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SUMMARY

Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating
disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which
current sample members recruit future sample members. In this paper we present RDS as Markov chain
Monte Carlo importance sampling, and we examine the effects of community structure and the recruitment
procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates
is primarily affected by segregation between healthy and infected individuals. We examine an illustrative
model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can
substantially affect estimates. We also show that variance is inflated by a common design feature in which
the sample members are encouraged to recruit multiple future sample members. The paper concludes with
suggestions for implementing and evaluating RDS studies. Copyright 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Joint United Nations Program on HIV/AIDS (UNAIDS) estimates that there are between 30
and 35 million people living with HIV/AIDS worldwide, and that between 2 and 4 million people
were newly infected in 2007. In most countries outside of sub-Saharan Africa, these infections
are concentrated in three subpopulations: men who have sex with men, injection drug users,
and sex workers and their sexual partners [1]. Consequently, there is general consensus among
epidemiologists that better data about disease prevalence and risk behaviors within these key
subpopulations are critical for understanding and controlling the spread of the disease [2–5].

Unfortunately, because these subpopulations lack appropriate sampling frames, are relatively
small, and their members often desire to remain anonymous, they are difficult to study with standard
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sampling methods. For this reason they are often called ‘hidden’ or ‘hard-to-reach.’ A variety
of sampling approaches have been tried to study these hidden populations, but in many cases
they produce estimates of unknown bias and variance [5, 6]. The resulting uncertainty about key
subpopulations has complicated public health efforts to evaluate prevention programs and allocate
resources effectively.

Respondent-driven sampling (RDS) is a new approach for sampling from hidden populations that
is rapidly gaining in popularity: A recent review identified more than 120 RDS studies worldwide
[7], including populations as diverse as men who have sex with men in Uganda [8], sex workers
in Vietnam [9], and injection drug users in the former Soviet Union [10]. Furthermore, the U.S.
Centers for Disease Control and Prevention (CDC) recently selected RDS for a 25-city study of
injection drug users that is part of the National HIV Behavioral Surveillance System [11]. Because
CDC decisions often influence global public health standards, RDS is likely to become increasingly
common in the study of hidden populations.

RDS data are collected through a snowball mechanism, in which current sample members recruit
future sample members.§ An RDS study begins by recruiting a small number of people in the
target population to serve as seeds. After participating, the seeds are asked—and often provided
financial incentive—to recruit other people that they know in the target population. The sampling
continues in this way with current sample members recruiting the next wave of sample members
until the desired sample size is reached.¶ The process results in recruitment networks like the one
in Figure 1 from a study of drug users in New York City; the sample began with eight seeds and
grew to include 618 people in 13 weeks [27]. Under certain strong assumptions described later in
the paper, these RDS data can then be used to produce asymptotically unbiased estimates about
the hidden population (e.g. estimates of the proportion of drug users in New York who have HIV).

Despite the widespread use of RDS and its potential to address important public health questions,
the statistical foundations of RDS remain poorly understood. This paper presents RDS as Markov
chain Monte Carlo (MCMC) importance sampling, and analyzes how RDS estimates are affected
by both the community structure of the hidden population and the recruitment procedure. We show
that the variance of the RDS estimator is increased by: (1) ‘bottlenecks’ between different groups
in the hidden population and (2) a study design in which participants recruit multiple individuals.

Our paper is organized as follows. In Section 2 we show that RDS sampling and estimation
can be viewed as MCMC importance sampling. While MCMC algorithms are typically computer-
driven, a novel feature of RDS is that the state transitions consist of individuals physically recruiting
others in the hidden population. In Section 3 we analyze a particular, illustrative network model
in detail. This example shows that the structure of the hidden population’s social network can
significantly impact both the bias and variance of RDS estimates, a phenomenon that is well
understood in the statistical MCMC community but that has been overlooked in the RDS literature.
Importantly, bottlenecks in any part of the network may affect RDS estimates of quantities that
are not directly related to the source of the bottleneck. For example, a bottleneck between racial
groups may degrade RDS estimates of gender composition. This suggests that the variance of RDS
estimates is likely larger than previously believed. In Section 4 we explore the effect of multiple

§This type of sampling is also sometimes called chain-referral, random-walk, or link-tracing [12–19], and can be
considered as a form of adaptive sampling [20, 21].
¶Although it is beyond the scope of this paper, it is critical to note that there are serious logistical and ethical
complications involved in running an RDS study [22–26]. To give just one example, in studies of injection drug
users, it is common for non-drug users to attempt to participate in the study in order to earn money [22, 26].
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Figure 1. Recruitment networks from a study of drug users in New York City. The eight
seeds are larger than the others nodes and all nodes are color coded by race/ethnicity.

This figure was originally published in [27].

recruitment on variance, an issue that is important for RDS, but has not been considered previously
and typically does not arise in MCMC applications. We show that ‘thick’ as opposed to ‘thin’
recruitment chains increase the statistical dependence between samples, and consequently worsen
RDS estimates. Section 5 summarizes the results and concludes with recommendations for users
of RDS. We have relegated most proofs and technical details to Appendices A and B. Appendix C
reviews conductance, a formal measure of bottlenecks in networks.

2. RDS AS MCMC

RDS [28–30] is a form of snowball sampling often used to estimate the proportion of a population
with a specific characteristic. Although in this paper we talk about estimating the proportion p of
infected individuals, we could more generally be estimating the occurrence of any characteristic or
behavior. Here we review MCMC importance sampling and make the connection to RDS precise.

2.1. Markov chain Monte Carlo

MCMC was popularized by the introduction of the Metropolis algorithm [31] and has been applied
extensively in a variety of fields, including physics, chemistry, biology, and statistics. MCMC has
also been the subject of several book-length treatments [32–35].

Behind all MCMC methods is a Markov chain on a state space V . In the context of RDS,
V is the population from which we sample (e.g. drug injectors in New York City). We confine
ourselves to the case where V is a finite population of size N , and so identify the chain with a
kernel K (vi ,v j ) that gives the probability of transition from state vi to state v j :

K (vi ,v j )!0,
∑

v j∈V
K (vi ,v j )=1
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In terms of RDS, K (vi ,v j ) is the probability that any individual vi recruits an individual v j . The
chain is irreducible if for every pair of points vi ,v j , there is positive probability of eventually
reaching v j starting from vi . Under this assumption, there is a unique distribution ! :V→R—called
the stationary distribution—satisfying

∑
vi∈V

!(vi )K (vi ,v j )=!(v j )

That is, if X0, X1, X2, . . . is a realization of the chain with X0∼!, then Xi∼! for i!0. Conse-
quently, by starting the chain in equilibrium, the walk can be used to generate dependent samples
from the distribution !.

