
judges who completed the questions and provided
nondogmatic probability estimates for most events
to ensure data quality.® Each participant was given
an independent, randomly generated survey. A given
survey was based on a randomly chosen set of 7 (out
of 50) states. Each respondent was presented with
28 questions. All the questions related to the likeli-
hood that a particular candidate would win a state,
but involved negations, conjunctions, disjunctions,
and conditionals, along with elementary events. Up

®To attract judges, we put advertisements with links to
our Princeton website on popular political websites such as
fivethirtyeight.blogs.nytimes.com and realclearpolitics.com.

7In our study, we assume that the probability that any candidate
not named “Obama” or “McCain” wins is zero.

8 Judges who assigned zero or one to more than 14 of 28 questions
are regarded as “dogmatic,” and their data were excluded from
the present analysis. We took this step because we consider those
who assigned extreme estimates to more than half of the events
to not have understood the instructions of our study. The forecast-
ing accuracy (following coherentization) is actually slightly better
if dogmatic judges are left in the pool.

to three states could figure in a complex event, e.g.,
“McCain wins Indiana given that Obama wins Illinois
and Obama wins Ohio.” Negations were formed by
switching candidates (e.g., “McCain wins Texas” was
considered to be the complement of “Obama wins
Texas”). The respondent could enter an estimate by
moving a slider and then pressing the button under-
neath the question to record his or her answer. Higher
chances were reflected by numbers closer to 100%,
and lower chances by numbers closer to 0%. Some of
the events were of the form X AND Y. The respon-
dents were instructed that these occur only when both
X and Y occur. Other events were of the form X OR
Y, which occur only when one or both of X and Y
occur. The respondent would also encounter events of
the form X SUPPOSING Y. In such cases, he or she
was told to assume that Y occurs and then give an
estimate of the chances that X also occurs based on
this assumption. As background information for the
survey, we included a map of results for the previous
presidential election in 2004 (with red for Republi-
can and blue for Democratic). The respondent could
consult the map or just ignore it as he or she chose.
The survey can be found at http://electionforecast
.princeton.edu/.

4.2, Choice of A in the Two Weighting Functions

As discussed above, we compared three versions of
the CAP, called sCAP, IP-CAP, and CD-CAP. The first
employs no weighting function; all judges are treated
equally. The IP-CAP weights judges according to their
coherence, using the exponential function in Equa-
tion (5). The CD-CAP weights judges according to
their deviation from the linear average, again using
Equation (5). Use of the weighting schemes, however,
requires a choice of the free parameter A; as noted
earlier, we have chosen A so that a weight of 0.5 was
assigned to the judge with median credibility accord-
ing to the IP (and likewise for CD). The choice spreads
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Figure 3 Sensitivity Analysis in Brier Score w.r.t A
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the weights relatively evenly across the unit inter-
val. This yields A =5.2 for IP, and A =5.3 for CD. It
is worth noting the relative insensitivity of resulting
Brier scores to the choice of A. Indeed, Figure 3 reveals
little impact of modifying A provided that it is chosen
to be greater than 5.

4.3. Designing Local Coherence Constraints
As pointed out in Predd et al. (2008), linear averag-
ing and the full CAP are at the opposite extremes

of a speed—coherence trade-off, and a smart choice
of local coherence sets should strike a good compro-
mise. This is particularly important when there are
tens of thousands of judges assessing the probabilities
of hundreds of thousands of unique events, as in our
presidential election study.

