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Many economic models imply that ratios, simple differences, or "spreads" of 
variables are I(O). In these models, cointegrating vectors are composed of l's, 
O's, and - l's and contain no unknown parameters. In this paper, we develop 
tests for cointegration that can be applied when some of the cointegrating vec- 
tors are prespecified under the null or under the alternative hypotheses. These 
tests are constructed in a vector error correction model and are motivated as 
Wald tests from a Gaussian version of the model. When all of the cointegrat- 
ing vectors are prespecified under the alternative, the tests correspond to the 
standard Wald tests for the inclusion of error correction terms in the VAR. 
Modifications of this basic test are developed when a subset of the cointegrat- 
ing vectors contain unknown parameters. The asymptotic null distributions of 
the statistics are derived, critical values are determined, and the local power 
properties of the test are studied. Finally, the test is applied to data on for- 
eign exchange future and spot prices to test the stability of the forward-spot 
premium. 

1. INTRODUCTION 

Economic models often imply that variables are cointegrated with simple and 
known cointegrating vectors. Examples include the neoclassical growth 
model, which implies that income, consumption, investment, and the capi- 
tal stock will grow in a balanced way, so that any stochastic growth in one 
of the series must be matched by corresponding growth in the others. Asset 
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pricing models with stable risk premia imply corresponding stable differences 
in spot and forward prices, long- and short-term interest rates, and the log- 
arithms of stock prices and dividends. Most theories of international trade 
imply long-run purchasing power parity, so that long-run movements in nom- 
inal exchange rates are matched by countries' relative price levels. Certain 
monetarist propositions are centered around the stability of velocity, imply- 
ing cointegration among the logarithms of money, prices, and income. Each 
of these theories has two distinct implications for the properties of economic 
time series under study: first, the series are cointegrated, and second, the 
cointegrating vector takes on a specific value. For example, balanced growth 
implies that the logarithms of income and consumption are cointegrated and 
that the cointegrating vector takes on the value of (1 -1). 

The most widely used approach to testing these cointegration propositions 
is articulated and implemented in Johansen and Juselius (1992), who inves- 
tigate the empirical support for long-run purchasing power parity. They 
implement a two-stage testing procedure. In the first stage, the null hypoth- 
esis of no cointegration is tested against the alternative that the data are coin- 
tegrated with an unknown cointegrating vector using Johansen's (1988) test 
for cointegration. If the null hypothesis is rejected, a second stage test is 
implemented with cointegration maintained under both the null and alterna- 
tive. The null hypothesis is that the data are cointegrated with the specific 
cointegrating vector implied by the relevant economic theory ([1 -1] in the 
consumption-income example), and the alternative is that data are cointe- 
grated with another unspecified cointegrating vector. Because a consistent 
test for cointegration is used in the first stage, potential cointegration in the 
data is found with probability approaching 1 in large samples. Thus, the 
probability of rejecting the cointegration constraints on the data imposed by 
the economic model are given by the size of the test in the second step, at 
least in large samples. An important strength of this procedure is that it can 
uncover cointegration in the data with a cointegrating vector different from 
the cointegrating vector imposed by the theory. The disadvantage is that the 
sample sizes used in economics are often relatively small, so that the first- 
stage tests may have low power. 

This paper discusses an alternative procedure in which the null of no co- 
integration is tested against the composite alternative of cointegration using 
a prespecified cointegrating vector. This approach has two advantages. First, 
and most important, the resulting test for cointegration is significantly more 
powerful than the test that does not impose the cointegrating vector. For 
example, in the bivariate example analyzed in Section 3, these power gains 
correspond to sample size increases ranging from 40 to 70Wo for a test with 
power equal to 5Oo. The second advantage is that the test statistic is very 
easy to calculate: it is the standard Wald test for the presence of the candi- 
date error correction terms in the first difference vector autoregression. The 
countervailing disadvantage of the testing approach is that it does not sep- 
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arate the two components of the alternative hypothesis and, thus, may fail 
to reject the null of no cointegration when the data are cointegrated with a 
cointegrating vector different from that used to construct the test. We inves- 
tigate this in Section 3, where it is shown that in situations with weak co- 
integration (represented by a local-to-unity error correction term) even inexact 
information on the value of the cointegrating vector often leads to power im- 
provements over the test that uses no information. If the null hypothesis of 
noncointegration is rejected, one can then determine whether the prespecified 
cointegrating vector differs significantly from the true cointegrating vector. 

The plan of this paper is as follows. In Section 2, we consider the general 
problem of testing for cointegration in a model in which some of the poten- 
tial cointegrating vectors are known, and some are unknown, under both the 
null and the alternative. In particular, we present Wald and likelihood ratio 
tests for the hypothesis that the data are cointegrated with rOk known and 
r0u unknown cointegrating vectors under the null. Under the alternative, 
there are rak and rau additional known and unknown cointegrating vectors, 
respectively. The tests are constructed in the context of a finite-order Gauss- 
ian vector error correction model (VECM) and generalize the procedures 
of Johansen (1988), who considered the hypothesis testing problem with 
rOk = rak = 0. In Section 2, we also derive the asymptotic null distributions 
of the test statistics and tabulate critical values. Section 3 focuses on the 
power properties of the test. First, we present comparisons of the power of 
likelihood-based tests that do and do not use information about the value 
of the cointegrating vector. Next, because information about the potential 
cointegrating vector might be inexact, we investigate the power loss associ- 
ated with using an incorrect value of the cointegrating vector. Finally, when 
there are no cointegrating vectors under the null and only one cointegrating 
vector under the alternative, simple univariate unit root tests provide an alter- 
native to the multivariate VECM-based tests. Section 3 compares the power 
of these univariate unit root tests to the multivariate VECM-based tests. Sec- 
tion 4 contains an empirical application that investigates the forward premia 
in foreign exchange markets by examining the cointegration properties of for- 
ward and spot prices. Section 5 contains some concluding remarks. 

2. TESTING FOR COINTEGRATION IN 
THE GAUSSIAN VAR MODEL 

As in Johansen (1988), we derive tests for cointegration in the context of the 
reduced rank Gaussian VAR: 

Yt= dt + Xt, (2.1a) 

p 

Xt = E HiXt-i + Et, (2.1b) 
i-l1 
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where Y, is an n x 1 data vector from a sample of size T, dt represents deter- 
ministic drift in Y,, Xt is an n x 1 random vector generated by (2. lb), (, is 
NIID(0,Ee), and, for convenience, the initial conditions X_i, i = 0,. ..p, 
are assumed to equal 0. To focus attention on the long-run behavior of the 
process, it is useful to rewrite (2.lb) as 

p-i 

AXt = llX,_1 + E i 4AXt- + ,t, (2.1c) 
i=l 

where 1 = -In + I'1 Hi. 
Our interest is focused on r = rank(IH), and we consider tests of the 

hypothesis 

Ho: rank (I) = r = r, 

Ha: rank(II) = r = rO + r, with r, > 0. 

The alternative is written so that ra represents the number of additional 
cointegrating vectors that are present under the alternative. We assume that 
ro = rOk + ro, where rOk is the number of cointegrating vectors that are 
known under the null and ro, represents the number of cointegrating vectors 
that are unknown (or, alternatively, unrestricted) under the null. Similarly, 
ra = rak + ra, where the subscripts k and u denote known and unknown, 
respectively. The rOk prespecified vectors are thought to be cointegrating 
vectors under the alternative; under the null, they do not cointegrate the 
series. In spite of this, for expositional ease, they will be referred to as co- 
integrating vectors. 

As in Engle and Granger (1987), Johansen (1988), and Ahn and Reinsel 
(1990), it is convenient to write the model in vector error correction form by 
factoring the matrix HI as H = 6a', where 6 and a are n x r matrices of full 
column rank and the columns of ca denote the cointegrating vectors. The col- 
umns of a are partitioned as a = (aoO aa), where a,o is an n x ro matrix 
whose columns are the cointegrating vectors present under the null, Ola is an 
n x ra matrix whose columns are the additional cointegrating vectors present 
uiider the alternative. The matrix 6 is partitioned conformably as 6 = (6b 6a), 

where 60 is n x ro and 6a is n x ra. It is also useful to partition cia to isolate 
the known and unknown cointegrating vectors. Thus, ?a = (ciak dau), where the 
rak columns of aak are the additional cointegrating vectors known under the 
alternative, and the rau columns of a - are the additional cointegrating vec- 
tors that are present but unrestricted under the alternative. The matrix 6a iS 
partitioned conformably as 6a = (6Oak au) Using this notation, IIX,_1 = 
6o (aO'Xt- 1) + 6a (CaXt- 1), and the competing hypotheses are Ho : 6, = 0 vs. 
Ha: 6a 0, with rank(6,a') = ra. 

We develop tests for Ho vs. Ha in three steps. First, we abstract from 
deterministic components and derive the likelihood ratio statistic and some 
useful asymptotically equivalent statistics under the maintained assumption 
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that dt = 0. Second, we discuss how these statistics can be modified for non- 
zero values of d,. Finally, the asymptotic null distributions of the resulting 
statistics are derived and critical values based on these asymptotic distribu- 
tions are tabulated. 

