Market Liquidity and Funding Liquidity

Markus K. Brunnermeier
Princeton, CEPR, NBER

Lasse Heje Pedersen
NYU, CEPR, NBER

\[\frac{\partial m_0}{\partial |\Lambda_0|} > 0 \]
• **Market liquidity**
 - ease of trading an asset
 - asset-specific

• **Funding liquidity**
 - availability of funds
 - agent-specific

• these liquidity concepts are mutually reinforcing
 - funding liquidity to dealers, hedge funds, investment banks etc.
 \[\Rightarrow \text{enhances trading and market liquidity} \]
 - market liquidity improves collateral value, i.e. lowers margins
 \[\Rightarrow \text{eases funding restriction} \]
Stylized Facts on Market Liquidity

1. Sudden liquidity “dry-ups”
2. Correlated with volatility
 • cross section
 • time series
3. Flight to quality
4. Commonality of liquidity
 • within asset class (e.g. stocks)
 • across asset classes
5. Moves with the market
1. Capital Constraint - Model Setup

2. Time-series Properties
 - Liquidity Dry-ups/ Fragility
 - Liquidity Spirals

3. Cross-Sectional Properties
 - Commonality of Market Liquidity
 - Flight to Quality

4. Risk of Liquidity Crisis
 - Skewness and Kurtosis

5. Related Literature
Leverage and Margins

- Financing a *long position* of $x_{t}^{j+} > 0$ shares at price $p_{t}^{j} = 100$:
 - Borrow 90 dollars per share;
 - Margin/haircut: $m_{t}^{j+} = 100 - 90 = 10$
 - Capital use: $10x_{t}^{j+}$

- Financing a *short position* of $x_{t}^{j-} > 0$ shares:
 - Borrow securities, and lend collateral of 110 dollars per share
 - Short-sell securities at price of 100 dollars
 - Margin/haircut: $m_{t}^{j-} = 110 - 100 = 10$
 - Capital use: $10x_{t}^{j-}$

- Margins/haircuts must be financed with capital:

$$\sum_{j} \left(x_{t}^{j+} m_{t}^{j+} + x_{t}^{j-} m_{t}^{j-} \right) \leq W_{t}$$

where $x_{t}^{j} = x_{t}^{j+} - x_{t}^{j-}$
Capital

- Capital W_t:
 - Equity capital
 - LLP: NAV, subject to lock up
 - LLC: equity, reduced by assets that cannot be readily employed (e.g. goodwill, intangible assets, property)
 - Long-term unsecured debt
 - line of credit (material adverse change clause)
 - bonds/loans: difficult to get for smaller securities firms
 - Short term debt: not counted
 - short-term loans, commercial paper, demand deposits
Cross-Margining

- Margins/haircuts must be financed with capital,
 \[\sum_j \left(x_t^{j+} m_t^{j+} + x_t^{j-} m_t^{j-} \right) \leq W_t, \]
 (1)

 where \(x_t^j = x_t^{j+} - x_t^{j-} \)

- Alternative: perfect cross-margining
 net out all offsetting risks, including diversification
 benefits, leading to a portfolio constraint:
 \[M_t \left(x_t^1, \ldots, x_t^J \right) \leq W_t \]
 (2)
Regulatory Capital Requirements

- Basel Accord: banks
 - regulatory capital subject to constraint similar to (1)
 - alternatively, a bank can use its own model similar to (2)
- SEC Net Capital Rule: brokers
 - net capital = capital minus haircuts (compare to (1))
 - net capital must exceed a certain fraction of aggregate debt
- Regulation T: customers of brokers trading US equity
 - initial margin must be at least 50%
Model Setup

- **Time**: \(t = 0, 1, 2, 3 \)
- **\(J \) assets**:
 - fundamental value \(v_t^j = E_t[v^j] \) with final payoff \(v^j \) at \(t = 3 \)
 - stochastic volatility with ARCH structure
 \[
 v_t^j = v_{t-1}^j + \Delta v_t^j = v_{t-1}^j + \sigma_t^j \varepsilon_t^j, \quad \text{where } \varepsilon_t^j \sim iid \mathcal{N}(0, 1)
 \]
 \[
 \sigma_{t+1}^j = \sigma_j^j + \theta |\Delta v_t^j|
 \]
- **Market participants**
 1. risk-averse customers
 2. speculators (dealers, hedge funds, ...)
 3. financiers (set margins speculators face)
- **Competitive stable equilibria**
- **Let** \(\Lambda_t^j := p_t^j - v_t^j \) and \(|\Lambda_t^j| \) be a measure of illiquidity
Customers