One design heuristic (implemented here) is to lever-
age the logical relationships between the complex
events and their corresponding simple events. The
intuition behind such a choice is that most proba-
bilistic constraints arise from how the complex events
are described to the judges in relation to the simple
events. Following this design, the number of com-
plex events included in a given local coherence set
determines the size of the set and thus influences the
computation time to achieve local coherence. We illus-
trate the speed—coherence trade-off spectrum with
four kinds of local coherence designs, as follows. The
first is linear averaging of the forecasts offered by each
judge for a given event. This is the extreme case in
which different events do not interact in the aggre-
gation process (see Figure 4). The second aggrega-
tion method goes to the opposite extreme, placing all
events into one (global) coherence set; we call this the
“full CAP” (see Figure 5). The third method is a com-
promise between the first two, in which each local

Figure 4 Speed-Coherence Trade-off Spectrum—Linear Averaging
. XN N NN
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Figure 6 Speed-Coherence Trade-off Spectrum—sCAP(1)
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coherence set consists of one complex event and its
corresponding simple events; we call this “sCAP(1)”
(see Figure 6). The last method is like sCAP(1) except
that it leans a little more toward the full CAP. The
local coherence set in this case consists of two com-
plex events and their associated and potentially over-
lapping simple events; this is called “sCAP(2)” (see
Figure 7).

4.4. Computational Efficiency and
Convergence Patterns

Altogether, we collected 446,880 estimates from 15,940
judges on 179,137 unique events. Such a large data set
poses a computationally challenging problem, and
therefore provides an opportunity for us to fully eval-
uate the computational efficiency of various imple-
mentations of the scalable CAP (e.g., sCAP(1) and
sCAP(2)) versus that of the full CAP (e.g., SAPA;
see Osherson and Vardi 2006). Meanwhile, it is
also interesting to investigate the trade-off between
computation time and forecasting gains (to be dis-
cussed in detail in the following subsections) for
the unweighted scalable CAP algorithm versus the

weighted ones (e.g., IP-CAP). We therefore looked at
the overall time spent for each coherentization process
to converge with the stopping criterion that the mean
absolute deviation of the aggregated forecast from the
original forecast changes no more than 0.01%. We var-
ied the size of the data set by selecting estimates from
10, 100, 1,000, 10,000, and all 15,940 judges. The over-
all time for each aggregation method as a function of
the number of judges is the average of five individual
runs. All experiments were run on a Dell Vostro with
an Intel® Core™ Duo Processor at 2.66 GHz.

Figure 8 shows that CAP implemented via SAPA
quickly becomes computationally intractable as the
number of judges scales over 1,000. IP-CAP and
sCAP(1) are comparable, and both take about eight
hours to coherentize all estimates from the 15,940
judges, whereas sCAP(2) requires about 14 hours
for the same task. We know sCAP(2) achieves bet-
ter coherence and potentially higher accuracy than
sCAP(1), but we will show in the following sub-
sections that the weighed coherent aggregation via
IP-CAP and CD-CAP can achieve greater forecast-
ing gains with less computation time compared
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Figure 8 Comparison of Overall Time Spent Figure 10 CD-CAP: Brier Score vs. T
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to unweighted sCAP(2). In other words, a suit-
able weighting scheme for the computationally more
tractable sCAP(1) can yield greater forecasting accu-
racy than (unweighted) sCAP(2), despite the greater
coherence achieved with the latter.

Figures 9 and 10 detail the convergence patterns
and illustrate how the Brier scores of different com-
binations of events by type evolve versus the num-
ber of iterations (T) in our weighted CAP algorithm,
using incoherence penalty and consensus deviation,
respectively. In both cases and for all combinations of
events, our algorithm converges within 10 iterations,

Figure 9 IP-CAP: Brier Score vs. T
BS vs. T (using IP-CAP)
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with the Brier scores of absolute events stabilizing
faster than those of the conditional events.

These two plots also reveal how different types
of events interact with each other as our algorithm
converges. For one thing, our weighted CAP algo-
rithm reduces the Brier score for the collection of
all the events monotonically in both cases, just like
the simple CAP algorithm does using the smaller
data sets in Predd et al. (2008). Moreover, we can also
note that the Brier scores of the less accurate com-
binations of events (in this case, the complex events,
i.e., the two-term and three-term conjunction, disjunc-
tion, and conditional events) gradually improve at the
expense of the more accurate ones (the simple events).
However, the gain achieved for complex events out-
strips the loss for simple events, hence the overall
improvement in accuracy measured by Brier score.

