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ABSTRACT
This paper uses forecast combination methods to forecast output growth in a
seven-country quarterly economic data set covering 1959–1999, with up to 
73 predictors per country. Although the forecasts based on individual 
predictors are unstable over time and across countries, and on average perform
worse than an autoregressive benchmark, the combination forecasts often
improve upon autoregressive forecasts. Despite the unstable performance of
the constituent forecasts, the most successful combination forecasts, like the
mean, are the least sensitive to the recent performance of the individual fore-
casts. While consistent with other evidence on the success of simple combina-
tion forecasts, this finding is difficult to explain using the theory of combination
forecasting in a stationary environment. Copyright © 2004 John Wiley &
Sons, Ltd.
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INTRODUCTION

Historically, time series forecasting of economic variables has focused on low-dimensional models
such as autoregressions, single-equation regressions using leading indicators as predictors, or vector
autoregressions with perhaps a half-dozen or fewer variables. These low-dimensional models poten-
tially omit information contained in the thousands of variables available to real-time economic fore-
casters. To forecast using many predictors, one needs to impose sufficient restrictions that the number
of estimated parameters is kept small. One way to impose such restrictions on high-dimensional
systems is to suppose that the variables have a dynamic factor structure, and recent research (e.g.
Stock and Watson, 1999a, 2002a; Forni et al., 2000, 2001) suggests that there are potential gains
from forecasting using high-dimensional dynamic factor models. There are, however, other ways to
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impose structure on high-dimensional forecasting models, and one such way is to apply the methods
of the forecast combining literature.1

This paper has two objectives. The first is to evaluate and compare the empirical performance of
various combination forecasts of the growth rate of real output using a data set which covers seven
OECD countries from 1959 to 1999 and, for each country, contains up to 73 recursively produced
forecasts based on individual predictors. In previous work with this data set (Stock and Watson,
2003), we found that the performance of the individual forecasts was unstable; whether a predictor
worked well depended on the current economic shocks and institutional and policy particulars. Sur-
prisingly, however, a preliminary investigation found that some simple combination forecasts—the
median and the trimmed mean of the panel of forecasts—were stable and reliably outperformed a
univariate autoregressive benchmark forecast. Here, we extend that analysis to consider more 
sophisticated combination forecasts. The theory of combination forecasting suggests that methods
that weight better-performing forecasts more heavily will perform better than simple combination
forecasts, and that further gains might be obtained by introducing time variation in the weights or
by discounting observations in the distant past. We find that most of the combination forecasts have
lower mean squared forecast errors (MSFEs) than the benchmark autoregression. The combination
methods with the lowest MSFEs are, intriguingly, the simplest, either with equal weights (the mean)
or with weights that are very nearly equal and change little over time. The simple combination fore-
casts perform stably over time and across countries—much more stably than the individual forecasts
constituting the panel.

The second objective of this paper is to compare combination forecasts to forecasts formed using
a dynamic factor model, where the factors are estimated (country by country) using a panel of pre-
dictor series. We find that the combination forecasts generally outperform the forecasts produced
using dynamic factor methods.

The data are described in the next section, and the combination forecast methods are described in
the third section. Empirical results are presented in the fourth section, and a final section concludes.

THE SEVEN-COUNTRY DATA SET AND INDIVIDUAL FORECASTS

This section briefly summarizes the seven-country data set and the panel of forecasts constructed
using the individual predictors in that data set.

The data
The seven-country data set is the same as used in Stock and Watson (2003). The data consist of up
to 43 time series for each of seven developed economies (Canada, France, Germany, Italy, Japan,
the UK and the USA) over 1959–1999 (some series are available only for a shorter period). The 43
series consist of various asset prices (including returns, interest rates and spreads); selected meas-
ures of real economic activity; wages and prices; and measures of the money stock. The list of series
is given in Table Ia. All the analysis in this paper is done at quarterly frequency.

The data were subjected to five possible transformations, done in the following order. First, in a
few cases the series contained a large outlier, such as spikes associated with strikes, and these 

1 For introductions to forecast combination methods and surveys of the large literature, see Diebold and Lopez (1996),
Newbold and Harvey (2002) and Hendry and Clements (2002). Clemen (1989) provides a comprehensive survey of the lit-
erature through the late 1980s, and Makridakis and Hibon (2000) report recent results on combination forecasts.
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Table Ia. Series in the seven-country data set

Series label Sampling frequency Description

Asset prices
rovnght M Interest Rate: overnight
rtbill M Interest Rate: short term Gov. Bills
rbnds M Interest Rate: short term Gov. Bonds
rbndm M Interest Rate: medium term Gov. Bonds
rbndl M Interest Rate: long term Gov. Bonds
rrovnght Q Real overnight rate: rovnght - CPI Inflation
rrtbill Q Real short term bill rate: rtbill - CPI Inflation
rrbnds Q Real short term bond rate: rtbnds - CPI Inflation
rrbndm Q Real med. term bond rate: rtbndm - CPI Inflation
rrbndl Q Real long term bond rate: rtbndl - CPI Inflation
rspread M Term Spread: rbndl - rovnght
exrate M Nominal Exchange Rate
rexrate M Real Exchange Rate (exrate ¥ relative CPIs)
stockp M Stock Price Index
rstockp M Real Stock Price Index: stockp/CPI
divpr Q Dividend Price Index
house Q House Price Index
rhouse Q Real House Price Index
gold M Gold Prices
rgold M Real Gold Prices
silver M Silver Prices
rsilver M Real Silver Prices

Activity
rgdp M Real GDP
ip M Index of Industrial Production
capu M&Q Index of Capacity Utilization
emp M&Q Employment
unemp M&Q Unemployment Rate
pgdp Q GDP Deflator
cpi M Consumer Price Index
ppi M Producer Price Index

Wages, goods and commodity prices
earn M Wages
commod M Commodity Price Index
oil M Oil Prices
roil M Real Oil Prices
rcommod M Real Commodity Price Index

Money
m0 M Money: M0 or Monetary Base
m1 M Money: M1
m2 M Money: M2
m3 M Money: M3
rm0 M Real Money: M0
rm1 M Real Money: M1
rm2 M Real Money: M2
rm3 M Real Money: M3

Notes: M indicates that the original data are monthly, Q indicates that they are quarterly, M&Q indicates that monthly data
were available for some countries but quarterly data were available for others. All forecasts and regressions use quarterly
data, which were aggregated from monthly data by averaging (for CPI and IP) or by using the last monthly value (all other
series).
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outliers were replaced by interpolated values. Second, series that showed significant seasonal vari-
ation were seasonally adjusted using a linear approximation to X11. Third, when the data were avail-
able on a monthly basis, the data were aggregated to quarterly observations. Fourth, in some cases 
the data were transformed by taking logarithms. Fifth, the highly persistent or trending 
variables were differenced, second differenced, or computed as a ‘gap’, that is, a deviation from a
stochastic trend. The gaps here were estimated using a one-sided Hodrick–Prescott (1981) filter,
which maintains the temporal ordering of the series. For additional details, see Stock and Watson
(2003).

In many cases we used more than one version (transformation) of a given series, for example,
interest rates were used both in levels and in first differences. The series and transformations 
used in the full data set are listed by country in Table Ib. Counting all the constructed variables 
(like spreads) and different versions of the same variable that differ only in the transformation, 
the maximum number of series per country is 75 and the maximum number of predictors 
considered is 73 (75 minus the output measure being predicted and its associated output gap 
variable).

Some of the procedures considered in this paper require a forecasting track record to estimate
forecast combining weights. Because the full data set contains some series that are available for 
short subsamples, we therefore also use two balanced panel subsets of this full data set. The first,
the ‘forecast combining balanced panel’, includes between 27 and 66 series (and transformations)
per country; these are the subset of series that are available since at least 1963:I. The second bal-
anced panel, the ‘dynamic factor model (dfm) balanced panel’, is a subset of the first balanced panel,
where the series in the dfm balanced panel were chosen to be approximately integrated of order zero,
in keeping with the theoretical development of dynamic factor model forecasts in Stock and Watson
(2002b). This subset contains between 9 and 23 series per country. Table Ib specifies the series in
the two subsets.