- 3 different types of customers \(k \in \{0, 1, 2\} \)
- CARA utility function: \(u(W^k_3) = -\exp\{-\gamma W^k_3\} \)
- endowment shock \(z^k \) in \(t = 3 \) s.t. \(\sum_{k=0}^{2} z^k = 0 \)
- become aware of \(t = 3 \)-endowment shocks \(z^k \)
 - *simultaneously* at \(t = 0 \) [with prob. \((1 - a)\)]
 - *sequentially* at \(t = k \in \{0, 1, 2\} \) [with “small” prob. \(a < \bar{a} \)]
- wealth dynamics: \(W^{k}_{t+1} = W^{k}_t + (p_{t+1} - p_t)'(y^{k}_t + z^k) \)
- customer \(k \)'s demand
 \[
y^{j,k}_t = \frac{v^{j}_1 - p^{j}_1}{\gamma (\sigma^{j}_{t+1})^2} - z^{j,k} \quad \text{for} \quad t = 1, 2
\]
Speculators/Dealers

- risk-neutral
- wealth dynamics: \(W_{t+1} = W_t + (p_{t+1} - p_t)'x_t + \eta_{t+1} \)
- margin constraint: \(\sum_j \left(x_t^{i+}m_t^{i+} + x_t^{i-}m_t^{i-} \right) \leq W_t \)
- speculators’ demand for \(J = 1 \)

\[
x_t^i = \begin{cases}
 W_t/m_t^+ & \text{if } p_t < v_t \\
 -W_t/m_t^- & \text{if } p_t > v_t \\
 \in [-W_t/m_t^-, W_t/m_t^+] & \text{if } p_t = v_t
\end{cases} \quad \text{for } t = 1, 2 \\
x_0^i = ...
\]
Financiers - Margin setting

- Margins are set based on Value-at-Risk (VaR)

\[
\pi = Pr(-\Delta p^j_{t+1} > m^{j+}_t \mid \mathcal{F}^f_t)
\]

- **Informed financiers** (\(v_t \in \mathcal{F}^f_t\)):

\[
\pi = Pr(-\Delta v^j_2 - \Lambda^j_2 + \Lambda^j_1 > m^{j+}_1) = 1 - \Phi \left(\frac{m^{j+}_1 - \Lambda^j_1}{\sigma^j_2} \right) = 0
\]

\[
m^{j+}_1 = \Phi^{-1} (1 - \pi) \sigma^j_2 + \Lambda^j_1 = \bar{\sigma}^j + \bar{\theta} |\Delta v^j_1| + \Lambda^j_1
\]

\[
m^{j-}_1 = \ldots = \bar{\sigma}^j + \bar{\theta} |\Delta v^j_1| - \Lambda^j_1
\]

- **Uninformed financiers** (for \(a \to 0\)):

\[
m^{j+}_1 = \Phi^{-1} (1 - \pi) \sigma_2 = \bar{\sigma}^j + \bar{\theta} |\Delta p_1| = m^{j-}_1
\]
Financiers - Margin setting

- Margins are set based on Value-at-Risk (VaR)
 \[\pi = Pr(-\Delta p^j_{t+1} > m_t^j+ | \mathcal{F}_t^i) \]

- **Informed financiers** ⇒ stabilizing margins
 \[\pi = Pr(-\Delta v^j_2 - \Lambda^j_2 + \Lambda^j_1 > m_1^{j+}) = 1 - \Phi \left(\frac{m_1^{j+} - \Lambda^j_1}{\sigma^j_2} \right) = 0 \]
 \[m_1^{j+} = \bar{\sigma}^j + \bar{\theta} |\Delta v^j_1| + \Lambda^j_1 \]
 \[m_1^{j-} = \bar{\sigma}^j + \bar{\theta} |\Delta v^j_1| - \Lambda^j_1 \]

- **Uninformed financiers** (for \(a \to 0 \)) ⇒ destabilizing margins?
 \[m_1^j = \bar{\sigma}^j + \bar{\theta} |\Delta p_1| \]
Market & Funding Liquidity

Brunnermeier & Pedersen

1. Capital Constraint - Model Setup

2. Time-series Properties
 - Liquidity Dry-ups/ Fragility
 - Liquidity Spirals

3. Cross-Sectional Properties
 - Commonality of Market Liquidity
 - Flight to Quality

4. Risk of Liquidity Crisis
 - Skewness and Kurtosis

5. Related Literature
Liquidity Dry-ups/Fragility

Definition 1
Liquidity is fragile if the price correspondence $p_t^*(\eta_t, \nu_t)$ is discontinuous in η_t or ν_t.