2.2. Importance sampling

As shown above, a chain-referral sampling method can be used to draw dependent samples from
the population V with distribution !:

P(Xi =v j )=!(v j )

That is, on each draw individual v j has probability !(v j ) of being chosen. Then for any function
f :V→R, the sample mean

1
n

n−1∑
i=0

f (Xi ) (1)

gives an unbiased estimate not of the population mean, but of E! f =∑N
i=1 f (vi )!(vi ). That is,

because units are selected with unequal probability, the sample mean is not a consistent estimator
of the population mean. As is common in the survey sampling literature [36], the idea behind
importance sampling [37] is that the weighted sample mean

1
n

n−1∑
i=0

f (Xi )

N ·!(Xi )
(2)

produces an unbiased estimate of the population mean " f of f since

E!

(
f (Xi )

N ·!(Xi )

)
=

N∑
i=1

f (vi )
N ·!(vi )

!(vi )

= 1
N

N∑
i=1

f (vi )

In particular, if D⊆V is the subset of infected individuals, then (2) can be used to estimate the
disease prevalence p=|D|/N =" f by setting f (vi )=1 if vi ∈D and f (vi )=0 otherwise.

It is often necessary to replace (2) by the asymptotically unbiased importance sampling estimator

"̂IS= 1
∑n−1

i=0 1/!(Xi )

n−1∑
i=0

f (Xi )

!(Xi )
(3)

The considerable advantage of (3) over (2) is that the importance weights 1/!(Xi ) only need to be
evaluated up to a multiplicative constant (e.g. one does not need to know N ). In many applications,
including RDS, this simplification is essential.
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2.3. Respondent-driven sampling

Importance sampling allows estimation of p given samples X0, X1, . . . from any fixed distribution
!. RDS generates such samples via a recruitment process akin to MCMC. The link between RDS
and MCMC has been noted previously [29, 38, 39]; here we make that connection explicit.

Consider a social network G=(V,E) where nodes x ∈V represent individuals in the population
that are either infected or healthy, and e∈E represent edges in the network. We assume symmetric
weighted edges (i.e. symmetric relationships) and we write W (x, y)=W (y, x) for the weight of
the edge between nodes x and y.‖ Further, we assume that the network is connected (i.e. that there
exists a path between every pair of individuals in the population).

For a subset of individuals A⊆V we use the notation

WA= ∑
x∈A

∑
y∈V

W (x, y)

to denote the weight of A. For singleton sets, we write Wx instead of W{x}.
We model the RDS sampling procedure as a random walk on the weighted graph G defined

by the kernel K (x, y)=W (x, y)/Wx , where K (x, y) is the probability that individual x recruits
individual y.∗∗ Assuming that the network is connected (i.e. the chain is irreducible), the walk has
a unique stationary distribution

!(x)= Wx

WV

Consequently, for X0, X1, X2, . . . a realization of the chain with X0∼!†† and f :V→R any
function, the importance sampling estimator (3) of the population mean " f reduces to

"̂ f = 1
∑n−1

i=0 1/WXi

n−1∑
i=0

f (Xi )

WXi

(4)

The RDS estimator (4) was recently introduced in [38], and will likely supplant the RDS estimator
introduced in [29]. In the case of estimating disease prevalence, by setting f (vi )=1 if vi is infected
and f (vi )=0 otherwise, (4) simplifies to

p̂= 1
∑n−1

i=0 1/WXi

∑
Xi infected

1
WXi

(5)

To evaluate the RDS estimators (4) and (5) one still needs to know the weights WXi . Typi-
cally, researchers set uniform edge weights, W (x, y)=1, corresponding to the assumption that
participants recruit their contacts uniformly at random and that all contacts approached agree to

‖This assumption of symmetric relationship may not hold in some situations, for example caste societies.
∗∗Note that unlike our model, in practice RDS is conducted as sampling without replacement (i.e. those who
participate cannot participate again).

††Although real RDS studies often use multiple seeds, for simplicity we assume that only one seed is selected.
However, most of our results can be generalized to handle multiple seeds without significant complication and
remain qualitatively unchanged.
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participate. Throughout the paper we refer to this as the uniform recruitment assumption.‡‡ In this
case, Wx equals the degree of node x (i.e. her number of contacts).§§

In contrast to estimates from snowball sampling based on the sample mean (1),¶¶ RDS estimates
weight samples proportional to their assumed probability of selection. In the case where all nodes
have the same degree, the sample mean estimate is equivalent to the RDS estimate (4) given the
uniform recruitment assumption.

In the above, we start the walk in stationarity: X0∼! (i.e. the initial seed is drawn according to the
stationary distribution). However, if the walk is aperiodic (i.e. if the network is not bipartite), then
the RDS estimator "̂ is asymptotically unbiased regardless of the starting distribution. Moreover,
there is a central limit theorem for "̂:

√
n("̂n−")→N(0,#2f ) (6)

for any initial distribution on X0.‖‖ The variance #2f depends on the variance of f and the
autocorrelation structure of the chain, and can be difficult to estimate in practice [34].

We hasten to point out that these results regarding the asymptotic behavior of RDS estimates
hinge critically on the validity of the modeling assumptions. In particular, these results require
that participants recruit a single individual∗∗∗ chosen uniformly at random from their network of
contacts, and that participants can be recruited into the sample multiple times (i.e. sampling with
replacement). Furthermore, even if all of the appropriate conditions are met, the asymptotic theory
says little regarding the performance of RDS in small samples (n≈500). As we show, in the case
of small samples, the social network structure is of central importance.

‡‡This uniform recruitment assumption is almost certainly not met in most studies because of selection bias in
the decisions of recruiters on whom to enlist and of recruits on whether to participate. For example, in an RDS
study of injection drug users in Chicago, Scott found that some participants were more likely to recruit their close
contacts, a problem that was exacerbated by the financial incentives inherent in the RDS design [26]. Furthermore,
in studies of men who have sex with men in Brazil, Ukraine, and Estonia, it was noted that some members of
the target population actively avoided participating because they did not want to take the HIV test that was part
of the study [24].

§§Ascertaining an individual’s degree is itself a challenging problem [40, 41], particularly in the context of RDS
[24], and constitutes a source of non-sampling error.

¶¶For more sophisticated estimators dealing with data collected via snowball sampling and more general link tracing
designs, see [13, 17–19, 39, 42, 43].

‖‖The Markov chain central limit theorem is typically applied to the unbiased estimate (2); one can, however,
generalize that result to apply to (4). First observe that

√
n("̂n−") =

√
n

∑n−1
i=0 1/WXi

n−1∑
i=0

f (Xi )−"
WXi

=
[

1

(1/n)
∑n−1

i=0 WV /NWXi

][
1√
n

n−1∑
i=0

f (Xi )−"
NWXi /WV

]

By the Markov chain strong law of large numbers, the first term in the final expression converges to 1 almost
surely. The result now follows by applying the usual Markov chain central limit theorem to the second expression
with the function

g(Xi )=
f (Xi )−"
NWXi /WV

∗∗∗The case of multiple recruitment will be treated in Section 4 of this paper, where it is shown that (6) no longer
holds in general.
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3. EFFECTS OF COMMUNITY STRUCTURE

It is well understood that the bias and variance of MCMC estimates are critically affected by the
structure of the network underlying the random walk. However, past work on RDS has focused
on only one structural feature: bottlenecks between infected and uninfected individuals (Figure 2)
[28, 29, 44].††† That is, it was previously believed that as long as there were sufficient connections
between infected and uninfected individuals, the RDS estimates would be reasonably precise.
While this structural feature is certainly a concern, taken in isolation it underestimates the effect
of network structure on the variance of RDS estimates. Even when infected and uninfected indi-
viduals are relatively well-connected, bottlenecks in other parts of the network can lead to large
variance.

