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This paper provides a general approach to the formulation and estimation of dynamic 
unobserved component models. After introducing the general model, two methods for estimating 
the unknown parameters are presented. Both are algorithms for maximizing the likelihood 
function. The first is based on the method of Scoring. The second is the EM algorithm, a 
derivative-free method. Each iteration of EM requires a Kalman filter and smoother followed by 
straightforward regression calculations. The paper suggests using the EM methods to quickly 
locate a neighborhood of the maximum. Scoring can then be used-to 
calculate the information matrix. 

pinpoint the maximum and 

1. Introduction 

The use of unobservable variables in economics is widely accepted as a 
fruitful approach to describing economic phenomena. Early models treated 
seasonality or measurement error as unobserved components which must be 
extracted. Other models considered the business cycle or long swing as an 
unobserved variable which indirectly determined the behavior or observable 

series. The most successful application was permanent income which, though 
unmeasurable, explained observed regularities in the data. Recent 
macroeconomic models abound with variables such as expectations, the real 
rate of interest and the natural rate of unemployment which are 
unobservable but which presumably help to explain the process generating 
observed data. In labor economics ability, ‘spunk’ and heredity are treated as 
unobserved determinants of earnings and education. 

There are many possibilities for extending such models to other disciplines. 
In all of these cases, the statistical model is formulated as if the data were 

*We thank Andrew Harvey and two referees for valuable comments on an earlier draft of this 
paper and the National Science Foundation and Harvard Graduate Society for financial 
support. An earlier version of this paper circulated under the title ‘The EM algorithm for 
dynamic factor and MIMIC models’. 
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available on the unobservable. A joint distribution of the observable 
variables is then derived which can serve as a likelihood function for 
estimating the unknown parameters. In some cases, such as the one described 
in this paper, it is possible to obtain estimates also of the values of the 
unobserved components. 

Many of the models mentioned above have not been estimated or at least 
have not fully used the a priori restrictions resulting from careful 
specification of the unobserved components. Even when empirically 
estimated fully efficiently, the estimation procedures are sufficiently 
complicated and specialized that slight variations on the specification cannot 
easily be considered and diagonistic testing is almost unknown. 

In this paper a general approach to the formulation and estimation of 
unobserved component models will be given based upon the state-space 
model of engineering. In section 2, this model will be presented and 
discussed. Sections 3 and 4 discuss two methods for maximizing the 
likelihood function; Scoring is discussed in section 3, while section 4 presents 
the EM algorithm. Section 5 gives an empirical example. 

2. General formulation of the model 

All models discussed above are special cases of the ‘state-space’ model used 
in engineering to represent a variety of physical processes. In fact, a wide 
range of models used in econometrics can be viewed as special cases of state- 
space models as will be shown below. An introduction and comparison 
between econometric and engineering applications is given in Mehra (1974). 
The advantage of viewing the models in this way is that general solution 
concepts are available based upon the likelihood principle and the Kalman 
filter recursive algorithm. 

The state-space model consists of two sets of equations: ‘transition’ or 
‘process’ equations and ‘measurement’ equations. The ‘transition’ equations 
describe the evolution of j x 1 vector x, of characteristics of a physical 
process in response to a k x 1 vector zt of weakly exogenous or lagged 
dependent variables and a m x 1 vector u, of disturbances. The state vector x, 
is unobservable and hence corresponds to the unobserved components which 
are to be isolated. The ‘measurement’ equations describe the relation between 
the unobserved state x, and a p x 1 vector of measurements y,. The 
predetermined variables zt and another vector of disturbances e, may also 
enter the measurement equation. 

The model can be specified as 

xt = 4, xt- I + it zt + Gt ut 2 

jxl jxj jxl jxkkxl jxmmxl 
(1) 
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Yt = 4 xt + A zt + et 9 

PXl pxj jxl pxkkxt PXl 
(2) 

and 

(::)-Nl(O,(Oe’ OR,)). (3) 

In most applications some or all of the parameters and covariance matrices 
are constant over time so that their time subscript can be suppressed. 

