COMMENTARY

Respondent-driven Sampling in the Real World

Matthew J. Salganik

n many countries, HIV/AIDS infections are concentrated in 3 high-risk groups: injection

drug users, sex workers, and men who have sex with men.! Accurate information about
disease prevalence and risk behaviors in these groups is therefore critical for designing
and evaluating HIV prevention programs. Respondent-driven sampling (RDS) is a
relatively new method that allows researchers to collect such information about “hidden”
or “hard-to-reach” groups, and the work of McCreesh and colleagues® provides an
important contribution to our understanding of RDS. An RDS sample is collected through
a peer-to-peer recruitment process, akin to “snowball sampling” and “link-tracing sam-
pling.” Once these data are collected, they might not be directly representative of the
target population, and thus RDS also provides researchers a set of statistical procedures to
adjust the observed data, with the hope that these adjustments will result in estimates that
are more reflective of the target population.

Given the importance of the public health problem and the limitations of available
alternatives, respondent-driven sampling has been rapidly adopted by the international
public health community.>® Despite its widespread use, however, little is currently
known about the actual (as opposed to the theoretical) performance of RDS, and some
recent research suggests cause for concern.”'? Given this, many researchers may be left
to wonder: How well does RDS actually work in the real world? Our limited ability to
address this question is not for lack of effort; in the past, researchers have taken several
approaches to the problem, and the paper of McCreesh et al”® is a new and important
contribution to this stream of research.

RDS as a method of data collection—what I will call “RDS sampling”—and RDS
as a method of data analysis—what [ will call “RDS inference”—were both introduced by
Heckathorn in 1997.'* Although RDS sampling has remained largely unchanged, RDS
inference has been an area of active research resulting in the RDS-I estimator,'* the
RDS-II estimator,'® the RDS-MR estimator,'® the RDS-SS estimator,!” estimators cur-
rently in development,'® and several approaches to variance estimation.'®-*

Previous efforts to assess the performance of RDS generally fall into 3 categories:
(1) analytic results, (2) simulation studies, and (3) studies using data from hidden
populations. Each of these approaches has strengths and weaknesses, but it can be helpful
to consider them in terms of the trade-off between precision and relevance. Some
approaches—analytic results and simulation studies—allow for precise, definitive con-
clusions (eg, under these 5 conditions, this estimator has these 3 properties), but these
conclusions may be irrelevant to actual RDS studies because they could depend on
assumptions that bear little relationship to what actually happens in practice. On the other
hand, studies involving data from hidden populations, while certainly relevant, rarely yield
precise, unequivocal results because the underlying truth is not known. The work of
McCreesh et al,? building on innovative work by Wejnert and Heckathorn,?'*? attempts
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to combine precision and relevance by performing an RDS
study on a population with known characteristics: a group of
villages in rural Uganda. Given this design, McCreesh et al®
can make precise statements about the performance of
RDS (ie, the relationship between estimates and true pop-
ulation values) in a setting similar to those where RDS is
typically used.

McCreesh et al® found that the data collected during
RDS sampling was, without any statistical adjustments,
roughly reflective of the population. However, performing
RDS inference with both the RDS-I and RDS-II estimators—
the 2 most commonly used estimators—tended to make the
estimates worse, not better. This is a surprising and troubling
result, which shows that more research is needed for RDS
sampling and RDS inference.

Fortunately, the work of McCreesh et al” also suggests
ways forward, by providing insights about the RDS sampling
process—from both quantitative analysis of the sample and
qualitative interviews conducted with members of the com-
munity. These insights explain the poor performance of the
estimators and suggest ways that RDS inference might be
improved. For example, McCreesh et al found that men, >50
years of age were overrepresented in the sample and that
neither RDS-inference procedure corrected this problem.
Through interviews with community members they were able
to discover why this occurred: community members tended
not to consider many younger men as a “head of household,”
even if these younger men met the formal study inclusion
criteria of the researchers. Neither RDS-inference procedure
used was designed to handle this kind of problem, nor was
effective at remedying it. Unfortunately, this mismatch be-
tween researcher and respondent conceptualization could be
quite common because RDS is often used on populations,
such as sex workers and men who have sex with men, whose
boundaries may be more clear in the minds of researchers
than in the minds of respondents.

More generally, this example shows just some of the
complexities that are introduced by the “respondent-driven”
nature of RDS sampling. In traditional sampling methods,
researchers select respondents according to a specified design
and then collect data through a process that can be monitored
and controlled. In hidden populations, however, such re-
searcher-selected samples are likely to be biased and are often
logistically infeasible. RDS sampling transfers the sampling
work that is normally done by the researchers to the respon-
dents, relying on a system of coupons to track recruitment
and a dual-incentive system to encourage participation (re-
spondents are paid for participating and for recruiting oth-
ers)."® Although RDS sampling has proven effective for
collecting large and diverse samples in a wide range of
settings,® involving respondents in the sampling process
means that the RDS data-generating process is largely outside
of the control, and even the view, of researchers.
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The work of McCreesh et al* has a number of charac-
teristics that I hope and expect we will see more of in future
RDS research. First, the study integrates the collection and
analysis of qualitative data to produce insights about the
likely sources of bias in the quantitative estimates. This
integration of qualitative work both before** and during RDS
sampling is something that would strengthen many future
RDS studies. Second, the study explicitly considers several
procedures for RDS inference, including the sample mean. In
the minds of many researchers, there is a large difference
between the sample mean and the more complicated RDS
estimators. These complex estimators, however, may be
similar to''** or worse than the simple estimator. As more
procedures for RDS inference are developed, more work
will need to be done comparing their performance in a
range of situations,** and it will be important for research-
ers to clearly specify which estimators they are using.
Third, the study of McCreesh et al explicitly makes use of
geographic data. RDS sampling is affected by physical
geography,? and efforts to understand and then statisti-
cally model this aspect of the sampling are important areas
for future work.

McCreesh et al? have provided a valuable contribution
to the RDS literature. As a final step, I hope that the authors
can release these data for analysis by other. Despite the huge
number of RDS studies, there are very few publicly available
data sets, and this lack of available data has hindered the
development of RDS. Given the importance of RDS to global
public health policy, this is quite unfortunate. Undoubtedly,
data release raises concerns about the protection of human
subjects, but these challenges can and must be overcome.?
One aspect of the McCreesh et al study that should make data
release easier is that, unlike most RDS studies, the population
under study is not defined by illegal or stigmatized behavior.
If these data were released, they would provide a test bed for
future RDS-inference procedures by allowing researchers to
make precise statements about the performance of new esti-
mators using real RDS data. Thus, the same aspects of the
study design that make the results of McCreesh et al so
interesting, would make these data incredibly valuable for
future RDS research.
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