4.5. Forecasting Accuracy Measures

Rival aggregation methods were compared in terms
of their respective stochastic accuracies. For this pur-
pose, we relied on the Brier score (defined earlier)
along with the following accuracy measures.

* Log score. Like the Brier score, the Log score (also
called the “Good score”) is a proper scoring rule
(for a discussion of proper scoring rules, see Good
1952, Predd et al. 2009), which means the subjec-
tive expected penalty is minimized if the judge hon-
estly reports his or her belief of the event. Log score
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Table 7 Forecasting Accuracy Comparison Results

Raw Linear CD-Weighted IP-Weighted SCAP(1) SCAP(2) CD-CAP IP-CAP
Brier score 0.105 0.085 0.081 0.079 0.072 0.070 0.065 0.062
Log score 0.347 0.306 0.292 0.288 0.278 0.273 0.255 0.243
Correlation 0.763 0.833 0.836 0.84 0.879 0.881 0.887 0.891
Slope 0.560 0.560 0.581 0.592 0.556 0.562 0.589 0.618
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is defined as —(1/|€]) > gexIn|1 —1; — f(E)|, where €
denotes the set of all events excluding the condi-
tional events whose conditioning events turn out to
be false. The Log score can take unbounded values
when judges are categorically wrong. Here, for the
sake of our numerical analysis, we limit the upper
bound to 5, because the Log score of an event is 4.6 if
a judge is 99% from the truth. (We note that truncat-
ing the Log score in this way renders it “improper”
technically speaking.)’

* Correlation. We consider the probability estimate
as a predictor for the outcome and compute the cor-
relation between it and the true outcome. Note that
this is a reward measure, and hence a higher value
means greater accuracy, in contrast to the Brier score.

* Slope. The slope of a forecast is the average prob-
ability of events that come true minus the average
of those that do not. Mathematically, it is defined
as (1/mg) Yoper,-1 f(E) — (/€] = m1) Ypeea,—0 f (E),
where m; denotes the number of true events in €.
Slope is also a reward measure.

As usual, conditional events enter the computation
of these forecasting accuracy measures only if their
conditioning events are true.

4.6. Aggregation Methods

We now compare the respective stochastic accuracies
of the aggregation methods discussed above along
with Raw, i.e., the unprocessed forecasts. Brief expla-
nations of the methods are as follows.

* Linear. Replace every estimate for a given event
with the unweighted linear average of all the esti-
mates of that event.

* CD-Weighted. Replace every estimate for a given
event with the weighted average of all the estimates
of that event, where the weights are determined by
the consensus deviation of each individual judge.

°In the election data set, less than 0.4% of the estimates from judges
are categorically wrong and require bounding when computing
their Log scores.

» [P-Weighted. Replace every estimate for a given
event with the weighted average of all the estimates
of that event, where the weights are determined by
the incoherence penalty of each individual judge.

* sCAP(1). Apply the scalable CAP algorithm with
one complex event in each local coherence set to elim-
inate incoherence, and replace the original forecasts
with the coherentized ones.

* sCAP(2). Apply the scalable CAP algorithm with
two complex events in each local coherence set to
eliminate incoherence, and replace the original fore-
casts with the coherentized ones.

* CD-CAP. Apply the weighted CAP algorithm
with each judge weighted by consensus deviation.

o [P-CAP. Apply the weighted CAP algorithm with
each judge weighted by incoherence penalty.

4.7. Comparison Results

Table 7 summarizes the comparison results, which
show nearly!® uniform improvement in all four accu-
racy measures (i.e., Brier score, Log score, correlation,
and slope) from raw to simple linear and weighted
average, to simple (scalable) CAP, and, finally, to
weighted CAP. Note that we confirm the findings of
Osherson and Vardi (2006) and Predd et al. (2008)
about CAP outperforming the Raw and Linear meth-
ods in terms of Brier score and slope. We also observe
the following:

e Weighted averaging and weighted CAP, using
weights determined by either CD or IP, perform better
than simple linear averaging and CAP with respect to
all accuracy measures.