Table 1 lists some standard econometric models which are easily written in 
state-space form. The second column of the table shows the relevant 
parameter restrictions in the state-space model. The final column lists the 
interpretation of xt and any other special features. Unless specified otherwise, 
the parameters of the models (4, y, G, CI, /I, Q, and R) are time invariant. 

As shown in Schweppe (1965) or Harvey (1982) the likelihood function of 
the unknown parameters in (1)43) . IS easily formed. Let qr denote the 

innovations in y, [i.e., y, -E(y,(y,_ i ,..., y,, z, ,..., zi)] and let H, denote the 

variance of qt. The log likelihood can then be written as 

L(@=constant-+ f: (loglH,( +~;H,‘~,), 
t=1 

where 8 is the vector of unknown parameters. The innovations and their 
variances are easily calculated using the Kalman filter. 

The Kalman filter requires a value of the mean and variance of x0 as an 
initialization. Often these values arise naturally. For example, when y = 0 and 
the x process is stationary, the filter is initialized with the unconditional 
mean and variance of x. When the x process is non-stationary, the likelihood 
function conditional on the initial state can be formed and the value of the 
initial state can be estimated as nuisance parameters. A method for 
estimating the initial state is presented in the next section. 

3. Estimation by scoring 

Given the data and the form of the 
simple task to maximize the likelihood 
parameters. Unfortunately in practice 

likelihood function it is in principle a 

function with respect to the unknown 
this maximization is not so simple as 

there are usually a large number of parameters and each evaluation of the 
likelihood function requires an appreciable number of calculations. We focus 
attention in this paper on two methods for maximizing the likelihood which 
we have found practical. The first is a generalization of the method of 
scoring discussed in Pagan (1980). This method uses only first derivatives 
and will produce asymptotically efficient estimates in one iteration from 



388 M.W Watson and R.F. Engle, Dynamic unobserved component models 

Table 1 

Some special cases of the state-space model. 

Model Restrictions Comments 

I. Univariate models 

(4 

(b) 

(4 

(4 

(4 

Linear regression” 

ARIMA model 

Linear regression with’ 
ARIMA disturbances 

Time varying coefftcientd 
regression 

Unobserved componentse 

II. Multivariate models 

(4 

(b) 

(4 

(4 

(4 

(f-l 

k) 

Multivariate regression 

Multivariate ARIMA 

Multivariate regression with 
ARIMA disturbances 

Factor analysis 

Dynamic factor analysis’ 

MIMIC? 

Dynamic MIMIC” 

p=l 

cc=O, or Q=O and y=O 

p=o,a=o 
y=o 

P>l 

cc=O, or Q=O and y=O 

fi=o, y=o 

y=o 

f$=o, p=o, y=o 

p=o, y=o 
$=O 

x, vanishes. 
/I is coefficient vector. 
Kalman Filter produces 
recursive residuals. 

x, summarizes past info. 

c(x, + e, is disturbance 
term. 

x, is vector of time 
varying coefficients. 
a, is vector of exogenous 
variables. 

xt contains unobserved 
components (e.g. seasonal 
and non-seasonal 
components). 

Same as I(a). 

Same as I(b). 

Same as I(c). 

x, are factors. 
c( contains factor loadings. 

x, contains unobservables. 
y, are indicators. 
z1 are causes. 

Same as II(e). 

“See Brown, Durbin and Evans (1975) and Harvey and Collier (1977) for discussion of recurs- 
ive residuals and their uses. 

‘See Hannan (1976). 
‘See Harvey and Phillips (1979). 
“See Chow (1983) and the references therein. 
‘Examples can be found in Pagan (1975) and Engle (1979). 
‘See Geweke (1977). 
gSee Zellner (1970) and Goldberger (1972, 1977). 
“See Engle and Watson (1981). 