Proposition 1
(i) With informed financiers, the market is fragile at time 1 if x_0 is large enough.
(ii) With uninformed financiers, the market is fragile at time 1 if x_0 large enough or if margins are increasing enough with illiquidity Λ_1. The latter happens if θ is large enough (i.e. ARCH effects are strong) and the financier’s prior on a fundamental shock $(1 - a)$ is large enough (i.e. $a < \bar{a}$).
Example: Informed financier, ARCH & $x_0 = 0 \ (J = 1)$

Constraints: short: \[\frac{W_1}{\bar{\sigma} + \theta |\Delta v_1| - \Lambda_1} \]
& long: \[\frac{W_1}{\bar{\sigma} + \theta |\Delta v_1| + \Lambda_1} \]

\[\begin{align*}
\gamma &= 0.025 \quad \sigma^2 = 16 \quad z_0 = 20 \quad z_1 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120 \\
\rho_0 &= 130 \quad k = 10 \quad \phi = 0.3 \quad \eta_1 = 0 \quad W_0 = 1500 \quad x_0 = 0
\end{align*} \]
Example: Informed financier, ARCH & $x_0 = 0$

Short region ($p_1 > v_1$) & long region ($p_1 < v_1$)
Example: Informed financier, ARCH & $x_0 = 0$

Speculators’ demand

\[\gamma = 0.025 \quad \sigma^2 = 16 \quad z_0 = 20 \quad z_1 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120 \]

\[p_0 = 130 \quad k = 10 \quad \theta = 0.3 \quad n_1 = 0 \quad W_0 = 1500 \quad x_0 = 0 \]
Example: Informed financier, ARCH & $x_0 = 0$

Add customers’ supply

\[\gamma = 0.025 \quad \sigma^2 = 16 \quad z_0 = 20 \quad z_4 = 20 \quad v_0 = 140 \quad v_1 = 120 \]
\[p_0 = 130 \quad k = 10 \quad \theta = 0.3 \quad n_1 = 0 \quad W_0 = 1500 \quad x_0 = 0 \]
Example: Informed financier, \(\text{ARCH} & \ x_0 = 0 \)

\[\Rightarrow \text{No fragility — “Cushioning effect of margins”} \]

\[\gamma = 0.025 \quad \sigma^2 = 16 \quad z_0 = 20 \quad z_4 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120 \]

\[p_0 = 130 \quad k = 10 \quad \omega = 0.3 \quad \eta_1 = 0 \quad x_0 = 0 \]
Example: Uninformed financier, ARCH & $x_0 = 0$

Constraints: short: $x_1 \geq -\frac{W_1}{\bar{\sigma} + \theta |\Delta p_1|}$ & long: $x_1 \leq \frac{W_1}{\bar{\sigma} + \theta |\Delta p_1|}$

$\gamma = 0.025 \quad \sigma^2 = 11 \quad z_0 = 20 \quad z_1 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120$

$p_0 = 130 \quad k = 5 \quad \theta = 0.3 \quad \eta_1 = 0 \quad W_0 = 750 \quad x_0 = 0$
Example: Uninformed financier,
ARCH & $x_0 = 0$

Short region ($p_1 > v_1$) & long region ($p_1 < v_1$)
Example: Uninformed financier, ARCH & \(x_0 = 0 \)

Speculators’ demand

\[
\gamma = 0.025 \quad \sigma^2 = 11 \quad z_0 = 20 \quad z_1 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120 \\
p_0 = 130 \quad k = 5 \quad \vartheta = 0.3 \quad \eta_1 = 0 \quad W_0 = 750 \quad x_0 = 0
\]
Example: Uninformed financier, ARCH & $x_0 = 0$