Individual forecasts
The forecasts based on individual predictors are computed using h-step-ahead projections. 
Specifically, let Yt = DlnQt, where Qt is the level of output (either the level of real GDP or the 
Index of Industrial Production), and let Xt be a candidate predictor (e.g. the term spread). Let 
Yh

t+h denote output growth over the next h quarters, expressed at an annual rate, that is, let Yh
t+h =

(400/h)ln(Qt +h/Qt). The forecasts of Yh
t+h are made using the h-step-ahead regression model

(1)

where uh
t+h is an error term and b1(L) and b2(L) are lag polynomials. Forecasts are computed for 

h = 2, 4, 8-quarter horizons.
Model selection and coefficient estimation are done using pseudo out-of-sample methods. Specif-

ically, the coefficients in (1) are estimated recursively using OLS, so that the forecast of Yh
t+h made

at date t with estimated coefficients, h
t+h|t, is entirely a function of data for dates 1, . . . , t. Lag lengths

are determined recursively using the AIC with between one and four lags of Xt (we refer to Xt in (1)
as the first lag because it is lagged relative to Yh

t+h) and between zero and four lags of Yt.
Two univariate benchmark forecasts are used. The first is a multistep autoregressive (AR) fore-

cast, in which (1) is estimated recursively with no Xt predictor and the lag length is chosen recur-
sively by AIC (between zero and four). The second is a recursive random walk forecast, in which 

h
t+h|t = t, where t is the sample average of 400Ys, s = 1, . . . , t.m̂m̂Ŷ

Ŷ
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Table Ib. Series in full data set and balanced panel subsets

Series Transformation Country

Canada France Germany Italy Japan UK USA

rovnght level c c b c b c b
rtbill level b c c c c b
rbnds level c c b
rbndm level b b
rbndl level b b b b c b b
rovnght D c c a c a c a
rtbill D a c c c c a
rbnds D c c a
rbndm D a a
rbndl D a a a a c a a
rrovnght level c c b c b c b
rrtbill level b c c c c b
rrbnds level c c b
rrbndm level b b
rrbndl level b b b b c b b
rrovnght D c c b c b c b
rrtbill D b c c c c b
rrbnds D c c b
rrbndm D b b
rrbndl D b b b b c b b
rspread level c c a c c c a
exrate Dln c c c c c c c
rexrate Dln c c c c c c c
stockp Dln b b b b b b b
rstockp Dln a a a a a a a
divpr ln c c c c c c b
house Dln c c c c
rhouse ln c c c c
rhouse Dln c c c c
gold Dln b b b b b b b
gold D2ln b b b b b b b
rgold ln b b b b b b b
rgold Dln a a a a a a a
silver Dln c c c c c c c
silver D2ln c c c c c c c
rsilver ln c c c c c c c
rsilver Dln c c c c c c c
rgdp Dln a c a a a a a
rgdp gap b c b b b b b
ip Dln a a a a a a a
ip gap b b b b b b b
capu level b c c c c a
emp Dln a c a a a a
emp gap b c b b b b
unemp level b c b b b b b
unemp D a c c a a a a
unemp gap b c b b b b b
pgdp Dln b c b b b b b
pgdp D2ln a c a a a a a
cpi Dln b b b b b b b
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All the individual-predictor forecasts considered in this paper are linear projections. There is evi-
dence that combination forecasts that pool linear and nonlinear forecasts can outperform combina-
tion forecasts based solely on linear forecasts (e.g. Stock and Watson, 1999b; Blake and Kapetanios,
1999). Incorporating such nonlinear forecasts might improve upon the results reported here, but
doing so would go beyond the linear framework of the dynamic factor model forecasts with which
we wish to compare the combination forecasts.

Table Ib. Continued

Series Transformation Country

Canada France Germany Italy Japan UK USA

cpi D2ln a a a a a a a
ppi Dln b b c b b b
ppi D2ln a a c a a a
earn Dln b b c b c b
earn D2ln a a c a c a
oil Dln b b b b b b b
oil D2ln b b b b b b b
roil ln b b b b b b b
roil Dln a a a a a a a
commod Dln b b b b b b b
commod D2ln b b b b b b b
rcommod ln b b b b b b b
rcommod Dln a a a a a a a
m0 Dln c a
m0 D2ln c b
m1 Dln a c a c c a
m1 D2ln b c b c c b
m2 Dln c a c c a
m2 D2ln c b c c b
m3 Dln c a c c c a
m3 D2ln c b c c c b
rm0 Dln c b
rm1 Dln b c b c c b
rm2 Dln c b c c b
rm3 Dln c b c c c b

Number of series:
dfm balanced panel (a) 15 9 15 11 13 12 23
combination forecast balanced 43 27 43 33 35 33 66

panel (a and b)
full panel (a, b, c) 64 56 61 65 63 58 75

Notes: The ‘dynamic factor model’ data set consists of those series (and transformations) indicated by ‘a’. The ‘combina-
tion forecast balanced panel’ data set consists of series marked ‘a’ or ‘b’. The full (unbalanced panel) data set consists of
series marked ‘a,’ ‘b’, or ‘c.’ The final rows give the total number of series contained in the various data sets, for forecasts
made at the h = 2 horizon. In some cases, fewer series are available in the balanced panels for forecasts at the h = 4 and 8
horizons. In the transformations in the second column, ‘level’ means no transformation, ‘gap’ refers to one-sided HP detrend-
ing as discussed, D is the first-difference, Dln is the first-difference of the logarithm, and D2ln is the second-difference of the
logarithm.
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COMBINATION FORECASTS AND FORECAST EVALUATION METHODS

Quite a few methods for pooling forecasts have been developed in the large literature on forecast
combination. This section describes the combining methods studied in this paper and explains how
they will be evaluated by comparing their pseudo out-of-sample forecasts.

Combination forecast methods
Five types of combination forecasts are considered in this paper: simple combination forecasts; dis-
counted MSFE forecasts; shrinkage forecasts; factor model forecasts; and time-varying-parameter
(TVP) combination forecasts. These methods differ in the way they use historical information to
compute the combination forecast and in the extent to which the weight given an individual fore-
cast is allowed to change over time. These methods, or closely related methods, have appeared pre-
viously in the forecast combining literature. Some standard methods for forecast combination, such
as Granger–Ramanathan (1984) combining using regression weights, are inappropriate here, at least
without some modifications, because of the large number of individual forecasts, relative to the
sample size. The methods we use here are variants of linear forecast combinations; although there
is evidence that nonlinear combination schemes can produce substantial gains (e.g. Deutsch et al.,
1994), the number of constituent forecasts we consider arguably is too large for nonlinear combi-
nation methods to be effective.

Notation and estimation periods
Let h

i,t+h|t denote the ith individual pseudo out-of-sample forecast of Yh
t+h, computed at date t, that is,

the ith forecast in the panel of forecasts for a given country. Most of the combination forecasts we
consider are weighted averages of the individual forecasts (possibly with time-varying weights) and
thus have the form

(2)

where ft+h|t is the combination forecast, wit is the weight on the ith forecast in period t and n is the
number of forecasts in the panel.

In general, the weights {wit} depend on the historical performance of the individual forecast. To
evaluate this historical performance, we divide the sample into three periods. The observations prior
to date T0 are only used for estimation of the coefficients in the individual forecasting regression (1).
The individual pseudo out-of-sample forecasts are computed starting in period T0. The recursive
MSFE of the ith individual forecast, computed from the start of the forecast period through date t,
is

(3)

The pseudo out-of-sample forecasts for the combination forecasts are computed over t =
T1, . . . , T2. For the empirical work reported in the next section, we used T0 = 1973:I, T1 =
1981:I + h and T2 = min (1998:IV, Tlast - h), where Tlast is the end of the sample for that country.
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Ŷ



412 J. H. Stock and M. W. Watson

Copyright © 2004 John Wiley & Sons, Ltd. J. Forecast. 23, 405–430 (2004)

Simple combination forecasts
The simple combination forecasts compute the combination forecast without regard to the histori-
cal performance of the individual forecasts in the panel. Three simple combination forecasts are
used: the mean of the panel of forecasts (so wit = 1/n in (2)); the median; and the trimmed mean.
The trimmed mean was computed with 5% symmetric trimming, subject to trimming at least one
forecast.

