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We examine the quality of recently developed asymptotic approximations to the sampling 
distributions of various statistics in levels regressions when the regressors have unit roots. The 
calculations were performed using a bivariate probability model typical of some considered in 
applied macroeconomic research: the parameters of the model were obtained by estimating a 
VAR using postwar U.S. money and industrial production growth rates, resulting in pseudo-data 
that are I(1) with drifts. With 100 observations the asymptotic approximations are often found to 
be adequate; with 400 observations they are generally good. In addition, when the statistics have 
nonstandard distributions, both the asymptotic and exact distributions differ substantially from 
the usual normal or x2 distributions that would apply were the regressors stationary. 

1. Introduction 

There has been considerable theoretical progress towards understanding the 
asymptotic behavior of regression statistics when some or all of the variables 
are integrated. A central objective of this research is to provide guidance in 
approximating the sampling distributions of estimators and test statistics in 
data sets in which there are one or more unit roots in the multivariate 
representation of the series. But do these asymptotic approximations provide a 
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good guide to sampling distributions in sample sizes and probability models 
‘typical’ of those found in empirical macroeconomic research? Previous re- 
searchers have used Monte Carlo techniques to check the validity of asymp- 
totic approximations in related problems with moderate sample sizes; e.g., 
tests of univariate or multivariate unit roots [e.g., Dickey and Fuller (1979), 
Phillips and Ouliaris (1988), and Schwert (1987)] and least squares estimators 
of cointegrating vectors [e.g., Banerjee et al. (1986), Stock (1987)]. In many 
contexts, however, the question of interest is different, often reducing to the 
behavior of certain test statistics - such as F-tests of exclusion restrictions - in 
linear time series models. 

In this paper we examine the rate of convergence of the sampling distribu- 
tion to the asymptotic distribution using a Monte Carlo experiment involving 
two variables, both constructed to be integrated of order one. The major 
difficulty in designing such an experiment is determining a probability model 
to generate the data that is ‘realistic’: typical linear time series models 
encountered in applied research involve multiple variables and many lags, 
which in turn requires specifying many parameters in developing the experi- 
mental design. Our solution to this problem is to consider a particular linear 
probability model (or ‘data generation process’) that has received widespread 
attention in the macroeconomic literature: a bivariate vector autoregression 
(VAR) with money and output, estimated using U.S. postwar data.’ This 
model is estimated imposing the assumption that each series is integrated of 
order one, that the series are not cointegrated, that each series contains a 
nonzero drift, and that money does not enter the output equation. This final 
assumption permits the generation of the distribution of the Granger causality 
test statistic under the null hypothesis. 

We examine the asymptotic and Monte Carlo distributions of four statistics 
in a OLS regression of income on lags of income and money, one of which is 
the usual ‘Granger causality’ F-statistic testing the hypothesis that money does 
not enter the income equation. As is discussed below, three of these - includ- 
ing the Granger causality statistic - have nonstandard asymptotic distribu- 
tions. These statistics - one point estimate and three test statistics - are 
examined for two regressions: one in which the only deterministic term is a 
constant and a second in which a linear time trend is added as well.’ 

The details of the experimental design and a brief discussion of the relevant 
asymptotics are presented in section 2. The results are discussed in section 3, 
and we conclude with section 4. 

‘For recent reviews of the literature on the money-output relation, see Eichenbaum and 
Singleton (1986), Blanchard (1987), Christiano and Ljungqvist (1987), and Stock and Watson 
(1987). 

2These specifications are of interest for macroeconomic as well as econometric reasons: as 
Bemanke (1986) and Runkle (1987) point out, different macroeconomic conclusions can obtain 
when time is added as a regressor in similar levels specifications. 
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2. Experimental design 

2.1. The probability model and asymptotic behavior 

We adopt the probability model 

in which the first through the fifth lags of Ay, and Am, appear on the 
right-hand side. The parameters of (1) were estimated by OLS using 460 
observations on postwar U.S. monthly industrial production and Ml growth.3 
The resulting parameters are presented in the appendix. 

We study four statistics computed in two specifications of the output 
equation in the unconstrained levels VAR(6) implied by (1). In the first, the 
level of income is regressed against lagged income, lagged money, and a 
constant: 

Regression C: Regress y, on (1; Yr_1,Y,_2,...3 Yt-6; m~-l~mf-2~“.3 mt-6)’ 

Sims, Stock and Watson (1986) examine the asymptotic properties of OLS 
regressions when the data are generated by a probability model such as (1). 
U:ing their arguments, the estimated sum of the coefficients on lagged money 
[j?l,,,(l)] will have a nonstandard asymptotic distribution; so will the usual 
t-ratio produced by OLS regression packages testing the (correct) hypothesis 
that this sum is zero [call this tp,mclj]. The usual Granger-causality F-test [call 

this F(m,_l,..., m,_,)] will also have a nonstandard limiting distribution. 