Add customers’ supply — two stable equilibria

\[\gamma = 0.025 \quad \sigma^2 = 11 \quad z_0 = 20 \quad z_1 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120 \]
\[p_0 = 130 \quad k = 5 \quad \delta = 0.3 \quad \eta_1 = 0 \quad W_0 = 750 \quad x_0 = 0 \]
Example: Uninformed financier, ARCH & $x_0 = 0$

Add customers' supply — fragility for $\eta_1 = -150$

$$\gamma = 0.025 \quad \sigma^2 = 11 \quad z_0 = 20 \quad z_1 = 20 \quad v_0 = 140 \quad v_1 = 120 \quad p_0 = 130 \quad k = 5 \quad \delta = 0.3 \quad \eta_1 = 0 \quad W_0 = 800 \quad x_0 = 0$$
Example: Uninformed financier, ARCH & $x_0 = 0$

Example: fragility due to destabilizing margins

\[\gamma = 0.025, \quad \sigma^2 = 11, \quad z_0 = 20, \quad z_f = 20, \quad v_b = 140, \quad v_f = 120 \]

\[p_0 = 130, \quad k = 5, \quad \phi = 0.3, \quad \eta_f = 0, \quad \eta_b = 0 \]

\[\frac{\partial m_0}{\partial |\Lambda_0|} > 0 \]

\[p_1 \text{ as correspondence of } \eta_1 \quad p_1 \text{ as correspondence of } \Delta v_1 \]
Example: Uninformed financier, ARCH & $x_0 = 10 > 0$

Leveraged x_0-position — ‘tilted star’ & bankruptcy line

\[
\gamma = 0.025 \quad \sigma^2 = 11 \quad z_0 = 20 \quad z_1 = 20 \quad \nu_0 = 140 \quad \nu_1 = 120 \\
p_0 = 130 \quad k = 5 \quad \theta = 0.3 \quad \eta_1 = 0 \quad W_0 = 850 \quad x_0 = 10
\]
Liquidity Spirals

initial losses → funding problems for speculators

reduced positions

prices move away from fundamentals

higher margins

losses on existing positions

\[\frac{\partial m_0}{\partial |\Lambda_0|} > 0 \]
Liquidity Spirals

Proposition 2

In a stable illiquid equilibrium with $Z_1 > 0$, $x_1 > 0$, and

$$\frac{\partial p_1}{\partial \eta_1} = \frac{1}{\frac{2}{\gamma(\sigma_2)^2} m_1^+ + \frac{\partial m_1^+}{\partial p_1} x_1 - x_0}.$$

A margin spiral arises if $\frac{\partial m_1^+}{\partial p_1} < 0$, which can happen if finaniers are uninformed and a is small.

A loss spiral arises if speculators’ previous position is in the opposite direction as the demand pressure $x_0 Z_1 > 0$.

$$\frac{1}{k - l} = \frac{1}{k} + \frac{l}{k^2} + \frac{l^2}{k^3} + \ldots$$
Example: 1987 Crash

- Increased volatility caused banks to require more margin
- Funding problems for marketmakers
 - Failures at NYSE, Amex, OTC, trading firms, etc.
 - “Thirteen [NYSE specialist] units had no buying power” because of their funding constraint (SEC (1988))
- ⇒ mutually reinforcing
- Fed response:
 “Calls were placed by high ranking officials of the FRBNY to senior management of the major NYC banks, indicating that ... they should encourage their Wall Street lending groups to use additional liquidity being supplied by the FRBNY to support the securities community”
Margin for S&P500 Futures

Margin requirement for CME members as a fraction of the S&P500 index level
Example: 1998 Liquidity Crisis

- Salomon closed down proprietary trading
 - η-shock: less aggregate funding of trading in certain markets
- Russian default
 - Δv-shock: adverse fundamental shocks
- increased spreads & reduced market liquidity
- increased margins/haircuts & reduced funding liquidity
De-leveraging of I-Banks

esp. in Fall of 1998 — Source: Adrian-Shin (2008)

Leverage and Total Assets Growth
Asset weighted, 1992Q3-2008Q1, Source: SEC

\[
\frac{\partial m_0}{\partial |\Lambda_0|} > 0
\]
1 Capital Constraint - Model Setup

