Unexpected resonance line shape broadening of edge-magneto plasmons of 2DES on helium

Research Center for Low Temperature and Materials Scienced, Kyoto University

Toshikazu Arai

Colleagues

Shuji Yamanaka

Ryohei Nishinakagawa

Hideki Yayama

Akira Fukuda

Anju Sawada

Edge of two-dimensional electron systems

Magnetic field — Cyclotron motion

Edge of two-dimensional electron systems

Edge of two-dimensional electron systems

Skipping orbit near the edge supports current along E. (quantum hall state)

Edge of 2DES over liquid helium

Density profile near the edge can be controlled by electric field.

Edge-magneto plasmons (EMP)

- Collective oscillation mode: propagates along the 2DEG edge.
- Magnetic field B perpendicular to the electron sheet.
- Small damping in strong magnetic field.
- Observed in various 2DEG systems: GaAs / AlGaAs heterostructure, Metal-Insulator-Semiconductor, Helium surface state electrons

Basic Features of EMP

Propagates along 2D electron gas in only one direction.

Gapless spectrum $\omega_{emp} \propto q \ln(1/|q|) << \omega_{c}$

Frequency $\omega_{
m emp} \propto n_{
m e}$ and B^{-1}

Small damping rate at strong magnetic field ($\omega_{
m C} au >> 1$).

The total number of electrons is conserved through the measurement.

Controlling the density profile near the edge

EMP Line Shapes

Double Lorenzian fitting

Lorenz functions

First resonance

$$L_{1}(\omega) = \frac{a_{1}}{\left(\left(\omega_{1}^{2} - \omega^{2}\right)^{2} + \gamma_{1}^{2}\omega^{2}\right)^{1/2}}$$

Second resonance

$$L_2(\omega) = \frac{a_2}{\left(\left(\omega_2^2 - \omega^2\right)^2 + \gamma_2^2 \omega^2\right)^{1/2}}$$

Overall function

$$F(\omega) = \frac{L_1(\omega) + L_2(\omega)}{\left(R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2\right)^{1/2}}$$
Required by the electronics.

Frequency [Hz]

Guard Voltage Dependence

Surface deformation ?

Immersed guard ring result

Line width broadenings are observed even with the immersed guard ring.

Linewidth – Density transition layer

The broadening is NOT governed by density transition layer w.

Linewidth – 2DES radius

The total number of electrons is conserved through the measurement.

Large ΔV_{DC} corresponds to strong lateral confinement.

Weak confinement - Broadening is easier to occur.

Set the 2DEG edge to r=0.

Move Ve to zero.

Magnetic Field Dependence

Magnetic field does not affect the turning point. Sharp switching is observed at strong magnetic field.

Conventional EMP and Boundary Displacement Wave (BDW)

Summary

- EMP spectrum was studied with controlling lateral confinement potential.
- Unexpected line broadenings were observed when the confinement potential is weak.
- The broadening can be qualitatively explained by boundary displacement wave.
- The lateral confinement electric field determines EMP or BDW to occur.
- Strong confinement: EMP, Weak confinement: BDW
- Frequencies of EMP and BDW are close at high magnetic field.
- BDW damping is larger than EMP.