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Unobserved component autoregressive integrated moving average models 
are often the cornerstone of model-based seasonal adjustment proce- 
dures. Unfortunately these models are inherently underidentified and 
ad hoc assumptions must be made prior to the analysis. This article 
investigates the effect of seasonal adjustment filters on a class of obser- 
vationally equivalent models. Bounds on the mean squared error (MSE) 
associated with arbitrary linear filters are derived. The article also derives 
robust seasonal adjustment filters. The filters are robust in the sense that 
they minimize the maximum MSE from the set of observationally equiv- 
alent models. The article shows that the minimax and minimum extrac- 
tion filters are equivalent for a certain class of models. Empirical results 
for a number of economic time series are presented. 
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1. INTRODUCTION 

The classical model of economic time series represents 
an observed series as the sum of two unobserved com- 
ponents. The first component is called the seasonal com- 
ponent and represents the fairly regular intrayear move- 
ments in the series. The seasonal component captures the 
influence of periodic movements in the weather, the timing 
of holidays, and so on. The other component, called the 
nonseasonal component, captures the residual variation in 
the series. (This component is sometimes further decom- 
posed into a "trend" and an "irregular" component. This 
additional distinction is not necessary in what follows.) 
Most economic analyses are concerned with nonseasonal 
variations in economic variables and, therefore, concen- 
trate their attention on the nonseasonal component. The 
presence of seasonal variation in the series is viewed as a 
nuisance. Seasonal adjustment techniques are designed to 
eliminate or at least reduce this nuisance. 

If we let x, be an observed economic time series, then 
an additive model decomposes x, as 

xt = nt + st, (1.1) 

where nt is the nonseasonal component and St is the sea- 
sonal component. (For some series a multiplicative de- 
composition is more appropriate. In this case x, should be 
viewed as the logarithm of the original series.) Seasonal 
adjustment can be viewed as a method for estimating nt, 
that is, of forming 

n t - St, (1.2) 

where fit is the estimate of the nonseasonal component 
and st is the estimate of the seasonal component. 
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When we view n', as an estimate of n, we might naturally 
want a measure of the precision of the estimate, so, for 
example, we might want to calculate the mean square of 
the error (nt - ne). In unobserved component models the 
concept of precision or mean squared error (MSE) of an 
estimate is somewhat different from that in usual models. 
The difference arises because there is no sample counter- 
part to the population MSE measure. Since n, is not ob- 
served, we could never calculate a sample MSE. In this 
sense the model is fundamentally underidentified. There 
are an infinite number of ways to decompose an observed 
series into two components. Measures like MSE must be 
interpreted with caution as they refer to estimates of com- 
ponents that are inherently unobservable. 

On the other hand, it still might be possible to define 
precisely the components in terms of seasonal and non- 
seasonal generating functions in such a way that the MSE 
of fit could be calculated and would be a useful measure 
of precision. Model-based seasonal adjustment proce- 
dures, for example, define the unobserved components in 
terms of generating functions and then use the character- 
istics of these generating functions to develop optimal sea- 
sonal adjustment procedures. A popular specification pos- 
tulates independent seasonal and nonseasonal univariate 
autoregressive integrated moving average (ARIMA) models 
for the components. The models defining the components 
are constrained so that when summed they describe the 
dynamic behavior of the observed series x. 

If the components are defined in terms of ARIMA gen- 
erating models and the estimate fn, is a linear combination 
of current, lagged, and future values of xt, then it is often 
possible to calculate the MSE (and all of the autocovari- 
ances) of (ni - ne). Examples of such calculations can be 
found in Hausman and Watson (1985) and Burridge and 
Wallis (1985). These authors solved the model identifi- 
cation problem by postulating "reasonable" models for 
the seasonal and nonseasonal components. By "reason- 
able" I mean that the model chosen for the seasonal com- 
ponent generates a series whose spectrum has most of its 
mass concentrated near the seasonal frequencies, and the 
nonseasonal model generates a series with no extra power 
or peaks near the seasonal frequencies. Unfortunately it 
is often possible to find other reasonable models that sum 
to the same observed model and yield different values for 
the MSE. These observationally equivalent models cor- 
respond to different definitions of the seasonal and non- 
seasonal components. 

Another approach to the calculation of the precision of 
the seasonally adjusted series is to calculate the MSE for 
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all of the "reasonable" definitions of the nonseasonal and 
seasonal series. That is, one could calculate the MSE over 
a range of observationally equivalent models. This pro- 
cedure would make the calculation of bounds on the pre- 
cision of the seasonally adjusted estimates possible. These 
bounds are useful since they allow the users of the sea- 
sonally adjusted series to conduct conservative inference 
without knowledge of the specific model used to form the 
MSE. In many cases it is too ambitious a task to consider 
all possible reasonable definitions of the seasonal/nonsea- 
sonal decomposition. In this article we consider a class of 
models for the seasonal and nonseasonal components, which 
is indexed by a single unidentified parameter. The model 
that we consider has been widely used in connection with 
model-based seasonal adjustment procedures. These ap- 
plications suggest that the model is flexible enough to de- 
scribe the behavior of a wide range of economic time se- 
ries. 

By considering a range of observationally equivalent 
models for the seasonal and nonseasonal components we 
can also investigate the robustness of various seasonal ad- 
justment methods. Given any particular linear model it is 
often possible to derive linear minimum MSE seasonal 
adjustment filters by using signal extraction methods. Al- 
though the performance of a filter may be optimal for one 
seasonal/nonseasonal component model, its performance 
may be very poor for another, observationally equivalent 
model. In model-based seasonal adjustment procedures it 
is a common practice to concentrate attention on the filter 
that is optimal for the model that minimizes the contri- 
bution of the seasonal component. This gives rise to what 
Pierce (1976) called the minimum extraction principle. In 
this article I suggest an alternative approach, which in- 
volves choosing the seasonal adjustment filter that mini- 
mizes the maximum MSE over the class of observationally 
equivalent models. As it turns out, this "minimax" filter 
is sometimes the minimum extraction filter, sometimes the 
maximum extraction filter, and sometimes neither. 

In Section 2 I discuss a class of unobserved component 
models and show that any model in this class can be rep- 
resented in terms of a single unidentified parameter. Four 
economic time series are analyzed, including the wholesale 
price index (WPI) and the civilian labor force (CLF), to 
investigate empirically the relevant range of observation- 
ally equivalent models. In Section 3 I show how bounds 
on the MSE for linear seasonal adjustment filters can be 
calculated. This section presents bounds on the MSE for 
the seasonally adjusted values for four economic time se- 
ries adjusted by a linear filter approximating Census X- 
11, the official U.S. Commerce Department method. As 
a preview of one of the empirical results it is found that 
an upper bound on the root mean squared error (RMSE) 
of the official historical value of the WPI inflation rate is 
.5%, suggesting that inflation rates of 1% per month are 
not significantly different from zero. In Section 4 I take 
up the issue of robustness of filters and derive minimax 
filters. These filters are compared with X-ll and with the 
minimum extraction filters for the four series. The last 
section contains some concluding remarks. 

