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Edge of two-dimensional electron systems
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2DES
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At large magnetic field, no current 
flows along electric field.



Edge of two-dimensional electron systems
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2DES

Skipping orbit near the edge supports current along E. 
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Edge of 2DES over liquid helium

guard ring
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Density profile near the edge can be controlled by electric field.
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Edge-magneto plasmons (EMP)

B

Electric Field Current

Magnetic field B perpendicular to the electron sheet.

Collective oscillation mode: propagates along the 2DEG edge.

Small damping in strong magnetic field.

Observed in various 2DEG systems: 
GaAs / AlGaAs heterostructure, 
Metal-Insulator-Semiconductor, 
Helium surface state electrons
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Gapless spectrum

Basic Features of EMP

Propagates along 2D electron gas in only one direction.

Frequency

Small damping rate at strong magnetic field (                   ).
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Experiment

The total number of electrons is 
conserved through the measurement.

Measure EMP spectrum at each VGR .
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guard ring
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Controlling the density profile near the edge
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n0 = 3.5 x 1012 m-2
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Double Lorenzian fitting

Lorenz functions
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Overall function

Required by the electronics.
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guard ring
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EMP electrodes

Surface deformation ?

previous new

Immersed guard ring



Immersed guard ring result
Line width broadenings are observed even with the immersed guard ring. 

T = 0.15 K, B = 3.2 T
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Linewidth – Density transition layer

The broadening is NOT governed 
by density transition layer w.
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Broadening is NOT governed 
by 2DES radius.



Controlling lateral confinement pontential

The total number of electrons is conserved through the measurement.

Measure EMP spectrum at each VGR .
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VDC = 86 VVDC = 80 V ΔVDC = 6 VVDC = 90 V

Large ΔVDC corresponds to 
strong lateral confinement.



Controlling lateral confinement pontential
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Large ΔVDC corresponds to 
strong lateral confinement.
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Weak confinement Broadening is easier to occur.

Controlling lateral confinement pontential
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, where 2DEG exists.

Solve
under appropriate boudary conditions.

Controlling lateral confinement pontential
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Controlling lateral confinement pontential
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Move Ve to zero.

Initial rise of the confinement potentials are the same !!

Controlling lateral confinement pontential
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Magnetic Field Dependence

Magnetic field does not affect the turning point.
Sharp switching is observed at strong magnetic field.



Conventional EMP 
and Boundary Displacement Wave (BDW)

BDW : Yu. P. Monarkha, Low Temp. Phys. 21, 458 (1995)
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Summary

EMP spectrum was studied with controlling lateral confinement potential. 

Strong confinement: EMP,  Weak confinement: BDW

Frequencies of EMP and BDW are close at high magnetic field.

The lateral confinement electric field determines EMP or BDW to occur.

Unexpected line broadenings were observed when the confinement potential
is weak.

The broadening can be qualitatively explained by boundary displacement wave.

BDW damping is larger than EMP.


