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UNIVARIATE DETRENDING METHODS WITH 
STOCHASTIC TRENDS 

Mark W. WATSON* 
Harvard Uniuersiry and NBER, Cambridge, MA 02138, USA 

This paper discusses detrending economic time series, when the trend is modelled as a stochastic 
process. It considers unobserved components models in which the observed series is decomposed 
into a trend (a random walk with drift) and a residual stationary component. Optimal detrending 
methods are discussed, as well as problems associated with using these detrended data in 
regression models. The methods are applied to three time series: GNP, disposable income, and 
consumption expenditures. The detrended data are used to test a version of the Life Cycle 
consumption model. 

1. Introduction 

Most macroeconomic time series exhibit a clear tendency to grow over time 
and can be characterized as ‘trending’. The statistical theory underlying most 
modem time series analysis relies on the assumption of covariance stationar- 
ity, an assumption that is clearly violated by most macroeconomic time series. 
In applied econometric work it is usually assumed that this statistical theory 
can be applied to deviations of the observed time series from their trend value. 
Since it is often the case that these deviations or economic fluctuations are of 
primary interest, modem time series techniques are often applied to ‘de- 
trended’ economic time series. 

Much recent work has been devoted to issues involving trends or long-run 
components in economic series. Some of this work has devoted itself to the 
proper characterization of ‘trends’ in economic data. A notable’contribution 
on this topic is the paper by Nelson and Plosser (1982) which considers the use 
of deterministic and stochastic trends. Other work [e.g., Nelson and Kang 
(1981, 1984)] has been concerned with the econometric consequences of 
misspecification in the model for the trend component. Still more work has 
addressed the issue of detecting long-run relations [e.g. Geweke (1983)] or 
incorporating long-run relationships in short-run dynamic relations [e.g., the 
work on ‘error correction models’ begun in Davidson et al. (1978) and the 
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co-integrated processes introduced in Granger (1983) and discussed further in 
Engle and Granger (1984)]. 

Research concerning the proper characterization of long-run trend behavior 
in economic time series is important for a variety of reasons. First, the work of 
Nelson and Kang and others shows that misspecification in the model for the 
trend can seriously affect the estimated dynamics in an econometric model. 
Proper estimation of these dynamic relations is important if they are to be 
used to test modem theories of economic behavior. These theories put very 
tight restrictions on the dynamic interrelations between economic variables. 
h&specification of trend components will often lead the analyst to incorrect 
inferences concerning the validity of these theories. The proper specification of 
long-run relations is also critical for long-term forecasting. 

This paper makes two points. The first point concerns the theory of 
stochastic detrending, and the second concerns its empirical implementation. 
We first propose a method for removing stochastic trends from economic time 
series. The method is similar to the one originally proposed by Beveridge and 
Nelson (1981), but differs in one important respect. The problem is cast in an 
unobserved components framework, in which the trend is modelled as a 
random walk with drift, and the residual ‘cyclical’ component is modelled as a 
covariance stationary process. This framework allows us to discuss and con- 
struct optimal detrending methods. One of the optimal methods corresponds 
to the (negative of the) Beveridge and Nelson transitory component. Our 
theoretical work shows that, in principle, our unobserved components (UC)’ 
representation of the process describing the data will give exactly the same 
results as the usual ARIMA representation. That is, both models imply exactly 
the same long-run behavior of the data. 

The second point of this paper is that estimated ARIMA and UC models 
imply very different long-run behavior of economic time series. For example, 
we estimate UC and ARIMA models for post-war US GNP. Both models 
yield essentially identical values of the likelihood function and short-run 
forecasts. However, estimated long-run behavior of the models is quite differ- 
ent. The ARIMA model implies that an innovation of one unit in GNP is 
expected to eventually increase the level of GNP by 1.68 units, the UC model 
implies that the same innovation will eventually increase GNP by only 0.57 
units. These results suggest that it is a dangerous practice to use the estimated 
time series models such as ARIMA or UC models to make inferences about 
long-run characteristics of economic time series. 