2.1. Calculating the LR and Wald Test Statistics When dt = 0 

The likelihood ratio statistic for testing Ho : r = rOk + r0, vs. Ha: r = rOk + 
rak + r0U + r0a will depend on rOk, rak, ro,, ra and the values of Xo, and 
(yak. We write the statistic as LRrO,ra(fYokoaak). The values of rOk and rak 
appear implicitly as the ranks of a1ok and c0ak, respectively. When rOk = 0, 
the statistic is written as LRro,ra(0,aak) and as LRro,ra(xaok,O) when ra, = 0. 

To derive the LR statistic, we limit attention to the problem with ro = 
rOk = ro, = 0. For the purposes of deriving the computational formula for 
the LR statistic, this is without loss of generality because, in the general case, 
the LR statistic is identically 

LRro,ra (a0k Olak) LRo,ro+ra (0, Ika0k]) - LRO0ro (0, ?Yk)' (2.2) 

With ro = 0, and ignoring the deterministic components, dt, the model 
can be written as 

AYt = 6ak(aakYt-1) + 6a,,(aa,,Yt-I) + /3Zt + Et, (2.3) 

where f3 = (41 42 * ' * p-4 I) and Zt = (A Yt_AY2 I A * AYP+1)' In the 
context of (2.3), the null hypothesis Ho: r = 0 can be written as the compos- 
ite null Ho:60k =0, ?au = 0.1 It is convenient to discuss each part of this null 
separately: we first consider testing bak = 0 maintaining bau = 0, then the 
converse, and finally the joint hypothesis. 

The test statistic for Ho: r = 0 vs. Ha: r = rak. When rau = 0, equation 
(2.3) simplifies to 

Yt = bak(ta .yt-l) + fZt + et' (2.4) 

Because ca'kY,_ does not depend on unknown parameters, (2.4) is a stan- 
dard multivariate linear regression, so that the LR, Wald, and LM statis- 
tics have their standard regression form. Letting Y = [Y1 Y2 ... YT]', Y-1 = 

[YOYI ... YT-1]', AY= Y- Y-1, Z = [Zl Z2 . . . ZT], e = [E162 * * ET], 
and Mz = [I - Z(Z'Z)' Z'], the ordinary least-squares (OLS) estimator 
of 60k is 6ak = (i\YMzY1ogk)( kY_LMzY_ctGk), which corresponds to 
the Gaussian maximum likelihood estimate (MLE). The corresponding Wald 
test statistic for H0 vs. Ha is 

W = [vec(60k)] [ ()kY- MZY_ Iak) (0 NEJ][vec(6ak)] 

= [vec(A Y'MzY_ I cak)]' [(cakY'I MZY-lIaak) ] 

x [vec(AY'MzY_laak)], (2.5) 
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where Se is the usual estimator value of E, that is, E, = T' E -, and where 
e is the matrix of OLS residuals from (2.4). For values of 60ck that are T` 
local to 60k = 0, the LR and LM statistics are asymptotically equal to W. 

The test statisticfor Ho: r = O vs. Ha: r = r0,. The model simplifies to 
(2.4) with bau and aau replacing 6,k and cgak. However, the analog of the 
Wald statistic in (2.5) cannot be calculated because the regressor ?a 'Y-1 de- 
pends on unknown parameters. However, the LR statistic can be calculated, 
and useful formulae for the LR statistic are developed in Anderson (1951) 
and Johansen (1988). Because bau = 0 under the null hypothesis, the cointe- 
grating vectors cxau are unidentified, and this complicates the testing prob- 
lem in ways familiar from the work of Davies (1977, 1987). The problem can 
be avoided when ra = n, because in this case II is unrestricted under the 
alternative and the null and alternative become Ho : H = 0 vs. Ha: H I 0. 
The problem cannot be avoided when the rank(II) < n under the alternative. 
Indeed, in the standard classical reduced rank regression, the general form 
of the asymptotic distribution of the LR statistic has only been derived for 
the case in which the matrix of regression coefficients has full rank under the 
alternative. In this case, Anderson (1951) shows that the LR statistic has an 
asymptotic x2 null distribution. When the matrix of regression coefficients 
has reduced rank under the alternative, the asymptotic distribution of the LR 
statistic depends on the distribution of the regressors. Still, the special struc- 
ture of the regressors in the cointegrated VAR allows Johansen (1988) to cir- 
cumvent this problem and derive the asymptotic distribution of the LR test 
even when II has reduced rank under the alternative. 

As pointed out by Hansen (1990), when some parameters are unidentified 
under the null, the LR statistic can be interpreted as a maximized version of 
the Wald statistic. This interpretation is useful here because it suggests a sim- 
ple way to compute the statistic. Because this form of the statistic appears 
as one component in the test statistic for the general ra = rak + rau alterna- 
tive, we derive it here. 

Let LR denote the likelihood ratio statistic for testing Ho versus Ha, and 
let LR*( E) denote the (infeasible) LR statistic that would be calculated if Se 

were known. As usual, LR = LR*( E) + op (1) under Ho and local alterna- 
tives (here, T'). Let L (6a oau E,) denote the log likelihood written as a 
function Of 6ag, cxau, and 1,, with ,B concentrated out, and let 6au(clau) de- 
note the MLE of bau for fixed Oa!. Then, the well-known relation between 
the Wald and LR statistic in the linear model implies that 

W( au ) = 2 [L (bau (aau), au, -e)-L (0, L Cau, eJ)] 

= 2[L(b ( ?(a E)Jc ?,,1) -L (0, 0,S)] , (2.6) 