2. THE MODEL 

We assume that the dynamic behavior of the observed 
series can be represented in terms of an ARIMA process, 
so 

O,(B)x,= O6(B)et, (2.1) 

where 4.(B) and Ox(B) are polynomials of order p and q 
in the backshift operator B, the roots of Xx(B) are on or 
outside the unit circle, the roots of Ox(B) are outside the 
unit circle, and et is white noise. We can write the pseudo- 
autocovariance generating function (pseudo-ACGF) of x, 
say Ax(z), as 

A '(Z) = O2 4. (z)40.(z 1). (2.2) x() e 0x(Z)0.(Z_1) (22 

Setting z = e-i@, this is the pseudospectrum for x. An 
alternative representation for x, is in terms of the unob- 
served components n, and st, 

xt = nt + St. (2.3) 
We assume that the innovations in nt and st are uncorre- 
lated at all leads and lags, and their ACGF's will be de- 
noted by An(z) and As(z). This allows us to write 

Ax(z) = An(z) + AS(z). (2.4) 

Since the series xt is observed, Ax(z) can be consistently 
estimated. With Ax(z) and Equation (2.4), we see that the 
model can be completely specified by describing either 
An(z) or As(z). Nonseasonal behavior across various eco- 
nomic time series may differ substantially, but by defini- 
tion, seasonal behavior across series is reasonably similar. 
For this reason we will specify the model in terms of the 
seasonal component and leave the nonseasonal component 
to be determined by Equation (2.4). (We will make the 
additional assumption that the spectrum of the nonsea- 
sonal component does not have spikes at the seasonal 
frequencies.) 

The model that I propose for the seasonal component 
is the same model used by Hillmer and Tiao (1982) for 
their model-based seasonal adjustment procedure. To mo- 
tivate the model it is useful to begin with a deterministic 
model of seasonality in which st = st-m, where m repre- 
sents the number of time periods per year. If we let U(B) = 
1 + Bl + B2 + ... + Bm -, then the sum of seasonal 
factors over any year is given by 

U(B)st = c, (2.5) 

where clm is the mean of the seasonal series. We will 
attribute the mean of the observed series entirely to the 
nonseasonal component, and so set c = 0. This yields a 
series st with a pseudospectrum that consists solely of spikes 
at the seasonal frequencies 27rjIm [j = 1, 2, . .. ., m]. 
This model captures the strict periodic nature of the sea- 
sonal component but, in a sense, forces it to be too strict. 
A model similar to the deterministic model but that allows 
the seasonal component to evolve slowly over time uses 
Equation (2.5) as a forecast function, so 

tSt+ + tSt+2 + +tSt+m = , 
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which implies that 

tSt+k = tSt+k-m for k > m, (2.6) 

where tst+j is the forecast for st+j, constructed using data 
on s up through time t. This specification allows the sea- 
sonal component to evolve slowly according to 

U(B)st = ct, (2.7) 

where ct is an error term. From the forecast function (2.6), 
the error term is constrained to follow an MA(m - 1) 
(MA for moving average) process 

Ct = 6,(B)ft (2.8) 

with ft white noise. The spectrum of st defined in (2.7) 
and (2.8) is the stochastic analog of the spectrum of st 
defined in (2.5). Most of the power is concentrated around 
sharp spikes at the seasonal frequencies. 

This specification for the seasonal component places 
testable restrictions on the model (2.1) for the observed 
series. The autoregressive (AR) polynomial U(B) in (2.7) 
leads to singularities in the spectrum of s at the seasonal 
frequencies. This characteristic must be shared by the 
spectrum of x, so the AR polynomial Xx(B) must contain 
the factor U(B). The ARIMA model for x must satisfy 
some additional conditions. A set of necessary and suffi- 
cient conditions is given in Hillmer and Tiao (1982). 

With the specification of the models for xt and st given 
in (2.1), (2.7), and (2.8), the model for nt follows from 
Equation (2.4). The process for nt will be represented as 

0n(B)nt = 0.(B)gt (2.9) 

with gt white noise. From (2.4) we have 

2 60x(z)6(Z 1) 2 60(z)6O(z') + 6f2 0(z)6O(z') 

k>(z)4?(z -1) k0n(z)4(z ') U(Z) U(Z) 

(2.10) 

We will impose one restriction on the process for nt. Since 
nt is nonseasonal it should not have peaks in its spectrum 
at the seasonal frequencies. This implies that U(B) and 
4n(B) have no common roots. 

Given this specification for the components we are now 
in a position to investigate the identifiability of the model. 
We will assume that the polynomial [4,n(z)6s(z) + U(z)6n(z)] 
shares no common factors with 4,n(z) or U(z), so Equation 
(2.10) implies that 

Xx(B) = 0.(B) U(B) (2.11) 

so that the AR parameters are identified. Identification 
problems arise from the MA parts of the component models. 
The nature of the identification problem is easy to see. 
Suppose that we have one set of components that satisfy 
Equations (2.7)-(2.10) and we then add an independent 
white noise component to the seasonal component. Since 
the sum of an ARMA(m - 1, m - 1) (ARMA for au- 
toregressive moving average) plus independent white noise 
follows an ARMA(m - 1, m - 1), we have generated a 
new seasonal component satisfying (2.7) and (2.8). [Of 
course the values of the coefficients in 6s(B) and the value 

of af will change.] To complete the specification of this 
new model we merely choose a nonseasonal process so 
that (2.10) is satisfied. The structure imposed on the com- 
ponents by Equations (2.7)-(2.10) allows us to represent 
the entire class of observationally equivalent models in 
terms of one unidentified parameter that measures the 
variance of the independent white noise process that is 
added to the seasonal component. 

To show this formally we follow Burman (1976; 1980) 
and construct a unique partial fraction expansion of the 
ACGF of x, to yield 

2 ox(z) 6X(z 
- 1) 

xe (z) Xx (Z 1) 

U(z)U(z-) a (z)a(z ')_ + A(z)A(z'), (2.12) 

where OS(z) is a polynomial of order m - 2, a(z) is a 
polynomial of order p - m, and A(z) is a polynomial of 
order max(0, q - p). We can combine the last two terms 
to form 

fin(z) fin(z 1) 

?On(Z?R( 1) 

and define s4 as a process with ACGF 

US(z)U0(z + 1 
U(z) U(Z 1 

and ny as a process with ACGF 

0i(z)6n(z1') 

and so we can represent xt as 

xt = sy + ny (2.13) 

for any value of y that gives rise to legitimate ACGF's 
from ny and sy. Bounds are placed on y by the constraint 
that the spectra of sy and ny must be nonnegative. We will 
denote the lower bound by yI and the upper bound 
by yU. 