The paper is organized as follows. The next section specifies the model for 
the observed series, the trend component, and the residual ‘cyclical’ compo- 

‘Unobserved component models of the kind used in this paper have been advocated in Harvey 

and Todd (1983) and more recently in Harvey (1985). These two references contain excellent 
discussions of the similarities and differences between dynamic behavior of models parameteked 
as parsimonious ARIMA models and those parameterized as UC models. 
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nent. We begin with a general ARIMA formulation for the observed series and 
describe how the stochastic process can be ‘factored’ into the two processes for 
the components. Identification issues are also addressed in this section. Section 
3 discusses methods for estimating and eliminating the stochastic trends. The 
properties of the detrended series are addressed, and special attention is paid 
to the use of these series in constructing econometric models. The final two 
sections contain empirical examples. Three post-war US macroeconomic time 
series - GNP, disposable income, and consumption of non-durables - are 
analysed. Section 4 looks at each of these series in isolation, and presents and 
compares various estimates of the detrended series. Section 5 uses the data for 
non-durable consumption and disposable income to test the ‘consumption 
follows a random walk’ implication of one version of the life cycle consump- 
tion model. The final section contains a short summary and some concluding 
remarks. 

2. The model 

This section will introduce three models that additively decompose an 
observed time series, x,, into a trend and cyclical component. Each of these 
models will assume, or imply, that the change in x, is a covariance.stationary 
process. We begin with the Wold representation for the change in x,, which we 
write as 

(1 -B)x,=6+8”(B)ef, var(e:)=c&, P-1) 

where IF(B) is a polynomial in the backshift operator B, and e: is white 
noise. The assumption that (1 - B)x, is stationary is appropriate for most 
non-seasonal macroeconomic time series. Seasonal series often require a 
differencing operator of the form (1 - B”) where s is the seasonal span (12 for 
monthly, 4 for quarterly, etc.). Our assumption is not adequate to handle these 
series, and therefore, we are assuming that the series are non-seasonal. 

The representation for the level of the series x, that we consider in this 
paper is 

x,=r,+c,, (2.2) 

where 

7, = 6 + 7r-1 + e:, var( er) = CT,‘,, (2.3) 

and (c,, e;) is a jointly stationary process. A variety of specific assumptions 
about this process will be discussed below. The component 7, corresponds to 
the trend component in the variable x,; the ‘detrending’ will attempt to 



52 hi. W. Watson, Detrending methods with stochastic trends 

eliminate this component. Eq. (2.3) represents this trend as a random walk 
with drift, which can be viewed as a flexible linear trend. The linear trend is a 
special case of (2.3) and corresponds to the restriction u,‘, = 0. The forecast 
function of (2.3) is linear with a constant slope of 6 and a level that varies with 
the realization of e;. More general formulations are certainly possible. Harvey 
and Todd (1983) consider a model in which the drift term, a,, evolves as a 
random walk. This allows the slope as well as the level of the forecast function 
of 71 to vary through time. This formulation implies that x, must be dif- 
ferenced twice to induce stationarity, and therefore is ruled out by our 
assumption that (1 - B)x, is stationary. 

To complete the specification of the model we must list our assumptions 
concerning the covariance properties of c, and the cross-covariances between 
c, and e;. We consider three sets of assumptions. The assumptions will differ 
in the way that c, and e:-k are correlated. We consider each model in turn: 

Model I 

In this model the component c, evolves independently of the 7, component, 
and follows the process 

c, = t3’(B)e;, (2.4.1) 

where ef and eymk are uncorrelated for all k. The parameters of the UC model 
given by (2.2), (2.3), and (2.4.1) are econometrically identifiable. To see this, 
equate the representations for (1 - B)x, corresponding to (2.1) and the UC 
model given in (2.2), (2.3), and (2.4.1). This implies 

Br(B)e:=e’+(l-B)B’(B)ef, 

so that 

[P(l) I’r& = o-,“,. 0.5) 

The coefficients in P(B) can be found by forming the factorization of 

ex(Z)eqZ-1)u,2,-u,2,= (1 -z)(l -z-‘)e~(z)e=(z-l)u~~, (2.6) 

subject to the usual identifying normalizations [e.g., ~9: = 1 and the roots of 
e=(z) are on or outside the unit circle]. 

Eq. (2.6) can be used to show that (2.2)-(2.4.1) place testable restrictions on 
the x, process given in (2.1). To see this, set z = e-“‘, so that the right-hand 
side of (2.6) is the spectrum of (1 - B)c,. Since the spectrum is non-negative, 
the left-hand side of (2.6) must be non-negative for all o. This implies that 
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6x(e-i~)6~Y(eiw)u~x 2 u,‘, for all w, with equality guaranteed at w = 0 by (2.5). 
We conclude that the spectrum of (1 - B)x,, 6x(e-i0)6x(eiw)u$, has a global 
minimum at w = 0. Only processes with this feature can be represented by 
Model 1. [As discussed in Nelson and Plosser (1981), this rules out many 
common processes such as the ARIMA (l,l,O) with positive autoregressive 
coefficient.] The restrictiveness of this assumption will be investigated em- 
pirically for three macroeconomic time series in section 4. 