* IP is superior to CD for weighting judges inas-
much as both the IP-CAP and IP-Weighted methods
yield greater forecast accuracy than either the CD-
CAP or CD-Weighted methods.

10The only exception is that simple linear averaging reports the same
slope as Raw.
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Compared to earlier experiments, judges in the
election forecast study have the most accurate (raw)
forecasts. Nonetheless, our weighted coherentization
algorithm improves judges’ accuracy quite signifi-
cantly. Indeed, IP-CAP is 41% better than Raw, 27%
better than Linear, and 14% better than the simple
CAP as measured by Brier score.

5. Improving the Accuracy of Simple
Events by Coherent Adjustment

5.1. Theoretic Guidelines

In our election forecast study, simple events of the
form “Candidate A wins State X” might be considered
to have the greatest political interest. So let us con-
sider the circumstances in which eliciting estimates of
complex events'' can improve the forecast accuracy of
simple events. The following three observations are
relevant; their proofs are given in the appendix. We
will use them as guidelines to improve the estimates
of simple events using complex events.

OBsERvVATION 1. For a forecast f of one simple
event and its complement, i.e., € = {E, E°}, coherent
approximation improves (or maintains) the expected
Brier score of the simple event E if the estimate of
the complement is closer to its genuine probability
than the estimate of the simple event is to its genuine
probability, i.e., |f(E®) — P,(E)| < |f(E) — P,(E)|, where
P,: € — [0, 1] is the genuine probability distribution.

OBSERVATION 2. For a forecast f of one simple
event and one conjunction event involving the simple
event, i.e,, € = {E;, E; A E,}, coherent approximation
improves (or maintains) the expected Brier score of
the simple event E; if the estimate of the conjunction
event is closer to its genuine probability than the esti-
mate of the simple event is to its genuine probability,
Le, |f(Ey AEy) — Po(Ey AB)| = |f(Ey) — Py (E)|, where
P,: € — [0, 1] is the genuine probability distribution.

OBsERVATION 3. For a forecast f of one simple
event and one disjunction event involving the simple
event, i.e, € = {E;, E; V E,}, coherent approximation
improves (or maintains) the expected Brier score of
the simple event E, if the estimate of the disjunction

' We limit our attention to complex absolute events, i.e., the nega-
tion, conjunction, and disjunction events.

Table 8 Average Brier Scores by Event Type

Event type p pAq pvqg PAGAS pPvQgVvs

Brier score 0.090 0.102 0.116 0.096 0.126
(all judges)

Brier score 0.061 0.054 0.055 0.041 0.040
(top coherent 1/4)

event is closer to its genuine probability than the esti-
mate of the simple event is to its genuine probability,
Le, |f(E;V E) — P(E, vV E)| = |f(E)) — Py(E;)|, where
P,: € — [0, 1] is the genuine probability distribution.

These observations suggest that we attempt to
improve the accuracy of forecasts of simple events by
making them coherent with the potentially more accu-
rate forecasts of the corresponding negations, con-
junctions, and disjunctions. For this purpose, we limit
attention to judges who are the most coherent indi-
vidually because, according to the first heuristic dis-
cussed in §3.1, they are likely to exhibit the greatest
accuracy in forecasting complex events. Table 8 veri-
fies this assumption with respect to the negation, con-
junction, and disjunction events.'?

So instead of taking into account all complex events
in the coherentization process, we can use only those
from the more coherent judges. This falls under the
rubric of the weighted CAP Algorithm we proposed
earlier, because it is the special case in which weights
for judges are binary. Essentially, we assign weights
of 1 to the top quarter of judges and 0 to the bottom
three quarters of judges in terms of their coherence
and solve the optimization problem (4). This method
is termed TQ-CAP (CAP over the top quarter of the
judges by coherence).