Discounted MSFE forecasts
The discounted MSFE forecasts compute the combination forecast as a weighted average of the 
individual forecasts, where the weights depend inversely on the historical performance of each 
individual forecast (cf. Diebold and Pauly, 1987). Specifically, the discounted MSFE combination
h-step-ahead forecast has the form (2), where the weights are

(4)

where d is the discount factor.
The discounted MSFE forecasts are computed for three values of d, d = 1.0, 0.95, 0.9. The case

d = 1 (no discounting) corresponds to the Bates and Granger (1969) optimal weighting scheme when
the individual forecasts are uncorrelated.

A related combination forecast is the ‘most recently best’, which as implemented here places 
all weight on the individual forecast that has the lowest average squared forecast error over the 
previous four periods.

Shrinkage forecasts
The shrinkage forecasts compute the weights as an average of the recursive OLS estimator of the
weights (the Granger–Ramanathan, 1984 estimator, imposing an intercept of zero) and equal weight-
ing. That is, the shrinkage forecasts have the form (2), where

(5)

where it is the ith estimated coefficient from a recursive OLS regression of Yh
s+h on 

h
1,s+h|s, . . . , h

n,s+h|s for s = T0, . . . , t - h (no intercept) and where l = max{0, 1 - k[n/(t - h - T0 -
n)]}, where k is a constant that controls the amount of shrinkage towards equal weighting. The
shrinkage forecasts were evaluated for k = 0.25, 0.5, 1, with larger values corresponding to more
shrinkage towards equal weighting (smaller l).

The shrinkage forecast based on (5) can be interpreted as a Bayes estimator (see Diebold and
Pauly, 1990). In that context, the weight k could be estimated using empirical Bayes methods,
however we do not pursue that here because of the difficulties that arise when the number of 
individual forecasts n is large relative to t - T0.

Principal component forecast combination
Principal component forecast combination entails (i) recursively computing the first few principal
components of estimated common factors of the panel of forecasts, (ii) estimating a regression 
of Yh

s+h|s onto these principal components, and (iii) forming the forecast based on this 
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regression. Reduction of the many forecasts to a few principal components provides a convenient
method for allowing some estimation of factor weights, yet reduces the number of weights that 
must be estimated. This method has been used by Figlewski (1983), Figlewski and Urich (1983) 
and Chan et al. (1999). One reason to think that this method might work well is that, as mentioned
in the Introduction, recent work on large forecasting models suggests that large macroeconomic 
data sets are well described by a few common dynamic factors that are useful for forecasting, and
that the common factors can be estimated by principal components (Forni et al., 2000, 2001; 
Stock and Watson, 1999a, 2002a). The forecast combining application here differs from the usual
dynamic factor model approach, which is examined later, because the individual series are used 
first to compute a panel of forecasts, then static common factors are estimated from this panel of
forecasts.

The principal component forecasts are constructed as follows. Let h
1,s, . . . , h

m,s denote the first
m principal components of h

1,s+h|s, . . . , h
n,s+h|s for s = T0, . . . , t, computed as the first m principal

components of the uncentred second moment matrix of the recursive forecasts over s = T0, . . . , t.2

The principal component combination forecasts are computed using the regression

(6)

where the regression coefficients a1, . . . , am are estimated by OLS over the sample s = T0, . . . , 
t - h. The combined forecast is computed using the estimated weights, applied to h

1,t, . . . , h
m,t.

Two versions of the principal component combination forecasts were computed, one with m
chosen recursively by AIC, the other by BIC, where 1 £ m £ 4.

Time-varying parameter forecasts
The TVP combination forecast uses the Kalman filter to estimate time-varying coefficients in the
combining regression, where the coefficients are modelled as evolving according to a random walk.
This method is used by Sessions and Chatterjee (1989) and by LeSage and Magura (1992). LeSage
and Magura also extend it to mixture models of the errors, but that extension did not improve upon
the simpler Kalman filter approach in their empirical application. Our implementation starts with 
the Granger–Ramanathan (1984) combining regression, modified to impose a zero intercept and
extended to have time-varying parameters:

(7)

wit = wit-1 + hit, where hit are serially uncorrelated, uncorrelated with e h
s+h, and uncorrelated across i.

In principle, the relative variance var(hit)/var(e h
s+h) is estimable but with many forecasts its estima-

tor could be quite unreliable, so instead we set the relative variance to var(hit)/var(eh
s+h) = f2/n2, where

f is a chosen parameter. Larger values of f correspond to more time variation. The initial distribu-
tion of wit sets each weight to 1/n with zero variance; in the limit that f = 0, the TVP combination
forecast thus reduces to the simple mean combination forecast. Three values of f are investigated:
f = 0.1, 0.2, 0.4. We found that performance of the TVP combination forecasts deteriorated sharply
for larger values of f than these.
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ŶŶ
F̂F̂

2 Because the forecasts are in the same units, the second moment matrix was computed without standardizing the individual
forecasts, and the sample mean was not subtracted from the component forecasts.
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Pseudo out-of-sample evaluation methods
The forecasting performance of a candidate combination forecast is evaluated by comparing its out-
of-sample MSFE to the autoregressive benchmark. Specifically, let h

i,t+h|t denote the pseudo out-of-
sample forecast of Yh

t+h, computed using data through time t, based on the ith combination forecast.
Let h

0,t+h|t denote the corresponding benchmark forecast made using the autoregression. Then the 
relative MSFE of the candidate combination forecast, relative to the benchmark forecast, is

(8)

where T1 and T2 are, respectively, the first and last dates over which the pseudo out-of-sample fore-
cast is computed.

In principle, it is desirable to report standard errors for the relative MSFE (8), or to report p-values
testing the null hypothesis that the relative MSFE is one. West (1996) obtained the null asymptotic
distribution of (8) when the benchmark model 0 is not nested within the candidate forecast i. 
When the benchmark model is nested within the candidate model, the distribution of the relative
MSFE, under the null hypothesis that b1(L) = 0 in (1) and the other coefficients are constant, is non-
standard and was obtained by Clark and McCracken (2001). In the analysis here, because of the
recursive lag length selection, at some dates the two models are nested but at other dates they are
not, and the null distribution of the relative MSFE is unknown. Moreover, it is not clear how appli-
cable the West (1996) and Clark and McCracken (2001) distribution theory is when the parameter
vector is very large, as is the case for the combination forecasts. For these reasons, in this paper we
report relative MSFEs but not a measure of their statistical significance, leaving the latter to future
work.3

EMPIRICAL RESULTS

This section examines the empirical performance of the combination forecasts constructed using 
the seven-country quarterly data set. We begin by briefly summarizing the performance of the 
individual forecasts that constitute the panel of forecasts.

Individual and simple combination forecasts
The individual forecasts for the seven-country data set are discussed and analysed in detail in Stock
and Watson (2003). Consistent with the large literature on forecasting output growth using asset
prices, some individual asset prices have predictive content for output in some time periods and in
some countries. For example, the term spread (the yield on long-term government debt minus a short-
term interest rate) was a potent predictor of output growth in the USA during the 1970s and early

Relative MSFE =
-( )

-( )

+ +
=

+ +
=

Â

Â

Y Y

Y Y

t h
h

i t h t
h

t T

T

t h
h

t h t
h

t T

T

ˆ

ˆ

,

,

2

0

2

1

2

1

2

Ŷ

Ŷ

3 Clark–McCracken (2001) p-values are reported by Stock and Watson (2003) for fixed-lag versions (four lags) of the indi-
vidual-indicator forecasts that constitute the panel of forecasts analysed here. The 5% critical value for the relative MSFEs
typically range from 0.92 to 0.96 (the critical value depends on nuisance parameters and thus was computed on a series-by-
series basis). By this gauge, many of the individual-indicator forecasts showed a significant improvement over the AR 
benchmark, at least in some periods and some countries.
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1980s. There is, however, considerable instability in the performance of forecasts based on individ-
ual predictors: good performance in one period and country does not ensure good performance in
another. Instead, performance of an individual predictor depends on the configuration of shocks
hitting the economy, the current policy regime, and other institutional factors. For example, the term
spread ceased to be a good predictor of output in the late 1980s and 1990s in the USA. As is dis-
cussed further in a later section, the individual forecasts, when used alone, perform worse on average
than the AR.4

Comparison of alternative combination methods
The simple and recent best combination forecasts do not require an historical track record for the
individual forecasts, and the discounted MSFE combination forecasts use only the past variances of
the individual forecasts, not their covariances with the other forecasts in the panel. Thus these two
methods are readily computed using the full data set, in which individual forecasts enter when there
is enough data available on the predictor series to compute the forecasts.