consistent initial parameter estimates. The second is based on the EM 
approach of Dempster, Laird and Rubin (1977). This is a derivative-free 
method and does not require any evaluations of the likelihood function. 
Each EM iteration involves a pass through a ‘smoother’, followed by familiar 
regression calculations, and is guaranteed to increase the value of the 
likelihood function. 
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The well-known method of scoring requires the gradient of L(B) and an 
estimate of the information matrix. The required derivatives can be derived 
in a straightforward manner and one finds 

where 

The derivatives aH,/atli and a~,/at& can be calculated recursively from the 
Kalman filter equations. Alternatively, numerical derivatives may be used. 
Engle and Watson (1981) show that the ijth element of the information 
matrix is given by 

$j=C +tr 
f i ( 

Deleting the expected value operator yields an estimate which can be used 

for the iterations. 
In many applications there may be a large number of weakly exogenous 

variables, so the /I and y may contain many unknown parameters. A 
straightforward application of the method of scoring is feasible, but 
computational gains can be achieved by using a ‘zig-zag’ procedure. 
Consider, for example, the DYMIMIC model 

Yt = ax, + Bz, + et, (5) 

x,=~x,_1+yz,+u,. (6) 

If 4, a, R, and Q were known, then we could successively substitute (6) into 
(5) to obtain a multivariate regression model with a complicated, but known 
error structure. The unknown parameters in j? and y could then be efficiently 
estimated by generalized least squares. As has been discussed elsewhere [e.g. 
Harvey and Phillips (1979)] the Kalman filter is a useful computational 
device for carrying out generalized least squares. Estimation is carried out 
via the filter by first writing the model in a slightly different form: 

Xt 

Yt=Ca 2: 0] B +e,, H 7 
JE D 

(7) 



390 M.W Watson and R.F. Engle, Dynamic unobserved component models 

(8) 

where 

2; = (2; 0 Z,), z; = (2; @ I,), 

fl=vec(P), F=vec(y). 

If the filter is initialized with a vague prior for the unknown elements in B 
and 7, then the final filtered estimates, pTIT and yTIT, will be the generalized 
least squares estimates conditional on the values of LY, 4, R, and Q. 

The ‘zig-zag’ approach that is suggested and that we have found successful 
is to fix ~1, 4, R, and Q at their kth iteration values, ak, c$~, Rk, and Qk, and 
then use the filter to determine /3” and yk. With B” and yk fixed, the scoring 
algorithm is then used to find LYE+‘, $‘+l, Rk+l, and Qk’l. The procedure is 
repeated until convergence. 

One word of caution is in order. The information matrix will in general 
not be block-diagonal between the unknown parameters in (/?,r) and 
(CI, 4, Q, R). The standard errors computed from the information matrix of 
(a,~$, Q, R) will therefore be incorrect. Once the parameter estimates have 
converged it is necessary to calculate the entire information matrix for all the 
unknowns in 8. This is the correct information matrix to use for inference 
purposes. 

An analogue of this method can be used when the initial value, x,,, is 
assumed to be an unknown constant, rather than a random variable. This 
assumption is equivalent to carrying out the analysis conditional on the 
initial state, which is the correct procedure, for instance, if the x, process is 
non-stationary. The generalized least squares estimate of x,, is just the 
smoothed estimate, x0, T, when the filter has been initialized with a vague 
prior for xO.i Once xOIT has been estimated conditional on ek, the filter is 

. 
initialized with x0 =x0, T and P,,10 =0 (since x0 is a constant), the likeli- 
hood function, etc. is evaluated and tIk+ ’ is formed. The procedure con- 
tinues until convergence. 

While the Scoring Algorithm is attractive because it uses only first 
derivatives, produces an estimate of the information matrix, and is one step 
asymptotically efficient from consistent initial estimates, we have found that 
it may be slow to converge, particularly when starting with poor initial 
estimates. As each iteration is reasonably expensive this is a serious 
drawback. Also the method often yields negative values for the variances in 

‘This is equivalent to the method proposed by Rosenberg (1973). 
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Q during the iterations, and special penalty functions must be employed or 
the parameters must be transformed to avoid this problem. The EM 
algorithm, adapted to the problem, avoids these problems. 