where W(aau) is the Wald statistic in (2.5) written as a function of cau; the 
first equality follows because each log-likelihood function is evaluated using 
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SE; and the second equality follows because aeau does not enter the likelihood 
when 6au = 0. Thus, 

~~~~~ AA 

Sup W(olau) = Sup 2[L(bau(oau),oau,-e) L(O,0,E,)] = LR (,E), 
xa, xaa, 

where the Sup is taken over all n x rau matrices au. 
To calculate Sup,,0 W(aau), rewrite (2.5) as 

W( au) = [vec(AY'MzY_Icau )]'[(au Y'iMZY_i1oau )0 

x [vec(AY'MzY_iaau)] 
A 

X (c4aUMz Y_ 1iAY ) e1/2't] 

- TR[ e 12(/2 (Y'Mz Y_1 )DD'(MyY'1 )2] 

where D = Otau (?au YLI MzY_1 a!au) 

- TR[D'(YL'1 MzAY)e ?(AY'MzY1 )D] 

- TR[F'CC'F], (2.7) 

where F = (Y'LMzYil)1/2ea"(ol Y'LMzYioaa)-'/2 and C = 
(Y MY1-/(! MiY? /t Notice that F'F = Ira and 
Supxa W(c?au) =-SUPF'F=ITR[F'( CC' )F] . Let X\i( CC' ) denote the eigen- 
values of (CC') ordered so that X1 2 X2 ? '. > Xn Then, 

ra 

Sup W(cxeau) = Sup TR [F'( CC' )F] = ,j Xi( CC') 
odal ~F'F=1 i=1l 

= LR*( E,) = LR + op ( l), (2.8) 

where the final equality holds under the null and local (T'1) alternatives. 
Because X, (CC') = X, (C'C), the likelihood ratio statistic can then be calcu- 
lated (up to a term that vanishes in probability) as the largest raU eigenvalues 
of C1C= [l/2(AY2MzYl)(Y lMzY_lfl(Yt lMzA Y)t 1/2f]. 

To see the relationship between the expression in (2.8) and the well-known 
formula for the LR statistic developed in Anderson (1951) and Johansen 
(1988), note that their formula can be written as LR = - TLi1 ln [l-Y] 
where ei are the ordered squared canonical correlations between A 

Ya and 2 
after controlling for AYEt_, . .. ,/E_p1 Because -y = X,(S'S), where S'S = 

(/\~ ~ ~~~~~~~~~a Y'zvy-/(\YMYl)('1MYl1(y' I Mzi Y )(l Y1zi y)au) 

(Brillinger, 1980, Ch. 10), LR-=-TZEij1U ln[ 1-) X(S'S)] = TZElau X i(S'S) + 
op ( l) = >Zajl X, (TS'S) + op (1) . Finally, because T(S'S)-= e2l'2( /AY'MzY1l) x 
( Y'1MzY1 TRD(Y'M Y)eJ2AY where = T-1Y(MzY'MzDY), this ex- 
pression is identical to (2.7), except that ' iS estimated under the null. 
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The test statistic for Ho: r = 0 vs. Ha: r = rak + rau. The model now has 
the general form of (2.3). As earlier, the LR statistic can be approximated up to 
an op (1) term by maximizing the Wald statistic over the unknown parameters 
in aau. Let MZk = [ - (MZY_1 Yak ) (akY'1 MZY_ 1akY)1( kMZY_1 )]MZ 
denote the matrix that partials both Z and Y- Icak out of regression (2.3). 
The Wald statistic (as a function of cak and a0u) can be written as 

W(?Xak uau) = [vec( AY'MZY1aak)]' [I(QkYl MZYYaIk)' 0 ca] 

x [vec(/AY'MzY_l1 ak)] 

+ [vec(iAY'Mzk Y-1 ?a0)]' [(a' Y I Mzk Y )1 00 e] 

x [vec(AY'MZkY-1Oau)]. (2.9) 

The first term is identical to equation (2.5), and the second term is the same 
as (2.7), except that M, A Yand Mz Y_ are replaced with MzkA Yand Mzk Yl . 

When maximizing W(oak,o au) over the unknown cointegrating vectors in 
?a, we can restrict attention to cointegrating vectors that are linearly inde- 
pendent of aak, so that the LR statistic is obtained by maximizing (2.9) over 
all n x rau matrices ?au satisfying cQaOk = 0. Let G denote an (arbitrary) 
n x (n - rak) matrix whose columns span the null space of the columns of 
oak. Then, clau can be written as a linear combination of the columns of G, 
so that a0aU= G&au, where 0au is an (n -rk) X rau matrix, so that L4a'k = 
& ' G'oak = 0 for all a . Substituting G&a0 into (2.9) and carrying out the 
maximization yields 
Sup W(ak, uau) = [vec(AY'MzY- ?ak)] [(akY-1 MzY-I clak) 0 t ] 

"au 

rau 

x [vec(AY'MzY_laOk)] + Xi (H'H) 
i=l1 

= LR + op(l), (2.10) 

where H'H= e C1J2(AY'MzkY-l G) (G' Y1 MzkY- G)'(G'Y1MzkAY)E 12E. 
Before proceeding, we make three computational notes about (2.10). First, 

when ra, = 0, the statistic is just the standard Wald statistic testing for the 
presence of the error correction terms a'kYt-1 that is calculated by most 
econometric software packages. Second, any consistent estimator of Ne can 
be used as SE. A particularly easy estimator, consistent under the most gen- 
eral hypothesis considered here, is the residual covariance matrix from the 
regression of Y, onto p lagged levels of Y,. Third, the columns of the matrix 
G (appearing in the definition of H) can be formed in a number of ways, 
for example, using the Gram-Schmidt orthogonalization procedure. 

2.2. Modifications Required for the Nonzero Drift Component 

When d1 ? 0 in (2.1a), Yt is not directly observed, and the procedures 
already outlined require modification. The necessary modification depends 
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on the precise form of drift function. Here we assume that dc = /O + I I t 
and, thus, allow Y, to have a nonzero mean and, when I-, * 0, a nonzero 
trend. While more general drift functions are certainly possible, this formu- 
lation of dc has proved to be adequate for most applications.2 In this case, 
the VECM for Yt becomes 

p-1 

AYt = 0 + zyt + 6(cv'Yt_i) + Ej bi2Yt-i + Ct, (2.11) 
i=l 

where 0 = (I-- Pl P '1) - 6a'Ito and ey = -e'IL. 
There are three complications that arise when ito or ,ul are nonzero. First, 

as discussed in Johansen (1991, 1992a, 1992b) and Johansen and Juselius 
(1990), relationships between t0o, i,u and the cointegrating vectors can lead 
to different interpretations of the drift parameters. For example, some lin- 
ear combinations of i-o are related to initial conditions in the Y1 process, 
whereas others are related to means of the "error-correction" terms a''Yt. 
The second complication is that these different interpretations can imply dif- 
ferent trend properties in the data, and this leads to changes in the asymp- 
totic distribution of test statistics. Third, in the context of the univariate unit 
root model, Elliott, Rothenberg, and Stock (1995) show that different meth- 
ods for detrending Yt (associated with different estimators of ,to and i,-) can 
lead to large differences in the power of unit root test statistics, and Elliott 
(1993) shows that the tests' power depends on assumptions concerning ini- 
tial conditions of the process. 

Rather than investigate all of the possible methods here, we present results 
for what are arguably the three most important cases. The first is simply the 
baseline case with ito = A,u = 0; in this case, 0 = -y = 0 in (2.11). In the sec- 
ond case, A,u = 0 so that the data are not "trending," but iAo * 0 and is un- 
restricted. This is appropriate when there are no restrictions on the initial 
conditions of the X, process or on the means of the error correction terms, 
a'Yt. Because i- = 0 in this case, then y = 0 in (2.11); the parameter 0 is 
nonzero but is constrained because it captures only the nonzero mean of the 
error correction terms a''Y,. Imposing the constraint leads to 

p-i 

AYt = 6(a'YtI - i3) + i 'A Yt-i + et, (2.12) 
i=i 

where ,B = a',xo. In the third case, Ito * 0 and is unrestricted and /l * 0 but 
is restricted by the requirement that ae'pI = 0; in this case, oy = 0 in (2.11) 
and 0 is unrestricted. 

2.3. Asymptotic Distribution of the Statistics 

Earlier, the Gaussian likelihood ratio statistic for testing Ho: r = rOk + ro0 
versus H0:r = rOk + rak + ro, + ra, was defined as LRrO, ra(CokIaak). Let 
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Wr,, ra ( CtOk I aak) define the corresponding Wald statistic constructed by maxi- 
mizing over all values of the unknown cointegrating vectors. In particular, de- 
fining WO, ra (O ,aak) Sup0aau W(aak I aau) from (2. 10), then WrO, ra (aok Xaak) 

W0, +, (0, [aokaiak]) - Wo,ro (0, COk). Writing the statistic as WrO, rta (aok,aak) 

completely describes the null and alternative hypotheses: rOk = rank( aOk), 

ro, = ro - rank( aOk) and similarly for rak and rau. Using this notation, the 
well-known likelihood ratio tests developed in Johansen (1988) are denoted 
as LRro,ra(0,0) and the associated Wald statistics are Wro,ra(O,O). 

To derive the asymptotic distribution of WTO,ra(O(ok,O1k), we make four 
sets of assumptions. 

Assumption A. The data are generated by (2. 1a)-(2. Ic) with the following: 

(A. 1) E(etE,-,e,. . ,1) = 0, 

tE( t (-I(-1 e* ) = e 

E(4t)< K <?00 foralliandt. 

(A.2) Letting 4(z) = I - -4I z * - 4P_zP-1, then the roots of 4 (z)l are all 
outside the unit circle. 

(A.3) X_i = 0, i = O,... p-1. 
(A.4) Three alternative assumptions are made about dt: 

(A.4.i) d, = 0 for all t; 
(A.4.ii) d, = AO for all t; 

(A.4.iii) dt = /to + A It for all t, with c4/,t = 0 and a'yl = 0. 

Note that under Assumption (A.4.iii) we assume that Otak annihilates the 
deterministic drift in the series under both the null and the alternative. 

The test statistic will be formed as already described, when d, = 0. When 
dt * 0, the VECM is augmented with a constant, and the statistic is calculated 
as earlier with Z, in (2.3) augmented by a constant. Because, under Assump- 
