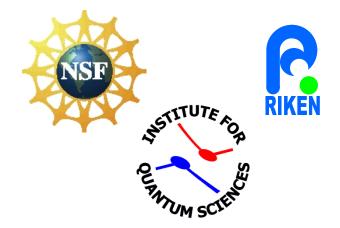
Ripplonic Lamb Shift

M. I. Dykman¹, K. Kono², D. Konstantinov², and M. J. Lea³

¹ Department of Physics and Astronomy, Michigan State University ² Low Temperature Physics Laboratory, RIKEN

³ Royal Holloway, University of London

- The Lamb shift
- Direct and indirect two-rippion
 processes
- Comparison with experiment



Disclaimer: unfinished work!

____ |2s>, |2p>

Hydrogen atom:
$$E_n = -R_0/n^2$$
 [1s>

Quantum electrodynamics: shift of the energy levels due to virtual emission/absorption of photons



 $A(\mathbf{r})$ is the radiation vector-potential

$$\mathbf{A}(\mathbf{r}) = \sum c (2\pi \hbar / \omega V)^{1/2} \mathbf{e}_{\mathbf{k}\alpha} a_{\mathbf{k}\alpha} e^{i\mathbf{k}\mathbf{r}} + \text{H.c.}$$

Write the Hamiltonian as

$$H = H_0 + H_1 + H_2, \quad H_1 = -\frac{e}{2mc} (\mathbf{p} \cdot \mathbf{A}(\mathbf{r}) + \mathbf{A}(\mathbf{r}) \cdot \mathbf{p}),$$

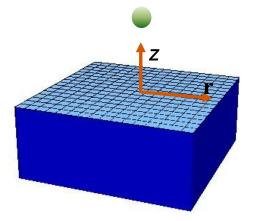
$$H_2 = \frac{e^2}{2mc^2} \mathbf{A}^2(\mathbf{r})$$

 $< n \mid H_2 \mid n > = \text{const}$ no frequency shift

photon emission/absorption with interstate electron transitioins

Electrons above flat helium surface

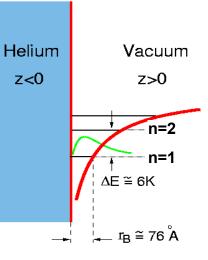
Idealized model: flat surface, infinite barrier



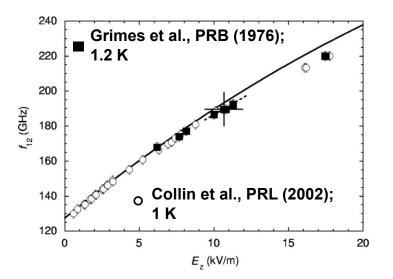
 $U(z) = -A/z \quad (z > 0)$

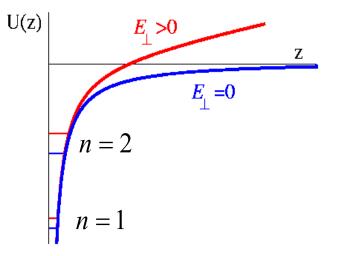
 $\Lambda = (\epsilon - 1) e^{2/4} (\epsilon + 1)$

$$E_n = -R/n^2, R = m \Lambda^2/2 \hbar^2$$



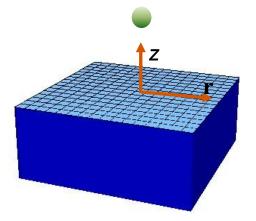
Measurement: Stark-shift transition frequency by field E_{\perp} to tune microwave radiation to 1- 2 resonance





Electrons above flat helium surface

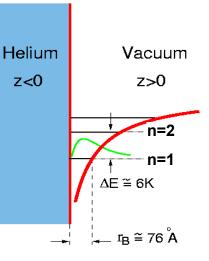
Idealized model: flat surface, infinite barrier



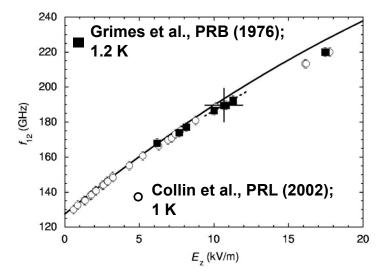
 $U(z) = -A/z \quad (z > 0)$

 $\Lambda = (\epsilon - 1) e^{2/4} (\epsilon + 1)$

$$E_n = -R/n^2, \quad R = m \; \Lambda^2/2 \; \hbar^2$$



Measurement: Stark-shift transition frequency by field E_{\perp} to tune microwave radiation to 1- 2 resonance