4. Estimation by the EM algorithm 

The EM algorithm is a method for maximizing a likelihood function in the 
presence of missing observations. It consists of two steps: an estimation and 
a maximization step which are iterated to convergence. The maximization 
step calculates the maximum likelihood estimates of all the unknown 
parameters conditional on a full data set. The estimation step constructs 
estimates of the sufficient statistics of the problem conditional on the 
observed data and the parameters. Essentially, the missing observations are 
estimated based on the parameter values at one step of the iteration and then 
the likelihood function is maximized assuming that this is the full observable 
data set in the other. 

For data from exponential families, it is particularly easy to implement, 
and has been used for the static MIMIC model by Chen (1981). In a time 
series context Watson (1981) has shown how it can be used to obtain exact 
maximum likelihood estimates for the moving average model. In the 
DYMIMIC model the maximization step conditional on the data x,y,z is 
easily accomplished by regression. The estimation step is discussed in detail 
below where it is shown that careful calculation of sample moments of 
‘smoothed’ values of x will produce the appropriate estimates of the sufficient 
statistics. 

To define the EM algorithm for the DYMIMIC model we first write the 
model as a system of multivariate regressions and present the estimator that 
would be used if data on x were observable. We then show how to construct 
the expected value of the sufficient statistics in the estimator, conditional on 
the observed data and the current estimate of the parameters. 

We begin by rewriting (5) and (6) as 

where 

g’p = cx; 0 Zpl, 2j-l =cx;_, @Zj], 

15 = vet (a), $=vec(4). 
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and Zf, Z{, fl, and 7 are defined in (7) and (8). It is often the case that the 
parameters are estimated subject to restrictions (e.g. certain parameters may 
be restricted to be zero, etc.). For expositional purposes we consider 
restrictions of the form 

=o, (10) 

where R, is I, x (jp+kp) and R, is 1, x (j2 +jk). [Non-homogeneous linear 
restrictions and linear restrictions across eqs. (5) and (6) are straightforward 
generalizations and will not be discussed.] This implies that we can find 
matrices D, and D, of dimension (jp + kp) x (jp+ kp- Z1) and (j2 +jk) x 

(j’ + jk - 12), such that 

(‘) i =D,6, and 

satisfy (9) and (10) for all vectors 6, and 6,. Imposing the constraints we can 

then write the model (5) and (6) in terms of the unrestricted parameters, 6, 
and 6, as 

x,=[Z{_, ~~]D262+ut. 

If the x, data were observed we would then find the efficient estimates of 
6,, 6,, R, and Q as solutions to the SUR equations2 

(114 

8, = [D;A,D,]D$,, 

Q=(l/T)Cr& 

UlW 

(124 

‘We are avoiding complications caused by the initial value x0 by assuming that it is a fixed, 
known quantity. When xt, is unknown, approximate maximum likelihood estimates can be 
found by setting x0 equal to its unconditional expected value or its expected value conditional 
on the data. These are analogous to the conditional and unconditional least squares estimation 
methods for ARIMA models outlined in Box and Jenkins (1976). Both are approximate since 
they neglect the Jacobian term of the initial observation in the likelihood function. The method 
to be outlined in the text can easily be adapted for this method. 
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ff=(l/T)zt,t?;, (12b) 

where 

(X’ZOP) 1 (Z'X@P) (Z'Z@k') ' 
jj = w-1x-,@&‘) 

[ 2 (z’x_l@Q-‘) 
(x’-,zop) ) 

(z’Z@&‘) 1 [ B = (X’_,X@&‘) 2 (Z'X@@') 1 ' 
with 

W’ = (w,, w2,. . ., w,), 

w-l=(wo,wl,...,wT-l), for any vector K 

gt=yt-[zp $1 4&, 

The solution can be found by iterating between eqs. (11) and (12). 
These estimates cannot be formed because the moment matrices X’X, X’Z, 

X’l: x’,X_,,X’-,Z, and X-,X are not known. Letting 8 be the vector of 
unknown parameters, the EM algorithm forms tIk+l as the solution to (11) 
and (12) using the expected value of the moment matrices, conditional on Ok 
and the observed data. 