2 Time-series Properties
 Liquidity Dry-ups/ Fragility
 Liquidity Spirals

3 Cross-Sectional Properties
 Commonality of Market Liquidity
 Flight to Quality

4 Risk of Liquidity Crisis
 Skewness and Kurtosis

5 Related Literature
Multiple Assets - Speculators’ Optimal Strategy

Speculator maximizes expected profit per capital use

- expected profit \(v_1^j - p_1^j = -\Lambda_1^j \) or \(- (v_1^j - p_1^j) = \Lambda_1^j\)
- capital use \(m_1^j \)

Shadow cost of capital, funding liquidity,

\[
\phi_1 = 1 + \max\{ \max_j \frac{v_1^j - p_1^j}{m_1^j+}, \max_j \frac{- (v_1^j - p_1^j)}{m_1^j-} \}
\]

speculators

- invest only in securities with highest ratio \(\frac{|\Lambda_1^j|}{m_1^j} \)
 (speculators determine price)
- do not invest in securities with lower ratio
 (customers determine price)

(If funding is abundant, \(\phi_1 = 1 \) and \(\Lambda_1^j = 0 \ \forall j \).)
either

- funding is abundant, $\phi_1 = 1$, and market illiquidity $\Lambda_1^j = 0$ for all j;

or

- funding is tight, $\phi_1 > 1$, and

\[
|\Lambda_1^j|_{(\phi_1)} = \min\left\{ (\phi_1 - 1)m_1^j, |\bar{\Lambda}_1^j(Z_1, \cdot)| \right\}
\]

\[
x_1^j \neq 0 \quad x_1^j = 0
\]

Recall,

\[
\Lambda_1^j = p_1^j - v_1^j
\]
Commonality of Market Liquidity

Proposition 3

(iii) (Commonality of Market Liquidity) The market illiquidity \(|\Lambda|\) of any two securities \(k\) and \(l\) comove,

\[
\text{Cov}_0 \left[|\Lambda^k_1|, |\Lambda^l_1| \right] \geq 0
\]

and market illiquidity comoves with funding illiquidity, \(\phi_1\)

\[
\text{Cov}_0 \left[|\Lambda^k_1|, \phi_1 \right] \geq 0
\]

(iv) (Commonality of Fragility) Jumps in market liquidity occurs simultaneously for all assets for which speculators are marginal.

- **Intuition**: Funding liquidity is the driving common factor.
Commonality and Flight to Quality

Two asset example: $\sigma^2 = 7.5 > 5 = \sigma^1$
(Hint: asset 2 = light blue curve)

$\gamma = 0.025 \quad z_0 = 20 \quad z_1 = 20 \quad v_0 = 140 \quad v_1 = 120$

$p_0 = 130 \quad \sigma_1 = 5 \quad \sigma_2 = 7.5 \quad \delta = 0.3 \quad W_0 = 1500 \quad x_0 = 0$
Proposition 3, continued

(i) (Quality=Liquidity) Assets with lower fundamental volatility have better market liquidity.

(ii) (Flight to Quality) The market liquidity differential between high- and low-fundamental-volatility securities is bigger when speculator funding is tight, that is, $\sigma^l < \sigma^k$ implies that $|\Lambda^k_1|$ increases more than $|\Lambda^l_1|$ with a negative funding shock,

$$\frac{\partial |\Lambda^l_1|}{\partial (-\eta_1)} \leq \frac{\partial |\Lambda^k_1|}{\partial (-\eta_1)},$$

$$\text{Cov}_0[|\Lambda^l_1|, \phi_1] \leq \text{Cov}_0[|\Lambda^k_1|, \phi_1].$$
Commonality and Flight to Quality

Tow asset example: $\sigma^2 = 7.5 > 5 = \sigma^1$

(Hint: asset 2 = light blue curve)

$\gamma = 0.025 \quad \varepsilon = 20 \quad \nu_0 = 140 \quad \nu_1 = 120$

$p_0 = 130 \quad \sigma_1 = 5 \quad \sigma_2 = 7.5 \quad \delta = 0.3 \quad W_0 = 1500 \quad x_0 = 0$
1. Capital Constraint - Model Setup