As is clear from Equation (2.12), the degree of under- 
identification can be indexed by the range yu - y'. We 
can think of yu - y 'as the ACGF (equal to the variance) 
of a white noise component rt. Identification problems 
arise because we do not know what fraction of rt to at- 
tribute to the seasonal and what fraction to attribute to 
the nonseasonal component. Some model-based seasonal 
adjustment procedures attribute all of this component to 
the nonseasonal. [Examples can be found in Pierce (1976), 
Box, Hillmer, and Tiao (1976), Burman (1980), Hillmer 
and Tiao (1982), and Bell and Hillmer (1984).] The most 
thorough discussion of this choice for the identification of 
the seasonal component can be found in Bell and Hillmer 
(1984). They made three important points: (a) a precise 
definition of the seasonal component is necessary if sea- 
sonal adjustment is to be viewed as a well-posed statistical 
estimation problem, (b) some arbitrary choice must be 
made to define the seasonal component precisely, and (c) 
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Table 1. Model Uncertainty 

Series Model for observed series a0 (yU - Y9112 - 

CRF (1 - B)(1 - B12)X,= (1 - .61 B)(1 - .53B12)e, .0901 .0551 .37 
CLF (1 - B)(1 - B12)X,= (1 - .27B - .22B5)(1 - .72B12)e, .0034 .0016 .21 
WPI (1 - B)(1 - B12)X, = (1 + .1 5B2 + .1 5B3 + .1 7B5 + .07B6)(1 - .93B12)e, .0077 .0033 .19 
DDC72 (1 - .20B - .18B2 - .3B3)(1 - B)(1 - B12)X,= (1 + .43B)(1 - .91B12)e, .0033 .0010 .09 

given that an arbitrary choice must be made, a set of 
reasonable arguments support the decomposition in which 
r, is attributed (in full) to the nonseasonal component. 
There is an alternative to making an arbitrary choice of 
one of the observational equivalent models. This alter- 
native approach explicitly incorporates model uncertainty 
into the seasonal adjustment process. The remainder of 
this article will investigate this approach. 

The foregoing results show that the degree of model 
uncertainty depends on the ACGF of the observed series. 
To investigate the empirical relevance of model uncer- 
tainty, unobserved component models for four series have 
been estimated using monthly data from 1956: 1 to 1979: 12. 
The four series considered were the logarithm of the ci- 
vilian labor force (CLF), the logarithm of the wholesale 
price index (WPI), the logarithm of total cash receipts 
from farming (CRF), and the logarithm of demand de- 
posits and currency in 1972 dollars (DDC72). [All series 
are available in the Capsule Data Bank at Data Resources, 
Inc. The Current Population Survey error component of 
CLF, documented in Hausman and Watson (1985), was 
ignored.] As an index of uncertainty, the following was 
calculated: 

v = (yu - y')a e 

The numerator is the variance of the white noise com- 
ponent rt, and the denominator is the variance of the (uni- 
variate) innovation variance in x,. Since r, is one compo- 
nent of the innovation in xt, the index shows the percentage 
of the innovation in the observed series that is attributed 
to the current value of r,. (Since it is impossible to un- 
scramble perfectly the values of the unobserved compo- 
nents given data on x alone, the univariate innovation in 
x is composed of both current and lagged values of the 
shocks to the components.) The results for the four series 
are shown in Table 1. Although the forms of the ARIMA 
models vary from series to series, they all contain seasonal 
and nonseasonal differencing operators. The calculated 
values for the index Vt suggest that the degree of model 
uncertainty can be substantial and can vary considerably 
from series to series. The index is highest for CRF where 
it takes on the value .31 and is smallest for DDC72 where 
it takes on the value .09. 

3. SEASONAL ADJUSTMENT MEAN 
SQUARED ERROR 

Most seasonal adjustment procedures can be repre- 
sented or well approximated by a time-invariant linear 
filter applied to the observed time series. When the model 

generating the components is known, the properties of the 
filter and the autocovariances of the components can be 
used in a straightforward manner to determine the sea- 
sonal adjustment MSE. If we denote the seasonal adjust- 
ment filter by 

00 

V(B)= E viBi, (3.1) 
i= -00 

then the seasonally adjusted value is 

nt= V(B)xt (3.2) 

and the seasonal adjustment error is 

at = nt - nt. (3.3) 

Letting Aa(z) denote the pseudo-ACGF of at, Equations 
(3.2) and (3.3) imply that 

Aa(Z) = W(z)W(z-')A,(z) + V(z)V(z-')A,(z), (3.4) 

where 

W(z) = 1 - V(z). (3.5) 

For the models we are considering the seasonal and 
nonseasonal components are nonstationary with a variance 
increasing over time without bound. This implies that the 
mean square of at will remain bounded (as t grows large) 
for a certain class of filters only. These filters were inves- 
tigated by Pierce (1979). From the second term on the 
right side of (3.4) it is clear that V(B) must contain the 
factor U(B) if the MSE is to remain bounded. When nt 
is nonstationary, further conditions must be imposed. If 
we write the AR polynomial for the nonseasonal com- 
ponent as 

0"(Z) = 01(Z)02(Z), (3.6) 

where 441(z) has all of its roots on the unit circle and 42(Z) 
has all of its roots outside the unit circle, then the first 
term on the right side of (3.4) implies that W(B) must 
contain the factor 44(B). Bell (1984) gave conditions that 
ensure that at is covariance stationary. In addition to the 
characteristics of V(B) just listed, his assumption A on 
the initial conditions of the process leads to a stationary 
seasonal adjustment error. We will assume that V(B) and 
W(B) contain the factors U(B) and 44(B), respectively, 
and make Bell's assumption A concerning the initial con- 
ditions for x. These imply that the process describing at is 
covariance stationary. 