Figure 11 shows how the Brier scores of forecasts
of different types of events converge during coheren-
tization (including how the Brier score of forecasts of
simple events becomes lower), and Table 9 confirms
our hypothesis that the accuracy of simple events will
improve after coherentization, in terms of all of the
four measures discussed earlier. This result has two
important implications. From an elicitation and sur-
vey design perspective, judges should be encouraged
to evaluate the chances of complex events even if the

12 However, the accuracy of the conditional event estimates from the
top judges is still worse than that of their simple event estimates.
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Table 9  Accuracy Improvement by Coherentization in Forecasts of

Simple Events from Top Judges

Accuracy measure Brier score  Log score  Correlation  Slope
Before coherentization 0.061 0.243 0.876 0.590
After coherentization 0.056 0.218 0.928 0.671

primary concern is accurate forecast of simple events,
because judges might provide more accurate estimates
of complex events that can then be used to improve
the accuracy of the forecast of simple events as shown
previously. From a judgment aggregation perspective,
our results suggest the value of intelligently weighting
judges when applying the CAP, notably, via IP.

5.2. Comparison with Poll Aggregators and
Prediction Markets

In recent years, there has been growing interest in
forecasting elections using public opinion polls and
prediction markets as probability aggregators. In this
subsection we compare the accuracy of group esti-
mates derived from the election data set with probabil-
ity estimates provided by http://fivethirtyeight.blogs
nytimes.com (a poll aggregator run by Nate Silver;
hereafter, 538) and Intrade (a prediction market). Both
sites forecasted state outcomes at several points in
time and were highly successful at predicting the 2008
election. Overall, our weighted coherently aggregated

forecasts, 538, and Intrade all just predicted one state
incorrectly on the eve of the election.”

To compare more fully with Intrade and 538, we
break the 60-day span prior to election day into
nine weeks and compare the Brier scores of all states
(i.e., simple events in our election study). For Intrade,
we compute the weekly mean of the daily average
of the bid and ask prices for each state-level con-
tract and interpret this mean as the event probability
expected by the market. For 538, we have four data
points at two-week intervals. We compare these fore-
casts to weekly aggregations of our respondents’ pre-
dictions, using three methods: Linear, IP-Weighted,
and TQ-CAP. The Linear and IP-Weighted methods
are defined in §4.6, and TQ-CAP is defined in the pre-
vious subsection.

Figure 12 compares the accuracy (measured by Brier
score) of the five aggregation methods across time.
The first fact to note is that the TQ-CAP always out-
performs (uncoherentized) the IP-Weighted method,
which in turn outperforms the (unweighted) Linear
method. Second, TQ-CAP records higher accuracy
than Intrade through five weeks prior to the election
day, and IP-Weighted is also comparable with Intrade
in that period. Third, 538 performs very well close to
the election, but is the worst of the five methods seven

13 We consider the candidate with a winning probability over 50%
as the winner of the state and compare with the true outcome.
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weeks prior to election day.'* To summarize, weighted
algorithms (notably TQ-CAP) yield forecasts of sim-
ple events that can outperform the most sophisticated
forecasting methods, which might require many more
participants than our study, especially early in the
election period.

6. Conclusion

Making good decisions and predictions on complex
issues often requires eliciting probability estimates
of both logically simple and complex events from a
large pool of human judges. The CAP and the scal-
able algorithm that implements it overcome the lim-
itation of linear averaging when dealing with inco-
herence caused by incoherent and specialized judges,
and offer the computational efficiency needed for pro-
cessing large sets of estimates. On the other hand, the
credibility of individual judges from a large group
could vary significantly because of many factors such
as expertise and bias. Hence, incorporating weight-
ing into the CAP framework to aggregate probabilis-
tic forecasts can be beneficial. In this paper, we have
introduced two objective penalty measures, namely,
the incoherence penalty and consensus deviation, to
reflect a judge’s credibility and hence determine the
weight assigned to his or her judgments for aggrega-
tion. Empirical evidence indicates that these measures
are more highly correlated with accuracy than self-
evaluated confidence measures.