tion (A.4.iii), the constant term in VECM (2.1 1) is unrestricted, augmenting 
Zt with a constant and carrying out least squares produces the Gaussian 
maximum likelihood estimator. However, under Assumption (A.4.ii), the 
constant term in VECM (2.11) is constrained (see (2.12)), and thus the least- 
squares estimator does not correspond to the Gaussian MLE. We neverthe- 
less consider test statistics based on this formulation for two reasons. First, 
when some columns of a are known, the unconstrained estimator and test 
statistics are much easier to calculate than the constrained estimator; the 
required calculations when a is known are discussed in Johansen and Juselius 
(1990) and in Johansen (1991). Second, we show that when a is unknown, 
the test based on the unconstrained estimator has somewhat better local 
power than the test based on the constrained estimator. 

Convenient representations for the asymptotic null distribution can be 
derived using the following notation. Let B(s) = (BI (s)B2 (s) ... B, (s))' 
denote an n x 1 dimensional standard Wiener process; f1 F(s) ds = fF and 
fl F(s) dB(s) = fFdB, for arbitrary function F(s); B'A(s) = B(s) - fB de- 
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note the corresponding "demeaned" process; s" = s - fs = s - 2 denote 
the demeaned time trend; and let Bi,j(s) = (Bi(s)... Bj(s))' denote a 
(j - i + 1) x 1 subvector of B(s), and let B11'1 be defined analogously. 

THEOREM 1. The asymptotic null distribution of WTO, ra (cOk, Iak) can be 
represented as 

Wro, ra (Uok, aak) > Trace [(fFI dB, k) (fFI F) (fF dBlk) k 

I [( F2 dB )( J )F2F (F d ) 

where k =n-r0 r, F2 (s) =F3 (s) -Y3j1 F1(s) with y3,1 =fF3Fi [fF1 F1 F , 
Xi [.] is the ith largest eigen value of the matrix in brackets, and the defini- 
tion of F1 (s) and F3 (s) depends on the particular assumptions employed. 

In particular, we have the following cases. 

Case (1). Suppose that Assumptions (A. 1)-(A.3) and (A.4.i) hold, and the 
statistic is calculated with Zt = (A Y1 ,AY'2 * Yp+1)', then F1 (s) = 
Bi, m (s) with m = rak and F3 (s) = Bi,j (s) with i = rak + 1 andj =n -rOk-rOU. 

Case (2). Suppose that Assumptions (A. I)-(A.2) and (A.4.ii) hold, and the 
statistic is calculated with Zt = (1 A Y,1 A Y>_2 A * i Y p+ 1)', then F1 (s) = 

BAm(s)withm=rak andF3(s) =Bf1(s) withi=rak +1 andj=n-rou-r 

Case (3). Suppose that Assumptions (A. 1)-(A.2) and (A.4.iii) hold, and the 
statistic is calculated with Zt = (1 A/ Y AY2 * * * AYK'_p+ )', then F1 (s) = 

BA'm(s) with m = rak, and F3 (s) = (s1A(s)' BfJ (s)) with i = rak + 1and j= 
n-rOk-rO 

Proof. See the Appendix. 

We make six remarks about these results. First, Theorem 1 is a general- 
ization of the results in Johansen (1988, 1991), who considered the prob- 
lem with rOk = rak = 0. Second, when a constant is included in Zt, the test 
statistic is invariant to the initial conditions for X,, t = 0,. . . , -p + 1 under 
the null hypothesis. Thus, Assumption (A.3) is not necessary under Cases (2) 
and (3) in Theorem 1. Third, when rag = 0, the limiting distributions in 
Cases (2) and (3) are the same. Fourth, under Cases (1) and (3), the 

Vro, ra (aOk, Iak) statistic is asymptotically equivalent to the LR statistics; this 
equivalence fails to obtain in Case (2) because the constraint on the con- 
stant term in VECM's (2.11) and (2.12) is imposed when the LR statistic 
is calculated, but the W statistic is calculated using an unconstrained esti- 
mator. Fifth, while the case with d, = /A + yIAt for all t, with 4't = 0, 
and a?ak/l ? 0 is not covered by the theorem, the limiting distribution of the 
test statistic is readily deduced in this case as well. Because we did not tab- 
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ulate critical values for this case, we did not include the limiting distribution 
in the theorem. As a practical matter, our calculations indicated that the 
critical values for the test statistic under the assumption that ? alk, = 0 are 
larger than those under the assumption aL,IkA * 0, and so using the Case (3) 
distribution results in conservative inference. Finally, it is also straightfor- 
ward to generalize the theorem to accommodate linear restrictions on the 
cointegrating vector of the form Roiau = 0, where R is a known Q x n matrix. 
Specifically, the statistic is formed as in (2.10), where now the matrix G is 
n x (n - r,ak - 2) with columns spanning the null space of the columns of 
(cak H'); the asymptotic distribution Theorem 1 continues to hold except 
that the index j in the definition of F3 (s) becomes j = n - rou- rak - 2. 
General linear restrictions of the form R [vec ( al,)] = h are not covered by 
the theorem. 

Critical values for n - rou - 5 are provided in Table 1. These critical 
values were calculated by simulation using 10,000 replications and T = 
1,000. Extended critical values of n - rou c 9 are tabulated in Horvath and 
Watson (1995). When rOk = rak = 0, these correspond to the critical values 
tabulated in Johansen (1988), Johansen and Juselius (1990), and Osterwald- 
Lenum (1992). 

3. COMPARISON OF TESTING PROCEDURES 

In this section, we carry out three power comparisons. First, we compare the 
local power of the W/LR tests that impose the value of the cointegrating vec- 
tor under the alternative to the corresponding tests that do not use this infor- 
mation. Second, because a priori information about the cointegrating vector 
may only be approximately correct, we investigate the power implications of 
imposing an incorrect value of the cointegrating vector. Finally, for the spe- 
cial case with ro = ra = 0 and rak = 1, we compare the power of the VECM- 
based tests to univariate unit root tests applied to the error correction term. 

For tractability, our discussion will focus on a bivariate version of (2.11), 
with 4), = ()2 = ** p- I = ?: 

'Ayi 1=t10+ 1 I (c'~~+ I'(3.1) 
[AY2,t [02] [62] [(2,tJ 

Because the likelihood-based procedures are invariant to nonsingular trans- 
formations of Yt, we can set a = (0 1)' and 61 = 0 when studying these tests. 
This will also prove convenient when studying univariate testing procedures. 
Thus, the model that we consider is 

AYi t = Al + Ei t (3.2a) 

AY2,t = 02 + 62Y2, t-l + E2, t (3.2b) 
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TABLE 1. Critical values for tests for cointegration 

Case 1 Case 2 Case 3 

n-ro, rok rak ra, I%o 5% 10% 1% 5% 10% 1% 5% 10% 

1 0 0 1 7.26 4.12 2.95 12.18 8.47 6.63 6.84 3.98 2.73 
1 0 1 0 7.26 4.12 2.95 12.18 8.47 6.63 12.18 8. 47 6.63 

2 0 0 1 14.83 11.03 9.35 19.14 14.93 13.01 18.13 14.18 12.36 
2 0 0 2 16.10 12.21 10.45 22.43 18.17 15.87 19.66 15.41 13.54 
2 0 1 0 9.43 6.28 4.73 13.73 10.18 8.30 13.73 10.18 8.30 
2 0 1 1 16.10 12.21 10.45 22.43 18.17 15.87 19.66 15.41 13.54 
2 0 2 0 16.10 12.21 10.45 22.43 18.17 15.87 22.43 18.17 15.87 
2 1 0 1 9.43 6.28 4.73 13.73 10.18 8.30 8.94 6.02 4.64 
2 1 1 0 9.43 6.28 4.73 13.73 10.18 8.30 13.73 10.18 8.30 

3 0 0 1 22.25 17.51 15.42 25.93 21.19 19.12 26.17 21.14 18.62 
3 0 0 2 28.02 23.28 20.81 35.98 29.46 26.79 34.84 28.75 26.08 
3 0 0 3 29.31 23.91 21.52 37.72 31.66 28.82 35.83 29.62 27.05 
3 0 1 0 11.44 7.94 6.43 15.41 11.62 9.72 15.41 11.62 9.72 
3 0 1 1 24.91 20.30 18.05 31.42 26.08 23.67 30.67 25.70 23.04 
3 0 1 2 29.31 23.91 21.52 37.72 31.66 28.82 35.83 29.62 27.05 
3 0 2 0 19.75 15.20 13.04 25.35 20.74 18.51 25.35 20.74 18.51 
3 0 2 1 29.31 23.91 21.52 37.72 31.66 28.82 35.83 29.62 27.05 
3 0 3 0 29.31 23.91 21.52 37.72 31.66 28.82 37.72 31.66 28.82 
3 1 0 1 16.84 12.89 11.03 21.62 16.65 14.51 20.36 15.93 13.93 
3 1 0 2 19.75 15.20 13.04 25.35 20.74 18.51 22.90 18.18 16.25 
3 1 1 0 11.44 7.94 6.43 15.41 11.62 9.72 15.41 11.62 9.72 
3 1 1 1 19.75 15.20 13.04 25.35 20.74 18.51 22.90 18.18 16.25 
3 1 2 0 19.75 15.20 13.04 25.35 20.74 18.51 25.35 20.74 18.51 
3 2 0 1 11.44 7.94 6.43 15.41 11.62 9.72 11.39 7.87 6.36 
3 2 1 0 11.44 7.94 6.43 15.41 11.62 9.72 15.41 11.62 9.72 

4 0 0 1 28.33 23.82 21.51 32.35 27.40 24.94 32.19 27.07 24.84 
4 0 0 2 40.14 34.35 31.63 47.03 40.50 37.78 46.00 40.27 37.17 
4 0 0 3 44.62 39.17 35.90 54.25 47.31 44.03 53.14 46.30 43.32 
4 0 0 4 45.66 39.91 36.58 56.17 49.16 45.61 54.34 47.33 44.09 
4 0 1 0 13.60 9.73 7.93 17.16 13.20 11.16 17.16 13.20 11.16 
4 0 1 1 32.75 27.86 25.43 39.55 33.55 30.73 39.47 33.22 30.45 
4 0 1 2 42.47 36.93 33.81 51.82 44.98 41.45 50.96 43.78 40.94 
4 0 1 3 45.66 39.91 36.58 56.17 49.16 45.61 54.34 47.33 44.09 
4 0 2 0 22.85 17.92 15.81 28.62 23.41 21.10 28.62 23.41 21.10 
4 0 2 1 38.43 33.36 30.69 47.26 40.98 38.11 46.82 40.76 37.50 
4 0 2 2 45.66 39.91 36.58 56.17 49.16 45.61 54.34 47.33 44.09 
4 0 3 0 33.53 27.80 25.24 41.08 35.33 32.33 41.08 35.33 32.33 
4 0 3 1 45.66 39.91 36.58 56.17 49.16 45.61 54.34 47.33 44.09 
4 0 4 0 45.66 39.91 36.58 56.17 49.16 45.61 56.17 49.16 45.61 
4 1 0 1 24.15 19.28 17.30 27.09 22.73 20.61 28.06 22.74 20.36 

(continued) 