In the example considered in Section 2 the ACGF of nt 
was known only up to an unknown constant y. If we let 
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Table 2. RMSE's (measured in percentage) of Seasonal 
Adjustment Filters for the CRF Series 

Variable being 
estimated Total cash receipts from farming 

Historical adjustment filter 

X-1 1 MY' MY. MY.. MYU 

ny' 2.96 2.88 3.47 3.25 5.18 
nyu 5.31 5.00 3.47 3.78 2.55 

Any' 4.03 3.93 4.95 4.58 7.73 
Anyu 7.26 6.84 3.97 4.58 1.57 

Current adjustment filter 
X-1 1 ARIMA HyII' Hy. Hy HyU 

ny' 4.05 4.02 4.30 4.19 5.25 
nyu 5.44 5.24 4.42 4.57 4.01 

Any' 5.34 5.25 5.44 5.33 6.68 
Anyu 7.09 6.74 4.78 5.19 .2.85 

ny denote the nonseasonal component with y in its ACGF 
and ay =nt - ny, then the ACGF of ay, say Ay(z), is 

Ay(z) = W(z)W(z') [:x:nZ) _ ] 

+ V(z)V(z) [U,(z)U.(z ) + y (3.7) 

= AY'(z) + (y- y'))[V(z) + V(z') - 1], (3.8) 

so the MSE of ay is 

MSE[ay] = MSE[al'] + (y - y')(2vo- 1). (3.9) 
Bounds on the MSE follow directly from (3.9). When vo > 
2, the MSE[ay] is bounded below by MSE[ay'] and bounded 
above by MSE[ay']. The opposite occurs when vo < 2. 

When vo = 2, the MSE is constant for all values of y. 
Interest is often focused on the change in the series 

rather than its level. The MSE for the change in the sea- 
sonally adjusted value is also easily calculated from the 
ACGF for ay. Like the MSE for the level, it is a linear 
function of y, where the slope of the function depends on 
the coefficients in the seasonal adjustment filter. In par- 
ticular, 

MSE[Aay] = MSE[Aay'] 
+ 2(y - yl)[2vo - v- v - 11. 

Again, bounds on the MSE depend only on MSE[Aay'] 
and MSE[Aayu]. 

The official seasonal adjustment method for most U.S. 
economic time series is the Census X-11 program. This 
program contains a menu of seasonal adjustment filters as 
well as adjustments for trading day variation and outliers. 
[For a complete description see Shiskin, Young, and Mus- 
grave (1967).] If the corrections for outliers and trading 
day variation are disregarded, then the linear filter given 
in Wallis (1974) is a good approximation to the standard 
options version of the filter used to adjust monthly his- 
torical data additively. (The filter given in Wallis uses the 
13-term Henderson MA filter for the trend-cycle com- 

Table 3. RMSE's (measured in percentage) of Seasonal 
Adjustment Filters for the CLF Series 

Variable being 
estimated Civilian labor force 

Historical adjustment filter 

X-1 1 MY_ MY. MY MyU 

ny' .13 .11 .15 .13 .15 
nyu .18 .18 .15 .15 .15 

Any' .13 .12 .19 .16 .20 
Anyu .22 .22 .15 .16 .15 

Current adjustment filter 
X-1 1 ARIMA Hy' Hy Hy. Hyu 

ny' .17 .16 .17 .17 .17 
nyu .21 .20 .19 .19 .19 

Any' .17 .16 .17 .17 .18 
Anyu .24 .24 .19 .20 .19 

ponent. This is the option chosen by X-11 for most series.) 
The linear approximation is an 84-term symmetric filter. 
The value of vo is .82, and the value of v1 is .02. In the 
first column of each of Tables 2-5 bounds on the MSE 
are shown for the seasonally adjusted levels and changes 
in the four series described in Section 2. (The computa- 
tional details concerning these calculations can be found 
in Appendix A.) The range encompassed by these bounds 
can be quite large. For example, the MSE for CRF cor- 
responding to nyU is over three times the MSE for ny'. 
Confidence intervals for the level and the change in the 
nonseasonal component are nearly twice as wide using 
ny' than they are using ny'. Inferences concerning the non- 
seasonal component using the minimal variance represen- 
tation (i.e., y') may be quite inappropriate for other 
observationally equivalent models. When the seasonal 
adjustment filter used is X-11, inferences using the MSE 
calculated for the maximal seasonal variation represen- 
tation will be conservative (the size of tests will be over- 
stated and confidence intervals will be too wide) for any 
of the other observationally equivalent models of the sea- 
sonal/nonseasonal decomposition. 

Table 4. RMSE's (measured in percentage) of Seasonal 
Adjustment Filters for the WPI Series 

Variable being 
estimated Wholesale price index 

Historical adjustment filter 

X-1 1 MY_ MY MMU 

ny' .27 .14 .22 .25 
nyu .38 .35 .28 .28 

Any' .28 .13 .32 .38 
Anyu .46 .48 .32 .31 

Current adjustment ifiter 

X-11 ARIMA Hy' Hy. Hy Hyu 
ny' .30 .19 .22 .24 
nyu .43 .38 - .35 .35 

Avny' .29 .19 - .24 .26 
Anyu .51 .49 - .41 .39 
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Table 5. RMSE's (measured in percentage) of Seasonal 
Adjustment Filters for the DDC72 Series 

Variable being 
estimated Demand deposits and currency in 1972 dollars 

Historical adjustment filter 

X-1 1 MY- MY. MY. MyU 

ny' .13 .08 .09 
nyu .16 .12 .11 

Any' .12 .06 .11 
Anyu .16 .15 .12 

Current adjustment filter 
X-1 1 ARIMA H- Hy' Hy.. Hyu 

ny' .15 .11 .12 
nyu .18 .15 - .15 

Any' .13 .09 .09 
Anyu .18 .16 .15 

Since the two-sided symmetric X-11 filter requires future 
as well as past data, it cannot be used to adjust current 
values. Various modifications have been suggested to carry 
out current seasonal adjustment. The X-11 program in- 
cludes special "end-weights" that can be used to adjust 
data when 7 years of future data are not available. An 
alternative procedure, suggested by Dagum (1975), is to 
apply the symmetric X-11 filter to a series augmented by 
forecasts of the future values. The forecasts can be con- 
structed from the ARIMA models for the series, and the 
procedure is referred to as X-11 ARIMA. (The X-11 
ARIMA procedure typically augments the series with 12 
months of forecasts, and the special nonsymmetric X-11 
lag 12 filter is used. The results here use the symmetric 
filter applied to the series augmented by 84 forecasts.) 
Geweke (1978) and Pierce (1980) showed that, when the 
model for x, is known, this procedure has the desirable 
property of minimizing the mean square of seasonal ad- 
justment revisions that take place as more data become 
available. Combining the linear forecast filter implicit in 
the ARIMA forecasting procedure with the symmetric X- 
11 filter produces a linear one-sided filter. Bounds on the 
seasonal adjustment MSE for the four series were calcu- 
lated for these current adjustment filters. The results are 
shown in the bottom portions of Tables 2-5. It is important 
to note that in all cases except one the MSE's for current 
adjusted values are larger than the values for historical 
data. (This increase in MSE always occurs with the use of 
an optimal filter, but it need not occur with the use of a 
nonoptimal filter like X-11.) In general the X-11 filter uses 
future values of the observed data in a way that reduces 
the MSE. 