The remaining combination methods require estimates of covariances among the panel of fore-
casts, so these are computed using the forecasting combination balanced panel subset of the full data
set (see Table Ib). In addition, for comparability we also report the performance of the simple, recent
best, and discounted MSFE combination forecasts, computed using the forecast combining balanced
panel subset; doing so allows us to see whether there is a forecasting benefit associated with using
the full, unbalanced data set, relative to the balanced subset.

The results for forecasts of real GDP growth over two, four and eight quarters are summarized in
Tables II, III, and IV, respectively, and the results for IP growth over the three horizons are sum-
marized in Tables V, VI and VII. In each of these tables, the entries for a candidate predictor (the
row variable) are its MSFE for the forecast period (indicated in the first row), relative to the MSFE
of the benchmark AR forecast. If the candidate predictor has a relative MSFE less than one, then it
outperformed the AR benchmark over the forecast period in that country.

Several results emerge from Tables II–VII. First, many of the combination forecasts outperform
the AR benchmark across countries, across horizons, and across the variable being forecasted.

Second, combination forecasts based on the full panel generally outperform their counterparts
based on the balanced panel subset. Evidently the additional series in the full panel contain infor-
mation useful for forecasting.

Third, although many of the improvements of the combination forecasts are modest, relative to
the AR benchmark (relative MSFEs of 0.9 or 0.95), in some cases the gains are substantial (relative
MSFEs of 0.85 or less).

Fourth, the simple combination forecasts show reliably good performance across different coun-
tries and horizons. Among the simple combination forecasts, there seems to be little difference
between the mean and the trimmed mean. The median typically has somewhat higher relative MSFE
than either the mean or trimmed mean.

Fifth, the shrinkage forecasts are not robust: for some countries and horizons they perform 
well, but for others they perform quite poorly. The less shrinkage, the less robust is the resulting
combination forecast.

4 The instability evident in the individual-predictor forecasts is consistent with other evidence of widespread instability in
small econometric and time series models used for macroeconomic forecasting, see for example Stock and Watson (1996),
Bernanke and Mihov (1998), Clements and Hendry (1999), Cogley and Sargent (2001, 2002), Sims and Zha (2002) and
Marcellino (2002).
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Table II. MSFEs of combination forecasts, relative to autoregression: forecasts of two-quarter growth of real
GDP (h = 2)

Forecast Canada France Germany Italy Japan UK USA
period 81:III– – 81:III– 81:III– 81:III– 81:III– 81:III–

98:IV 98:IV 98:IV 98:IV 98:IV 98:IV

Univariate forecasts
AR RMSFE 0.016 – 0.013 0.011 0.013 0.010 0.011
random walk 1.03 – 1.03 1.50 2.63 0.98 1.21

Combination forecasts, full panel
median 0.90 – 0.97 0.92 0.95 0.98 0.99
mean 0.84 – 0.92 0.86 0.92 0.95 0.96
trimmed mean 0.86 – 0.93 0.87 0.93 0.96 0.97
disc. mse(0.9) 0.85 – 0.89 0.88 0.96 0.93 0.94
disc. mse(0.95) 0.85 – 0.90 0.89 0.96 0.94 0.94
disc. mse(1) 0.85 – 0.90 0.89 0.95 0.94 0.93
recent best 0.66 – 0.81 1.10 1.08 0.73 1.16

Combination forecasts, balanced panel subset
median 0.96 – 0.97 1.01 1.00 0.97 0.98
mean 0.90 – 0.92 0.99 0.99 0.95 0.95
trimmed mean 0.92 – 0.93 1.01 1.00 0.95 0.96
disc. mse(0.9) 0.88 – 0.90 0.98 0.99 0.94 0.95
disc. mse(0.95) 0.88 – 0.91 0.99 0.99 0.94 0.94
disc. mse(1) 0.88 – 0.91 1.00 0.99 0.94 0.93
recent best 0.75 – 0.83 1.11 1.00 0.84 1.18
PC(BIC) 0.85 – 0.83 0.91 0.89 1.46 1.08
PC(AIC) 0.87 – 0.82 0.94 0.90 1.36 1.10
shrink(0.25) 0.82 – 1.87 1.39 0.95 1.54 0.96
shrink(0.5) 0.82 – 1.22 1.06 0.92 1.19 0.95
shrink(1) 0.89 – 0.93 0.95 0.96 0.95 0.95
tvp(0.1) 0.79 – 0.86 0.76 0.80 0.99 0.96
tvp(0.2) 0.78 – 0.86 0.70 0.81 1.04 0.99
tvp(0.4) 0.76 – 0.87 0.70 0.83 1.05 1.04

Notes: The entry in the row labelled AR RMSFE is the root mean squared forecast error of the benchmark autoregressive
forecast (in decimal values of the h-period growth, i.e. not at an annual rate). The pseudo out-of-sample forecast period is
given in the first row. The remaining entries are the MSFE of the forecast indicated in the first column, relative to the AR 
forecast. There are no entries for France because the GDP time series is too short. The forecast mnemonics are:

median median of individual forecasts at date t
mean average of individual forecasts at date t
trimmed mean trimmed mean of individual forecasts at date t, 5% symmetric trimming
disc. mse(d ) combining weights are inversely proportional to discounted forecast errors with discount factor d
recent best individual forecast with lowest average squared forecast error over past four quarters
PC(BIC), forecasts from regression onto principal components of the panel of forecasts; number of principal

PC(AIC) components determined by BIC or AIC
shrink(k) combining weights are linear combination of equal weighting and recursive OLS, with shrinkage weight 

max{0, 1 - k[n/(t - T0 - n)]}
TVP(f) combining weights follow random walk, estimated by Kalman filter, with relative variance f2(t - T0)/n2
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Sixth, the principal component (static factor regression) forecasts have quite variable perform-
ance, in some cases far outperforming the AR benchmark but in other cases performing much worse.

Seventh, the results for the methods designed to handle time variation are mixed. The TVP fore-
casts sometimes work well but sometimes work quite poorly, and in this sense are not robust; the
larger is the amount of time variation, the less robust are the forecasts. Similarly, the discounted
MSE forecasts with the most discounting (d = 0.9) are typically no better than, and sometimes worse
than, their counterparts with less or no discounting (d = 0.95 or 1).

As discussed earlier, because the forecasting models are in some periods nested but in other periods
non-nested, we have not performed formal tests of the null hypothesis that the combination fore-
casts provide no improvement over the AR benchmark. Thus the foregoing conclusions are based
solely on the point estimate of the pseudo out-of-sample relative mean squared forecast error. An
important but substantial remaining task is providing a measure of statistical precision for these 
relative MSFEs.