Mast of the discussion in the remainder of the paper will be devoted to 
Model 1. The restrictiveness of the model, however, suggests that other models 
are needed if the UC model is to be useful in describing all models of the form 
given in (2.1). Because of this we briefly discuss two other models. These differ 
from Model 1 in the assumptions they make about the covariance between c, 
and e;-k. The first of these is: 

Model 2 

The model for c, is 

c,= fl’(B)e:, (2.4.2) 

where B’(B) is a one-sided polynomial in the backshift operator. In this 
model, the innovations in the trend and cyclical components are perfectly 
correlated. The advantage of this model is that there is a one-to-one corre- 
spondence between models of the form (2.1) and models characterized by 
(2.2), (2.3), and (2.4.2). This implies that the parameters of the UC formula- 
tion (2.3) and (2.4.2) are econometrically identiable, and that unlike Model 1, 
this UC formulation places no constraints on the model (2.1). [A proof of this 
assertion can be found in an earlier version of this paper, Watson (1985).] 

The perfect correlation between the innovations in the components is an 
assumption that some might find objectionable on a priori grounds. Some 
correlation is needed, however, to give the UC model enough flexibility to 
capture all of the dynamic behavior possible in the model (2.1). Our final 
model is a mix of Models 1 and 2, in which the c, and r, are partially 
correlated. 

Model 3 

The component c, is represented as 

c,=f(B)ef+f(B)e;, (2.4.3) 

where $f(B) and v(B) are one-sided polynomials in B. This model can be 
viewed as a mixture of Models 1 and 2. Since both of those models are 
individually identifiable, Model 3 is not. 
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3. Estimation issues 

The models presented in the last section suggest that ‘detrending’ should be 
viewed as a method for estimating and removing the component 7, from the 
observed series x,. If we denote the estimated trend by r,, then the detrended 
series is given by t, = x, - +,. Different detrending methods correspond to 
different methods for estimating 7. A variety of criteria can be used to choose 
among competing estimation methods. We will consider linear minimum mean 
square error (LMSE) estimators constructed using information sets X,h = 
(x0, Xl, * * - > xh). We concentrate on these estimators for a variety of reasons. 
In addition to the usual reasons, including ease of computation and optimality 
for quadratic loss, the use of LMSE estimators guarantee certain orthogonality 
properties involving the estimation errors r, - +, = 2, - c,. These properties 
play a key role in the formation of instrumental variable estimators that are 
discussed below. We concentrate on a univariate information set for computa- 
tional ease. In general, multivariate methods will produce more accurate 
estimates. The univariate methods considered in this paper can serve’ as a 
benchmark to measure the marginal gains from considering more general, 
multivariate models. 

We will discuss detrending in the context of the general model - Model 3. 
The results for Model 1 can be found by setting v(B) = 0 and ec( B) = @(B), 
and the results for Model 2 can be found by setting $I’( B) = 0 and P(B) = 
4’(B). A convenient starting point for the discussion is the LMSE of using the 
information set ( . . . ,x-i, x0, xi,. . . ). In this case the standard Wiener filter for 
stationary processes [see, e.g., Whittle (1963)] can be extended to this non- 
stationary case [see Bell (1984)] to yield 

T,= V(B)X,= C”ixy-iS (3.1) 

where the coefficients in the two-sided polynomial V(B) can be found from 

v(x) = ee’7[1+ (1 -z-‘)$7(z-‘)] [P(z)P(z-i)c&] -l. 

We denote E(w,]X,h) by w,,,, for any variable w (where E is used to denote the 
projection operator). From eq. (3.1), 

(3.3) 

so that the estimates of the trend using the information set X,h can be formed 
from the Wiener filter with unknown values of x replaced by forecasts or 
backcasts constructed from the set Xi. 