The calculated RMSE values reported in Tables 2-5 
should be of interest to users of these series. Since the 
data are logarithms, the RMSE's are measured in per- 
centage. The upper bound on the RMSE for the rate of 
change in the currently adjusted WPI suggests that changes 
of 1% per month may be insignificantly different from 
zero. The results suggest that the rate of change in the 
nonseasonal component of DDC is quite accurately esti- 
mated by X-1l, with an RMSE of no more than .18% per 

month. The rate of increase of the nonseasonal component 
in CRF is poorly estimated by X-11. Its RMSE is 7.26% 
for historical data and 7.09% for current data. This in- 
crease in MSE that occurs when future data are added 
implies that X-11 is not efficiently using the observed data 
to adjust the data seasonally. The data are used efficiently 
by an optimal filter. The construction of optimal filters is 
the subject of the next section. 

4. MINIMAX SEASONAL ADJUSTMENT FILTERS 

The construction of optimal seasonal adjustment filters 
has received considerable attention in the statistics and 
econometrics literature. Most of the modern literature 
postulates independent ARIMA models for the compo- 
nents and then forms optimal seasonal adjustment filters 
by using signal extraction methods. When the models for 
the components are not completely specified, or are spec- 
ified up to some set of unidentified parameters, as they 
are in this article, the common practice is to choose a 
particular model first and then to form the optimal filter 
for this model. The usefulness of this filter for extracting 
the seasonal in any of the other observationally equivalent 
models is not considered. [A notable exception can be 
found in Bell and Hillmer (1984, sec. 4.3.2).] The results. 
of Section 3 show that filter performance may vary sub- 
stantially over the observationally equivalent models. A 
filter that is optimal for one model may perform quite 
poorly for another. In this section we construct seasonal 
adjustment filters that have desirable properties for all of 
the observationally equivalent models. In particular we 
construct filters that minimize the maximum MSE over 
the entire class of observationally equivalent models. 

As a starting point we will consider the optimal filter 
for estimating the nonseasonal component n, given a com- 
plete realization of the x process. Bell (1984) showed that 
the model for the components given in Section 2 together 
with his assumption A concerning the distribution of the 
initial conditions for the components imply that standard 
Wiener filtering formulas can be used to construct the 
optimal seasonal adjustment filter. The key feature of the 
model that makes this possible is the fact that the AR 
polynomials for the seasonal and nonseasonal components 
share no common roots on the unit circle. The results of 
Burridge and Wallis (1983) made this clear by showing 
that the effect of initial conditions will be transient, in the 
sense that the Kalman filter and smoothing recursions will 
converge, so long as the uncertainty surrounding the initial 
conditions is finite. (These Kalman filter and smoothing 
techniques are recursive approaches for forming optimal 
filters.) For exactness we will make Bell's assumption A 
concerning the initial conditions, so the optimal seasonal 
adjustment filter is given by the symmetric two-sided filter 

[On(B)On(F) 1 O 0x(B)0x(F) 1 
MY(B) = 2 

_____ 

O?)n(B)O)n(F) Y] L qx(B)qx(F) J 
(4.1) 

where F = B-1. Our assumption concerning the initial 
conditions, the assumption that Ox(B) is invertible, and 
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the assumption that the variance U2 is positive and finite 
imply that MY(B) is the unique linear minimum MSE filter. 

The linear minimum MSE estimate of ny is given by 

nt= My(B)xt. (4.2) 

We will define ayi,yi as the seasonal adjustment error in 
estimating ny using the optimal estimate of n?y, so 

ayl,y= My'(B)xt - nty = - nty. (4.3) 

We will now derive the minimax filter. The minimax 
filter will be chosen so that its weights, wi, satisfy 

min max ms I wixt-i - ny}. 
Wi Ye[Y,vYI i=k 

Setting the bounds in the summation equal to -oo and oo, 
we can derive the appropriate minimax filter for an entire 
realization of x. 

To derive this filter it is useful to consider three cases: 

(1) my' < I 

(2) my'> , 

(3) m' Y I 2: myu. 

To see that these three cases are mutually exclusive and 
exhaustive, notice from Equation (4.1) that 

0mO - _q2 < 0, (4.4) 
ay 

where a2 iS the variance of a random variable generated 
from an ARMA process with AR polynomial O,(B), MA 
polynomial 0,(B), and innovation variance ?e 2. We can 
now derive the minimax filter for three cases. [The results 
on uniqueness of the minimax filter were first presented 
in Findley (1985).] 

Case 1. 

my' <. m0' 2. 

From Equation (3.9), setting vo = my', MSE[ay',y] is a 
strictly decreasing linear function of y in the interval [yl, 
YuI, so max{MSE[ay y']} occurs at y = y'. But when y = 
r ' we know that MY'(B) is the unique linear minimum MSE 
filter. This implies that MY'(B) is the unique linear mini- 
max filter for Case 1. 

Case 2. 

myu > 2. 

An analogous argument shows that MYu(B) is the unique 
linear minimax filter for Case 2. 

Case 3. 

Since my is continuous and monotonically decreasing in y 
over [Y", YuI, there exists a unique y* E [ay,Yu] such that 
m = . From Equation (3.9) MSE[a4Yy*l is constant as ' 
varies over [y ', y U], so 

max{MSE[atY,Y*I} = MSE[atY,Y ]. 

But the unique linear MSE filter for estimating nV* is 
MY*(B). This implies that MY (B) is the unique linear 
minimax filter for Case 3. 

The foregoing argument derives the minimax filter for 
the estimate of the level of the nonseasonal component 
given a complete realization of the observed series. This 
choice of y will not necessarily coincide with that for the 
minimax filter for the change in the series or that for the 
minimax filter for the level of the nonseasonal component 
constructed from a limited amount of observed data. The 
results of Section 3 imply that variations in MSE for dif- 
ferent values of y depend only on the coefficients my 
and my. 

(Recall that the filter is symmetric, so my = my.) By 
using the same kind of argument that was used in the 
previous paragraph it is possible to show that the minimax 
filter for the changes in the nonseasonal component ap- 
plied to the level of xt is given by 

(1 - B)Myl(B) if my' - m iy < 

(1 - B)MyU(B) if myu - myu > 1 

(1 - B)My**(B) where my** - my = otherwise. 