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TABLE 1 (continued) 

Case 1 Case 2 Case 3 

n-rou rOk rak rau I0Wo 51o lOWo IWlo 50W lOWlo 11o 50/o lOOo 

4 1 0 2 31.30 26.19 23.82 37.76 32.45 29.49 38.01 31.74 28.65 
4 1 0 3 33.53 27.80 25.24 41.08 35.33 32.33 40.07 33.57 30.41 
4 1 1 0 13.60 9.73 7.93 17.16 13.20 11.16 17.16 13.20 11.16 
4 1 1 1 28.04 23.19 20.82 33.83 28.87 26.10 33.45 28.25 25.73 
4 1 1 2 33.53 27.80 25.24 41.08 35.33 32.33 40.07 33.57 30.41 
4 1 2 0 22.85 17.92 15.81 28.62 23.41 21.10 28.62 23.41 21.10 
4 1 2 1 33.53 27.80 25.24 41.08 35.33 32.33 40.07 33.57 30.41 
4 1 3 0 33.53 27.80 25.24 41.08 35.33 32.33 41.08 35.33 32.33 
4 2 0 1 18.59 14.60 12.78 23.09 18.37 16.12 21.92 17.52 15.51 
4 2 0 2 22.85 17.92 15.81 28.62 23.41 21.10 25.82 21.00 18.74 
4 2 1 0 13.60 9.73 7.93 17.16 13.20 11.16 17.16 13.20 11.16 
4 2 1 1 22.85 17.92 15.81 28.62 23.41 21.10 25.82 21.00 18.74 
4 2 2 0 22.85 17.92 15.81 28.62 23.41 21.10 28.62 23.41 21.10 
4 3 0 1 13.60 9.73 7.93 17.16 13.20 11.16 12.81 9.54 7.85 
4 3 1 0 13.60 9.73 7.93 17.16 13.20 11.16 17.16 13.20 11.16 

5 0 0 1 35.29 30.51 27.76 39.10 33.87 31.08 38.95 33.51 30.89 
5 0 0 2 51.50 45.84 42.75 59.27 52.05 48.77 57.99 51.53 48.24 
5 0 0 3 61.05 54.42 51.22 70.75 63.29 59.44 70.30 62.45 58.82 
5 0 0 4 65.54 58.65 55.23 77.46 69.37 65.20 75.64 67.89 64.37 
5 0 0 5 66.00 59.39 55.80 78.85 70.93 66.58 76.36 68.62 65.15 
5 0 1 0 15.32 11.41 9.46 19.00 14.53 12.49 19.00 14.53 12.49 
5 0 1 1 41.09 35.77 32.98 47.18 41.36 38.44 46.58 40.78 38.15 
5 0 1 2 56.00 49.75 46.41 64.19 57.55 53.98 63.59 56.60 53.43 
5 0 1 3 63.52 56.83 53.56 74.61 66.88 63.00 73.49 65.73 62.31 
5 0 1 4 66.00 59.39 55.80 78.85 70.93 66.58 76.36 68.62 65.15 
5 0 2 0 26.01 20.92 18.55 31.26 26.15 23.51 31.26 26.15 23.51 
5 0 2 1 48.36 42.54 39.54 56.90 50.15 46.93 56.23 49.55 46.51 
5 0 2 2 60.54 54.27 50.93 71.63 64.20 60.46 70.31 62.86 59.64 
5 0 2 3 66.00 59.39 55.80 78.85 70.93 66.58 76.36 68.62 65.15 
5 0 3 0 37.35 31.75 28.94 44.87 39.03 36.03 44.87 39.03 36.03 
5 0 3 1 57.01 50.44 47.36 67.41 60.14 56.68 66.72 59.62 55.85 
5 0 3 2 66.00 59.39 55.80 78.85 70.93 66.58 76.36 68.62 65.15 
5 0 4 0 50.02 44.42 41.43 61.04 53.88 50.14 61.04 53.88 50.14 
5 0 4 1 66.00 59.39 55.80 78.85 70.93 66.58 76.36 68.62 65.15 
5 0 5 0 66.00 59.39 55.80 78.85 70.93 66.58 78.85 70.93 66.58 
5 1 0 1 30.10 25.62 23.21 34.36 29.09 26.61 33.87 28.72 26.37 
5 1 0 2 42.91 37.30 34.70 50.23 43.52 40.60 49.21 42.92 40.02 
5 1 0 3 48.63 42.91 40.13 58.91 51.22 47.80 57.59 50.31 47.15 
5 1 0 4 50.02 44.42 41.43 61.04 53.88 50.14 59.39 51.95 48.67 
5 1 1 0 15.32 11.41 9.46 19.00 14.53 12.49 19.00 14.53 12.49 
5 1 1 1 36.01 30.74 28.25 41.68 36.30 33.62 41.37 35.94 33.11 

(continued) 
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TABLE 1 (continued) 

Case 1 Case 2 Case 3 

n - rou rOk rak rau I o 5%o lOWo I o So lOWo I o 5/o 10Gb 

5 1 1 2 46.54 40.78 37.76 55.99 48.54 45.25 54.54 47.42 44.73 
5 1 1 3 50.02 44.42 41.43 61.04 53.88 50.14 59.39 51.95 48.67 
5 1 2 0 26.01 20.92 18.55 31.26 26.15 23.51 31.26 26.15 23.51 
5 1 2 1 42.58 37.40 34.60 50.71 44.76 41.71 50.25 44.34 41.27 
5 1 2 2 50.02 44.42 41.43 61.04 53.88 50.14 59.39 51.95 48.67 
5 1 3 0 37.35 31.75 28.94 44.87 39.03 36.03 44.87 39.03 36.03 
5 1 3 1 50.02 44.42 41.43 61.04 53.88 50.14 59.39 51.95 48.67 
5 1 4 0 50.02 44.42 41.43 61.04 53.88 50.14 61.04 53.88 50.14 
5 2 0 1 25.44 20.91 18.95 28.77 24.48 22.09 29.62 24.41 21.83 
5 2 0 2 34.64 29.41 26.66 40.57 35.03 32.20 40.73 34.50 31.42 
5 2 0 3 37.35 31.75 28.94 44.87 39.03 36.03 43.65 37.21 34.13 
5 2 1 0 15.32 11.41 9.46 19.00 14.53 12.49 19.00 14.53 12.49 
5 2 1 1 31.01 25.99 23.64 36.35 31.39 28.72 36.34 30.99 28.34 
5 2 1 2 37.35 31.75 28.94 44.87 39.03 36.03 43.65 37.21 34.13 
5 2 2 0 26.01 20.92 18.55 31.26 26.15 23.51 31.26 26.15 23.51 
5 2 2 1 37.35 31.75 28.94 44.87 39.03 36.03 43.65 37.21 34.13 
5 2 3 0 37.35 31.75 28.94 44.87 39.03 36.03 44.87 39.03 36.03 
5 3 0 1 20.52 16.39 14.39 24.46 19.95 17.70 23.82 19.16 16.94 
5 3 0 2 26.01 20.92 18.55 31.26 26.15 23.51 28.71 23.83 21.25 
5 3 1 0 15.32 11.41 9.46 19.00 14.53 12.49 19.00 14.53 12.49 
5 3 1 1 26.01 20.92 18.55 31.26 26.15 23.51 28.71 23.83 21.25 
5 3 2 0 26.01 20.92 18.55 31.26 26.15 23.51 31.26 26.15 23.51 
5 4 0 1 15.32 11.41 9.46 19.00 14.53 12.49 15.02 11.23 9.31 
5 4 1 0 15.32 11.41 9.46 19.00 14.53 12.49 19.00 14.53 12.49 

To investigate the local power of the tests, we suppose that 62 iS local to 0; 
specifically, we set 62 = 62, T = -c/T. This allows us to study local power 
using local-to-unity asymptotics familiar from the work of Bobkowsky 
(1983), Cavanagh (1985), Chan and Wei (1987), Chan (1988), Phillips 
(1987, 1988), and Stock (1991). To rule out drift in the error correction term, 
we set 02 = 0. Finally, our initial comparisons are made with Ne = I; the case 
of correlated errors is discussed later. 

The local power results are conveniently stated in terms of a two-dimensional 
Wiener/diffusion process, Be(s) = (B1,,(s) B2,,(s)). LetB(s) = (B1(s)B2(s))' 
denote a two-dimensional standardized Wiener process, let Bl,c(s) = B1 (s), 
and let B2,,(s) evolve as dB2, (s) = -cB2,c(s) ds + dB2 (s). Thus, the first 
element of Bc(s) is a random walk, and the second element is generated by 
a diffusion process with parameter c. Let BgI (s) = B,(s) - fBc denote the 
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demeaned version of this bivariate process, and let DC(s) = (s' (s) BIc (s))Y 
denote the bivariate process composed of the demeaned values of the time 
trend and B2,C. Corresponding to the three cases in Theorem 1, it is straight- 
forward to derive limiting representations for the cointegration test statistics 
under local departures from the null. Let y = (_Y1 y2)' denote an arbitrary 
2 x 1 vector, and let ae = (O 1) denote the true value of the cointegrating vec- 
tor. Using the notation already introduced, Wo, 1 (0, ey) (with -y ? 0) denotes 
the test statistic for Ho: r = 0 vs. Ha: r = rak = 1 constructed using wy as the 
cointegrating vector under the alternative; similarly, WO I (0,0) denotes the 
test statistic for Ho : r = 0 vs. Ha: r = ra, = 1. The limiting distribution of 
this statistic is given by the following. 

Case 1. Suppose that the data are generated by (3.2a) and (3.2b) with 
01 = 02 = 0, 62= -c/T, and Et satisfies Assumption (A.1) with Se = 1. If the 
test statistic is calculated without including a constant in Zt, then 

Wo,I(Oy) =Trace[( 'BcdB') (fBcB ) ( BcdB')] 

wo,[( I (J ) (J )] 
Case 2. Suppose that the data are generated by (3.2a) and (3.2b) with 

01 = 02 = 0, 62 = -c/T, and Et satisfies Assumption (A. 1) with e = I. If the 
test statistic is calculated including a constant in Zt, then 

WO,0)> Trace[l JBC dB' B)A c7 dB 7 J ) 

WO, 
1(0? ) => 

) 
I[Bc" dB 

) 
B(ABC I BA dB() 

Case 3. Suppose that the data are generated by (3.2a) and (3.2b) with 
01 * 0, 02 = 0, 62 = -c/T, and Et satisfies Assumption (A.1) with Se = I. If 
the test statistic is calculated including a constant in Zt, then 

WO,l (0,y) => Trace [( fDc dB') 'fDcD?) ('j Dc dB')], 

for yj= 0; 

WI1(O,'y) * Trace (fsPdB) (f(s I)) (fsdB' for y ?0; 
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In Case 3, when 01 * 0 and -Yi I 0, the regressor PY'Yt-I is dominated by the 
linear trend }y 01 t. In contrast, 'Yt-i is a linear function of a diffusion pro- 
cess in Cases (1) and (2) for all values of yl, and in Case (3) when -Y1 = 0. 
This difference leads to the two possible limiting representations for 
WoV I (O,,y) in Case (3). When YI = 0, the limiting distributions of WVO,1 (0,'y) 
coincide in Cases 2 and 3, because the second elements of BY and DC are 
identical. 

In Figure 1, we plot the local power curves associated with these limiting 
random variables for a = y.4 Thus, the Wo,I (0, oak) plot shows the power 
of the test that imposes the true value of the cointegrating vector, and the 
W0,I (0,0) plot shows the power of the test that does not use this informa- 
tion. The power gains from incorporating the true value of the cointegrat- 
ing vector are substantial: at 5007o power they correspond to sample size 
increases of approximately 70, 50, and 4007o for Cases 1-3, respectively. 
Figure 1B also shows the local power of the LR analog of Wo,1 (0,0) that 
imposes the constraint on the constant term shown in (2.12). As discussed 
in Johansen and Juselius (1990) and Johansen (1991), this statistic is calcu- 
lated by augmenting the matrix Y_ in (2.10) by a column of l's and exclud- 
ing the constant from Zt. Letting F (s) denote (1 B,(s)), this statistic has a 
limiting distribution given by XI [(fFcdB')'(fFcFc) -(f FdB')]. Interest- 
ingly, the power curve lies below the corresponding W0,I (0,0) power curve 
that does not impose this constraint on the constant term, and of course both 
curves lie below their Case 1 analog. The reduction in power for the LR sta- 
tistic in Figure lB relative to Figure lA arises because, under the null that 