To illustrate this point, we analyze RDS on two network models in detail. Our examples, while
motivated by the qualitative features of real social networks, are not intended to be accurate models
of any specific social network. Rather, they provide insight by allowing for exact and interpretable
results.

3.1. Two network models

3.1.1. A two-group model. Consider a population V consisting of two groups, A and B, of
equal size N/2. Edges exist between every pair of individuals, however within-group edges have
weight 1−c while between-group edges have weight c where 0<c<1/2 (see Figure 3(a)).‡‡‡ That
is, within-group relationships are stronger than between-group relationships. In this model, c
parameterizes homophily based on group membership—the well-observed social tendency for
people to form ties to others who are similar [45]; as c increases, the tendency for within-group
ties decreases.§§§

Let pA and pB denote the proportion of infected individuals within the two groups, and let
D⊆V be the subset of infected people. Since we are assuming |A|=|B|, the proportion of infected
individuals in the entire population is p=(pA+ pB)/2. If the two groups have different infection
rates, pA *= pB , then, as we show, the network bottleneck between the two groups affects the RDS
estimate, even though infected and uninfected individuals are well-connected.

We can imagine this more concretely by considering the case of street-based and agency-based
sex workers in Belgrade, two groups that have been found to have little contact [46]. If these
two groups had different HIV prevalence, then the weak connections between the groups could
lead to high variance for the RDS-estimated HIV prevalence for sex workers as a whole because
sometimes the sampling would get stuck in one group and sometimes it would get stuck in the
other. Further, if the seeds are not selected from the stationary distribution, the bottleneck between
groups can lead to biased estimates.

†††We use the term ‘bottleneck’ in a strictly non-technical sense to refer to features of the network that lead to
a propensity for the sampling procedure to get ‘stuck’ in certain regions. For example, we would say there is a
bottleneck between groups A and B in the two-group example in Figure 3(a). A more formal notion of ‘bottlenecks’
is conductance, which is elaborated upon in Appendix C, but which is not essential to the main exposition.

‡‡‡This network model allows for self-edges, which means that it allows for self-recruitment during the sampling
process. This assumption departs from the actual RDS sampling process, but has minimal effect on the qualitative
results.

§§§This parameterization differs slightly from other parameterizations of homophily (for example, [27, 28]), but links
naturally to the general notion of conductance, which is more fully described in Appendix C.

Copyright 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2202–2229
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Figure 2. Hypothetical network with an edge between every pair of nodes, where within-group edges
have higher weight than between-group edges. Here the two groups are defined by infection status, and

a bottleneck exists between healthy and infected individuals.

Figure 3. Hypothetical networks with an edge between every pair of nodes, where within-group edges
have higher weight than between-group edges. In the two-group model the population is divided into two
equally sized groups that differ in disease prevalence. In the multi-group model, the population is divided
into many smaller equally sized subgroups that also differ in disease prevalence. In terms of RDS, these

two models are equivalent: (a) two-group model and (b) multi-group model.

3.1.2. A multi-group extension. Although one could plausibly detect and potentially compensate
for the simple network bottleneck in the two-group model, more subtle—and hence harder to
diagnose—structural features can also lead to high variance of RDS estimates.

Consider the multi-group network depicted in Figure 3(b). This more general model aims to
capture the fact that many real social networks partition into relatively homogenous subgroups
where there are stronger ties within subgroups than between subgroups—a feature that sociologists
call ‘cohesive subgroups’ [47] and physicists call ‘community structure’ [48]. In the multi-group
model, N nodes are divided into subgroups of m nodes; all nodes are connected, but within-
subgroup edges have weight 1, and between-subgroup edges have weight b<1.¶¶¶ The subgroups
themselves come in two varieties, A and B, with exactly half the subgroups of type A and the
other half type B. Type A subgroups have a proportion pA of their nodes infected, and type B
subgroups have a proportion pB infected. In the case of contagious diseases, such clumping of
cases within subgroup is particularly likely [49].

¶¶¶As with the two-group model, the multi-group model allows for self-edges, meaning that nodes are allowed to
recruit themselves.

Copyright 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2202–2229
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Despite their apparent differences, the multi-group model is in fact equivalent to the two-group
model: For every value of c< 1

2 in the two-group model, there is a corresponding value of b in the
multi-group model such that the RDS estimator p̂ has the same distribution under both network
models (details are provided in Appendix A).

3.2. Analyzing the models

Here we consider the bias and variance properties of RDS on the network models discussed above.
Without loss of generality, we consider only the two-group model.

In the two-group model, RDS is based on the following Markov chain:

K (x, y)=
{
2(1−c)/N , x, y∈ A or x, y∈ B
2c/N , x ∈ A, y∈ B or x ∈ B, y∈ A

(7)

Written as a matrix,

K =
[
2(1−c)/N 2c/N

2c/N 2(1−c)/N

]

where the matrix is partitioned into blocks of size N/2×N/2.
K has stationary distribution !(x)=Wx/WV =1/N that is uniform over V , since

Wx =∑
y
W (x, y)=(1−c)N/2+cN/2=N/2

is independent of x (i.e. each unit has equal probability of selection). Furthermore, since the weight
of each node is the same, the RDS estimator (5) simplifies to

p̂= 1
∑n−1

i=0 1/WXi

∑
Xi∈D

1
WXi

= #{Xi ∈D}
n

which is the usual estimator for simple random samples. Unlike simple random samples, however,
the samples Xi are not independent, and the social network structure of the population affects
RDS estimates.

To analyze p̂, we derive an explicit expression for the distribution Kl of the state of the chain
after l steps.

Lemma 3.1
For 0<c< 1

2 , the l-step distribution of the walk defined in (7) is

Kl(x, y)=
{

(1+$l1)/N , x, y∈ A or x, y∈ B
(1−$l1)/N , x ∈ A, y∈ B or x ∈ B, y∈ A

where $1 is the second largest eigenvalue of the transition matrix K , which in this case is equal
to 1−2c.

Although the equilibrium distribution !(x)=1/N is uniform over V , after any finite number of
steps the chain is more likely to be in the group from which the initial sample was chosen due to

Copyright 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2202–2229
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preferential within-group recruitment. For example, if the initial seed is chosen from A, then for
c=0.1, after five steps the chain is still about twice as likely to be in A than in B.

Here the second largest eigenvalue $1 of the transition matrix is seen to control the rate of
convergence of the chain to its equilibrium distribution. This phenomenon is true for general chains
[50], and as we show below, $1 also affects both the bias and variance of the RDS estimate.

In our example, the RDS estimator p̂ is unbiased if the initial sample X0 is chosen from
the stationary distribution !. If instead X0 is chosen uniformly from group A, then p̂ is biased
(although still asymptotically unbiased), and moreover, the bias depends on the bottleneck that is
induced by the homophily parameter c and the length of the recruitment chains. This illustrates
the fact that the network location of the seed becomes increasingly important in populations with
bottlenecks between groups.