When less than a complete realization of the observed 
series is available the filter MY(B) cannot be used. So, for 
example, the most recent value of x cannot be seasonally 
adjusted using MY(B), since future values of x are required 
by the filter. By applying the law of iterated projections 
(e.g., Riesz and Nagy 1955, p. 268) it is easy to show that 
the optimal estimate of the current value of the nonsea- 
sonal ny can be constructed by applying the optimal "full 
information" filter, MY(B), to a series made up of the 
actual current and lagged values of x and optimal (linear 
minimum MSE) forecasts of future values of x. (Any nec- 
essary presample values of x can be replaced by backcasts.) 
Since the forecasts of the unknown future values of x are 
linear combinations of the observed current and lagged 
values of x, this new "limited information" seasonal ad- 
justment filter can be written as a function of the optimal 
full information filter and the filters for forming the op- 
timal forecasts. We will call this optimal limited infor- 
mation filter HY(B). Since HY(B) is an optimal filter for 
estimating ny using the restricted information set, the ar- 
guments used previously to derive minimax filters carry 
over if a(hoIad') < 0. This derivative condition is proved 
for a wide class of filters, which includes IfY(B), in Findley 
(1985). Therefore, given the limited information set, the 
minimax filters are given by 

Hy'(B) if hyl < 2, 

HYU(B) if hYu > 

HY (B) where ho* = 2 otherwise. 

The value of r' indexing the minimax filter may change 
as information is acquired. So, for example, it is possible 
that Hy'(B) is the minimax filter for current adjustment 
and that MY"(B) is the minimax filter for adjusting his- 
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Figure 1. Seasonal Adjustment Filters for the Cash Receipts From Farming Series. 

torical values. This can occur because ho is a function of 
all of the coefficients in M"(B) and the parameters gen- 
erating forecasts of future values of the x's. In general, 
ho =, m7. Changing the value of y for the optimal filter as 
more data become available will increase the magnitude 
of revisions. These revisions errors will arise because of 
the change in the value of y as well as the unavoidable 
forecast errors in x. [This point was made in Geweke 
(1978) in another context.] A reasonable solution is to use 
the minimax filter for the historically adjusted series as 
the underlying filter for the current adjustment. 

Derivations of minimax filters in more general settings 
are possible. Findley (1985) considered a signal extraction 
problem that is related, but is more general, than the 
problem considered here. In his model the range of ob- 
servationally equivalent models was indexed by the allo- 
cation of a white noise component as it is in this model, 
but he allowed the signal and noise to be correlated and 
the optimal filter to be time varying. He showed that the 
basic results in Cases 1-3 here carry over to these more 
general settings. 

A variety of optimal filters was calculated for each of 
the economic time series discussed in Section 3. In Figure 
1 we plot the symmetric filter coefficients versus lag/lead 
of the CRF series. The figure contrasts four filters. The 

first is the minimum extraction filter-the optimal filter 
for estimating nt'. This symmetric filter has a large positive 
weight on the current observation and large negative weights 
at the seasonal leads and lags. All other coefficients are 
small. The filter with the smallest weight on the current 
observation corresponds to the maximal extraction filter- 
the optimal filter for estimating n7y. Rather than place a 
large weight on the current observation this filter uses a 
smooth centered MA of the first few leads and lags. Since 
less weight is placed on the current observation, less needs 
to be subtracted at the seasonal leads and lags. The middle 
two filters correspond to the minimax filters for the level 
and the change in the nonseasonal component. These fil- 
ters are nearly identical. 

The performances of these filters across the range of 
observationally equivalent models are compared in Tables 
2-5. The minimum extraction filter produces an optimal 
estimate of n7' with an RMSE of 2.88%. It produces an 
estimate of nyU with an RMSE of 5.00% and an estimate 
of An7 with an RMSE of 6.84%. The maximal extraction 
filter, on the other hand, produces an estimate of nyU with 
an RMSE of only 2.55%, but as an estimator of n7' it has 
an RMSE of 5.18%. Both of these filters perform well for 
one extreme of the observationally equivalent models and 
poorly for the other extreme. The minimax filters perform 
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Figure 2. Seasonal Adjustment Filters for the Civilian Labor Force Series. 

moderately well for all of the observationally equivalent 
models. The filter constructed to yield the minimax esti- 
mate of the levels (denoted by Ml* in Tables 2-5) yields 
an estimate with an RMSE of 3.47% for the level of the 
nonseasonal component regardless of the model gener- 
ating the nonseasonal component. It also performs rea- 
sonably well for estimating the change in the nonseasonal 
component with an RMSE between 3.97% and 4.95%. 
The final filter, Ml**, is the minimax filter for the changes 
in the nonseasonal component. It produces an estimate of 
the change in the nonseasonal component with an RMSE 
of 4.58% regardless of the model for the nonseasonal com- 
ponent and an estimate of the level with an RMSE between 
3.25% and 3.78%. 

Tables 2-5 also compare the performance of the various 
optimal filters with X-11. For the CRF series the upper 
bounds on the RMSE using X-11 are 5.31% for the level 
and 7.26% for the changes. Using the minimax levels filter 
the corresponding values are 3.47 and 4.95. If we define 
relative efficiency as the ratio of the upper bounds on 
MSE, then the efficiency of X-11 relative to the minimax 
filter is .43 [ = (3.47/5.31)2] for the level of the nonseasonal 
component and .40 [= (4.58/7.26)21 for the change. 

The bottom panels of Tables 2-5 show the RMSE's ol 
the current adjusted values, that is, the estimates of the 

nonseasonal components at time t using data up through 
time t only. Here we see that there can be substantial 
information in the future values of the observed series 
concerning the current value of the unobserved compo- 
nents. The values reported for y* and y** correspond to 
the minimax values of y for the two-sided filter. The upper 
bounds on the RMSE for the minimax one-sided filters 
would, of course, be smaller. Even using y* and y** cal- 
culated from the two-sided filter we see substantial gain 
in terms of the upper bound of the RMSE. Using X-11 
the upper bound is 5.44% for the level and 7.09% for the 
change. The corresponding values for the minimum ex- 
traction filter are 5.24% and 6.74%, and for the maximum 
extraction filter they are 5.25% and 6.68%. Using the 
minimax filters the upper bound for the level is reduced 
to 4.42%, and the value for the change is reduced to 5.33%. 

In Figures 2-4 the analogous filters for the other three 
series are shown. For the WPI and DDC72 the minimax 
filter for the level is the maximal extraction filter, since in 
both cases the maximal extraction filter has a weight on 
the current observation greater than .5. For the DDC72 
series this is also the minimax filter for the change in the 
nonseasonal component. Tables 2-5 contrast the perfor- 
mance of the various filters for each of the series. For all 
of the series the minimax filters provide a useful alternative 
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Figure 3. Seasonal Adjustment Filters for the Wholesale Price Index Series. 

to the minimum or maximum extraction filters. The effi- 
ciency gains associated with the use of minimax filters can 
be substantial. If we compare the largest of the MSE's 
from the minimum and maximum extraction filters with 
the minimax filters (for historical adjustment) we find rel- 
ative efficiencies ranging from .45 to .84 for the levels and 
from .35 to .64 for the changes. 