However, a F-test of linear restrictions on any proper subset of the coefficients 
will have the usual asymptotic x2 distribution, since such restrictions can be 

3The entire industrial production (TF’) series and the Ml data since 1959 were taken from the 
Citibase data base. The pre-1959 Ml data are taken from Christian0 and Ljungqvist. The IP data 
were transformed by taking first differences of their logarithm [so that Ay, = A log( IP,)]. The 
transformation applied to Ml was somewhat more involved, since money growth appears to 
contain a linear time trend over this sample period [see Stock and Watson (1987)]. Accordingly, 
money growth was first detrended by taking the residuals of a regression (from 1948:l to 1985:12) 
of A log(MI,) against a constant and time. Since this series has mean zero by construction, the 
average postwar drift in money was restored to the data by adding the postwar average of 
A log( Ml,) to these residuals. These transformed data were used to estimate the constrained 
VAR(5) in (1) over 1948:7 to 1985:12, using earlier observations as initial values in the 
regressions. 
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rewritten as restrictions on mean zero, stationary variables. In particular, this 

will be true of the F-test of the hypothesis that the coefficients on all lags of 
money except the first are zero [call this F(m,_,,.. . . m,_,)]. We study the 
quality of the asymptotic approximation to the sampling distribution by 
considering these four statistics.4 

Because both variables contain nonzero drifts, y, is in effect ‘detrending’ m, 

in regression C. Since the resultant ‘detrended’ series is integrated, this 
detrending affects the asymptotic distribution of the first three statistics. 
Consequently, we also consider the quality of the approximation of the 
asymptotic distribution when a linear time trend is included as a regressor, in 
which case these three statistics will have different asymptotic distributions. 
This will be referred to as: 

Regression T: Regress yt on {l,t; .Yt_1,Y,-2,..., Y,--6; m,-,, mr-2>...2 m~-6). 

2.2. Numerical issues 

Evaluation of the asymptotic distributions. Sims, Stock and Watson (1986) 
provided explicit expressions for the weak limits of the three statistics with 
nonstandard distributions. These expressions - which are general enough to 
apply to the statistics from both regressions C and T - depend on certain 
functionals of Brownian motion over the unit interval and on the parameters 
of the VAR. In general, all the parameters of the VAR in (1) will enter into 

these expressions; we henceforth refer to the vector of these parameters as 8. 
We evaluate these asymptotic distributions numerically by first generating and 
storing sample path equivalents of these functionals, computed using driftless 
Gaussian random walks with 1000 observations. Given B (which is of course 
known in this Monte Carlo experiment), the percentiles of the asymptotic 
distributions are approximated by the percentiles of the empirical distribution 
constructed using 4000 draws of these previously computed functionals; the 
multiple draws of the random functionals need to be computed only once. The 
details of this procedure are discussed in Stock (1987) and Stock and Watson 

(1987). 
Evaluation of the sampling distributions. The Monte Carlo simulations 

involve generating n + 18 observations of A y, and Am, according to the 
Gaussian probability model (1) where n = 100, 200, and 400. The 18 ad- 
ditional observations were judged sufficient to provide a stationary initial 

4An alternative interpretation of the F( mI *, , m,_,)-statistic comes from recognizing that it 
is equivalent to the F-statistic that tests whether the growth rate of money belongs in the income 
equation. That is, rewriting the lagged money regressors to be WI-,. Am,~ ,,...,Am, -5, 
F(m,-,... ., mr_6) = F(Am,_, ,..., Am,__,). 
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distribution for a regression with n observations, given the low dependence 
evident in the parameters in the appendix. The pseudo-observations were 
cumulated and the levels regressions were run using n observations on the 
dependent variable; the previous six observations were used as initial condi- 
tions. 

All computations were done on a 16 MHz Compaq 80386/80387 desktop 
computer using the GAUSS programming language. The total computation 
time for the asymptotic distributions reported here was 2f minutes, exclusive 
of the one-time computation of the multiple draws of the random functionals 
of Brownian motion. The Monte Carlo simulations (4000 draws) required 25 
hours. 

3. Results 

The finite sample and asymptotic distributions of the four statistics com- 
puted in regression C are presented in figs. 1-4; the corresponding distribu- 
tions for regression T are shown in figs. 5-8. Selected percentiles of the 
asymptotic distributions are tabulated in table 1. For purposes of comparison, 
the ‘usual’ asymptotic distributions (that would apply were the regressors all 
stationary) are also presented for the tsY,(ri and F(m,_,, . . . , m,_,)-statistics. 