Lemma 3.2
Consider the walk defined in (7). For an initial sample X0 chosen uniformly from group A and
a referral chain of size n

E p̂= p+(pA− pB)
1−$n1
4nc

where $1=1−2c.

From Lemma 3.2 we know that the estimator p̂ has bias

bias( p̂)=(pA− pB)
1−(1−2c)n

4nc
≈ pA− pB

4nc
= pA− pB

2n(1−$1)

that depends on the homophily c, the length of the chain n, and the difference in infection
proportions between the two groups. The spectral gap 1−$1=2c captures the effect of network
structure. Note that this also shows that even though RDS estimates are asymptotically unbiased,
as is often claimed in the literature, there can be substantial bias when the seeds are not selected
from the stationary distribution and the sample size is small.

In a population with c=0.1, a referral chain of length 10 that has initial seed chosen uniformly
from group A has bias approximately (pA− pB)/5. As c→0 (i.e. as the two populations become
completed disconnected), bias( p̂)→(pA− pB)/2. In this extreme case, RDS erroneously estimates
only pA instead of p=(pA+ pB)/2.

In the above we estimated the bias of p̂ given that the initial seed was chosen uniformly from
group A. Now we assume that the seed is chosen uniformly from the entire population (so that p̂
is unbiased) and analyze its variance.

In populations with community structure, it is more likely that individuals refer people who
are in their same social subgroup. Intuitively, in this situation we gain less information from each
recruit than if that recruit was chosen randomly from the entire population. The result of this
dependence is an effective reduction in sample size. That is, the variance of RDS estimates is
larger than the variance of estimates based on a simple random sample of the same nominalsize.

The dependence between samples is quantified by their covariance.

Lemma 3.3
Consider the walk defined in (7). Suppose X1

0, X
1
1, . . . and X2

0, X
2
1, . . . are two independent real-

izations of the walk with X1
0 = X2

0∼!. That is,both chains begin at the same vertex v, which is

Copyright 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2202–2229
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drawn from the stationary distribution !. Then for i, j!0

Cov( fD(X1
i ), fD(X2

j ))=
(
pA− pB

2

)2

$i+ j
1

where $1=1−2c and

fD(vi )=
{
1, vi infected

0, otherwise

Corollary 3.1
Consider the walk X0, X1, . . . defined in (7). If X0∼!, then the variance of p̂ satisfies

Var( p̂)= p− p2

n
+ (pA− pB)2$1

2n(1−$1)
− (pA− pB)2($1−$n+1

1 )

2n2(1−$1)2

where $1=1−2c and n is the sample size.

Again we see that the spectral gap 1−$1 affects RDS estimates. A naive estimate of the variance
(i.e. the variance under simple random sampling) assumes samples are uncorrelated, yielding only
the first term (p− p2)/n. In particular, it does not take into account possible community structure
in the hidden population. For example, for c=0.1, pA=0.3, and pB =0.1, Var( p̂) is approximately
1.5 times the variance of estimates from a simple random sample. Accordingly, confidence intervals
determined by the true variance are

√
1.5≈1.2 times wider. Put another way, community structure

in this example effectively reduces sample size by a third: RDS estimates based on a sample of
500 individuals have the same variance as estimates based on a simple random sample of 335.

4. EFFECTS OF MULTIPLE RECRUITMENT

Above, we have been assuming that RDS estimates are based on a single, long run of the chain.
In practice, this approach is difficult to implement since some sample members do not recruit
others, causing the chains to terminate. Instead, in order to ensure that the chains continue, each
respondent is encouraged to recruit multiple individuals, as seen in recruitment chains from the
Abdul-Quader et al. study of drug users in New York City (Figure 1) [27]. In this study, as with
almost all RDS studies, participants were encouraged to recruit up to three others [7]. For a given
sample size, however, chain lengths are shorter under multiple recruitment than single recruitment.
Consequently, multiple recruitment increases the dependence between participants, and in turn
increases the variance of RDS estimates—a concern that was previously overlooked. Observe
that multiple recruitment is a different source of dependence than that which directly arises from
network community structure; but, as we show, the two interact: community structure amplifies
the problems caused by multiple recruitment.‖‖‖

‖‖‖Multiple recruitment does not yet appear to have been applied in traditional, computer-driven applications of
MCMC. In those contexts, there is no worry of chain termination, and so the primary motivation for multiple
recruitment in RDS studies is no longer relevant. However, one could still imagine utility in branching off multiple
random walkers to explore ‘good’ regions of the state space. In that case, the tradeoffs described here would
potentially apply.
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X1

X2

AX1X2

wave 0

wave 1

wave 2
wave 3
wave 4

Figure 4. Ax1x2 is the most recent common ancestor of X1 and X2.

We examine the effects of multiple recruitment on the two-group and multi-group network
models described in Section 3. As before, we assume that the initial sample X0 is drawn from
the stationary distribution. To compute the covariance between fD(X1) and fD(X2) in Figure 4,
observe that Ax1x2 is the most recent common ancestor of X1 and X2. Consequently, X1 and
X2 result from independent runs of the chain started at Ax1x2 , and so we are in the situation of
Lemma 3.3. That is,

Cov( fD(X1), fD(X2))=
(
pA− pB

2

)2

$2+3
1

In general, for two samples Xi and X j , this argument shows that

Cov( fD(Xi ), fD(X j ))=
(
pA− pB

2

)2

$l(i, j)1

where l(i, j) is the length of the unique path between Xi and X j in the recruitment tree.

Lemma 4.1
Consider the walk defined in (7). Suppose a recruitment tree is chosen according to a probability
distribution % on the set of n-node trees, and RDS samples are correspondingly collected. Then
the variance of p̂ satisfies

Var( p̂)= p− p2

n
+ (pA− pB)2

2n2
n−1∑
k=1

$k1E%L(k)

where L(k) is the number of pairs of samples distance k apart.

Lemma 4.1 shows that, for a given social network structure, the further apart the sample units,
the lower the variance. That is, ‘thin,’ as opposed to ‘thick,’ recruitment chains lead to improved
estimates. Furthermore, observe the key role again played by the second largest eigenvalue $1.
As $1 increases (i.e. as the spectral gap 1−$1 decreases), the variance of RDS increases. In other
words, community structure amplifies the effects of multiple recruitment.

With single recruitment, the Markov chain central limit theorem (6) shows that the variance of p̂
decreases as 1/n, where n is the sample size. With multiple recruitment, however, the variance may
decrease as 1/n& for &<1. That is, multiple recruitment may lead to asymptotically slower decay
of error in the RDS estimator. To see this effect, we analyze the variance of the RDS estimator
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on the two-group model in the case where each sample member recruits exactly two other sample
members.

In order to apply Lemma 4.1, we first estimate the path length distribution.

