

Temperature Dependent Energy Levels of Electrons on Liquid Helium

Bill Bailey, Parvis Fozooni, Phil Glasson, Peter Frayne, Khalil Harrabi, Mike Lea. + Eddy Collin, Grenoble

Microwave absorption

Microwaves for Electrons on Helium

Microwaves for Electrons on Helium

Microwave System 2

Rydberg states – liquid ⁴He

5

Temperature dependent resonance

189.6 GHz

Low temperatures Inhomogenous broadening

Medium temperatures Inhomogenous broadening convoluted with a Lorentzian

High temperatures Lorentzian

Resonance frequency *decreases* as the temperature *increases*

Inhomogeneous broadening

Non-parallel electrodes

- Lineshape independent of T < 0.5 K
- Inhomogeneous broadening Peaks from *E_z* variation (0.3%)?
- Non-parallel disk electrodes: Parabolic lineshape
- 8 μm across 50 mm
- θ = 0.17 mrad = 35" arc
- Lorentzian contribution small?

Convolution

Use lineshape at 0.3 K as a template Convolute with a Lorentzian Fit linewidth γ to data $\Rightarrow \gamma(T)$

Microwave absorption at 189.6 GHz

Convolution

22.1

22.3

volts

21.9

0

21.7

Microwave linewidth $\gamma(\tau)$

Temperature dependent linewidth

H. Isshiki *et al.*J.Phys.Soc Japan 76, 094704 (2007) $\beta = 2.1 ({}^{3}\text{He}); 1.6 ({}^{4}\text{He})$ $\gamma = aT + \beta bN_{gas}$

Temperature dependent resonance f_{12}

Ripplon induced Lamb shift

Temperature dependent resonance

Theory: Mark Dykman, Denis Konstantinov *et al* (2010)

2-ripplon processes: Lamb shift

14

Density dependence of holding field

$$E_{z} = \frac{-V_{z}}{(D-d+d/\epsilon)} + \frac{ne}{\epsilon_{0}(\epsilon+1)} \frac{(D-2d)}{(D-d+d/\epsilon)}$$

Extrapolated to T = 0

Temperature dependence of f_{12}

Microwave absorption - Coulomb shift

Ultra-hot Electrons on Liquid ³He: T_e < 27 K

Resonance frequency shifts with

- **Power absorbed** ٠
- **Excited state population** ٠
- Electron temperature T_{e} ٠
- **Electron density** ٠

$$\begin{split} \Delta \omega_{21} &= \frac{F e^2 n_s^{3/2}}{2\hbar} \Big[(z^2)_{11} - (z^2)_{22} - 2(z_{11} - z_{22}) \\ &\times \sum_l z_{ll} \rho_{ll} + 2|z_{12}|^2 (\rho_{11} - \rho_{22}) \Big], \end{split}$$

D. Konstantinov et al. PRL 103, 096801 (2009)

Optical bistability in microwave absoprtion

D. Konstantinov et al. PRL 103, 096801 (2009)

High-powers: Hysteresis in conductivity

High-powers: A.C. modulation (10 mV at 1 – 10 kHz) Complex microwave lineshape

Hysteresis = Complex Lineshape

Inhomogeneous power broadening Inhomogeneous Coulomb broadening

Conclusions

- Temperature dependent Rydberg levels
- Inhomogeneous broadening
- Enhanced Ando linewidth
- Microwave absorption bistability (hysteresis)