The form of the tllter V(B) given in (3.2) makes it clear that the LMSE 
estimate depends on I#J’( z). Different V(B) polynomials will be associated with 
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Models 1, 2, and 3, so that different LMSE estimates of c, will be constructed. 
Eq. (3.2) makes it clear, however, that the difference arises from the way in 
which future data is used in the construction of r,,,,. All models produce the 
identical values of r,,,, for h < t. This is easily demonstrated. From (2.2), 

x,/h = ‘t/h + ‘t/h- 

For h I t, 

7,-k k/h = ‘t/h +k6 for k=1,2,..., 

so that 

*,+k/h - ks = rt/h + Ct+k/hm 

Since all of the models imply that c, is stationary (with mean zero), 

lim( k + m) c,+k,,, = 0, 

so that 

lim(k+ @+,+k,h- ktJ] =T,//,e 

This result shows that, in principle, the estimates c,,, (which will be called 
the filtered estimates) can be formed without access to any specialized soft- 
ware. To calculate the filtered estimates one merely constructs an ARIMA 
model for x, and then forecasts the series (less the deterministic increases kt3) 
into the distant future. This forecast corresponds to the filtered estimate, r,,t, 
and c,,, = x, - r,,,. This estimate of a permanent component was first sug- 
gested by Beveridge and Nelson (1981) in their permanent/transitory decom- 
position of economic time series. They define their transitory component as 
T/t -x,= -c t,,, in the notation above. This discussion shows that their 
estimate of the permanent component corresponds to an optimal one-sided 
estimator for the trend in the models under consideration in this paper. 

While the optimal filtered estimate c,,, is identified - is not model-depen- 
dent - its precision is not identified. That is, the mean square of (c, - c,,,) 
will depend on the assumed model. If Model 2 is used to describe the 
decomposition of the data, then c,,, = c,, so that the mean square error is zero. 
For the other models, x, is made up of both noises e7 and ec so that it is 
impossible to perfectly disentangle r, and c, when only their sum, x,, is 
observed. Since the Models 1, 2, and 3 are observationally equivalent, the 
mean square of (c, - c,,,) is not identi8ed. 

The remainder of this section will focus on the use of estimated values of c, 
in linear regression models. Replacing c, by c,,, in regression models leads to 
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problems similar to those in the classic errors-in-variables model. As the 
examples below will demonstrate, OLS estimates of regression coefficients will 
quite often be inconsistent. 

We will begin our discussion by writing the orthogonal decomposition of c, 
as 

c~ = ct/h + ‘t/h 1 

where a,,,, is the signal extraction error that arises from the use of informa- 
tion set X,h. Ordinary least square regression estimates rely on sample covari- 
antes between observable variables, and the consistency of OLS estimates 
follows from the consistency of these sample covariances. Consider then the 
covariance between an arbitrary variable w and c. From the decomposition of 
c, we have 

cov( w,c,) = cov( w,cIlh) + cov( w,a,/h). 

The cov( w,c,) will be consistently estimated by the sample covariance between 
w, and c,/h if cov(w,a,,,) = 0. In general this will not be true, so that 
cov(w,c,) f cov(w,c,/h). Recall, however, that a,/,, is a projection error, so 
that it is uncorrelated with linear combinations of data in X,h. By constructing 
w, as a linear combination of the elements in Xi, we can .guarantee that 
cov(w,c,) = cov(w,c,,,). We will use this fact in construction of instrumental 
variable estimators. It will be convenient to discuss a variety of estimation 
issues in the context of some specific models. 

The tirst model has current and lagged values of c, as independent variables, 
so that 

k 

y, = c q-i&+ z;v + t,, 
i-.1 

where z, is a i vector of unobserved variables, and we will assume (without 
loss of generality) that .& is white noise. We can rewrite this model in terms of 
unobserved variables as 

k 

YI’ C ct-i/h?i + z;Y + 5, + fl a,-i/h& 
i-l i-l 

= IfI ‘t-i/hfli + z;y + U,s 
i-l 
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where u, is the composite error term (&+ ~~~,~,-~,,,/3~). The unknown 
parameters Ply /$, . . . , Bk ad yl, - . . , yj will be consistently estimated by OLS 
if the regressors c,-~,,, and t, are uncorrelated with the error term u,. This 
may not be true for a variety of reasons. 