The conditional expected values of the moment matrices can be formed by 
using a ‘smoothing’ algorithm. The smoothing algorithm is similar in form to 
a Kalman filter and recursively calculates 

X t,~=E(xt(yT,yT-l,...,yl, G-,-G-l,...,ZJ. 

and 

Pt,T=var(x,lyT,yT-l,...,yl,ZT,ZT~l,....Z1). 

Various smoothing algorithms exist and the reader is referred to Anderson 
and Moore (1979) for a detailed discussion of the algorithms. 

The conditional expected value of the moment matrices can now easily be 
derived. Since x,, T is the conditional expected value of xt given the observed 
data, the error (x,-x,, T) is uncorrelated with any observed data. This implies 
that 

E(X’Z(data, 0”) = 8kZ, (13) 
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where 

~=(X:,T,XkZ,T,...,XkT,T), 

and x:,r is the smoothed estimate of x, using Ok. 

Similarly, 

E(X’Yldata, Q“)=&Y (14) 

and 

E(X’,Zldata, 8k)=%l,kZ. (15) 

To find the conditional expected value of X’X, note that we can 
decompose x, into two uncorrelated parts 

xt =x:, T + (4 -x:, T), 
so that 

E[x,x;ldata, Ok] =x:, T~;tT + P$ r, 

where PfIT is the conditional variance of x,. Letting 

Pk= i PfIT 
T-l 

and Pk,= c P:,T, 
t=1 t=o 

E[X’Xldata, Ok] = 8;8, + Pk. 

Similarly, 

E[X’_,X_,Idata, 6k]=81_1,k8_1,k+pk1. 

(16) 

(17) 

The only remaining term is X-,X. Its conditional expected value can be 
derived by using the decomposition 4.5 and noting that (X,-X,(~) is 
uncorrelated with x, _ rI T, since x, _ 1 IT is a linear combination of the observed 
data. This implies that 

E(X- ,Xldata, Ok) = 81 1, kXk + Ct, 
(18) 

All of the terms necessary for forming the conditional expected value of 
the moment matrices are produced by the smoother except 

E(xt - I - x:- I, T)txt -x:, T)‘. 
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This will also be calculated by the smoother if the state vector is augmented 

to include x, _ 1. 
When forming the estimates Q and k from eq. (12) the algorithm must 

take account of the fact that i?, and E, are not observed. During the (k+ 1)st 
maximization step eq. (12) is evaluated using the sufficient statistics given by 

eqs. (13)+18). To form i? we note that 

&t=(y*-&x:,T- m - w, -x:, T) 

k 
= et I T - Oitx, -x:, T), 

where the two terms on the right-hand side are uncorrelated, so that 

E[t,e^; Idata, 13~]= e:, .c$;, + OiP:, TOi’. 

We then form ff during the (k+ 1)st maximization step as3 

l? = (l/T)(C e:,.e$;, + LPdi’). (19) 

Similarly we can write Ct as the sum of two uncorrelated terms 

If we denote the first term on the right-hand side by v:,,, then & at the 
(k + 1)st maximization step is 

The EM algorithm is now completely defined. The estimation step is given 
by (11) and (12) which give parameter values at step k+ 1 based on moment 
matrices estimated in step k. Eqs. (13)420) define all the moments needed in 
(11) and (12). Each of these moments can be constructed from the output of 
one pass through the Kalman smoother. Since this is a recursive algorithm, 
the required moment matrices can be constructed as the algorithm proceeds, 
thus avoiding the storage of the data on 2, and the matrices PtlT. There is 

no need to iterate between (11) and (12) during each step of EM. One can 
merely construct (11) at step k + 1 using R, and Qk. Eq. (12) can then be used 
to form Rk+l and Qk+l. When the E and M steps are iterated to 

3Alternatively, note that 4, T = i, + 6(x, - x:, & so that 
E(P,L; 1 data, @). a could then be formed using 

efITy; = E(6,y; Idata, @) = 

~=(mCe;“,,y;. (19’) 
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convergence the final parameter estimates will satisfy both (11) and (12) by 
construction, 

One step of the EM algorithm therefore involves two SUR calculations 
and one pass through the Kalman smoother. In contrast, one step of any 
first derivative method would require at least one pass through the Kalman 
filter per parameter, as well as construction and inversion of the information 
matrix. 