5. CONCLUDING REMARKS 
In this article I discussed uncertainty in seasonally ad- 

justed values that arises from the lack of identification in 
unobserved component models. The results of Section 2 
show that this source of uncertainty can be substantial. 
For a certain class of models for the seasonal component 
it was demonstrated that this source of uncertainty can be 
measured, so bounds on the MSE of the seasonally ad- 
justed values can be calculated. I also incorporated this 
source of uncertainty in the evaluation of filters and showed 
how minimax seasonal adjustment filters can be formed. 

Although I concentrated on a fairly narrow class of models 
for the seasonal component, many of the results in this 
article are easy to generalize. Technically, the results re- 
quired that the model uncertainty could be expressed in 
terms of the allocation of a white noise component to 
either the seasonal or the nonseasonal component. Any 

class of models with this characteristic are covered by the 
results. 

The idea that model uncertainty should be taken into 
account when measuring the precision of seasonally ad- 
justed values or when choosing seasonal adjustment filters 
goes beyond the class of models discussed in this article. 
Summers (1981), for example, attempted to measure the 
effect of model uncertainty over a much wider class of 
seasonal models, although many of the models he consid- 
ered were not observationally equivalent. 

A relevant class of observationally equivalent models 
that we have not considered begins with the same additive 
decomposition of x, 

xt = st + nt, 

but postulates a seasonal AR model for st of the form 

St = Pst-rm + et . 

This model of seasonality (typically with some additional 
MA terms) has been used by many researchers including 
Nerlove, Grether, and Carvalho (1979), Pierce (1976), and 
Hausman and Watson (1985). Since this model produces 
a seasonal component with a peak in its spectrum at zero 
frequency, it has been argued that it is an "inappropriate" 
model for the seasonal component. The argument suggests 
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Figure 4. Seasonal Adjustment Filters for the Demand Deposit and Currency Series. 

that the extra power at the zero frequency should be at- 
tributed to the nonseasonal component. Burman (1980) 
discussed a decomposition of s into 

St= St' + nt + ft, 

where 

(1 - p,B)n' = e n 

(1 + p1B + p2B2 + + pm_rB`n-))s - es 

with 

PkP= Pklm k= 1,,2,. m 

and (t, en, and es are uncorrelated white noise components. 
He then suggested that s' be viewed as the seasonal com- 
ponent, rather than s, and that n + n' + 4 be viewed as 
the nonseasonal component, rather than n. 

We have two observationally equivalent models of the 
seasonal component. One defines the seasonal component 
as s, and the other defines the seasonal component as s'. 
Since we have two models of the seasonal component, we 
will have two estimates of the X-11 RMSE and two optimal 
model-based seasonal adjustment filters. If both defini- 
tions of the seasonal s and s' are reasonable, then it makes 
sense to choose a seasonal adjustment filter that performs 

well when estimating s and when estimating s'. A minimax 
filter might be appropriate. Some simple algebra allows 
one to compare the performance (measured by the max- 
imum MSE over s and s') of the optimal filter for s and 
the optimal filter for s'. No general conclusion can be 
reached. The choice of the s or the s' optimal filter as 
minimax will depend on the process generating x. 

APPENDIX A: COMPUTATIONAL ISSUES 
This appendix provides an outline of the methods used to 

calculate the numbers shown in Tables 2-5. 

A.1 MSE for the X-11 Two-Sided Filter 

The calculations were performed using the linear approxi- 
mation to X-11 presented in Wallis (1974). This filter will be 
denoted by Xll(B), and we will let Wll(B) = 1 - Xll(B). 
An examination of the filter reveals that Xll(B) contains the 
factor U(B) and Wll(B) contains the factor (1 - B)2. Let 

Xll(B) [U(B)]-1X11(B) 
and 

Wll(B) = [(1 - B)2]-1W11(B). 

(Numerically, these polynomials are easily formed using poly- 
nomial long division.) Let 

6n(B) = [+b2(B)] '6.(B) 
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denote the MA polynomial for the moving average representa- 
tion for (1 - B)2n. This was formed numerically by truncating 
[4n(B)]-' after 300 terms. [Only DDC72 contained a n(B) $A 
1. The roots of its polynomial were well outside the unit circle, 
so approximation based on this 300-term truncation is quite good.] 
The ACGF of aYxll = n- X11(B)x, is 

AX11(_z) 
= W11(z)W11(z-1)[6k(z)jn(z-') - (1 - Z)2(1 - z-1)2y] 

+ Xll(z)Xll(z-')[fJ(z)0,(z-') + U(z) U(z-')y]. 

(A.1) 
The results reported in Table 2 were calculated by using poly- 
nomial multiplication to form Ay11(z). The results for all other 
values of y were calculated from 

Ax11 = AX;1(z) + (y - yl)[Xll(z) + X11(z-1) - 1], (A.2) 
which follows from Equation (3.8) in the text. 

A.2 MSE Associated With the MY 
(optimal two-sided) Filters 

First, some preliminaries. Let 
ay-1y2 = nyl _ My2(B)xt. 

The standard formulas yield 
ACGF(aY2'Y2) - AY2(z)AY2(z)IAx(z), (A.3) 

where AY2(z), Ay2(z), and Ax(z) are the pseudo-ACGF's for 
ny2i, sY2, and xt, respectively. By using Equations (2.10), (2.11), 
and (2.13) in the text and simplifying we have 

ACGF(at2'2) - [6n(z)0n(z1)0s(z)6s(Z1) 

+ y0n(z)0n(z'1) U(Z) U(z1) 

- y2U(z) U(z')4n (z)n (z ')]xf(Z)f(Z1), 

(A.4) 
where 

7r(Z) = [aeOx(Z)]W1. 

Equation (3.7) in the text implies that 
ACGF(ay vy2) 

= ACGF(ay2,Y2) + (yl - y2)[My2(z) + My2(z-1) - 1]. (A.5) 

Finally, from Equation (4.1) 

My2(z) = U(z) U(Z1)[6n(Z)On(Z) -1y2 0n(Z)0n(Z- )]r(Z)r(Z-1) 

(A.6) 
Equations (A.4)-(A.6) provide all of the ingredients for form- 

ing the MSE associated with the Ml filters. All of the calculations 
are straightforward except the inversion of Ox(z) that is needed 
to form 7r(z). The polynomial aex(Z) is the AR polynomial of 
the autoregressive representation of Xl (B) U(B)xt. For the cal- 
culations it was approximated by truncating the powers of [6x(z)]1 
higher than 720. [Two of the series contained factors of (1 - 
.9B12), so very long AR polynomials were necessary for a good 
approximation.] 