Complications at short distances, $|z| \leq 0.1 - 0.2$ nm:

- > Finite barrier height, $U_0 \sim$ 1 eV
- Surface diffuseness

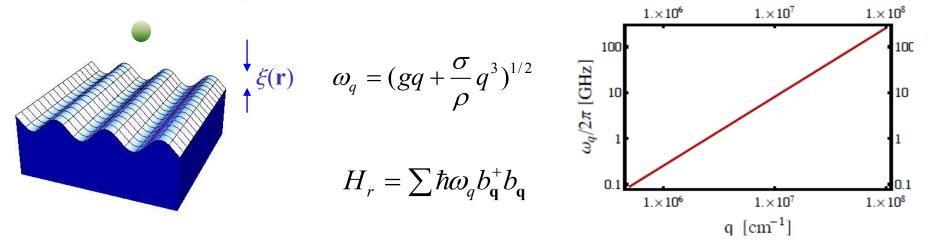
Theory: modification of the 1D confining potential

Example: U(z) = -A/(z+b) [Grimes et al., 1976]

Cole (1970), Sanders & Weinreich (1976), Cheng et al. (1994), Nieto (2000), Patil (2001), Degani et al. (2005),...

Electrons above rippion-distorted surface

Surface is not flat: capillary waves ⇔ ripplons. Ripplons are slow



Surface displacement $\xi(\mathbf{r}) = \sum_{\mathbf{q}} \xi_{\mathbf{q}} \exp(i\mathbf{q}\mathbf{r}), \qquad \xi_{\mathbf{q}} = S^{-1/2} (\hbar q / 2\rho \omega_q)^{1/2} (b_{\mathbf{q}} + b_{-\mathbf{q}}^+)$

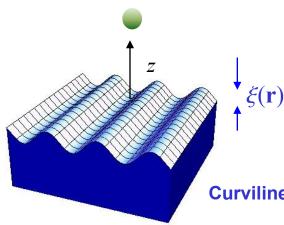
Typically, < ξ^{2} > $\sim \,$ 0.1- 0.4 nm for $T \le 2 \, K$ (Cole, 1970)

Effects on the electron dynamics

➢ Broken translational symmetry: mixing of lateral and transverse motion ⇒ kinematic (inertial) coupling

Change of polarization energy ⇒ polarization coupling

Kinematic electron-rippion coupling



The shift transformation:

 $z \rightarrow z - \xi(\mathbf{r})$

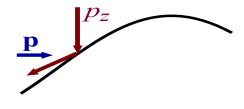
(Shikin & Monarkha, 1974)

conventional wisdom

canonical transformation,

$$U = \exp[-i\hat{p}_z\xi(\mathbf{r})/\hbar]$$

Curvilinear coordinates: $\mathbf{p} \Rightarrow \mathbf{p} - \nabla \xi p_z$



Electron kinetic energy:

$$K \Longrightarrow \frac{\mathbf{p}^2}{2m} + \frac{p_z^2}{2m} + K_{1r} + K_{2r}$$

One-rippion kinematic coupling

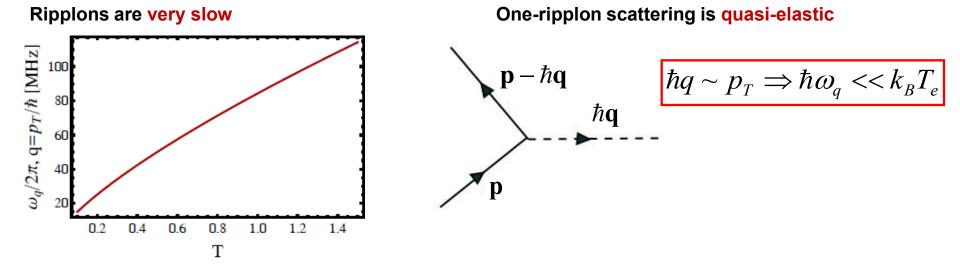
$$K_{1r} = \frac{-1}{2m} (\mathbf{p} \cdot \nabla \boldsymbol{\xi} + \nabla \boldsymbol{\xi} \cdot \mathbf{p}) p_z$$