6 = 0, the constant term ,B in (2.12) is unidentified. The LR statistic maxi- 
mizes over this parameter, leading to an increase in the test's critical value. 
The reduction in power for the W0, (0,0) statistic in Figure 1B relative to 
Figure 1A arises because the data are demeaned in Figure iB, leading to a 
reduction in the variance of the regressor. Apparently, more powerful tests 
are obtained from using demeaned data rather than maximizing over the 
unidentified parameter F. 

Because the a priori knowledge of the cointegrating vector may be inex- 
act, it is also of interest to consider the behavior of the statistics constructed 
from incorrect values of the cointegrating vector. Asymptotic results for fixed 
values of 62 < 0 imply that using the correct value of the cointegrating vec- 
tor is critical to the power gains apparent in Figure 1. For fixed alternatives, 
the W0,1 (0,0) and corresponding LR tests are consistent. On the other hand, 
because y'Yt is I(1) when -y is not proportional to a, the test based on 
W0,1(0, y) for ey ? a will not be consistent. Thus, imposing the incorrect 
value of the cointegrating vector would seem to have disastrous effects on 
the power of the test. 

However, this drawback is somewhat artificial, because it applies in a sit- 
uation when the power of the W0,1 (0,0) test is unity. An arguably more 
meaningful comparison is obtained from the local-to-unity results where 
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FIGURE 1. Local asymptotic power. Panels plot local power curves for a two- 
variable system. Curves labeled WO,1 (0, cgak) show the power of the test that imposes 
the true value of the cointegrating vector. Curves labeled W0,1 (0,0) show the power 
of the test that does not use this information. A. Case 1: Data contain zero drift 
terms, and statistics are calculated without inclusion of explanatory constant terms. 
B. Case 2: Data contain zero drift terms, but statistics are calculated with explana- 
tory constant terms in regressions. The curve labeled LR0,1 (0,0) shows the local 
power of the LR analog of W0,1 (0,0) that imposes the constraint on the constant 
term in (2.12). C. Case 3: Data contain nonzero drift terms, and statistics are calcu- 
lated with explanatory constant terms in regressions. 
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cointegration is weak. Figure 2 shows the power results for the Wo, 1 (0, 'y) 
test for a variety of values of -y = (-yj 1); also plotted are the power results 
for W0, 1 (0,0). Results are presented for the nontrending data Cases 1 and 
2; results for Case 3 will be discussed shortly. It is apparent from Figure 2 
that for values of y I reasonably close to the true value of 0, the WO1 (0, -y) 
test continues to dominate the W0, 1 (0,0) test. For example, for the entire 
range of values of c considered, the WO,1 (0, y) test dominates the Wo, 1 test 
for -yl < 0.1. On the other hand, for larger values of yl, the W0,1 (0,0) test 
dominates for large values of c, in line with the results for the fixed alter- 
native already described. 
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FIGURE 2. Local asymptotic power: Incorrectly specified cointegrating vector (-y, 1). 
Panels plot local power curves for a two-variable system. Curves labeled W0,1 (0, Uidk) 
show the power of the test that imposes the true cointegrating vector (0, 1). Curves 
labeled W0,1 (0,0) show the power of the test that does not use this information. 
Dotted curves show the power of the test that imposes an incorrect cointegrating 
vector (-y, 1) for particular values of 'y. A. Case 1: Data contain zero drift terms, and 
statistics are calculated without inclusion of explanatory constant terms. B. Case 2: 
Data contain zero drift terms, and statistics are calculated with explanatory constant 
terms in regressions. 
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The results are quite different in Case 3. These results are not shown 
because the rejection probability for the test constructed from incorrect val- 
ues of y I for the WO,1 (O,'y) test are very small for all values of c. The rea- 
son for this can be seen from the limiting representation for Wo,I (0, 'y) in 
Case 3 that was already given. When 'YI *0 the WO,1 (0, y) statistic converges 
to (sy dB' )' (fJ (s' )2 )-1 (I dB' ), which has a x2 distribution. From Table 1, 
the 5Gb critical value for the WH0,I (0, 'y) test is 10.18, so that the correspond- 
ing rejection probability for the WO,1 (0, 'y) test using the incorrect value of 
ey is P(X2 > 10.18) = 0.6Gbo. 

Arguably, these results for Case 3 have little relevance. After all, when 
01 * 0, 'y'Yt will be trending when 'Yi * 0. This behavior would be obvious 
in a large sample, and so the hypothesis that 'Yt is I(0) could easily be dis- 
missed. This suggests that the comparison should be made, for example, with 
01 or y I local to 0, say 01 = co,/I 12 or 'YI = cYI/T1/2. Because these power 
functions depend critically on the assumed values of the constant co. and 
c-,, and because reasonable values of these parameters will differ from ap- 
plication to application, we do not report these functions. Instead, we carry 
out an experiment for a fixed sample size and Gaussian errors, using values 
for the parameters in (3.2a) and (3.2b) and values of 'yl that are relevant for 
a typical application: the analysis of postwar U.S. quarterly data on income 
and consumption. Letting Yl,t denote the logarithm of per capita consump- 
tion and Y2,t denote the logarithm of the consumption/income ratio, then 
0l = 0.004, a1 = 0.006, a2 = 0.01 1, cor(1e tE2,t) = 0.21, and T = 175.5 In Fig- 
ure 3, results are shown for values of y I ranging from 0 to 0.10. For com- 
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FIGURE 3. Power in the income-consumption system: Incorrectly specified coin- 
tegrating vector (y, 1). Panel plots local power curves for a two-variable system with 
parameters chosen to match the postwar U.S. quarterly data on income and consump- 
tion. Notation on curves matches that of Figure 2. See notes for Figure 2 for clarifi- 
cation. 
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parison with previous graphs, 62 is written as -c/T, and the power is plotted 
against c. For this example, the Wo,1 (0, -y) dominates the WO,1 (0,0) statistic 
for all values of c considered when the error in the postulated cointegrating 
vector is 5%Wo or less. 

When there is only one cointegrating vector under the alternative, simple 
univariate tests provide an alternative to the likelihood-based tests. Thus, if 
the cointegrating vector is assumed to be known, then the error correction 
term a 'yt can be formed and cointegration tested by employing a standard 
unit root test. The final task of this section is to compare the VECM likelihood- 
based test to standard univariate tests. 

There are three distinct differences between the multivariate tests consid- 
ered in this paper and standard univariate unit root tests. These are easily dis- 
cussed in terms of the bivariate example summarized in (3.1) and (3.2). First, 
univariate tests concentrate on equation (3.2b) and test the simple null, 62 = 

0. Multivariate tests consider the whole system (3.1) and test the composite 
null, 61 = 62 = 0. This has both positive and negative effects: because 61 = 
0 (from (3.2a)), the multivariate tests lose power through an extra degree of 
freedom. In this sense, the univariate test is more powerful because it is 
focused in the right direction. On the other hand, the multivariate tests utilize 
any covariance between el, and 62,t to increase test power. This potential 
covariance is ignored in the univariate tests. The second difference between 
the univariate and multivariate tests is that the univariate tests typically use 
a one-sided alternative (62 < 0), whereas the multivariate tests consider two- 
sided alternatives. The third major difference is the conditioning set used to 
estimate 62 in (3.2b). In general, lagged first differences enter equation (3.1), 
so that both the univariate and multivariate tests must be constructed from 
regressions "augmented" with lags of the variables. The multivariate tests 
include lagged values of Ay1,, and AY2,t in the regression; univariate pro- 
cedures, such as augmented Dickey-Fuller regression, include only lags of 
AY2,t. Thus, when lags of Ayl,t help predict AY2,1, the error term in the 
multivariate regression will have a smaller variance than the error term in the 
univariate regression. When Ayl,t and AY2,t are I(0), as assumed here, this 
leads to a more efficient estimator of 62 and a more powerful test. (Of 
course, this final point has force only when it is known that yi,t and AY2,t 
are I(0).) 

This last point is the subject of recent papers by Kremers, Ericsson, and 
Dolado (1992) and Hansen (1993). These papers carefully document the 
power gains associated with augmenting standard Dickey-Fuller regressions 