Table III. MSFEs of combination forecasts, relative to autoregression: forecasts of four-quarter growth of
real GDP (h = 4)

Forecast Canada France Germany Italy Japan UK USA
period 82:I– – 82:I– 82:I– 82:I– 82:I– 82:I–

98:IV 98:IV 98:IV 98:II 98:IV 98:IV

Univariate forecasts
AR RMSE 0.025 – 0.018 0.019 0.023 0.018 0.016
random walk 0.99 – 1.05 1.31 2.97 0.96 1.04

Combination forecasts, full panel
median 0.92 – 0.99 0.91 0.93 1.00 0.92
mean 0.88 – 1.00 0.82 0.88 0.98 0.90
trimmed mean 0.90 – 0.99 0.82 0.89 0.99 0.91
disc. mse(0.9) 0.90 – 0.98 0.85 0.93 0.94 0.90
disc. mse(0.95) 0.90 – 1.00 0.89 0.93 0.96 0.89
disc. mse(1) 0.91 – 1.00 0.91 0.92 0.97 0.87
recent best 0.85 – 1.26 0.71 0.97 0.80 1.67

Combination forecasts, balanced panel
median 0.99 – 1.01 1.03 1.01 0.99 0.92
mean 0.96 – 1.05 1.06 0.98 0.94 0.89
trimmed mean 0.97 – 1.05 1.06 1.00 0.95 0.90
disc. mse(0.9) 0.94 – 1.03 1.01 0.97 0.93 0.91
disc. mse(0.95) 0.95 – 1.05 1.05 0.98 0.94 0.90
disc. mse(1) 0.95 – 1.05 1.08 0.98 0.94 0.88
recent best 0.89 – 1.23 0.98 0.91 1.11 1.69
PC(BIC) 0.82 – 1.05 0.76 0.68 1.43 0.95
PC(AIC) 0.75 – 1.11 0.77 0.67 1.39 0.98
shrink(0.25) 1.32 – 2.26 1.48 1.07 2.14 0.95
shrink(0.5) 1.09 – 1.37 1.20 1.02 1.49 0.88
shrink(1) 0.99 – 1.00 1.02 0.97 1.09 0.89
tvp(0.1) 0.85 – 0.91 0.55 0.63 1.11 0.98
tvp(0.2) 0.97 – 0.98 0.49 0.63 1.27 1.15
tvp(0.4) 1.07 – 1.11 0.52 0.65 1.33 1.41

Notes: See notes to Table II.
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Ranking combination forecasts by average loss
As a way to compare the combination methods, we computed an average estimated loss for each
combination method, where the average is computed across all countries and across the two differ-
ent measures of output. There are a total of 13 such cases (seven countries, two measures of output
each, except for France for which the real GDP time series is too short). This average loss of a given
combination forecast is computed as the weighted average of the MSFEs for the individual coun-
tries (where each MSFE is computed over t = T1, . . . , T2 - h), where the country weights are the
inverse of the full-sample (t = 1, . . . , T2 - h) variance of Yh

t+h. Equivalently, the average loss of a
given combination forecast is the unweighted average MSFE across countries, where each output
measure is standardized to have a unit full-sample variance. One interpretation of this average loss
is that it estimates the loss a forecaster would expect to have if she knew she would be forecasting
output growth in a developed economy, but is not told which economy, which measure of output
growth, or which horizon. The forecast that minimizes the population counterpart of this average
loss is the forecast that has the lowest expected loss in the forecasting game in which the forecaster

Table IV. MSFEs of combination forecasts, relative to autoregression: forecasts of eight-quarter growth of
real GDP (h = 8)

Forecast Canada France Germany Italy Japan UK USA
period 83:I– – 83:I– 83:I– 83:I– 83:I– 83:I–

97:IV 97:IV 97:IV 97:II 97:IV 97:IV

Univariate forecasts
AR RMSE 0.046 – 0.030 0.038 0.046 0.034 0.025
random walk 0.94 – 1.08 1.14 2.74 0.95 0.98

Combination forecasts, full panel
median 0.95 – 0.98 0.82 0.95 1.04 0.99
mean 0.87 – 0.98 0.68 0.89 1.09 0.96
trimmed mean 0.89 – 0.96 0.71 0.90 1.07 0.98
disc. mse(0.9) 0.97 – 1.00 0.79 0.94 1.03 0.97
disc. mse(0.95) 0.96 – 1.00 0.81 0.93 1.03 0.96
disc. mse(1) 0.96 – 0.97 0.82 0.93 1.03 0.96
recent best 1.12 – 2.19 0.48 1.15 1.75 1.87

Combination forecasts, balanced panel subset
median 1.00 – 1.01 1.02 1.01 1.01 1.00
mean 1.00 – 1.05 0.96 0.99 1.06 0.98
trimmed mean 0.99 – 1.04 1.02 1.00 1.03 0.99
disc. mse(0.9) 1.00 – 1.06 0.93 0.98 1.05 0.98
disc. mse(0.95) 0.99 – 1.06 0.95 0.99 1.05 0.97
disc. mse(1) 0.99 – 1.05 0.96 0.98 1.06 0.97
recent best 1.08 – 1.54 0.79 1.26 1.54 1.91
PC(BIC) 0.84 – 1.00 0.33 0.43 1.86 1.35
PC(AIC) 0.78 – 1.07 0.36 0.41 2.15 1.30
shrink(0.25) 1.68 – 1.58 1.20 0.44 3.65 1.15
shrink(0.5) 1.27 – 0.98 0.87 0.53 1.87 0.98
shrink(1) 1.00 – 1.02 0.78 0.78 1.17 0.98
tvp(0.1) 0.87 – 1.01 0.32 0.65 1.53 1.15
tvp(0.2) 1.08 – 1.24 0.37 0.69 1.94 1.41
tvp(0.4) 1.22 – 1.46 0.45 0.69 2.31 1.72

Notes: See notes to Table II.
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first chooses the combination method, then is assigned randomly a country, series and horizon to
forecast.

The various combination forecasts (along with the random walk forecast), ranked by their average
loss, are presented in Table VIII for all three horizons (39 cases averaged). The results are striking.
When the loss is averaged over all countries, dependent variables and horizons, the best three com-
bination forecasts are the TVP forecast with very little time variation, the simple mean and the
trimmed mean; the performance of these three methods is very close numerically. (Recall that the
TVP(0.1) forecast is nearly the simple mean combination forecast, with a small amount of time vari-
ation introduced.) These methods, and the other methods that do well, allow for little or no time
variation in the weights applied to individual forecasts. In contrast, the combination methods that
permit the greatest time variation in weights, or that rely the most on historical evidence to estimate
the combination weights, exhibit the poorest performance, in some cases by a wide margin. These
poorly performing combination methods include the shrinkage forecast with the least shrinkage, the

Table V. MSFEs of combination forecasts, relative to autoregression: forecasts of two-quarter growth of IP
(h = 2)

Forecast Canada France Germany Italy Japan UK USA
period 81:III– 81:III– 81:III– 81:III– 81:III– 81:III– 81:III–

98:IV 98:IV 98:IV 98:II 98:IV 98:IV 98:IV

Univariate forecasts
AR RMSE 0.031 0.018 0.026 0.028 0.026 0.018 0.019
random walk 1.17 1.20 1.00 1.07 2.35 1.00 1.30

Combination forecasts, full panel
median 0.98 0.90 0.94 0.92 0.96 0.97 0.93
mean 0.92 0.89 0.90 0.90 0.94 0.97 0.88
trimmed mean 0.93 0.89 0.90 0.90 0.94 0.97 0.89
disc. mse(0.9) 0.92 0.91 0.89 0.93 0.96 0.96 0.88
disc. mse(0.95) 0.92 0.92 0.89 0.94 0.96 0.96 0.87
disc. mse(1) 0.92 0.92 0.88 0.93 0.96 0.96 0.85
recent best 0.77 1.16 1.01 1.32 1.05 1.23 1.17

Combination forecasts, balanced panel
median 0.99 1.02 0.96 0.98 1.01 0.96 0.94
mean 0.93 1.08 0.90 1.00 1.02 0.98 0.89
trimmed mean 0.95 1.05 0.91 1.00 1.03 0.97 0.89
disc. mse(0.9) 0.93 1.03 0.90 0.98 1.01 0.97 0.89
disc. mse(0.95) 0.92 1.06 0.89 0.99 1.02 0.97 0.88
disc. mse(1) 0.92 1.08 0.89 1.00 1.02 0.98 0.86
recent best 0.85 1.12 1.06 1.21 1.07 1.31 1.14
PC(BIC) 0.99 1.05 0.87 0.83 1.00 1.05 0.85
PC(AIC) 0.92 1.17 0.85 0.84 1.00 1.05 0.82
shrink(0.25) 1.27 2.43 1.18 2.35 1.40 2.19 0.89
shrink(0.5) 1.04 1.63 1.02 1.16 1.16 1.45 0.89
shrink(1) 0.95 1.29 0.92 0.90 1.02 1.03 0.89
tvp(0.1) 0.92 0.97 0.88 0.93 0.92 0.97 0.89
tvp(0.2) 0.92 0.93 0.86 0.88 0.88 0.97 0.90
tvp(0.4) 0.94 0.96 0.84 0.87 0.90 0.98 0.91

Notes: See notes to Table II.
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TVP forecast with the most time variation, and the recent best; a forecaster who uses these methods
does worse than she would have done had she simply used the AR.