Theorem 4.1
Suppose TH is a complete binary tree of height H!1 (i.e. TH has 2H+1−1 nodes and each
non-leaf node has exactly two children). Let LH (k) be the number of pairs of nodes distance k
apart. Then for 1"k"2H

1
42

H+k/2"LH (k)"2k2H+k/2

Since 2H ≈n, Theorem 4.1 shows that, ignoring log factors, LH (k)≈n2k/2. Now we estimate
the variance of p̂.

Theorem 4.2
Consider the walk defined in (7). Suppose the recruitment tree is a complete binary tree of height
H!1, in which case n=2H+1−1. If $1>

√
2/2, then the variance of p̂ satisfies

p− p2

n
+

[
1

nlog2 1/$
2
1
− 2
n

](
$1
√
2(pA− pB)

32($1
√
2−1)

)

"Var( p̂)

" p− p2

n
+ 4log2 n

nlog2 1/$
2
1

(
pA− pB
1−$1

√
2

)2

Ignoring log factors, Theorem 4.2 shows that for $1>
√
2/2, Var( p̂)≈1/nlog2 1/$

2
1 . In particular,

for
√
2/2<$1<1, we have log2 1/$

2
1<1. Furthermore, this exponent decreases (i.e. decay is

slower) as $1 increases.
Above we analyze a deterministic recruitment tree; now we consider a more realistic stochastic

recruitment procedure that is modeled as a branching process∗∗∗∗ with offspring distribution based
on data from the Frost et al. study of injection drug users in Tijuana and Ciudad Juarez [52].
In that study, three coupons were provided to each participant and approximately one-third of
the participants recruited no other participants, one-sixth recruited one other, another one-sixth
recruited two others, and the remaining one-third recruited three other participants (Table I). In this
case, while it seems difficult to find an analytic expression for EL(k), the path length distribution
can be estimated by simulation. Combining these simulation results that estimate EL(k) with
our common network parameter values (c=0.1, pA=0.1, and pB =0.3) and a sample size of
n=500, we have Var( p̂) is approximately 3.7 times the variance under simple random sampling. In
other words, community structure and multiple recruitment substantially reduce the effective RDS
sample size. In this example, a sample size of 500 collected via RDS with multiple recruitment
corresponds to a sample size of just 136 people collected via simple random sampling.

∗∗∗∗Further complications arise when the offspring distribution is a function of the characteristics of the individuals.
For example, in an RDS study of jazz musicians in New York, female participates recruited an average of 1.4
people while male participants recruited an average of 0.85 [51].
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Table I. Multiple recruitment offspring distribution based on a study of injection
drug users in Tijuana, Mexico and Ciudad Juarez, Mexico [52].

Number of recruits

0 1 2 3

Probability 1
3

1
6

1
6

1
3

5. CONCLUSION

5.1. Summary

Our network models illustrate the effects of both the social network and multiple recruitment on
RDS estimates in a stylized setting that attempts to mimic situations in which RDS may be used.
To summarize our findings for the two-group model (and equivalently, the multi-group model), we
compare three sampling situations: simple random sampling, RDS with single recruitment, and
RDS with multiple recruitment. Figure 5 shows the distribution of p̂ in these three cases.

Simple random sampling. Since p=0.2, the variance of p̂ is (p− p2)/500=0.00032 and its
standard deviation is approximately 0.0179. Consequently, the 95 per cent confidence interval for
the estimate is approximately p̂±3.5 per cent. The variance, in this case, was independent of the
network structure.

RDS—single recruitment. For c=0.1 the second largest eigenvalue satisfies $1=1−2c=0.8.
If the samples are the result of a single, long chain (without multiple recruitment) starting at the
stationary distribution, then Var( p̂) is given by Corollary 3.1, which yields a standard deviation
of approximately 0.0219. The 95 per cent confidence interval is then p̂±4.3 per cent, the same
interval one would get from a simple random sample of size 335.

RDS—multiple recruitment. Assume multiple recruitment follows a branching process with
offspring distribution based on the recruitment data from the Frost et al. study of injection drug
users in two Mexican cities (see Table I) [52]. Simulation shows that

1
n

n−1∑
k=1

$k1EL(k)≈21.3

where the expectation is conditional on the recruitment tree having size n=500 (i.e. we disregard
trees that go extinct prematurely). Lemma 4.1 then shows that the standard deviation of the estimate
is approximately 0.0343, yielding a confidence interval p̂±6.7 per cent. This level of variance
corresponds to a simple random sample of size 136 or an RDS sample with single recruitment of
size 204.

5.2. Implications and directions for further research

We conclude by describing some of the specific implications of these findings for the practice of
RDS.

Community structure. Past RDS work focused on the bottleneck between infected and healthy
individuals. Bottlenecks anywhere in the network, however, impact the quality of RDS estimates.
While preexisting knowledge may alert researchers to some bottlenecks (e.g. those between street-
based and brothel-based sex workers), we suspect that it is difficult in practice to detect and
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Estimate
0.1 0.2 0.3

SRS
RDS, Single
RDS, Multiple

Figure 5. Comparing the results from simulated simple random sampling, RDS with single recruit-
ment and RDS with multiple recruitment (pA =0.1, pB =0.3, c=0.1, n=500). In this case, all
three produce unbiased estimates, but the variance of the RDS estimates is larger, much larger in

the case of RDS with multiple recruitment.

to adjust for bottlenecks that exist in networks with complex community structure, such as the
multi-group network in Figure 3(b). We hope future theoretical and empirical work continues to
explore the bias and variance of the RDS estimators as a function of network structure, particularly
taking care to develop procedures that require only limited information about the underlying social
network.

Multiple recruitment. The multiple recruitment feature of RDS was developed to help ensure
that sampling chains survive even when some subjects do not recruit. However, this design feature
may diminish the accuracy of RDS estimates by increasing the dependence between sample units.
Since the specific structure of recruitment chains impacts RDS estimates, larger sample sizes do
not always produce more accurate estimates than smaller samples sizes, contrary to intuition from
simple random sampling. While it is currently common practice to provide subjects with three
recruitment coupons each, RDS would benefit from techniques that make it practical to reduce
that number.

Assumptions. The properties of the RDS estimator rest on a number of assumptions, many
of which may not be met in practice. For example, the sampling with replacement assumption
is violated by design in virtually all RDS studies. Also problematic is the uniform recruitment
assumption (i.e. that participants recruit their contacts uniformly at random and that all contacts
approached agree to participate). For example, de Mello et al. found evidence of non-random
recruitment in their study of men who have sex with men in Campinas, Brazil [53], and similar
results have been reported elsewhere in the literature [24, 26, 54]. We hope that future work develops
diagnostics to detect violations of these assumptions and explores the effects of such violations on
RDS estimates.

High variance. Much of excitement around RDS in the public health community has focused
on the fact that, under certain strong assumptions, the estimates are asymptotically unbiased. This
paper highlights the variance of these estimates. In some cases, the variance of RDS estimates

Copyright 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2202–2229
DOI: 10.1002/sim



RDS AS MCMC 2217

may be so large that the estimates themselves are of little value. Prior work suggested that RDS
researchers should assume a design effect of 2; that is, that RDS samples should be twice as large
as would be needed under simple random sampling [44]. The results in this paper suggest that this
rule of thumb should probably be revised upward. We hope that future work will provide further
guidance to researchers about the sample sizes needed for their studies.