The algorithm can easily be generalized. For example, non-linear 
parameter restrictions in the regression models (5) and (6) can easily be 
incorporated. These restrictions need only be linearized to form restrictions 
of the form (9) and (10) or their generalizations. The regression calculations 
(11) and (12) can then be carried out, the restrictions linearized around these 
new estimates, and so on, until convergence. 

A typical case would be autoregressive errors where the Cochran-Orcutt 
formulation allows calculation of the maximum likelihood parameter 
estimates under the common factor restrictions. Moving average errors could 
also be handled using an analogous non-linear least squares approach. The 
models are still linear in the unobserved data, so that the sufficient statistics 
are easily estimated using the Kalman smoother. A second extension is to 
time varying parameters. In this case tx becomes a, which is the observable 
weakly exogenous data postulated to have a time varying coefficient. Making 
this substitution, the algorithm is defined in exactly an analogous form. 

The EM algorithm has many attractive features. Foremost among these 
are its computational simplicity and its convergence properties. In our 
experience, the method finds estimates in the region of the maximum 
reasonably quickly even from poor initial guesses. The method also has the 
desirable property that it constructs R and Q to be positive semidefinite 
matrices and therefore eliminates the need for arbitrary penalty functions to 

bound the parameter space. 
The algorithm also has certain undesirable features. While it does move to 

a region close to maximum reasonably quickly, it does not have quadratic 
convergence properties. Once it is close to the maximum it may take quite a 
few iterations to pinpoint the maximum. It does not produce an estimate of 
the information matrix or the Score which are useful for inference. 
Underidentification may also go undetected, as the EM algorithm will merely 
move to some point on the ridge of the likelihood function. 

The most practical method seems to be a mix of EM and Scoring. EM can 
be used to quickly move the parameters to a neighborhood of the maximum. 
Scoring can then be used to pinpoint the maximum and calculate an estimate 
of the information matrix. Any local identification problems will become 
apparent when the Scoring algorithm attempts to invert the information 
matrix. The Scoring algorithm can also be used in a straightforward manner 

to calculate Lagrange Multiplier statistics. 
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5. Economic application 

In this section, the techniques described above will be applied to the 
estimation of a common factor in wage rate data from several industries in 
one metropolitan area. For further details, see Engle and Watson (1981). The 
determination of a wage rate in Los Angeles is assumed to depend upon 
factors specific to the industry nationally, a factor specific to Los Angeles 
and common to all sectors, and factors which are specific to both the 
industry and region. The objective is to obtain a series on the metropolitan 
wage rate in Los Angeles and thereby observe whether wages are rising or 
falling relative to the U.S. as a whole. 

The econometric specification is quite simple. Let the log of the wage rate 
in industry i and year t be wit in Los Angeles and nit in the U.S. The log of 
the unobserved metropolitan wage rate is m,, and a,, are auto-correlated, 
AR(l) Gaussian disturbances. All data are constructed with mean zero. For 
each of live sections, the model is 

The metropolitan wage rate was assumed to follow an AR(2) process. Letting 
e, be the 5 x 1 disturbance vector and cx the vector of loadings, this dynamic 

factor analysis model can be written in state space form as 

Q = (d,), 

where 

Wif=Wif-PiWit-l, fsi = --piai, 

and 

nir=ni,-pin,,_, for i=l,..., 5, t=2 ,..., T 
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To retain the initial observation we write the measurement equations for 
t=l as 

ml 
Yiwi,=(Yicri 0 0) m, 

( > 
+Biyinil +eil, 

m-, 

where 

Yi =(l -p,“,+. 

Table 2 shows the values of the evolution of the parameter estimates from 
the EM algorithm. The function value shown is the exact value of the 
likelihood function; the Jacobian term is included. While fifty iterations were 
required for convergence, each iteration was very inexpensive. Indeed all fifty 
iterations required less than one CPU minute on a DEC VAX-11/780 
computer. 

Table 2 

Convergence using EM algorithm. 