Comparison of combination and dynamic factor model forecasts
As discussed in the Introduction, an alternative way to forecast using many predictors is to compute
forecasts based on a small number of estimated dynamic factors, where the dynamic factors are com-
puted directly from the original (transformed) leading indicators, not (as is done in the PC combi-
nation method) from the forecasts { h

i,t+h|t} based on these leading indicators. Success with this
approach has been reported by Forni et al. (2000, 2001) and by Stock and Watson (1999a, 2002a).
This subsection compares such dynamic factor model forecasts to combination forecasts.

Construction of dynamic factor model forecasts
The dynamic factor model-principal components (dfm-PC) forecasts were computed using the
leading indicators in the dfm balanced panel subset of the data. Following Stock and Watson (1999a,

Ŷ

Table VI. MSFEs of combination forecasts, relative to autoregression: forecasts of four-quarter growth of IP
(h = 4)

Forecast Canada France Germany Italy Japan UK USA
period 82:I– 82:I– 82:I– 82:I– 82:I– 82:I– 82:I–

98:IV 98:IV 98:III 97:IV 98:IV 98:IV 98:IV

Univariate forecasts
AR RMSE 0.047 0.031 0.037 0.041 0.052 0.026 0.029
random walk 0.96 1.05 1.06 1.11 1.95 1.01 1.09

Combination forecasts, full panel
median 0.96 0.91 0.97 0.88 0.93 0.96 0.94
mean 0.90 0.91 0.95 0.84 0.88 0.93 0.85
trimmed mean 0.92 0.90 0.95 0.85 0.89 0.95 0.87
disc. mse(0.9) 0.95 0.93 0.95 0.90 0.90 0.93 0.86
disc. mse(0.95) 0.95 0.94 0.95 0.91 0.89 0.94 0.84
disc. mse(1) 0.95 0.93 0.93 0.91 0.86 0.94 0.83
recent best 1.40 1.04 1.09 0.85 1.05 1.03 2.33

Combination forecasts, balanced panel
median 0.99 1.05 0.99 1.01 1.01 0.97 0.92
mean 0.96 1.16 0.98 1.03 1.02 0.95 0.86
trimmed mean 0.97 1.12 0.98 1.03 1.03 0.96 0.87
disc. mse(0.9) 0.96 1.08 0.97 0.99 1.01 0.94 0.88
disc. mse(0.95) 0.96 1.12 0.96 1.02 1.01 0.95 0.85
disc. mse(1) 0.96 1.15 0.96 1.04 1.02 0.95 0.84
recent best 1.35 1.67 1.08 1.05 1.29 1.15 2.36
PC(BIC) 0.89 0.99 0.88 1.01 0.77 1.07 0.77
PC(AIC) 0.89 0.98 0.91 1.00 0.77 1.04 0.80
shrink(0.25) 1.13 2.13 1.60 2.01 1.04 2.49 0.85
shrink(0.5) 1.01 1.55 1.22 1.32 1.06 1.61 0.86
shrink(1) 0.98 1.32 1.00 0.97 1.06 1.07 0.86
tvp(0.1) 0.95 0.92 0.93 0.85 0.83 0.95 0.88
tvp(0.2) 1.02 0.89 0.90 0.81 0.80 0.98 0.92
tvp(0.4) 1.17 0.95 0.91 0.86 0.85 1.04 1.02

Notes: See notes to Table II.
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2002a), estimates of the dynamic factors were computed recursively as the first four principal com-
ponents (ordered by the fraction of the variance explained), computed recursively from the recur-
sive sample correlation matrix of the leading indicators labelled ‘a’ in Table Ib, country by country.
The pseudo out-of-sample dynamic factor forecasts of output growth were then computed by regress-
ing h-period output growth against the first m estimated dynamic factors and k lags of DYt, that is,
as in (6), except that the principal component predictors h

1,s, . . . , h
m,s (the estimated factors) were

estimated using the original series (not the individual forecasts) and the regression also includes a
constant and one or more lags of DYt. The number of factors and the number of lags of DYt both
were chosen recursively by AIC (between one and four factors and between zero and four lags of
DYt). Also reported are the dfm-PC forecasts computed using a fixed number of factors (3) and lags
(2). The details of the dfm-PC forecasting method (and an application to different data) are in Stock
and Watson (1999a, 2002a).

F̂F̂

Table VII. MSFEs of combination forecasts, relative to autoregression: forecasts of eight-quarter growth of
IP (h = 8)

Forecast Canada France Germany Italy Japan UK US
period 83:I– 83:I– 83:I– 83:I– 83:I– 83:I– 83:I–

97:IV 97:IV 97:III 96:IV 97:IV 97:IV 97:IV

Univariate forecasts
AR RMSE 0.070 0.050 0.054 0.059 0.111 0.041 0.042
random walk 0.99 1.12 1.18 1.23 1.50 1.00 1.00

Combination forecasts, full panel
median 0.95 0.85 0.94 0.83 0.88 1.02 0.95
mean 0.89 0.83 0.93 0.77 0.79 1.04 0.87
trimmed mean 0.92 0.82 0.91 0.78 0.82 1.03 0.89
disc. mse(0.9) 1.08 0.91 0.94 0.88 0.84 0.97 0.90
disc. mse(0.95) 1.05 0.95 0.92 0.89 0.84 0.97 0.89
disc. mse(1) 1.04 0.98 0.90 0.90 0.81 0.98 0.89
recent best 1.80 0.89 2.36 1.13 0.93 1.77 2.21

Combination forecasts, balanced panel
median 1.00 1.02 0.98 0.99 1.02 0.99 0.97
mean 1.00 1.04 0.99 0.98 0.99 1.03 0.89
trimmed mean 1.01 1.05 0.97 1.01 1.01 1.01 0.90
disc. mse(0.9) 1.05 0.95 0.96 0.96 0.96 0.99 0.90
disc. mse(0.95) 1.04 0.99 0.94 0.98 0.97 1.01 0.89
disc. mse(1) 1.04 1.02 0.93 0.99 0.98 1.02 0.88
recent best 1.71 1.31 2.29 1.16 1.01 1.48 2.13
PC(BIC) 0.92 1.01 0.85 0.71 0.56 1.53 1.06
PC(AIC) 0.92 1.08 0.84 0.71 0.56 1.79 0.98
shrink(0.25) 1.30 1.68 1.44 1.98 1.16 2.66 1.16
shrink(0.5) 1.07 1.26 0.98 1.11 0.98 1.18 0.90
shrink(1) 1.01 0.96 0.97 1.02 0.95 0.96 0.89
tvp(0.1) 1.00 0.82 0.90 0.68 0.59 1.13 0.93
tvp(0.2) 1.16 0.95 0.91 0.79 0.56 1.37 0.97
tvp(0.4) 1.39 1.10 0.96 1.00 0.62 1.85 1.04

Notes: See notes to Table II.
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Empirical results
The MSFEs of the dfm-PC forecasts, relative to the AR benchmark, are reported in Table IX. To
save space, only the two best-performing combination methods from Table VIII, the mean and
TVP(0.1), are reported in Table IX. (The entries for the mean and TVP(0.1) forecasts in Table IX
differ from the corresponding entries in Tables II–VII because the results in Table IX were com-
puted using the dfm balanced panel subset.) In some cases, such as forecasting Canadian GDP at
the two- and four-quarter horizon, the dynamic factor model forecasts improve upon the AR bench-
mark by a considerable margin. In other cases, such as IP forecasts for Germany and the USA at the
eight-quarter horizon, the dfm-PC forecasts are worse than the AR benchmark. For many countries
and horizons the dynamic factor model forecasts have relative MSFEs near one. In seven of the 39
cases in Table IX, at least one of the dfm-PC forecasts outperforms both the mean and TVP(0.1). In
most cases, however, the mean or TVP(0.1) forecasts outperform the dfm-PC forecast, sometimes
by a wide margin.