A.3 MSE for the X-11 One-Sided Filter 
The procedure that was used amounted to forming the one- 

sided X-11 filter (which is model specific) and then applying the 
same kind of calculations that are outlined in Section A.1 of this 
appendix. All of the models that we considered had 01(B) = 

(1 - B)2. The first step in forming the one-sided X-11 filter is 
to construct the autoregressive representation for x,. This is given 
by 

n(B)1(B) U(B)x, = e, (A.7) 
where 

02(B) = (B)[O.(B)]-1. 
For the calculations the polynomial [6X(B)]-I was approximated 
by a 720-term polynomial as described in Section A.2. 
Let 

y(B) = +2(B)q5l(B) U(B) (A.8) 
and 

(k) X+k k= 1, 2...; i=0,1 - xti - 

From (A.7) the ai(k) can be calculated by the recursion 
k-i 

ai(k) = E ai(k -j) + Yk+i (A.9) 
j=1 

Recall that the one-sided X-11 ARIMA procedure is to apply 
the two-sided X-11 filter to the historical series padded into the 
future with optimal forecasts. If we denote the one-sided X-11 
filter by Xll(B) (= I X11,Bi), then 

84 

Xli, = Xli, + > aj(k)X11ik, i = 0,1, . (A.10) 
k=1 

In Appendix B it is shown that X11(B) contains the factor U(B) 
and that W1l(B) [= 1 - X1l(B)] contains the factor (1 - B)2. 
This allows us to calculate the MSE associated with Xll(B) by 
using the same techniques discussed in Section A.1 of this ap- 
pendix. 

A.4 MSE Associated With the Hf 
(optimal one-sided) Filters 

Rather than directly calculate the MSE associated with this 
filter, we will use the properties of optimal predictors and the 
MSE associated with the MI that we formed in Section A.2 to 
find the MSE associated with the HI filter. Again, some prelim- 
inaries. For k = 1, 2, . . . it is straightforward to form 

k-i 

Xt+k - Xt+kIt =E 6 et+k-i- (A.11) 
i=O 

Let ni = MI(B)xt denote the optimal two-sided estimate of n', 
and let fil = HI(B)xt denote the optimal one-sided estimate. We 
have 

ny= miyxt-i 
i-X0 

M X mxt-i + E mkXt+klt + > k[Xt+k Xt+kltI 
i=O k=1 k=1 

x k-i 

f it + my E 6iet+k-i 
k=1 i=O 

or 
00 

t= ,ty + E et+i, (A.12) 
i=1 

where 

Ri=~mj+is5, i =1,2, . . . , (A.13) 
j=O 
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and we have used the fact that ml = mY k. From (A.12) we 
have 

(nY - ny) = (nY - nfY) + ERet+j, 
i=l 

where the two terms on the right side are uncorrelated because 
ni is a linear minimum MSE predictor of ny given an information 
set that includes the et+i. This implies that 

MS(nt - nt) = MS(ny - n-) + [ (A?)21 72, (A.14) 

where MS denotes mean square. Since MS(ny ny) was calcu- 
lated in Section A.2, we can calculate MS(ny - ny) by calculating 
the sum of the squared 4?'s. Each A? was calculated using Equa- 
tion (A. 13), and the sum in Equation (A. 14) was truncated after 
720 terms. 

In Tables 2-5 values are presented for MS(ny' - fiy2) for 
various combinations of y' and y2* These were calculated using 

MS(ny' - fiy2) = MS(ny2 _ fy2) + (yl - y2)(2hv2 _ 1), 

which follows from Equation (3.8) of the text. 
The MSE's for various estimates of the change in ny are also 

presented in Tables 2-5. These were calculated using a straight- 
forward modification of the procedure outlined previously. 

APPENDIX B: PROPERTIES OF THE ONE-SIDED 
X-11 FILTER 

In this appendix it will be shown that the one-sided X-11 filter, 
denotedbyXll(B), containsthefactor U(B), andthatWll(B) = 
1 - X11(B) contains the factor (1 - B)2. These two results 
were used in Section A.3 of Appendix A. I begin by presenting 
the Xll(z) polynomial. 

In Section A.3 of Appendix A the set of constants ai(k) was 
introduced. Let 

ak(z) = E ai(k)zi (B. 1) 
i=O 

so that 

Xt+klt = ak(B)xt. 

Using Equation (A.10) we have 
84 x0 84 

Xll(z) = E Xllizi + E E X11lkaj(k)zi 
i=O i=O k=1 

84 84 

= E Xllizi + E XllKkak(z). (B.2) 
i=O k=1 

The results in this appendix are easily derived from Equation 
(B.2), given the following important property of ak(Z). 

Lemma B.1. If Xl(z) = (1 Z Z)2, then 1 - Zkak(Z) contains 
the factor (1 - z)2U(z) for k - 1, 2, 3.... 

Proof (supplied by an anonymous referee). The proof is by 
induction. For k = 1, we have 

1 - z'al(z) = ig(Z) = q2(Z)(1 - Z)2U(Z) 

when Xl(z) = (1 - Z)2 [see (A.8)]. Next, write 

Zk+la k+l(z) = E zk+l+iai(k + 1) 
i=O 

(B.3) 

from the definition of ai(k + 1) given in (A.9). By rearranging 
terms in (B.3) and noting that Vi0 = 1, we have 

k 

zk+ ak+I(z) = V( - Z IZj[l - Zk+l-jak+l-j(Z)], 
j=1 

from which the result follows directly. 
By using the result in Lemma B. 1 the main result of this 

appendix is easily shown. First it is shown that Xll(z) contains 
U(z). From Lemma B.1 we have 1 - (z*)kak(z*) = 0, where 
z* is a root of U(z). This implies that ak(Z*) = (Z*)-k, so [from 
(B.2)] 

84 84 

X11(z*) = XllkZi + E X1L_kZ k = Xll(z*) = 0. 
k=O k=1 

This shows that U(z) is a factor of Xll(z). 
To show that (1 - Z)2 is a factor of 1 - Xll(B), write 

1 - X11(Z) 
84 84 

= 1 - E XllkZk - E XllKkak(z) 
k=O k=1 

84 84 84 

= 1 - E XllkZk - E XllkZk + E X11-k(Z - a k(Z)) 
k=O k=1 k=1 

84 

= [1 - Xll(z)] + E Xl11kZ k(l - Zkak(z)). 
k=l 

The first term in brackets has a factor of (1 - Z)2, as discussed 
in Appendix A. The second term has a factor of (1 - Z)2 by 
Lemma B. 1. 

[Received June 1984. Revised June 1986.] 
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