Beyond the specific results from this paper, clarifying the connection between RDS and MCMC
allows future researchers to harvest ideas from the vast MCMC literature. For example, RDS
researchers could consider discarding data from early sample waves, just as researchers using
computer-driven MCMC often discard a portion of their draws during the so-called ‘burn-in’
phase [55]. This possibility is especially important because RDS seeds are almost certainly not
chosen from the stationary distribution. Another potential avenue for future work would be to
modify existing MCMC convergence diagnostics so as to monitor the convergence of RDS esti-
mates. For example, the use of multiple seeds, a common feature of RDS studies, creates parallel
chains that could lead to natural convergence measures [56–58]. One nice feature of this approach
would be that researchers could run these diagnostics while the study is underway, and thereby
potentially detect problems while there is still time to correct them. These suggestions represent just
a few of the possible improvements to RDS, improvements that may ultimately allow researchers
to better study hidden populations.

APPENDIX A: EQUIVALENCE OF THE TWO-GROUP AND MULTI-GROUP MODELS

Random walks on the two-group and multi-group network models of Section 3 are equivalent
in the following sense. Let f indicate infection status: f (vi )=1 if vi is infected and f (vi )=0
otherwise. Suppose N is even and divisible by m, and that the between-subgroup edge weight c in
the two-group model satisfies c< 1

2 . Set the between-subgroup edge weight b in the multi-group
model to

b= cm
N (1/2−c)+cm

(A1)

Finally, let X0, X1, . . . and X̃0, X̃1, . . . denote RDS samples from the two networks, respectively,
with either X0 and X̃0 chosen uniformly from a type-A subgroup or X0 and X̃0 chosen uniformly
from a type-B subgroup. That is, X0, X1, . . . and X̃0, X̃1, . . . are RDS samples on the two networks
conditioned to start in the same subgroup type. Then, f (X0), f (X1), . . . has the same distribution
as f (X̃0), f (X̃1), . . . .

To prove this equivalence, it is sufficient to show that with b satisfying (A1), the probability
of transition from any node in an A subgroup to any node in a B subgroup is the same in both
models. In the two-group model, this between-group transition probability is

cN/2
cN/2+(1−c)N/2

=c

and in the multi-group model, the between-group transition probability is

bN/2
b(N−m)+m
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Consequently, the two models are equivalent for b such that

bN/2
b(N−m)+m

=c (A2)

Solving for b in (A2), we have

b= cm
N/2−c(N−m)

= cm
N (1/2−c)+cm

establishing the equivalence.
To better understand the equivalence between these two models, we examine their limit behavior

to build intuition; as we have shown, even the finite network models are equivalent. Observe that
the probability of transitioning out of one of the small m-node subgroups is

b(N−m)

b(N−m)+m
= 1

1+ m
b(N−m)

= 1

1+ N (1/2−c)+cm
c(N−m)

−→2c as N→∞

In the limit, the two models are equivalent when transition out of a subgroup in the multi-group
model occurs with probability 2c. Since the number of subgroups N/m→∞, the probability of
transitioning to a type-A subgroup, given that one has transitioned out of one’s current subgroup,
is 1

2 . Consequently, transition between subgroup-types (i.e. type-A or type-B subgroups) occurs
with probability c.

APPENDIX B: FURTHER TECHNICAL DETAILS AND PROOFS

Suppose K is the kernel of an irreducible finite Markov chain and ! its stationary distribution. We
think of (K ,!) as an operator on L2(!)—the space of functions f :V→R with inner product

〈 f,g〉= ∑
x∈V

f (x)g(x)!(x)

and corresponding norm

‖ f ‖22= ∑
x∈V

f 2(x)!(x)

Then for f ∈L2(!)

K f (x)= ∑
y∈V

K (x, y) f (y)

We call '∈L2(!) as an eigenfunction for K with eigenvalue % if K'=%'.
Simple random walks on weighted graphs are reversible; that is, they satisfy the detailed balance

equation

!(x)K (x, y)=!(y)K (y, x)

Reversibility is equivalent to K : L2(!)→L2(!) being self-adjoint. Consequently, reversible walks
are diagonalizable in an orthonormal basis of real eigenfunctions. That is, there exist eigenfunctions
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'0,'1, . . . ,'N−1 with corresponding real eigenvalues

1=$0!$1! · · ·!$N−1!−1

such that 〈'i ,' j 〉=&i j . For details of the above functional analytic view, see Saloff-Coste [50].

Lemma 3.1
For 0<c< 1

2 , the l-step distribution of the walk defined in (7) is

Kl(x, y)=
{

(1+$l1)/N , x, y∈ A or x, y∈ B
(1−$l1)/N , x ∈ A, y∈ B or x ∈ B, y∈ A

where $1=1−2c.

Proof
The eigenfunctions and eigenvalues of K are:

(1) '0(x)≡1, $0=1.
(2) '1(x)=1A(x)−1B(x) (i.e. '(x) is 1 on A and −1 on B), $1=1−2c.
(3) The N−2 dimensional subspace of functions ' :N→R such that

∑
x∈A

'(x)= ∑
x∈B

'(x)=0

These functions have eigenvalue %=0.

Lemma 1.2.9 of [50] shows that for reversible walks

Kl(x, y)
!(y)

=∑
i

$li'i (x)'i (y)

where {'i } is an L2(!) orthonormal basis of eigenfunctions for K with corresponding eigen-
values $i .

In our case, since there are only two non-zero eigenvalues (and their corresponding eigenfunc-
tions as we have written them down are orthonormal), we have

Kl(x, y)
!(y)

= $l0'0(x)'0(y)+$l1'1(x)'1(y)

= 1+$l1 f1(x) f1(y)

The result follows since '1(x)'1(y)=1 if x and y are in the same group and '1(x)'1(y)=−1
if x and y are in different groups. #

Lemma 3.2
Consider the walk defined in (7). For an initial sample X0 chosen uniformly from group A and a
referral chain of size n

E p̂= p+(pA− pB)
1−$n1
4nc

where $1=1−2c.
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Proof
The result follows from the distribution calculation of Lemma 3.1. First observe that for X0∈ A

P( f (Xi )=1) = P( f (Xi )=1, Xi ∈ A)+P( f (Xi )=1, Xi ∈ B)

= P(Xi ∈ A) ·P( f (Xi )=1 | Xi ∈ A)

+P(Xi ∈ B) ·P( f (Xi )=1 | Xi ∈ B)

= pAP(Xi ∈ A)+ pBP(Xi ∈ B)

= pA
1+(1−2c)i

2
+ pB

1−(1−2c)i

2

Then,

E p̂ = 1
n

n−1∑
i=0

P( f (Xi )=1)