Table X presents estimated losses and rankings of all the forecast combination methods plus the
dfm-PC forecasts; for comparability, all forecasts in Table X were computed using the dfm balanced

Table VIII. Combination forecasts ranked by average losses: both
output measures, all horizons (2, 4, 8-quarter growth)

Forecast Average loss

tvp(0.1) 0.558
mean 0.560
trimmed mean 0.565
disc. mse(1) 0.575
disc. mse(0.9) 0.576
disc. mse(0.95) 0.577
median 0.585
PC(BIC) 0.595
disc. mse(0.9)—bal. panel 0.601
tvp(0.2) 0.603
PC(AIC) 0.603
disc. mse(0.95)—bal. panel 0.604
disc. mse(1)—bal. panel 0.605
mean—bal. panel 0.609
shrink(1) 0.612
trimmed mean—bal. panel 0.612
median—bal. panel 0.616
AR 0.621
tvp(0.4) 0.665
shrink(0.5) 0.709
random walk 0.745
recent best 0.747
recent best—bal. panel 0.769
shrink(0.25) 0.979

Notes: The average losses are weighted averages of the loss of the indicated com-
bination forecast across countries, horizons and output measures, where the weight-
ing is by the inverse of the full-sample standard deviation of the variable being
forecasted. The average is over 13 sets of forecasts (six countries for real GDP,
seven countries for IP) at three horizons, for a total of 39 cases.
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panel subset. In the overall sense of Table X, the dfm-PC forecasts perform slightly worse than the
AR benchmark. Both the dfm-PC forecasts have substantially higher loss than the PC(AIC), PC(BIC)
and TVP(0.1) forecasts, the best performers in Table X.

The dfm-PC forecasts reported in Tables IX–X generally provide substantially smaller improve-
ments upon the AR benchmark than was found for the USA in Stock and Watson (2002a). Addi-

Table IX. MSFEs of selected combination and dynamic factor model forecasts, relative to autoregression,
using the dynamic factor model data set

Canada France Germany Italy Japan UK USA

GDP, h = 2
mean 0.91 – 0.92 1.03 0.99 0.96 0.90
tvp(0.1) 0.76 – 0.85 0.71 0.79 1.06 0.94
dfm-PC(AIC) 0.76 – 1.01 1.42 1.12 0.91 1.03
dfm-PC(2,3) 0.78 – 1.00 1.40 1.21 0.86 1.05

GDP, h = 4
mean 0.95 – 1.03 1.14 1.00 0.90 0.77
tvp(0.1) 0.89 – 0.94 0.50 0.62 1.22 0.94
dfm-PC(AIC) 0.80 – 1.21 1.55 0.99 0.87 0.83
dfm-PC(2,3) 0.84 – 1.13 1.48 1.12 0.97 0.90

GDP, h = 8
mean 0.98 – 1.04 1.05 1.01 1.01 0.90
tvp(0.1) 0.99 – 1.18 0.35 0.68 1.79 1.21
dfm-PC(AIC) 0.88 – 1.24 1.22 0.98 1.12 0.98
dfm-PC(2,3) 0.89 – 1.15 1.19 1.18 1.08 1.03

IP, h = 2
mean 0.91 1.11 0.92 1.04 0.96 0.95 0.90
tvp(0.1) 0.88 0.94 0.88 0.91 0.86 0.95 0.91
dfm-PC(AIC) 0.85 1.16 0.98 1.22 1.18 1.19 1.00
dfm-PC(2,3) 0.82 1.07 0.92 1.09 1.10 1.02 0.99

IP, h = 4
mean 0.88 1.23 1.00 1.10 0.94 0.93 0.83
tvp(0.1) 0.90 0.91 0.93 0.82 0.77 0.94 0.87
dfm-PC(AIC) 0.82 1.32 1.20 1.54 1.19 1.20 1.16
dfm-PC(2,3) 0.84 1.24 1.11 1.23 1.16 1.00 1.15

IP, h = 8
mean 0.91 1.06 0.98 1.02 0.95 0.89 0.90
tvp(0.1) 1.01 0.92 0.92 0.73 0.54 1.17 0.94
dfm-PC(AIC) 1.02 1.22 1.31 1.17 0.95 1.25 1.41
dfm-PC(2,3) 1.03 1.20 1.15 1.16 0.98 1.11 1.35

Notes: All forecasts were computed using the dynamic factor model data set (the series denoted by ‘a’ in Table Ib). 
Forecasts were computed over the sample periods indicated in Tables II–VII, as appropriate for the series and horizon being
forecasted. The forecasts are defined in the notes to Table II, with the addition of the two dynamic factor model forecasts:

dfm-PC(AIC) m principal components computed for the panel of individual leading indicators; forecasts computed from a
dynamic regression including these principal components and p lags of y, where m and p are selected by
AIC

dfm-PC(2,3) principal components computed using individual leading indicators; forecasts computed from a dynamic
regression including three principal components and two lags of y
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tional empirical work (not reported in the tables) suggests that one reason for the difference between
these results and the more favourable results in Stock and Watson (2002a) is that their forecast sample
included the 1970s, whereas the forecast period examined here commences in 1983. In addition,
considerably fewer series are used here—for most countries, fewer than 20 series—than in other
recent studies using dfm forecasts, and the asymptotic theory behind the dfm-PC forecasts relies on
the number of series being large.

Forecast stability
So far the analysis has focused on average performance of the combination forecasts over the full
forecast period, 1983–1999. Given the instability of the performance of individual forecasts making
up the panel of forecasts, however, it is of interest to examine the stability of the high-dimensional
forecasts. Accordingly, we divided the pseudo out-of-sample forecast period (the period in the first
rows of Tables II–VII) in half and computed the MSFEs over the two periods of 1982:I–1990:II and
1990:III–1999:IV, where the earlier start date was used to increase the number of observations in the
two subsamples. A stable and potent forecast would have population MSFEs less than the AR bench-
mark in both periods, whereas an unstably performing forecast would have a population relative
MSFE less than one in one period but greater than one in the other period. Because of sampling vari-
ability, the sample MSFEs will differ from the population MSFEs, but even without a formal distri-
bution theory for these relative MSFEs (for the reasons discussed earlier), examination of the relative
MSFEs in the two subsamples can shed some light on the stability of the various forecasting methods.

Table X. Dynamic factor model and combination forecasts ranked by
average losses: both output measures, all horizons (2, 4, 8-quarter
growth)

Forecast Average loss

PC(AIC) 0.569
PC(BIC) 0.569
tvp(0.1) 0.572
shrink(1) 0.587
disc. mse(0.9) 0.594
disc. mse(0.95) 0.595
disc. mse(1) 0.596
mean 0.602
trimmed mean 0.603
median 0.610
AR 0.621
tvp(0.2) 0.637
dfm-PC(2,3) 0.646
shrink(0.5) 0.657
dfm-PC(AIC) 0.663
tvp(0.4) 0.708
shrink(0.25) 0.720
random walk 0.745
recent best 0.756

Notes: Entries are weighted averages of losses over the 39 cases described in the
notes to Table VIII. All forecasts were computed using the dynamic factor model
data set.
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As a basis for comparison, we first present a scatterplot of the logarithm of the relative MSFEs
of the forecasts based on the individual indicators in the first versus the second subsample, for all
predictors, horizons, countries and variables being forecasted. In this scatterplot, given in Figure 1,
a point represents the pair of log relative MSFEs for a specific predictor, country, horizon and depend-
ent variable (IP or real GDP); Figure 1 contains 2196 such points. If the forecasting relations were
stable, then the points would be scattered around the 45° line, with a cluster around the origin for
those predictors that have negligible marginal predictive content for output growth, above and
beyond that in lags of output growth. But the points are neither scattered around the 45° line nor
clustered around the origin; instead, there are many points far into the northwest and southeast quad-
rants, indicating relatively good performance in one period and relatively poor performance in the
other. Indeed, there is little structure in this scatterplot, which suggests that performance of a 
randomly selected individual predictor/country/horizon/dependent variable combination in the first
period is largely independent of its performance in the second period (for further discussion, see
Stock and Watson, 2003).