In our 2008 U.S. presidential election forecast
study, we collected roughly half a million proba-
bility estimates from nearly 16,000 judges to form
a very rich data set for empirical evaluation of
rival aggregation methods in terms of both effi-
ciency and accuracy. Using the election data set, we
show that both broadening the local coherence sets
and weighting individual judges during coherenti-
zation increase forecasting gains over linear averag-
ing and the simple scalable CAP, i.e., sCAP(1). How-
ever, a suitable weighting scheme like IP-CAP or
CD-CAP can yield greater forecasting accuracy and
remain more computationally tractable compared to

4 This is in accord with the observation that polls (the basis of 538’s
predictions) are highly variable several weeks or more prior to the
election but rapidly approach actual outcomes close to election day
(see Wlezien and Erikson 2002).

unweighted CAP methods with broader local coher-
ence sets like sSCAP(2). Overall, four standard fore-
casting accuracy measures were used to determine
the performance of the weighted CAP algorithms
in comparison with simple linear averaging, sim-
ple/unweighted CAP methods, etc. The results show
that coherent adjustments with more weight given to
judges who better approximate individual coherence
or group consensus consistently produce significantly
greater stochastic accuracy measured by Brier score,
log score, slope, and correlation. These two objective
weighting schemes are also shown to be more effec-
tive than using the self-reported confidence measures.

Weighting also allows us to improve the expected
forecasting accuracy of the simple events if complex
events involving them are more accurate. For the
election data set in particular, simple events represent-
ing which candidate wins a given state have signifi-
cant political implications. It may therefore be useful
to exploit estimates for complex events to improve the
accuracy of predictions of simple events. Three obser-
vations have been proved to support this approach
with the assumption that estimates of absolute com-
plex events are more accurate. In practice, we have
seen that this is possible by limiting attention to the
more coherent judges, and can yield more accurate
forecasts than popular prediction markets and poll
aggregators. Because the weighted coherentized fore-
cast of the election outcomes comes from a moder-
ate number of judges (particularly compared to the
probabilistic forecast based on large-scale polls), our
algorithm might allow our presidential candidates to
make more economic and rational decisions over time
(instead of devising campaign strategies blindly after
poll results or contract prices on prediction markets).
Possible future work can include deriving more gen-
eral conditions under which coherentization improves
the accuracy of a subset of forecasts and studying how
to figure in forecasts of conditional events.
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Appendix. Proofs of Observations Concerning
Simple Events

ProOF OF OBSERVATION 1. Let f, = (x,,y,) = (f(E), f(E°))
be the original probability estimates; let f, = (x,,y,) =
(P4(E), Py(E)) be the genuine probabilities; and let f. =
(x.,y.) be the coherentized probabilities. The coherence
space € for the forecast f is {(x,y): x >y}, and then x, +
Y, =1, because genuine probabilities are always coherent.
Because f, is the projection of f, onto the coherent space €,
we can get x, = (¥, —y,+1)/2 and y. = (1 —x, +y,)/2. Also
by our assumption that the estimate of the complementary
event is more accurate than that of the simple event, we
have |x, — x,| > |y, — y,|- We discuss the following four
cases:

1. If x, > x, and y, > y,, then x, —x, >y, —y, =y, — 1+
Xg. S0 xg < (x, — Y, +1)/2=x, Le., [x. — x| =x. — x,. Also,
because 1 -y, <1—y, =x, <x,, x. = (x,— Y, +1)/2 < x,.
Hence, [x, —x | =x, —x, < x —Xg = |xo X l;

2. Ifx, > x, and y, <y,, thenx, —x, > y, —y,.Sox, > x, +
Ye—Yo=1-y, and x. = (x, — ¥, +1)/2 < x,. Also, because
-y >1-y,=x, and Xy > Xg, Xe = (X, — Y, +1)/2 > x,.
Hence, |x, — |_x — Xy <X, — X, _|x0 Xl

3. Ifx, <x, andy,, zyg,thenx,,—xg <Y~ Y- Sox, <x+

yg—yozl—ya and x, = (x, —y, +1)/2 > x,. Also, because
-y, <l-y,=x, andx <Xg Xe= (X, —Y,+1)/2 < x,.
Hence, [x, — x| =x, —x. <x, — X, =[x, — x|

4. Ifx0<xg and y, <y,, then x, —x, >y, —y,=1—x, —
Yo- SO X > (X, — Y, +1)/2=2x, ie., |x, —x;| = x, — x,. Also,
because 1 —y, >1—y, =x, > x,, x. = (X, — Y, +1)/2 > x,.