small effect on 2D (lateral) motion, $< n|p_z|n>=0$

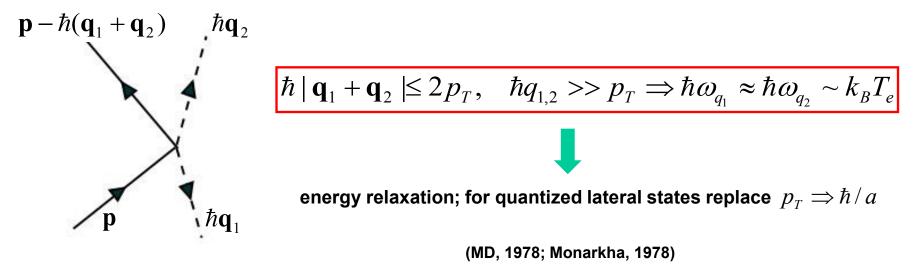
Two-rippion kinematic coupling

$$K_{2r} = \frac{p_z^2}{2m} (\nabla \xi)^2$$

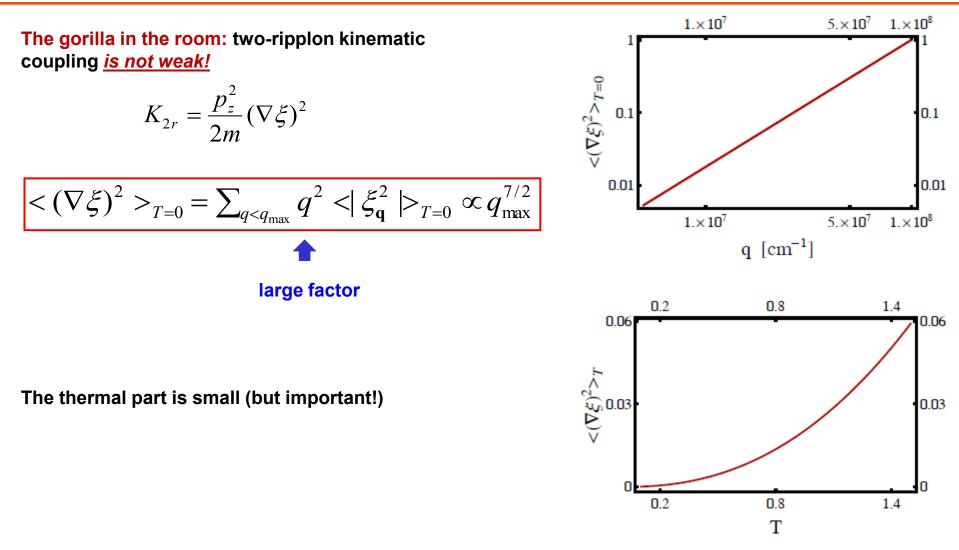
electron energy relaxation via two-ripplon scattering



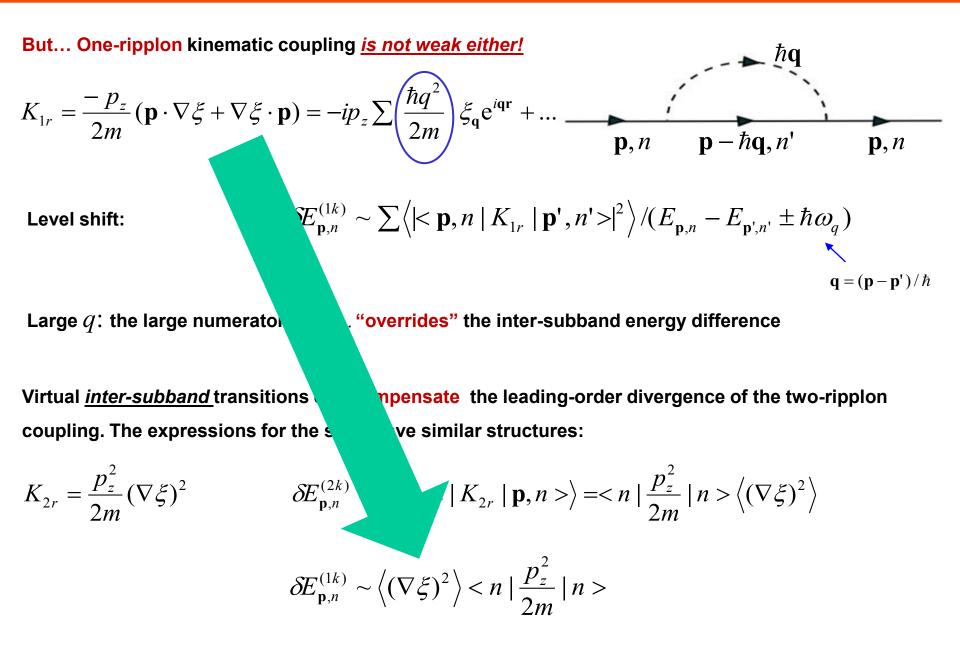
Two-rippion scattering: no constraint on rippion energy from momentum conservation