Focusing first on th! results for regression C, inspection of figs. l-4 and 
table 1 indicate that n/3,,,(1) is sharply skewed and has a nonzero mean, both 
in finite samples and in the limit. While this nonzero mean seems substantial, 
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Fig. 1. Distributions for regression C: n&,,(1). 



494 L. Ljungqvist, Multivariate ‘unit root’ distributions 
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Legend: 
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Fig. 2. Distributions for regression C: fpvmclj. 

Fig. 3. Distributions for regression C: Fv_,(m,_l,. ., m,-6). 
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Fig. 4. Distributions for regression C: <v,m(m,_2,. ., WI-~) 
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Fig. 5. Distributions for regression T: n/$,,(l). 
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Fig. 6. Distributions for regression T: ta,,cl,. 
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Fig. 7. Distributions for regression T: Fv,,, (m,_ 1,. , m,_ 6) 
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.6 

Legend: 
---__ n-100 

- - n-200 -- 
-- -n-400 
-- 

Fig. 8. Distributions for regression T: c,,,, ( M, _ 2,. 1 m, _ 6). 

since 8,,(l) converges at the rate n the bias is in fact small; for example, with 
n = 100, the bias implied by the asymptotic distribution is 0.0362. Comparing 
the finite sample and limiting distributions suggests that the convergence of 
n&,(l) is rather slow, with substantial differences in the left tail and center 

even with n = 400. The fade- statistic inherits the positive mean of 8,,(l). 

However, in contrast to p,,,(l), the convergence of the finite sample distribu- 
tions of ta (i) to their limit is sufficiently fast that the asymptotic and n = 400 
distributio& are very close. Inspection of fig. 3 suggests that, like t, c1j, the 
distribution of the F(m,_,, . . . , mr_6 )-statistic differs substantially f&m the 
‘usual’ x26/6 distribution. Again, the convergence of the finite sample distribu- 
tions to the asymptotic limit is fast, in the sense that the n = 400 and 
asymptotic distributions are essentially the same. Finally, the finite sample 
distributions of the F( m,_2,. . . , m,_,)-statistic are quite close to their x:/5 
asymptotic limit. 

Including time as a regressor evidently makes a substantial difference in the 
distributions of some of these statistics. On the one hand, the asymptotic 
distributions seem to provide good approximations for n = 400 (and in some 
cases n = 200); on the other hand, the shapes of the nonstandard asymptotic 
distributions differ sharply between regressions C and T. The distributions of 

&??(l) and t&_(l) from regression T both have a mean close to zero and 
exhibit substantially less skewness than in regression C. It is worth noting, 
however, that the limiting distribution of tS,mclj still has substantially heavier 
tails than the standard normal limit. 
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Table 2 

Monte Carlo rejection probabilities for tests of level a based on the correct asymptotic criticai 
values.” 

n 1% 5% 10% 25% 50% 

‘4. 'P,,Cl) 
C 100 0.01 0.04 0.07 0.17 0.35 

200 0.01 0.04 0.08 0.20 0.42 
400 0.01 0.04 0.09 0.23 0.47 

T 100 0.02 0.08 0.14 0.29 0.55 
200 0.02 0.07 0.13 0.28 0.52 
400 0.01 0.06 0.11 0.26 0.50 

B. Fv,m(M,_l,...,m,-6) 

c 100 0.02 0.05 0.09 0.21 0.41 
200 0.01 0.05 0.10 0.22 0.43 
400 0.01 0.05 0.09 0.23 0.48 

T 100 0.02 0.08 0.14 0.30 0.54 
200 0.02 0.07 0.12 0.29 0.52 
400 0.01 0.06 0.11 0.26 0.51 

c. f3”.m(m,_2r..., m,-6) 

C 100 0.02 0.07 0.12 0.27 0.52 
200 0.01 0.06 0.11 0.26 0.51 
400 0.01 0.06 0.11 0.26 0.51 

T 100 0.02 0.07 0.14 0.29 0.55 
200 0.02 0.07 0.12 0.27 0.51 
400 0.02 0.06 0.11 0.26 0.51 

“The t-test is two-sided. Based on 4000 Monte Carlo simulations using data generated from 
model (1) as described in the text. The correct asymptotic percentiles are taken from table 1 (for 
regression C and regression T); nonstandard distribution theory was used to obtain the correct 
critical values for the tests in panels A and B. 

A basic question motivating this investigation is whether tests calculated 
using the asymptotic critical values have the desired sizes in finite samples, To 
this end, the sizes of tests (based on the correct critical values) using ta,,Cr,, 
F(m,_t,..., m,-6) and F(m,_2,..., m1_6) are given in table 2. These results 
suggest that for small samples the asymptotic approximation can be rather 
unsatisfactory; for example, with n = 100, a two-sided t-test based on the 
asymptotic 25% critical value would have a size of 17%.5 However, in most 
cases the size is quite close to the level for n = 200; this is true in all cases for 
n = 400. 

