Circuit QED with electrons on helium:

What's the sound of one electron clapping?

Outline

d

Circuit QED with electrons on helium

• Super-sensitive level meter

Bx 111

Bz

 $\rightarrow X_0$

► W

IØ

• Some preliminary measurements

Cavity Quantum Electrodynamics (CQED)

Jaynes-Cummings Hamiltonian

$$H = \hbar\omega_r \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_a}{2}\sigma^z + \hbar g(a^{\dagger}\sigma^- + a\sigma^+) + H_{\kappa} + H_{\gamma}$$

strong coupling limit $(g = dE_0/\hbar > \gamma, \kappa, 1/t_{\text{transit}})$ D. Walls, G. Milburn, Quantum Optics (Spinger-Verlag, Berlin, 1994)

Circuit Quantum Electrodynamics

elements

- the cavity: a superconducting 1D transmission line resonator (large E_0)
- the artificial atom: a Cooper pair box (large d)

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004)

Strong coupling cavity QED!

Strong coupling cavity QED!

Wallraff, DIS, et. al. Nature 431 162 (2004)

Non-Resonant Qubit Read-Out

approximate diagonalization for $|\Delta| = |\omega_a - \omega_r| \gg g$

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004)

Circuits make good atoms/qubits

Electrons on helium

QC Proposal w/ vertical states: Dykman, Science 1999

An electron in an anharmonic potential

♦ DC electrodes to define trap for lateral motion

 \diamond Nearly harmonic motion with transitions at ~ GHz

 \Rightarrow Anharmonicity from small size of trap (~ 1µm)

An electron in a cavity

♦ Electron motion couples to cavity field

♦ Can achieve strong coupling limit of cavity QED

♦ Couple to other qubits through cavity bus

Cavity-electron coupling $\hbar g \sim ex_0 \frac{V_0}{w} \sim h \times 25 \text{MHz}$

Schuster, Dykman, et. al. arxiv:0912.1406 (2009)

Accessing spin: Gradient method

♦ Electricaly tunable spin-motion coupling!

♦ With no flux focusing and current geometry: 100 kHz/mA

Motional Decoherence

- ♦ Relaxation through bias electrodes
- ♦ Emission of (two) ripplons
- ♦ Emission of phonons

eOnHe spin memory

♦Put many electrons on top of the resonator.♦Spins coupled to resonator magnetic field.

 $\frac{g}{2\pi} \sim 100 \text{Hz} - 1 \text{kHz}$

$$\frac{g}{2\pi}\sqrt{M} \sim 10 \mathrm{kHz} - 100 \mathrm{kHz}$$
 with ~10⁴ spins

Even basic ESR has never been done on eOnHe 2DEG!

Pulse-tube cooled dilution refrigerator

- hermetic sample holder with Indium sealing & stainless steel capillary
- no superfluid leaks down to 10mK

L DATATIS

n

Detecting trapped electrons on helium

Detecting trapped electrons on helium

Making an eonhe transistor (eonFET)

 \diamond Measure density ~10⁹ e/cm² (~few e/um²)

Making an eonhe transistor (eonFET)

 \Rightarrow Measure density ~10⁹ e/cm² (~few e/um²)

Making an eonhe transistor (eonFET)

Modulate density without losing electrons

 \Rightarrow Measure density ~10⁹ e/cm² (~few e/um²)

Conclusions

Electrons on Helium:

- Strong coupling limit easily reached
- Good coherence times for motion and spin
- Rich physics single electron dynamics, motional and spin coherence, superfluid excitations, etc.

We see electrons on helium!!

- Can trap at 10 mK without much heating (~100mK)
- Can hold them for hours

Next up: Trapping single electrons