Two sources of correlation are immediately apparent. First, consider the 
correlation between c,- i,h and [,. In many models it will be reasonable to 
assume that 5, is uncorrelated with current and lagged values of c,, but 
unreasonable to assume that 5, is uncorrelated with future values of c,. 
(Correlation between [, and c,+~ will exist if there is feedback from y, to c,.) 
But when h > t, c,-~,~ will contain future x,‘s, and therefore c,-~,,, will 
contain linear combinations of future c,‘s. This may induce a correlation 
between c,-~,~ and 6, even though c,-~ and & are uncorrelated. The second 
source of correlation between the regressors and the disturbance arises from 
the possible correlation between z, and u,+,,,. These variables will be 
correlated when z, contains useful information about c, not contained in XJ. 

These problems can be circumvented by the use of instrumental variables. 
In particular, the variables in X6 can be used as instruments to estimate the 
model. When constructing instrumental variable estimates, it is useful to make 
use of the fact that, for h > t, c,,, = E(c,,,,IX$, so that IV estimates can be 
formed by regressing y, on the filtered values, c,,,, and i,, the fitted values 
from the regression of z, onto the set of instruments. Finally, it should be 
pointed out that the error terms, u,, may be serially correlated so that 
standard errors may have to be calculated using the procedures outlined in 
Cumby, Huizinga and Obstfeld (1983) or Hayashi and Sims (1983). 

The second regression model that we consider is 

k 

Ct = 1 ct-ipi + z:y + Et* 
i-l 

This model should be interpreted as the true generating equation for c,, so 
that 5, is uncorrelated with all variables dated t - 1 or earlier. Models 1-3 
described in the last section can be viewed as reduced forms of this model, 
where the z,‘s have been solved out as in Zellner and Palm (1976). Writing the 
model in terms of observables, we have 

Ct/h = i$l ‘t-i/hbi 

k 

+Z:Y +tt+ c at-i/h&-at/h 
i-l 

k 

= C Ct-i/hBi t- Z:y + Ut. 
i-l 
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As in the previous model, the observed regressors c,-;,,, and z, may be 
correlated with the error term, u,, leading to inconsistency of the OLS 
estimates. When h r I, the estimates c,-~,,, contain future c,‘s and therefore 
will be correlated with 5,. The variables z, can be viewed as ‘causes’ of c, and 
will therefore contain useful information about the c’s, which is not contained 
in the univariate information set X,h. This will induce a correlation between z, 
and a,-i/h. Instrumental variables can again be used to estimate the model. 
The data in Xi-l are valid instruments. 

In the discussion above, we replaced the true values of c,-~ by the estimates 
c,-~,,,. Since these estimates depend crucially on the model for c,, a useful 
alternative is to replace them by the estimates c,-~,,-~, which do not depend 
on the model assumed for c,. The see the implications of this procedure, 
rewrite the first regression example as 

k k 

y, = C C,-i/r-iSi + Z:Y -  5, + C a,-i/t-iSi- 

i-l i-l 

This differs from the formulation above in that each c,-~ is estimated using a 
different information set. Since cov(c,-i,,-ia,-j,,-j) # 0 for i >j, care must 
be taken in choosing instruments. Since Xi 3 XA-’ 3 . . . 3 XAmk, data in 
Ximk are valid instruments, and this set can be used. 

Finally, it is important to keep in mind that the inconsistency in OLS 
estimates will depend on the magnitude of the error in the estimate of c,. 
When c, is estimated very precisely, the inconsistencies from OLS have no 
practical importance. 

4. Univariate examples 

In this section we will analyze three US macroeconomic time series - real 
GNP, real disposable income, and real consumption of non-durables. We 
begin by applying the univariate detrending methods outlined in the last 
section to the logs of these series, using quarterly data from 1949 through 
1984. The estimated univariate models and corresponding trend and cyclical 
components will be discussed in this section. In the next section, we will 
investigate the relation between the cyclical components of disposable income 
and consumption using regression methods. 

Two univariate models have been estimated for each series. The first is the 
usual ARIMA model. The second is an unobserved components (UC) model 
suggested by the independent trend/cycle decomposition in Model 1. For each 
time series, we will present and compare the models and their corresponding 
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trend/cycle decomposition. The analysis in the last section indicated that, 
given the Wold decomposition of the observed series, the optimal one-sided 
estimates of the components could be formed using any of the observationally 
equivalent representations of the data. In principle then, it shouldn’t matter 
whether we form the one-sided estimates from the ARIMA model or from the 
UC model. The results below show that, in practice, it matters a great deal 
which representation is used. This apparent contradiction arises from the fact 
that the Wold representation for the data is not known. The ARIMA model 
and the UC model correspond to different parsimonious approximations to 
the Wold representation. Given a finite amount of data is is very difficult to 
discriminate between these alternative representations for the data sets that we 
consider. 