Iteration 

Parameter 0 “I 5 10 20 30 40 50 

u; x 104= 

al 

a2 
a(3 
a4 

a5 

;: 

1: 
P: 
Pz 
P3 
P4 
PS 
C?: x lo4 
u; x lo4 
0: x lo4 
0: x lo4 
0: x lo4 
Function 

0.900 1.231 1.428 1.492 1.557 1.582 1.558 1.535 
-0.100 -0.362 -0.566 -0.632 -0.688 -0.688 -0.698 - 0.634 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.417 1.201 1.051 0.901 0.783 0.572 0.456 
1.000 0.763 0.616 0.521 0.468 0.486 0.525 0.544 
1.000 0.728 0.572 0.475 0.419 0.427 0.452 0.455 
1.000 0.543 0.378 0.334 0.283 0.227 0.125 0.072 
1.000 1.066 0.829 0.709 0.607 0.540 0.450 0.402 
l.ooO 1.102 1.091 1.081 1.072 1.068 1.068 1.070 
l.ooO 0.935 0.928 0.922 0.917 0.915 0.913 0.912 
l.CQO 0.894 0.886 0.881 0.876 0.874 0.871 0.870 
1.000 1.045 1.037 1.034 1.031 1.030 1.033 1.035 
1.000 0.981 0.971 0.965 0.958 0.953 0.949 0.948 
0.600 0.724 0.725 0.702 0.681 0.711 0.775 0.807 
0.600 0.729 0.714 0.723 0.713 0.658 0.397 0.019 
0.600 0.684 0.691 0.698 0.690 0.649 0.485 0.263 
0.600 0.589 -0.554 0.546 0.544 0.564 0.619 0.646 
0.600 0.444 0.354 0.333 0.324 0.357 0.507 0.582 
1.000 1.086 0.821 0.759 0.813 1.057 1.710 1.997 
1.000 0.913 0.911 0.923 0.909 0.811 0.521 0.349 
1.000 0.560 0.548 0.575 0.574 0.497 0.28 1 0.190 
1.000 1.115 1.165 1.147 1.159 1.226 1.358 1.399 
1.000 1.034 0.939 0.949 0.964 1.020 1.309 1.475 

value - 155.35 -69.48 - 66.94 - 66.00 -65.71 - 65.64 - 63.96 - 62.86 

“0: was normalized to identify the factor loadings. 
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Table 3 

Dynamic factor analysis, where m, = qhlm, _ 1 + +zm, _ z + v,, wit = cqm, + /Tini, + ai,, ai, = Piai, _ , 
+e,,, for sectors i= 1,. . ,5 (standard errors are in parenthesesj. 

U B P uzx104 SE 

Contract construction 0.456 1.070 0.807 1.997 0.014 
(0.256) (0.035) (0.129) (0.597) 

Durable manufactures 0.544 0.912 0.019 0.349 0.006 
(0.169) (0.032) (0.344) (0.052) 

Non-durable manufactures 0.455 0.870 0.263 0.190 0.004 
(0.142) (0.027) (0.289) (0.089) 

Wholesale trade 0.072 1.035 0.646 1.399 0.011 
(0.146) (0.019) (0.186) (0.405) 

Retail trade 0.402 0.948 0.582 1.475 0.012 
(0.174) (0.027) (0.166) (0.438) 

41 42 a2 x lo4 

Metropolitan component 1.535 - 0.634 1.000 
(0.246) (0.241) 

Table 3 presents the final estimates and the asymptotic standard errors as 
calculated by the Scoring algorithm. These parameter estimates are superior 
to the estimates presented in Engle and Watson (1981). Those estimates were 
produced using only the Scoring algorithm using one-sided numerical 
derivatives for the score and information matrix. The likelihood function 
takes on a value of -66.42 using these estimates, while the EM estimates 
produced a value of -62.86. EM is also cost effective for this model. The 
cost of fifty EM iterations was roughly the same as one iteration on Scoring. 
This is the result of the large number of parameters in the model. For simple 
time varying parameter models, with few unknown parameters, we have 
found Scoring and EM to be roughly equivalent in terms of cost and 
performance. 
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