The ultraviolet catastrophe



The kinematic coupling due to the ripplon inertia is also ultraviolet-diverging, but is smaller



Details....Transform the denominator using

$$E_{\mathbf{p},n} = E_n + p^2 / 2m,$$

$$K_{1r} = \frac{-1}{2m} (\mathbf{p} \cdot \nabla \boldsymbol{\xi} + \nabla \boldsymbol{\xi} \cdot \mathbf{p} | \boldsymbol{p}_z) \qquad \delta E_{\mathbf{p},n}^{(1k)} \sim \sum \left\langle |\langle \mathbf{p}, n | K_{1r} | \mathbf{p}', n' \rangle|^2 \right\rangle / (E_{\mathbf{p},n} - E_{\mathbf{p}',n'} \pm \hbar \omega_q)$$

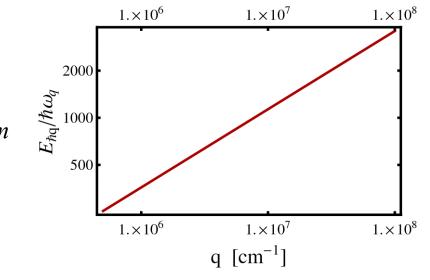
$$\frac{1}{E_{\mathbf{p},n} - E_{\mathbf{p}',n'} \pm \hbar \omega_q} = \frac{1}{E_{\mathbf{p}} - E_{\mathbf{p}'} \pm \hbar \omega_q} \left(1 - \frac{E_n - E_{n'}}{E_{\mathbf{p},n} - E_{\mathbf{p}',n'} \pm \hbar \omega_q} \right)$$

Use the sum rule $\sum_{n'} |< n | p_z | n' > |^2 = < n | p_z^2 | n >$

Disregard $\hbar \omega_q$ and $p^2 / 2m$ compared with $\hbar^2 q^2 / 2m$ $(E_{\mathbf{p}'} \equiv E_{\mathbf{p}+\hbar \mathbf{q}} >> E_{\mathbf{p}}, \hbar \omega_q)$

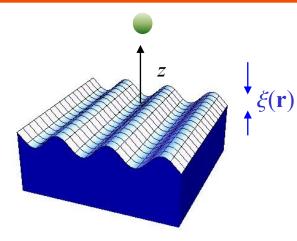
exact compensation of the direct two-rippion coupling,

$$\delta E_{\mathbf{p},n}^{(2k)} = \left\langle (\nabla \xi)^2 \right\rangle < \mathbf{p}, n \mid p_z^2 \mid \mathbf{p}, n > / 2m$$



Uncompensated: $q \leq r_{\rm B}^{-1}$

Polarization coupling

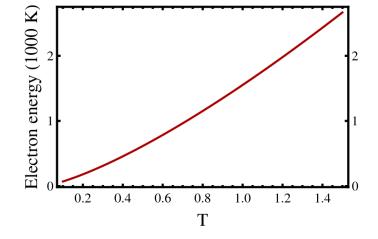


The direct two-ripplon polarization coupling, $U_{2r} \propto \xi^2$, also leads to the ultraviolet divergence, $\delta E_{p,n}^{(2p)} \propto q_{\max}^{3/2}$. It is compensated by interference of the single-ripplon kinematic and polarization coupling