Hence, |x, —x,[=x, —x. <X, —x, =[x, — X,|.
In all cases, the coherentized probability for simple event
x. is either closer to the genuine probability than the origi-
nal estimate x, is, or is not changed, i.e., [x. —x,| < [x, —x,|.
Also we know the expected Brier score for an event with
a genuine probability xg and an estimate x, is E[BS(x)] =
xg(1 = x)* + (1 = xg)x* = (x — x,)* + x;, — x;. So by get-
ting closer to the genuine probability through coherentiza-
tion, the expected Brier score will decrease, i.e., E[BS(x,)] <
E[BS(x,). O

PROOF OF OBSERVATION 2. Let f, = (x,,vy,) = (f(E),
f(E; A Ey)) be the original probability estimates; let f, =
(x4, Yg) = (Py(Ey), Py(Ey A E,y)) be the genuine probabilities;
and let f, = (x.,y.) be the coherentized probabilities. The
coherence space € for the forecast f is {(x,y): x > y},
and then x, > y,, because genuine probabilities are always
coherent. Also by our assumption that the estimate of the
conjunction event is more accurate than that of the simple
event, we have [x, —x,| > |y, — y,|- There are four cases to
consider:

1. If x,>x, and y, > Yy, then x, —Xe > Y,

< — Y- So x, >
Yo =Yg +%X¢ =Y, Hence, (x,,y,) € € and f, = f,.

2. If x, > x, and y, <y,, then x, > x, > y, > y,. Hence,
(x,,Y,) €€ and f. = f,. )

3. If x, <x, and y, > y,, then x, X, 2 Y, — Yy Le,
X, + Yo < X, + Y, Also we need to consider only the case
when x, < y,, because otherwise f. = f,. If x <y, f. will be
the projection of f, onto the coherent space €. Then x, =
Y= (xa+y0)/2 = (xg +yg)/2 = xg' Hence, |xc - xg' = xg -
(xa +yo)/2 = xg —X, = |xa - xg|'

4. If x, <x, and y, < y,, also we need to consider only
the case when x, <y,. Then x, = (x, +y,)/2 <y, <y, <x
Hence, |x. —x [ =x, — (x, +Y,)/2 <xy —x, =[x, — X

In all cases, the coherentized probability for simple event
x, is either closer to the genuine probability than the origi-
nal estimate x, is, or is not changed, i.e., |x. — x| <|x, —x

Hence, E[BS(x,)] < E[BS(x,)]. O

g

gl

ProOOF OF OBSERVATION 3. Coherentizing the forecasts on
{E\, E; V E,} is equivalent to coherentizing on {E¢, E€ v E§}
following De Morgan’s laws. Also it is easy to show the
closeness to genuine probabilities is invariant with respect
to negation, and hence, by Observation 2, coherentization
brings the f(E{) closer to its genuine probability, which, in
turn, improves f(E;). O

As a matter of fact, the converse of all the three obser-
vations can be proved as well, i.e., coherentizing with more
accurate simple events can improve the accuracy of its com-
plement, conjunction, and disjunction. The complementary
case is straightforward. And we can prove the later two by
realizing {E;, E, VE,} ={(E1VE2)AE1,E, VE,} and {E;, E; A
E,} = {(E1 AE2) vV E1,E; AE,} and treating (E1 Vv E2) and
(E1 AE2) as the “simple events” of each case. Therefore, the
proofs of Observations 2 and 3 can be applied.
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