4.1. GNP 

The estimated autocorrelations for log GNP suggested that the data were 
non-stationary (the first estimated autocorrelation was 0.98). The correlogram 
for the change in the series suggested that an ARIMA (1, 1,O) model was 
appropriate. [An ARIMA(O,l,l) was also possible and yields very similar 
results.] The estimated model was 

(1 - B)x,= 0.005 + 0.406 (1 -@x,-r, 
(0.001) (0.077) 

SE = 0.0103, L(1) = 0.73, L(3) = 6.3, 

Q(23) = 14.9, LLF= 292.07. 

SE is the estimated standard error, L(1) and L(3) are LM statistics for serial 
correlation in the error term of order 1 and 3, respectively, and Q(df) is the 
Box-Pierce statistic of the residuals. Under the null hypothesis of no serial 
correlation, the LM test statistics are distributed as Xiz and Xi, respectively. 
The final statistic reported, LLF, is the value of the log likelihood function. 

Interestingly, this estimated model suggests that the spectrum for (1 - B)x, 
has a global maximum at the zero frequency, so that decomposition of 
(1 - B)x, into an independent random walk and stationary component is not 
possible. (Recall that this decomposition required that the spectrum had a 
global minimum at the zero frequency.) This means, as was pointed out in 
Nelson and Plosser (1981), that the trend/cyclical decomposition in Model 1 
is inappropriate. Nevertheless, we estimated a model of the form given into 
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Model 1.’ The results were 

x, = 7, - c,, 

(l-l.+,= 0.008 , 
(0.001) 

a=0.0057, 

c,= (;:;;;,c,-~- O:;;:,c,e2, a=0.0076, 

SE = 0.0099, Q(17) = 10.4, LLF= 294.42. 

The values for u next to each equation refer to the standard deviation of the 
disturbance in that equation. The value for SE is the standard error of the 
innovation in x,, i.e., the one-step-ahead forecast standard error. It is com- 
parable to the SE reported for the ARIMA model.3 

Both the ARIMA model and the UC model are special cases of the general 
Wold representation for (1 - B)x, given in (2.1). In the Wold representation 
the moving average polynomial F(B) is, in general, an infkite-degree poly- 
nomial. Both the ARIMA and UC models can be viewed as ways of approxi- 
mating this infinite-degree polynomial. The ARIMA model uses a ratio of 
finite-order polynomials, while the UC model uses a (restricted) sum of ratios 
of finite-order polynomials. Presumably neither of these approximations is 
entirely correct. One may be better at approximating certain characteristics of 
the 8”(B) polynomial and the other may provide a better approximation to 
other characteristics. With this in mind we will now discuss some of the 
similarities and differences in the estimated ARIMA and UC models. 

The UC model performs slightly better than the ARIMA model in terms of 
(within-sample) one-step-ahead forecasting, or equivalently, in terms of the 
value of the likelihood function. Indeed, both models imply very similar 
behavior for the short-run behavior of the series. To see this, notice that the 

*The UC models were estimated by maximum likelihood methods. Details concerning the 
methods can be found in Watson and Angle (1983). For those familiar with varying parameter 
regression (VPR) models, notice that the UC model described in the text can be viewed as a VPR 
model with serially correlated errors and a time-varying intercept. This allowed us to use 
previously written VPR computer programs to carry out the estimation. 

3There a variety of interesting features of the estimated UC model that one might want to test. 
For example, the sum of the autoregressive coefficients for the cyclical component is 0.92, which 
implies substantial persistence in c,. Roots this close to unity can be troublesome, and one might 
want to test the hypothesis that the AR process for c, contains a unit root (and hence the c, 
process was misspecitied). In addition, conditional on no unit roots in the c, process, a zero 
variance for e: implies that the trend is deterministic rather than stochastic. This too would be an 
interesting hypothesis to test. Unfortunately, standard tests cannot be carried out, as the usual 
asymptotic normal approximations for test statistics are not valid for the reasons discussed in 
Fuller (1976) and elsewhere. Construction of test statistics for these sorts of hypotheses is an 
interesting area for future research. 