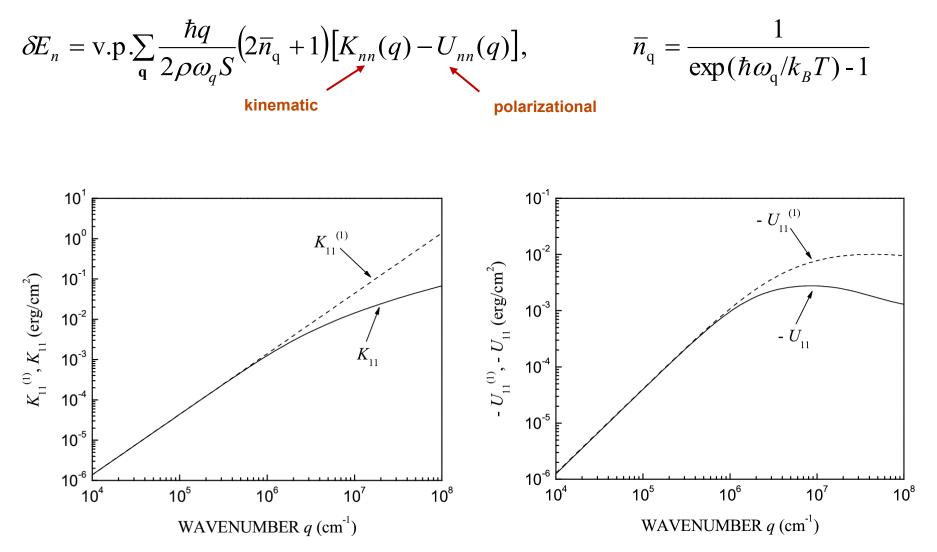
Real tricks: calculating the wave functions of the excited states: a combination of the WKB, $z \sim r_{\rm B}$, and asymptotic small-*z* expansion

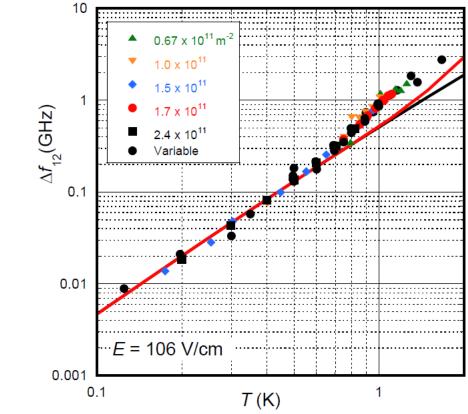
Need highly excited states even to find the contribution from thermal rippions

$$\hbar^2 q_{rT}^2 / 2m \text{ with } q_{rT} \text{ from condition } \hbar \omega_{q_{rT}} = k_B T$$



*n*th level shift:





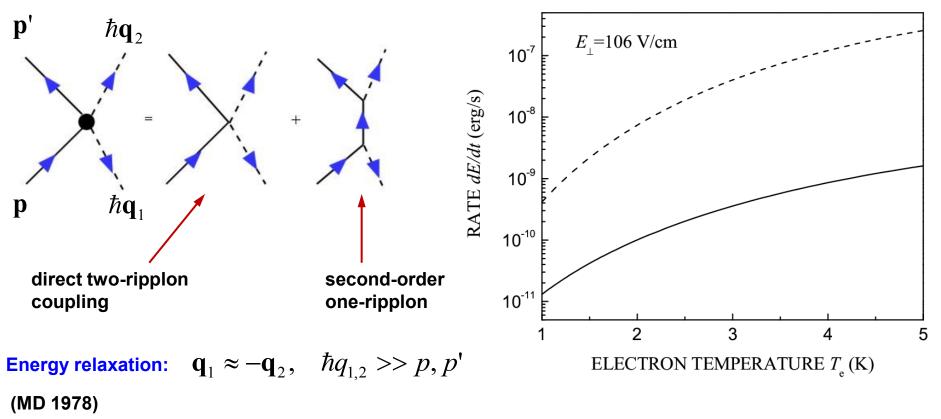
Temperature Sweep

$$f_{12} = (E_2 - E_1) / h$$

No adjustable parameters... almost

 $^{\rm 3}{\rm He}$ displays a nonmonotonic behavior of $f_{\rm 12}\,{\rm vs}\,{\rm T}$

One-rippion coupling renormalizes the two-rippion matrix elements



One-rippion processes compensate the large-*q* terms in the two-rippion coupling, and thus strongly reduce the energy relaxation rate due to two-rippion processes

What else, simple and basic, have we overlooked?

Conclusions

- Two-rippion processes lead to the Lamb-like shift of the electron energy levels, with a characteristic temperature dependence
- The ultraviolet catastrophe of the direct two-rippion coupling is compensated by one-rippion processes
- One-rippion processes significantly reduce the energy relaxation rate due to two-rippion emission