= 1
n

n−1∑
i=0

pA
1+(1−2c)i

2
+ pB

1−(1−2c)i

2

= pA+ pB
2

+ pA− pB
2n

n−1∑
i=0

(1−2c)i

= p+ pA− pB
2n

· 1−(1−2c)n

2c
#

Lemma 3.3
Consider the walk defined in (7). Suppose X1

0, X
1
1, . . . and X2

0, X
2
1, . . . are two independent real-

izations of the walk with X1
0 = X2

0∼!. That is, both chains begin at the same vertex v, which is
drawn from the stationary distribution !. Then for i, j!0

Cov( fD(X1
i ), fD(X2

j ))=
(
pA− pB

2

)2

$i+ j
1

where $1=1−2c and

fD(vi )=
{
1, vi infected

0, otherwise

Proof
Since the walks begin in stationarity, X1

i ∼! and X2
i ∼! for all i . Consequently, E fD(X1

i )E fD(X2
j )=

p2. To calculate E fD(X1
i ) fD(X2

j ), observe that X1
i and X2

j are conditionally independent given
X1
0. So,

E( fD(X1
i ) fD(X2

j )|X1
0 = x0)=E( fD(X1

i )|X1
0 = x0)E( fD(X2

j )|X2
0 = x0)
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Now

E( fD(X1
i )|X1

0 = x0) = P(X1
i ∈ I ∩A|X1

0 = x0)+P(X1
i ∈ I ∩B|X1

0 = x0)

= pAP(X1
i ∈ A|X1

0 = x0)+ pBP(X1
i ∈ B|X1

0 = x0)

By Lemma 3.1, for x0∈ A and k=1,2

E( fD(Xk
i )|Xk

0 = x0)= pA
1+$i1
2

+ pB
1−$i1
2

and for x0∈ B

E( fD(Xk
i )|Xk

0 = x0)= pA
1−$i1
2

+ pB
1+$i1
2

Consequently, for x0∈ A

E( fD(X1
i ) fD(X2

j )|X1
0 = x0) =

(

pA
1+$i1
2

+ pB
1−$i1
2

)(

pA
1+$ j

1

2
+ pB

1−$ j
1

2

)

= 1
4
(p2A(1+$i1)(1+$ j

1)+2(1−$i+ j )pA pB + p2B(1−$i1)(1−$ j
1))

By symmetry, for x0∈ B

E( fD(X1
i ) fD(X2

j )|X1
0 = x0) = 1

4 (p
2
B(1+$i1)(1+$ j

1)

+2(1−$i+ j )pA pB + p2A(1−$i1)(1−$ j
1))

Finally, since X1
0∼!

E fD(X1
i ) fD(X2

j ) = E( fD(X1
i ) fD(X2

j )|X1
0 ∈ A)+E( fD(X1

i ) fD(X2
j )|X1

0 ∈ B)

= p2+
(
pA− pB

2

)2

$i+ j
1 (B2)

The result now follows because

Cov( fD(X1
i ), fD(X2

j )) = E fD(X1
i ) fD(X2

j )−E fD(X1
i )E fD(X2

j )

= p2+
(
pA− pB

2

)2

$i+ j
1 − p2

=
(
pA− pB

2

)2

$i+ j
1 #
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Corollary 3.1
Consider the walk X0, X1, . . . defined in (7). If X0∼!, then the variance of p̂ satisfies

Var( p̂)= p− p2

n
+ (pA− pB)2$1

2n(1−$1)
− (pA− pB)2($1−$n+1

1 )

2n2(1−$1)2

where $1=1−2c and n is the sample size.

Proof
First note that

Cov( fD(Xi ), fD(X j )) = E( fD(Xi )− p)( fD(X j )− p)

= E(E[( fD(Xi )− p)( fD(X j )− p)|Xi ])

=
(
pA− pB

2

)2

$ j−i
1

where the last equality follows from Lemma 3.3 since Xi∼!. So,

Var( p̂) = 1
n2

n−1∑
i=0

Var( fD(Xi ))+
2
n2

∑
0"i< j"m−1

Cov(1I (Xi ),1I (X j ))

= p− p2

n
+ (pA− pB)2

2n2
∑

0"i< j"n−1
$ j−i
1

= p− p2

n
+ (pA− pB)2

2n2
· (n−1)$1−n$21+$n+1

1

(1−$1)2

where we use the fact that

∑
1"i< j"M

x j−i = (M−1)x−Mx2+xM+1

(1−x)2
#

Lemma 4.1
Consider the walk defined in (7). Suppose a recruitment tree is chosen according to a probability
distribution % on the set of n-node trees, and RDS samples are correspondingly collected. Then
the variance of p̂ satisfies

Var( p̂)= p− p2

n
+ (pA− pB)2

2n2
n−1∑
k=1

$k1E%L(k)

where L(k) is the number of pairs of samples distance k apart.
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Proof
Let l(i, j) denote the length of the unique path between Xi and X j in the recruitment tree. Observe
that (B1) shows that

E fD(Xi ) fD(X j ) = E(E[ fD(Xi ) fD(X j )|l(i, j)])

= p2+
(
pA− pB

2

)2 m∑
k=1

$k1P(l(i, j)=k)

and so

Cov( fD(Xi ), fD(X j ))=
(
pA− pB

2

)2 n∑
k=1

$k1P(l(i, j)=k)

Now summing the covariance terms, we have

∑
i< j

Cov( fD(Xi ), fD(X j )) =
(
pA− pB

2

)2 n−1∑
k=1

$k1
∑
i< j

P(l(i, j)=k)

=
(
pA− pB

2

)2 n−1∑
k=1

$k1EL(k)

from which the result follows. #

Theorem 4.1
Suppose TH is a complete binary tree of height H!1 (i.e. TH has 2H+1−1 nodes, and each
non-leaf node has exactly two children). Let LH (k) be the number of pairs of nodes distance k
apart. Then for 1"k"2H

1
42

H+k/2"LH (k)"2k2H+k/2

Proof
For any node ni of TH , let D(ni ) 1→{0, . . . ,H} be the height of ni in the tree. That is, D(ni )=0
for leaf nodes, and D(n j )=D(ni )+1 if n j is the parent of ni . In particular, the root has height H .
For any node ni and k!1, define LH (k,ni ) to be the number of pairs of nodes (a,b) that is
distance k apart, and such that: (1) the shortest path between a and b includes ni and (2) ni is the
highest node on that shortest path.