M. W. Watson, Detrending metho& with stochastic trends 61 

UC model implies that 

(1 - 1.501B + OS77P)(l- B)x, 

= (1 - 1.501B + 0.577B2)e:+ (1 - B)ef. (4-l) 

By Granger’s Lemma the right-hand side of (4.1) can be represented as a 
MA(2) ,a.nd solving for the implied coefficients yields 

(1 - 1.501B = 0.577P)(l- B)x, 

= (1 - 1.144B + 0.189B2)a,, a,= 0.0099. 

The autoregressive representation for the model is 

(1 - 1.144B + 0.189B2)-‘(1 - 1.501B + 0.577B2)(1 - B)x,= ~1,. 

Carrying out the polynomial division we have, approximately, 

(1 - 0.36B- 0.05B2)(1- B)x,= a,, 

which is very close to the estimated ARIMA model. 
While the short-run behavior of the UC and ARIMA models are very 

similar, their long-run properties are quite different. This shows itself in a 
variety of ways. The spectra implied by the models are quite different at the 
low frequencies (so that sums of the implied moving average coefficients 0: 
are quite different), the models produce markedly different long-run forecasts 
and give quite different one-sided estimates of the trend and cyclical compo- 
nents. Fig. la compares the two implied spectra. The ARIMA model implies a 
spectra with a maximum at the zero frequency, while the UC model implies a 
model with a minimum at that frequency. Unfortunately, with only 142 data 
points there are very few periodogram points corresponding to the low 
frequencies, so that direct frequency domain estimation methods help little in 
discriminating between the models. 

Many readers may be more comfortable comparing moving average coeffi- 
cients rather than spectra. In fig.lb, we have plotted the coefficients on the 
moving average processes for (1 - B)x, implied by the two models. The plots 
are very similar for the first few lags; they differ for longer lags. The ARIMA 
(1, LO) model has moving average coefficients that follow 0: = (0.406)‘, and 
therefore die off exponentially, but are always positive. The moving average 
coefficients in the UC model become negative at lag 4 and remain negative 
until lag 24. The differences in these moving average representations can lead 
to significantly different conclusions about the long-run behavior of x,. In the 
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Fig. la. Spectra for change in log GNP. 
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Fig. lb. Moving average coefficients for change in log GNP. 

ARIMA model, for example, the sum of the moving average coefficients is 
1.68, while in the UC model the sum of the moving average coefficients is 0.59. 
This means that using the AFUMA model, a one-unit innovation in x will 
eventually increase log GNP by 1.68, while in the UC model the same 
innovation is predicted to give rise to a 0.57 increase in GNP. Hypotheses 
concerning the effects of innovations on permanent income, defined as the 
discounted expected future sum of x,, are also quite different. The ARIMA 
model predicts an impact nearly three times as large, and therefore has 
fundamentally different implications for permanent income. [The relationship 
between the moving average coefficients in measured income and the perma- 
nent income hypothesis is discussed in Deaton (1985).] 
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Fig. 2a. Trend decomposition for the log of GNP. 
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Fig. 2b. Trend decomposition for the log of GNP. 

In figs. 2a and 2b, we present the actual series and the optimal one-sided 
estimate of the trend using the two models. The trend in the ARIMA model is 
very close to the actual series, whereas the trend in the UC model smoothes 
the series considerably. In fig. 2d we compare the (one-sided) estimates of the 
cyclical component. Here again the differences are substantial. The estimates 
constructed from the ARIMA model are difficult to interpret; interestingly, 
the estimates corresponding to the UC model correspond closely to conven- 
tional chronologies of post-war cyclical behavior. This correspondence can be 
seen in fig. 2e, where we have plotted the UC one-sided estimates, and the 
shade and peak to trough business cycle periods as calculated by the NBER. 

The one-sided estimates of the trend correspond to the long-run forecasts of 
the series. Since these estimates differ markedly between the ARIMA and UC 
models, the long-run forecasts are also quite different. One way to discriminate 
between the competing specifications is to compare their long-run forecasting 
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Fig. 2f. Cycle decomposition for the log of GNP. 

ability. Within the sample, the UC model produces more accurate forecasts for 
all forecast horizons up to forty quarters, but within-sample comparisons can 
be misleading. A true out-of-sample experiment would be much more con- 
vincing. 