The comparable scatterplot for the simple mean combination forecasts (using the full panel) is
presented in Figure 2; each point represents a pair of log relative MSFEs for the simple mean 
forecast for a particular country, horizon and dependent variable. Evidently, the simple mean com-
bination forecast shows considerable stability—especially when compared with the unstable per-
formance of the constituent forecasts exhibited in Figure 1. Most of the points for the simple mean
forecast are in the southwest quadrant, indicating an improvement over the AR benchmark in both
periods.

Figure 1. Relative MSFE (logarithm) of pseudo out-of-sample forecasts based on individual predictors
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Additional measures of the stability of the various forecasts are summarized in Table XI, which
reports the average relative MSFE for different categories of forecasts (averaged across countries,
dependent variables and horizons) for each subperiod, as well as the average absolute difference
between the relative MSFEs between the first and second periods.5 On average, the forecasts 
based on the individual predictors do worse than the AR benchmark in both periods. Consistent 
with Figure 1, those forecasts also have, on average, a large absolute change of 0.40 in the relative
MSFE between the two periods. In contrast, the simple mean combination forecast improves upon
the AR benchmark on average, and has an average absolute change of only 0.08 between the two
periods in the full panel (the average change of the median forecast is even less, 0.05). One strik-
ing result in Table XI is that the greater the amount of data adaptivity in the combination forecast,
the less stably does it perform, with the recent best, PC, shrink(0.25), shrink(0.5) and tvp(0.4) com-
bination forecasts all having large average changes in relative MSFEs between the first and second
periods.

Figure 2. Relative MSFE (logarithm) of pseudo out-of-sample forecasts based on combined (mean) forecast

5 The forecast combination results in Table XI are based on 38, 40 or 41 country/variable/horizon cases, depending on the
forecasting method; 41 cases are plotted in the scatterplot in Figure 2. There are 42 possible method/country/horizons, and
a forecasting method/country/horizon pair was included if it included at least 28 observations in each of the subsamples.
Because our Italian GDP data end in 1998, there were insufficient observations for the eight-quarter horizon, which 
eliminated one pair for all methods. Because French GDP data were unavailable prior to 1970, this eliminated up to three
additional method/horizon pairs.
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DISCUSSION AND CONCLUSIONS

The empirical analysis in this paper yields four main conclusions. First, some combination forecasts
perform well, regularly having pseudo out-of-sample MSFEs less than the AR benchmark; in some
cases, the improvements are quite substantial.

Second, the combination forecasts that perform best generally are those that have the least data
adaptivity in their weighting schemes. Aggregated across all horizons, countries and dependent 

Table XI. Stability of combination forecasts: average relative MSFEs in two subsamples

Forecast Mean 82:I Mean 90:III Mean absolute difference, n
–90:II –99:IV 1st vs. 2nd period

Univariate forecasts
individual forecasts 1.25 1.13 0.40 2196
random walk 1.23 1.30 0.15 41

Combination forecasts, full panel
median 0.94 0.94 0.05 41
mean 0.91 0.91 0.08 41
trimmed mean 0.91 0.91 0.08 41
disc. mse(0.9) 0.94 0.92 0.09 38
disc. mse(0.95) 0.95 0.92 0.09 38
disc. mse(1) 0.95 0.91 0.11 38
recent best 1.29 1.30 0.32 40

Combination forecasts, balanced panel
median 0.99 0.99 0.03 38
mean 0.99 0.98 0.06 38
trimmed mean 0.99 0.98 0.05 38
disc. mse(0.9) 0.97 0.97 0.07 38
disc. mse(0.95) 0.98 0.97 0.07 38
disc. mse(1) 0.99 0.97 0.08 38
recent best 1.32 1.56 0.77 38
PC(BIC) 1.26 0.88 0.61 38
PC(AIC) 1.28 0.89 0.64 38
shrink(0.25) 1.89 1.66 1.17 38
shrink(0.5) 1.15 1.29 0.48 38
shrink(1) 0.99 1.03 0.15 38
tvp(0.1) 0.93 0.91 0.19 38
tvp(0.2) 1.01 0.99 0.29 38
tvp(0.4) 1.13 1.08 0.35 38

Dynamic factor model data set
mean 1.03 0.96 0.14 41
tvp(0.1) 0.97 0.97 0.33 38
dfm-PC(AIC) 1.31 1.04 0.40 41
dfm-PC(2,3) 1.24 1.03 0.35 41

Notes: The entries in the second and third columns are the average of the relative MSFEs for the class of forecasts indi-
cated in the first column, over the 1982:I–1990:II (second column) and the 1990:III–1999:IV subsample (third column). The
fourth column contains the average absolute difference between the relative MSFE in the first and second period, by fore-
casting method, averaged over the forecasting methods indicated in the first column. The final column reports the number
of such methods included in the averages in columns 2, 3 and 4. The results in the final block were computed using the
dynamic factor model subset of the data.
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variables, the forecasting methods with the lowest squared error loss were a time-varying parame-
ter forecast with little time variation, the simple mean combination forecast and the trimmed mean.
The best-performing TVP combination forecast has weights that are nearly equal to 1/n, with a small
amount of time variation, and the quantitative gain of this forecast over the simple mean was neg-
ligible. In contrast, sophisticated combination forecasts that heavily weight recent performance or
allow for substantial time variation in the weights typically performed worse than—sometimes much
worse than—the simple combination schemes.

Third, the combination forecasts performed well when compared to forecasts constructed using a
dynamic factor model framework. This is interesting in light of recently reported good forecasting
results for dynamic factor models. One possible explanation for the relatively poor performance of
the dynamic factor model forecasts is that the number of series examined here is relatively small
compared with those examined recently using dynamic factor models. In any event, this finding
merits further study.

Fourth, the combination forecasts with the least adaptivity were also found to be the most stable
when we divided the pseudo out-of-sample forecast period in half. This result is surprising. After
all, the reason for introducing discounting and time-varying parameter combining regressions is to
allow for instability in the performance of the constituent forecasts—which there clearly is—yet
doing so worsens the performance of the resulting combination forecast.

An important caveat to these conclusions is that they are based on point estimates, specifically,
the mean squared forecast errors of the combination forecasts relative to autoregressive benchmarks.
For reasons discussed earlier, we did not compute measures of statistical precision associated with
this forecast error reduction. A logical next step is to develop the asymptotic distribution theory for
sample relative MSFEs for models that are sometimes nested and sometimes not and in which the
number of parameters can be large, then to implement that theory numerically to provide a frame-
work for formal tests of whether the measured improvements obtained using the combination fore-
casts are statistically significant. This step, while important, is sizeable and we leave it to future
work.

Because of the substantial instability in the performance of the underlying individual 
forecasts, we consider it implausible that the classical explanation of the virtue of combination 
forecasts—the pooling of information in a stationary environment—can explain our results. 
Indeed, the mean of the contemporaneous forecasts has lower average loss than any of the more
sophisticated combination forecasts, a finding consistent with other empirical investigations of 
combination forecasting. This ‘forecast combination puzzle’—the repeated finding that simple 
combination forecasts outperform sophisticated adaptive combination methods in empirical appli-
cations—is, we think, more likely to be understood in the context of a model in which there is wide-
spread instability in the performance of individual forecasts, but the instability is sufficiently
idiosyncratic that the combination of these individually unstably performing forecasts can itself be
stable.
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