with additional I(0) regressors and allow us to focus instead on the poten- 
tial power gains and losses associated with the first two differences in the 
univariate and multivariate procedures. Specifically, Figure 4 compares the 
power of the univariate and multivariate tests using the same design discussed 
earlier, but now for various values of p = cor(Cl,tE2,t). All statistics are 
computed using demeaned values of the data. Two results stand out from 
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the figure. First, the power functions of the one-sided Dickey-Fuller t-test 
and the two-sided test based on the squared t-statistic are nearly identical. 
This is a reflection of the skewed distribution of the Dickey-Fuller t-statistic. 
Thus, the two-sided nature of the W statistics has little impact on the power 
relative to the one-sided univariate test. Second, the relative performance of 
the W(O, a) statistic depends critically on the value of p2, the squared cor- 
relation between e,t and E2,t. When p2 = 0, the power loss in the W(0, a) 
statistic relative to the univariate test corresponds to a sample size reduction 
of 10o at 5007o power. This is the loss of power associated with the extra 
degree of freedom in the multivariate test. However, the power gains from 
exploiting nonzero values for p are large. For example, when P2 = 0.10, the 
multivariate and univariate tests have essentially identical power. For larger 
values of p2, the multivariate dominate the univariate tests. For example, 
when p2 = 0.50, the power gain corresponds to a sample size increase of 
over 600o at 50!7 power. The reason for this power gain follows from stan- 
dard seemingly unrelated regression logic: nonzero values of p2 essentially 
allow the multivariate procedure to partial out part of the error term in (3.2b) 
and increase the power of the test. 

Of course, the results shown in Figure 4 apply to a design with one co- 
integrating vector in a bivariate system. In a higher dimensional system with 
only one cointegrating vector, the power of the multivariate test will fall 
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FIGURE 4. Local asymptotic power. Panel plots local power curves for a two- 
variable system where the covariance between the error terms is allowed to be dif- 
ferent from zero. Solid curves labeled DF and DF2 show the power of one- and two- 
sided Dickey-FuIler univariate tests for a unit root. The solid curve labeled p2 = 0 
shows the power of the Wald test imposing the correct cointegrating vector when the 
(squared) correlation between the error terms is zero. Dotted curves show the power 
of the Wald test for different nonzero levels of the squared correlation in the error 
terms. 
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because of the extra degrees of freedom. Univariate tests could still be used 
in this case, but these tests become difficult to use and interpret when there 
are multiple cointegrating vectors. 

4. STABILITY OF THE FORWARD-SPOT 
FOREIGN EXCHANGE PREMIUM 

In this section, we examine forward and spot exchange rates, focusing on 
whether the forward-spot premium, defined as the forward exchange rate 
minus the spot exchange rate (in logarithms), is I(O). The data come from 
Citicorp Database Services, are sampled weekly for the period January 1975 
through December 1989 (for a total of 778 observations), and are adjusted 
for transactions costs induced by bid-ask spreads and for the 2-day/nonholi- 
day delivery lag for spot market exchange orders, as described in Bekaert 
and Hodrick (1993).6 The forward-spot premia for the British pound, Swiss 
franc, German mark, and Japanese yen, the currencies used in our analysis, 
are shown in Figure 5. 

The tests for cointegration are performed on bivariate systems of forward 
and spot rates in levels, currency by currency. In each case, the number of 
lagged first differences in the VECM was determined by step-down testing, 
beginning with a lag length of 18 and using a 5 Wo test for each lag length (for 
an analysis of step-down testing in the context of testing for unit roots, see 
Ng and Perron, 1993). Results for testing for cointegration between forward 
and spot rates are presented in Table 2. For each currency, we report the test 
statistic for the case where we impose a = ((1 -1)' (denoted by WO I (0, taak)), 
the test statistic for the case where u is unspecified (denoted by WO I (0,0)), 
the cointegrating vector estimated in this case (denoted by &'a"), and the 
ADF statistic calculated from the forward premium. All statistics are re- 
ported for the optimal lag length chosen via the step-down procedure. Con- 

TABLE 2. Tests for cointegration between spot and forward exchange rates 
(weekly data, January 1975 to December 1989) 

Currency W0,1 (0, eak) WM1 (0,0) ttau ADF 

British pound 10.95 (0.04) 10.97 (0.21) [1 - 1.001 (0.004)] -3.12 (0.03) 
Swiss franc 12.73 (0.02) 13.67 (0.08) [1 - 0.998 (0.003)] -3.33 (0.02) 
German mark 23.38 (<0.01) 25.00 (<0.01) [1 - 0.999 (0.002)] -3.58 (<0.01) 
Japanese yen 15.00 (<0.01) 15.02 (0.05) [1 - 1.001 (0.003)] -2.99 (0.04) 

Note: The statistics W0,1 (0, oak) were calculated using uak = (1 -1)'. The numbers in parentheses next to the 
test statistics are p-values. The estimated cointegrating vector &aU is normalized as (1 t), and the numbers in 
parentheses are the standard errors for 3 computed under the maintained hypothesis that the data are 
cointegrated. 
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stant terms were included in all regressions, and so the p-values for the 
Wo0 (0, a,,) statistic are from the Case (3) asymptotic null distribution 
(equivalently Case (2), because a, = 0). Because nominal exchange rates 
exhibit some trending behavior over the sample period, the p-values 
for the WO I (0,0) statistic are reported from the Case (3) asymptotic null 
distribution. 

Looking first at the Wo0,I (0, a,k) column, the null of no cointegration is 
rejected for all currencies at the 5 % level. The Wo, (0,0) statistics, which 
can be interpreted as WO I (0, ae) maximized over all values of a!, differ little 
from the Wo I (0, oak) statistics. Their p-values are much greater, however, 
because their null distribution must account for the fact that they are maxi- 
mized versions of WO I (0, Q,ak). The next column shows why the two statis- 
tics are so similar: the estimated values of the cointegrating vector are equal 
to (1 -1), out to two decimal places.7 The final column shows the ADF test 
statistic applied directly to the forward-spot premium. Like the Wo, 1 (0, a!ak) 

statistic, the ADF tests reject the null at the 5% level for all of the curren- 
cies. This application clearly shows the power advantage of testing for co- 
integration using a prespecified value of the cointegrating vector. Using the 
WO I (0,0) statistic, the null of no cointegration is rejected at the 5Wo level 
for only two of the four currencies. 

5. CONCLUDING REMARKS 

In this paper, we have generalized VECM-based tests for cointegration to 
allow for known cointegrating vectors under both the null and alternative 
hypotheses. The results presented in Section 3 suggest that the power gains 
associated with these new methods can be substantial. These power gains 
were evident in the tests for cointegration involving forward and spot ex- 
change rates. Cointegration was found in all currencies using tests that im- 
posed a cointegrating vector of (1 -1), but the null of cointegration was 
rejected in only half of the cases when this information was not used. Yet, 
in these bivariate exchange rate models, the univariate ADF test applied to 
the forward premium (F, - S,) yielded roughly the same inference as the 
multivariate VECM-based tests that imposed the cointegrating vector. Argu- 
ably, a more interesting application of the new procedures will be in larger 
systems with some known and some unknown cointegrating vectors. As 
argued in Section 3, the power trade-offs in the multivariate and univariate 
tests for cointegration are more interesting in higher dimensional systems. 

The tests developed here rely on simple methods for eliminating trends in 
the data -incorporating unrestricted constants in the VECM. In the unit root 
context, the work by Elliott et al. (1995) suggests that large power gains can 
be achieved using alternative detrending methods. Hence, one extension of 
the current research will be a thorough investigation of alternative methods 
of detrending and their effects on tests for cointegration. 
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NO TES 

1. Formally, the restriction rank (6'aa) = ra should be added to the alternative. Because this 
constraint is satisfied almost surely by the estimators under the alternative, it can be ignored 
when constructing the likelihood ratio test statistics. 