‘The two-sided t-tests were performed using the square of the statistic and the corresponding 
asymptotic critical value. 
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Table 3 

Monte Carlo rejection probabilities for tests of level a based on the incorrect (Gaussian and x’ ) 
asymptotic critical values.’ 

a 

n 1% 5% 10% 25% 50% 
_____~ __ _ 

A. ‘P,,,Cl, 

C 100 0.26 0.55 0.69 0.85 1.00 
200 0.31 0.62 0.75 0.90 1.00 
400 0.36 0.70 0.83 0.95 1.00 

T 100 0.12 0.29 0.42 0.68 1.00 
200 0.11 0.27 0.39 0.66 1.00 
400 0.09 0.26 0.38 0.66 1.00 

~__ 

B. ~.,,,(fi~,_L >..., fil,_,) 

c 100 0.08 0.21 0.32 0.54 0.75 
200 0.08 0.23 0.35 0.57 0.80 
400 0.08 0.24 0.37 0.62 0.85 

T 100 0.04 0.13 0.20 0.37 0.62 
200 0.03 0.11 0.19 0.37 0.62 
400 0.03 0.10 0.16 0.35 0.60 

-___- 

“The t-test is two-sided. Based on 4000 Monte Carlo simulations using data generated from 
model (1). 95% confidence intervals for these rejection probabilities range from k 0.003 for the 1% 
level tests to iO.014 for the 50% level tests. The (incorrect) critical values used to perform the 
tests are the applicable values given in parentheses in table 1. 

Finally, it is of some interest to consider what mistakes might be made were 
the ‘usual’ Gaussian critical values used to perform the tests. To this end, the 

sizes of tests calculated using the tp,“,C1j- and F(m,_,, . , . , m,_,)-statistics, 
based on the incorrect standard critical values, are presented in table 3. In 
almost all cases the size is substantially greater than the level; this is particu- 
larly true for tests based on regression C and on the tg,,,cl,-statistic. 

4. Conclusions 

It is important to mention two cautionary notes about interpreting these 
results too broadly. First, this analysis has focused ona single probability 
model. While this made it possible to proceed with the analysis, and while this 
probability model may be typical of models studied when analyzing the 
relation between money and income, there is no reason that the same quantita- 
tive conclusions would obtain were we to analyze a different model. Second, 
we have considered a model that is linear, with known autoregressive order, 
and - most importantly - in which there are exact unit roots. It would be 
surprising indeed were these assumptions precisely to describe any extant 
macroeconomic time series, although they might be satisfactory approxima- 
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tions in the context of certain linear prediction problems with stochastically 
trending variables. Thus this investigation has proceeded on grounds most 
favorable to the asymptotic ‘unit roots’ distribution theory. In this light, 
satisfactory performance of the asymptotic theory in this experiment is but a 
minimal condition for thinking that it will provide a satisfactory approxima- 
tion in practice. 

Viewed within the context of this exercise, however, our results suggest four 
general conclusions. First, the nonstandard asymptotic distributions of certain 
estimators can be sharply skewed and can have a nonzero mean. Second, the 
rate of convergence of the finite sample distributions to their nonstandard 
limits is fast, in the practical sense that the sizes of tests performed using series 
of lengths typically found in empirical macroeconomic research are close to 
their asymptotic level. Third, substantial errors in inference can be made if the 
‘usual’ critical values predicated on the Gaussian theory of stationary regres- 
sors are used in implementing t- and F-tests that have nonstandard limits. 
These three observations are consistent with earlier results both for univariate 
‘unit roots’ distributions and for the distributions of estimators of cointegrat- 
ing vectors. Finally, an additional lesson suggested by these results is that the 

nonstandard asymptotic (and finite sample) distributions can be very sensitive 
to seemingly minor changes in the specification, such as including a time 
trend. 

Appendix 

Table 4 

Coefficients of probability model (l).a 

Regressor A y equation 

Constant 0.0015 

AY,-, 0.3919 
AY,+, 0.0822 
AY,-, 0.0469 
AY,-, 0.0386 
AY,-s - 0.0679 

Am,_r O.OOQO 
Amr-2 0.0000 
Am,-, 0.0000 
Am,-4 0.0000 
Am,+5 0.0000 

Am equation 

0.0026 

0.0449 
- 0.0104 
- 0.0031 
- 0.0258 

0.0068 

0.2486 
- 0.0407 

0.1557 
- 0.2040 

0.1325 

“These coefficients are the point estimates obtained by OLS using monthly industrial produc- 
tion growth and nominal Ml growth (detrended) as described in the text. The estimation period 
was 1948:7 to 1985:12. with earlier observations used for initial values. 
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