We start by approximating LH (k,ni ). If D(ni )<k/2, then any path through ni such that ni is
the highest node on the path has length at most 2D(ni ). Consequently, in this case, LH (k,ni )=0.
Now suppose k/2"D(ni ). First note that ni cannot be a leaf node. Suppose k is even. Then the
left child of ni has 2k/2−1 descendants that are distance k/2 from ni . The same is true for the right
child of ni . Consequently, pairing the left and right descendants,

LH (k,ni )!2k/2−12k/2−1=2k−2

If k is odd, then (k+1)/2"D(ni ) since D(ni ) is an integer. Now, the left child of ni has
2(k+1)/2−1 descendants that are distance (k+1)/2 from ni and the right child has 2(k−1)/2−1

descendants that are distance (k−1)/2 from ni . Again pairing the left and right descendants, we
have LH (k,ni )!2k−2.
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To upper bound LH (k,ni ), suppose k1,k2!1 and k1+k2=k. Then the left child of ni has at
most 2k1−1 descendants distance k1 from ni and the right child of ni has at most 2k2−1 descendants
distance k2 from ni (note: if the height of ni is too small, then, for example, there might be no
descendants distance k1 from ni , but the upper bounds still hold). Pairing these left and right
descendants generates at most 2k−2 paths, and adding up all such paths with 1"k1"k−1 gives at
most (k−1)2k−2 paths. Finally, ni has at most 2k descendants distance k from itself. Consequently,

LH (k,ni )"(k−1)2k−2+2k =(k+3)2k−2

If k is even, then there are 2H−k/2+1−1 nodes with D(ni )!k/2. If k is odd, then there are
2H−(k+1)/2+1−1 such nodes. Finally, since every path has a unique highest node,

LH (k)![2H−(k+1)/2+1−1]2k−2!2H+k/2

4

and the upper bound follows since

LH (k)"[2H−k/2+1−1](k+3)2k−2"2k2H+k/2 #

Theorem 4.2
Consider the walk defined in (7). Suppose the recruitment tree is a complete binary tree of height
H!1, in which case n=2H+1−1. If $1>

√
2/2, then the variance of p̂ satisfies

p− p2

n
+

[
1

nlog2 1/$
2
1
− 2
n

](
$1
√
2(pA− pB)

32($1
√
2−1)

)

"Var( p̂)

" p− p2

n
+ 4log2 n

nlog2 1/$
2
1

(
pA− pB
1−$1

√
2

)2

Proof
The proof relies on evaluating the variance expression given in Lemma 4.1 with the path length
bounds of Theorem 4.1. First we show the upper bound by examining the sum in Lemma 4.1.
Since 2H"n, we have

1
2n2

n−1∑
k=1

$k1E%L(k) " 2H

n2
2H∑
k=1

k$k12
k/2

" 1
2H

2H∑
k=1

k(
√
2$1)

k

= 2H(
√
2$1)

2H+2−(2H+1)(
√
2$1)

2H+1+1

2H (1−
√
2$1)2

" H

(
2$1

1−$1
√
2

)2

$2H1
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" log2 n

(
2

1−$1
√
2

)2

$2 log2 n1

= log2 n

(
1

1−$1
√
2

)2
4

nlog2 1/$
2
1

The upper bound now follows. The lower bound is analogous. Since n<2H+1, by Theorem 4.1
we have

1
2n2

n−1∑
k=1

$k1E%L(k) ! 1
32 ·2H

2H∑
k=1

($1
√
2)k

= 1
32 ·2H

($1
√
2)2H+1−$1

√
2

$1
√
2−1

= $1
√
2

32($1
√
2−1)

[
$2H− 1

2H

]

! $1
√
2

32($1
√
2−1)

[
1

nlog2 1/$
2
1
− 2
n

]
#

APPENDIX C: CONDUCTANCE

In analyzing the network models of Section 3, we see that the key quantity is the spectral gap
1−$1. In some sense, $1 encapsulates the degree of community structure. However, $1 can be hard
to interpret exactly, and direct approximation requires detailed knowledge of the network, which is
usually not available in applications. Here we recall the Cheeger inequality [59], a classical result
in differential geometry that relates bounds on the second largest eigenvalue $1 to the geometry
of the Markov chain as quantified by conductance. This relationship between conductance and the
spectral gap is often used in the analysis of Markov chains.

As shown in Simic et al., in Belgrade there is little contact between street-based and agency-
based sex workers [46]. Roughly, we quantify the bottleneck between these groups as the proba-
bility of cross-group recruitment—high probability of cross-group recruitment corresponds to low
segregation.

The following definitions make the notion of a network bottleneck precise. For these definitions,
recall that uniform recruitment corresponds to equal edge weights W (x, y)=1.

Definition C.1
Given a weighted graph with nodes V and edge weights W , the transition probability PS→Sc from
a subset S⊂V to Sc=V \S is

PS→Sc =
∑

x∈S,y *∈S
W (x, y)

/
∑

x∈S,y∈V
W (x, y)
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The definition of PS→Sc is not symmetric (e.g. the probability of transition from street-based
sex workers to agency-based sex workers is not necessarily the same as that from agency-based
sex workers to street-based sex workers). For any partition of the population into sets S and Sc,
the conductance of that partition is defined to be

I (S, Sc)=max{PS→Sc , PSc→S}
By definition, the conductance of a partition is symmetric: I (S, Sc)= I (Sc, S). Finally, the conduc-
tance I of the entire social network is the conductance of the most segregated partition. In other
words, conductance is a measure of how hard it is, in the worst case, to leave a set of nodes.

Definition C.2
The conductance of a weighted graph is

I =min
S⊂V

I (S, Sc)

Returning to the two-group network model of Section 3, consider the network defined in (7) with
within-group edge weights 1−c and between-group weights c. For any subset S the denominator
in the definition of PS→Sc equals |S|N/2. Since W (x, y)!c we have

∑
x∈S,y /∈S

W (x, y)!|S|(N−|S|)c

and consequently,

PS→Sc!
c(N−|S|)

N/2

Since either |S|"N/2 or |Sc|"N/2, this shows that I (S, Sc)!c, and hence I!c. Now, for S= A
(or S= B), we see I (S, Sc)=c. Consequently, in this example, the conductance I equals the
homophily c.

Further, assuming that no more than half the population is infected, a straightforward calculation
shows that for the set of diseased individuals D

I (D,Dc)=1− p2A+ p2B−c(pA− pB)2

pA+ pB
!1− p2A+ p2B

pA+ pB

For the values used in our previous examples—pA=0.3, pB =0.1, and c=0.1—it is the case
that I (D,Dc)=0.76. In other words, the conductance of the diseased set is large, meaning that
it is relatively easy to transition between diseased and healthy individuals. But, the bottleneck
elsewhere in the population, namely between groups A and B, significantly increases the variance
of the RDS estimates of disease prevalence.

It is also important to note that while it may be possible based on preexisting knowledge to be
aware of the bottleneck between groups A and B in the two-group model, it seems more difficult
to identify the bottlenecks in the multi-group model. In other words, in many practical situations
it may be hard for researchers to know of the bottlenecks.

Conductance is clearly related to the community structure of a network, and hence it is reasonable
that it would affect RDS estimates. We have also seen that the variance of RDS estimates is related
to the second largest eigenvalue $1 of the underlying Markov chain. The correspondence between
these geometric and algebraic points of view is made precise by Cheeger’s inequality.
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Theorem C.1 (Cheeger’s inequality)
The second largest eigenvalue $1 and the conductance I are related by

1−2I"$1"1− I 2

2

For a proof, see Saloff-Coste [50]. Hence, the spectral gap 1−$1 satisfies

I 2

2
"1−$1"2I

Conductance, however, does not completely determine the variance of RDS estimates. For
example, a given target population has a single value of conductance, but the variance of RDS
estimates of HIV prevalence may be higher or lower than the variance of RDS estimates of needle
sharing prevalence.
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