2. Time-series Properties
 - Liquidity Dry-ups/ Fragility
 - Liquidity Spirals

3. Cross-Sectional Properties
 - Commonality of Market Liquidity
 - Flight to Quality

4. Risk of Liquidity Crisis
 - Skewness and Kurtosis

5. Related Literature
Risk of Liquidity Crisis - $t = 0$

1. Pricing kernel depends on future funding liquidity, ϕ_{t+1}
2. Funding liquidity risk can matter even before margin requirements actually bind
3. Conditional skewness of price p_1 due to the funding constraint
4. Margins m_0 and illiquidity Λ_0 can be positively related due to liquidity risk even if financiers are informed.
Risk of Liquidity Crisis - $t = 0$

- Pledgable capital interpretation of W_t
 - if $W_t < 0$, losses have to be covered with unpledgable capital
 - speculators’ “utility” $\phi_1 W_1$ (also for $W_1 < 0$)
 - weakest assumption that curbs speculators’ risk taking, since objective function linear.

1. Pricing kernel reflects funding liquidity (shadow cost) ϕ_{t+1}.

$$p_0 = E_0[\underbrace{\frac{\phi_1}{E_0[\phi_1]} p_1}_{\text{kernel}}], \text{ if } \phi_0 = 1 \text{ (unconstrained case)}.$$

$$p_0 = E_0[\phi_1] E_0[p_1] + \text{Cov}_0[\frac{\phi_1}{E_0[\phi_1]}, p_1]$$
\[\rho_0 \text{ and } E_0[\rho_1] \]

Plot of Equilibrium \(\rho_0 \) and \(E[\rho_1] \) versus \(W_0 \)

\[
\begin{align*}
\gamma &= 0.025 \\
\sigma_1 &= 5 \\
\zeta_0 &= 40 \\
\zeta_1 &= 0 \\
\nu_0 &= 140 \\
\nu_1 &= 140 \\
k &= 5 \\
\theta &= 0.3 \\
\eta_\lambda &= 0 \\
\pi &= 0.01
\end{align*}
\]
Conditional Skewness and Kurtosis

Plot of Equilibrium skewness of p_1 versus W_0

$\gamma = 0.025 \hspace{0.1cm} \sigma_1 = 5 \hspace{0.1cm} z_0 = 40 \hspace{0.1cm} z_1 = 0 \hspace{0.1cm} \nu_0 = 140 \hspace{0.1cm} \mathbb{E}[\nu_1] = 140$

$k = 5 \hspace{0.1cm} \theta = 0.3 \hspace{0.1cm} \eta_1 = 0 \hspace{0.1cm} \pi = 0.01$
Conditional Skewness in FX

Brunnermeier, Nagel, Pedersen (NBER Macro Annual 2008)

Skewness

Risk Reversals

Skewness

Risk Reversals

Literature

Conditional Skewness in FX

Brunnermeier, Nagel, Pedersen (NBER Macro Annual 2008)
Margins m_0 can increase with $|\Lambda_0|$

- in $t = 1$: margins, m_1, are only increasing in $|\Lambda_1|$ if
 - financiers are uninformed
 - fundamentals follow ARCH structure
- in $t = 0$: margins, m_0, can be increasing with $|\Lambda_0|$ even when financiers are informed.
 - decline in W_0 leads to
 - increase in $|\Lambda_0|$
 - increase in m_0 since p_1 is more volatile
Related Theoretical Literature

<table>
<thead>
<tr>
<th>This Paper:</th>
<th>Related Theoretical Literature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for</td>
<td></td>
</tr>
<tr>
<td>destabilizing margins</td>
<td></td>
</tr>
<tr>
<td>Fragility</td>
<td>Asym. info: Gennotte-Leland (1990)</td>
</tr>
<tr>
<td>Margin Spiral</td>
<td>Vayanos (2004)</td>
</tr>
<tr>
<td>Flight to Quality</td>
<td></td>
</tr>
</tbody>
</table>

Paper links literatures on:

asset pricing, microstructure, limits of arb, corporate finance, macro, GE
Conclusion

1. Sudden liquidity “dry-ups”
 - fragility
 - liquidity spirals
 - due to destabilizing margins (financiers imperfectly informed + ARCH)

2. Market liquidity correlated with volatility:
 - volatile securities require more capital to finance

3. Flight to quality / flight to liquidity:
 - when capital is scarce, traders withdraw more from “capital intensive” high-margin securities

4. Commonality of liquidity:
 - these funding problems affect many securities

5. Market liquidity moves with the market
 - because funding conditions do