2. The formulation used here is not as general as that used in Johansen (1992a), who consid- 
ers a model of the form AYt = fi + fl t + II Yt- + ZpI 4,jZYY_j + (,. Johansen's formulation 
allows for the possibility of quadratic trends in Yt, which are ruled out in our formulation of 
d,. For more discussion, see Johansen (1992a). 

3. There are many repeated entries in Table 1. For example, as already noted, when rau = 

0, the Case (2) and Case (3) critical values are identical. Furthermore, within each case, the crit- 
ical values are the same for all combinations of rak and rau with rak + rau = n - r0U. In this sit- 
uation when r,, = 0, these hypotheses all correspond to Ho: LI = 0 in equation (2.2). There are 
a number of other examples of identical critical values that are not listed here. 

4. These power curves were computed using 10,000 replications and T 1,000. 
5. These parameter values were calculated using consumption and output from the Citibase 

Database Services, spanning the quarters 1947:1 through 1990:4, and are in constant (1987) dol- 
lar, per capita terms. The consumption series is the sum of consumption expenditures on non- 
durables and services. The output series corresponds to gross, private sector, nonresidential, and 
domestic product and is constructed as gross domestic product minus farm, nonfarm housing, 
and government production. 

6. We thank Robert Hodrick for making the data available to us. 
7. Evans and Lewis (1992) using monthly data over the 1975-1989 period also found esti- 

mates of cointegrating vectors very close to (1 -1). While their estimated standard errors sug- 
gest that the cointegrating vectors may be different from (I -1), Evans and Lewis argued that 
this arises from large outliers or "regime shifts" that are evident in the data (see Figure 5). Recent 
work on robust estimation of cointegrating vectors reported in Phillips (1993) suggests poten- 
tial efficiency gains for data sets such as the one examined here. Further work is required to 
determine how the presence of outliers affects the cointegration tests, discussed here. 
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APPENDIX 

Proof of Theorem 1. To prove the theorem, it is useful to introduce two alterna- 
tive representations for the model. The first is a triangular simultaneous equations 
model used by Park (1990); the second is Phillips's (1991) triangular moving average 
representation. The first representation is useful because it allows the test statistic to 
be written in a particularly simple form; the second representation is useful because 
it neatly separates the regressors into I(O) and 1(1) components. 

We begin by defining some additional notation. First, partition Y, as Y,- 
(Y, t Y2, Y',t Y4,)', where Y1,, is r,, x 1, Y2,, is rOk X 1, Y3, is rak x 1, and Y4, t 
is (n - rou - rOk - rak) x 1. Because the cointegration test statistic is invariant to 
nonsingular transformations on Yt, we set aeOk = [0 Irok 0 0]' and o!ak = [0 0 Irak 0] a 

where these matrices are partitioned conformably with Y,. Thus, ca' = Y2, and 
O!akYt = Y3,t. Without loss of generality, we write a', = [Irou W2 ?3 0W4] and ot, 
[0 0 0 &I ], which ensures that the columns of a = [ao ? ak au] are linearly 
independent. Finally, we assume that the true (but unknown) values of 2, w3, and 
c4 are 0. These normalizations imply that u1 = (Y',t Y2,)' denotes the 1(0) compo- 
nents of Y, and v, = (Y3, Y4,t)' denotes the I(1), noncointegrated components. 

Using this notation, the VECM in equation (2.3) can be reparameterized as the 
simultaneous equations models 

AYI,t = 06Yt-, + olzt + Ei,t, (A.1) 

AQt = 6a(Hvti) ?+ y'St + e,, (A.2) 

where Qt = (Y2, t Y', t Y4, t)', Si = (A Y t Y2,t, Zt)', and 

Irak ? 

These equations follow from writing the first rou equations in (2.3) as 

=,t =1ouU0'uYt-1 + 1,ok,Y2,t-I + 31,akY3,t-I + a1,au(&t Y4,t-i) + AI Zt + EI,t 

(A.3) 
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and the last (n - r0,) equations as 

AQ, = 6Q,O0U uyt-1 + 6Q,okY2,t-I + 6Q,aky3,t-1 + 6Q,au(aauY4,t-l) + IQZt + EQ,t. 

(A.4) 

In equation (A.1), the term 0'Yt-I captures the effect of all of the error correction 
terms on AY1,,. Because W2, ?3, and 04 are unknown, 0 is unrestricted. To obtain 
(A.2), equation (A.3) is solved for c4,uYt- as a function of AY1,,, the other error 
correction terms, Zt, and el,t; this expression is then substituted into (A.4). Thus, for 
example, et = eQ,, - 

6Q,Ou6 1luel,t in (A.2). In terms of reparameterized models 
(A. 1) and (A.2), the only constraints on the parameters are those imposed by the null 
hypothesis: Ho: ga = 0. 

Equations (A. 1) and (A.2) are useful because, for given &au, the parameters in 
(A.2) can be efficiently estimated by 2SLS using Ct = (u I, v,_I, Zt)' as instruments. 
Thus, letting Q = [Q, Q2 ... QT], V-1 = [VO VI ..e VT-1]', S = [SI S2 ... ST], 
C= [ Cl C2* CT]', e = [el e2 * eT]', S = C(C'C)-1 C'S, andMS = I- S(S'SY1S', 
the Wald statistic for testing Ho: ba = 0 using a fixed &au is 

W(&eau= [vec(AQ'MSV-1 H')]' [(HV', MSV-1 H')-1 09 E-1 ] [vec(AQ'MVL1 H')] 

- [vec(e'MsV_l H')]' [(HVI'1 MsV_l H')-1 0) Se I] [vec(e'MV_l H')], 

(A.5) 

where the second equality holds under Ho. 
The asymptotic distribution of SUP&a,W(&a0) depends on the behavior of the 

regressors and instruments, which is readily deduced from the triangular moving aver- 
age representation of the model 

ut = Du(L)at + yu, (A.6) 

Avv = Dv(L)at + Av, (A.7) 

where at = E-U2(t, where Au = 0 in Case 1 and ,Av = 0 in Case 1 and Case 2. Because 
the variables are generated by a finite order VAR, the matrix coefficients in the lag 
polynomials Du (L) and Dv (L) eventually decay at an exponential rate. Because v, 
is I(1) and not cointegrated, D,(1) has full row rank. Furthermore, the error term 
et in (A.2) can be written as et = Dat, and Dv (1)D' has full row rank because only 
the first differences of Y1,1 enter (A.2). 

The theorem now follows from applying standard results from the analysis of inte- 
grated regressors to the components W(&a0) (see, e.g., Chan and Wei, 1988; Park 
and Phillips, 1988; Phillips, 1988; Sims, Stock, and Watson, 1990; Tsay and Tiao, 
1990; or the comprehensive summary in Phillips and Solo, 1992). We now consider 
the theorem's three cases in turn. 

Case 1. In this case, puu = 0 and 4, = 0 in (A.6) and (A.7), and it is readily veri- 
fied that 

T-2V1M?V1 = T2V' l V + op(1) (A.8.i) 

T-' V'1Mse = T-1 lVIe + op(l), (A.8.ii) 

plim(Se) = e-DD' (A.8.iii) 
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so that 

W(&a,) = [vec(T-'e'VV_IH')]'[(T-2HV', V., H')-' 0& (DD')-'] 

x [vec(T-1e'V IH')] + op(l). 

From the partitioned inverse formula, 

[vec(T'-e'V I H')]'[(T-2HV'l V1 H')-' 0 (DD')-'] [vec(T-e'V , H')] 

= [vec(T-1e'Vj,_,)]'[(T2 Vj1, V,_,)- 0 (DD')'] [vec(T'e'V,,,)] 

+ [vec(T-1e'MV V2,-1 &au)]' [(T2?uv&I Mv, V2,_ &1au) 0a (DD')'] 

x [vec(T-le'Mvi V2, -1 I au)] , (A.9) 

where VI,-, denotes the first rak columns of V,1, and V2,_. denotes the remaining 
n - - rOk - rak columns. Letting DI denote the first rak rows of Dv(1), 

[vec(T-1e' Vj,_ )]' [(T-2 V. _I V.,_ )' 09 (DD')- ] [vec(T-1e' V,_ )] 

=Trace[(DD')-/2(T-'e'V1, - I)(T-2 V', - V,,,I)-'(T' V, I e)(DD')-'12'] 

Trace [(DD )-/2 (DI fBdB'D') (DI fBB'D' (DI fBdB'F') 

x (DDI)112i] 

= (Trace (F dB Inrot) (F ) (Ff F dBinrou )] (A.10) 

where B(s) denotes an n x 1 standard Brownian motion process, F, (s) = BI,rak (S) 

(the first rak elements of B(s)), and the last equality denotes equality in distribution. 
As shown in equation (2.7), maximizing the second terms in (A.9) over all values 

of ceau yields 

Sup [vec(T'le'Mv v2t-,I au)]'[(T 2& ?,-2 MV V2,i_ a!MuV (0 (DD')'] 

X [vec (vT- I e'Mv V2,,- &au )] 

rau 

= >Xi(R) (A.11) 

where 

R = (DD)12[T- e'Mv, V2,,] [T2 V V, MV, V2,- ] -[T-e'Mv V2,_ ](DD)1/2, 

(A.12) 

Using notation borrowed from Phillips and Hansen (1990), R is readily seen to con- 
verge to 

R > (fF2dBn-rou)(fF2F2) (F2dB nrou ) (A.13) 

where F2(s) = F3(s) - yFI (s), with y = [JF3F;] [fF IF']' where F3(s) = 
Brak+l,n-ro(S). Case (1) of the theorem follows from (A.10) and (A.13). 
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Case 2. In Case (2), t,u ? 0 but i,u = 0. Letting V_1 = T-' Z v,-,, the proof fol- 
lows as in Case (1) with (VI - Vl) replacing VJ I in (A.8)-(A.12) and 3(s) replac- 
ing B(s) in limiting representations (A. 10) and (A. 13). 

Case 3. In Case (3), both /A and a, * 0. However, because E(cakY,) = 0 is as- 
sumed in Case 3, the first rak elements of A, = 0. Thus, the first term of the statis- 
tic (the analog of (A. 10)) is identical to the corresponding term in Case 2. The last 
n - ro0 - rOk - rak elements of v, contain a linear trend, and so, appropriately trans- 
formed, this set of regressors behaves like a single time trend and n - ro0 - rOk - 

rak - 1 martingale components. With this modification, the result for Case (3) fol- 
lows as in Case (2). 
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