As we pointed out in the last section, conditional on the estimated model for 
x,, the one-sided LMSE estimates of c, are unique, i.e., do not depend on the 
choice of Model 1, 2, or 3. In addition, if we accept Model 2 as the 
appropriate decomposition, then conditional on the parameters of the AIUMA 
model, the one-sided estimates are exact, i.e., they have a root mean square 
error of zero. If, however, we assume that Model 1 or 3 is the correct 
representation for the cyclicalcomponent, then more precise estimates can be 
constructed. These estimates use future as well as past data to improve the 
one-sided LMSE estimates. Using the estimated UC model, which assumes 
that Model 1 is the correct representation for c,, we have constructed the 
optimal two-sided estimates. The estimate of the trend is plotted in fig. 2c, and 
fig. 2e compares the optimal one-sided and two-sided estimates of the trend 
component. 

Conditional on the parameter estimates, it is also possible to obtain esti- 
mates of the precision of the estimates c,,, and c,,r (the two-sided estimate). 
Using the estimates from the UC model, the root mean square of (c, - c,,,) = 
0.020. The root mean square of (c, - c,,r) depends on the amount of future 
data available. For t near the middle of the sample, the root mean square of 
(‘t - ‘f/T ) = 0.017. Both estimates are reasonably precise. Using the orthogo- 
nal decomposition of C, = c,,,, + a,,,,, we see that var(c,) = var(c,,,) + 
var( u,,~), so that a unit-free measure of precision is R2( h) = var(c,,,)/var( c,), 
which shows the proportion of the variance of c, explained by c,,,,. For this 
model R2(t) = 0.54 and R2(T) = 0.71 (for data near the center of the sample). 
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4.2. Disposable income 

The estimated ARIMA model for disposable income was 

(1 - B)x, = 0.011 - 0.210 (1 -B)x,+ 
(0.001) (0.080) 

SE = 0.010, L(1) = 0.01, L(3) = 1.7, 

Q(23) = 22.9, LLF= 297.1. 

The corresponding UC model 

x,=7,+c,, 

(1 - B)7,= 0.009 , 
(0.001) 

was 

a=0.0057, 

c,= 1.029 c,-r- 
(0.073) 

0.024 c,m2+ 0.051 c,-~- 0.152 c,-4 

(0.094) (0.084) (0.058) 

+ 0.055 c,-j, 
(0.017) 

a=0.0076, 

SE = 0.009, Q(14) = 10.4, LLF = 299.6. 

We can compare the two models for disposable income, using the same 
procedures discussed in the comparison of the models for GNP. First, the UC 
model produces a larger likelihood, but at the cost of six additional parame- 
ters. While the models produce similar likelihood values and hence have 
similar short-run forecasting ability, their long-run forecasts are markedly 
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Fig. 3a. Trend decomposition for the log of disposable income. 
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Fig. 3e. Cycle decomposition for the log of disposable income. 

different. These long-run forecasts - the one-sided trend estimates - are com- 
pared in figs. 3a and 3b. In fig. 3e, we compare the optimal one-sided and 
two-sided estimates of the cycle, where the two-sided estimates are calculated 
assuming that the UC model is correct. The plots are similar for data after 
1954, but differ from 1951 to 1954. The one-sided estimates are rather volatile 
during this early period, reflecting the small number of data points used in 
their construction. For one-sided estimates constructed with a moderately 
large amount of data the root mean square of (c, - c,,,) = 0.019. The root 
mean square of (c, - c,,,) is only slightly smaller.4 The corresponding R2(t) 
is 0.68. 

4.3. Non-durable consumption 

The ARIMA model for non-durable consumption is a random walk. The 
estimated model and associated statistics are 

(1 - B)x,= 0.0065 , 
(0.0007) 

SE = 0.0086, L(4) = 1.04, Q(24) = 21.7, LLF = 314.0. 

4Those familiar with recursive signal extraction methods will recognize the mean square of 
(c, - c,,,) is a time-varying quantity that, for the model under consideration, will converge to a 
fixed quantity as t grows large. [See But-ridge and Wallis (1983).] Since one root of the AR process 
for c, is close to the unit circle, and is therefore close to the roots of the AR polynomial for 7,. the 
convergence of the mean square of (c, - c,,,) is very slow. The value of the root mean square of 
(c, - c,,,) reported in the text corresponds to the value for 1984:2. The recursive algorithm, the 
Kalman filter, was initialized with a vague prior, so that the root mean square errors for earlier 
dates are larger. For example. the value for 1966 is 0.028. The root mean square of (c, - c,,r) is 
approximately 0.019 over the entire sample period. 
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The estimated UC model was 

x,=7,+c,, 

(1 - B)T,= 0.0067 , 
(0.0003) 

u = 0.0018, 

c,= 0.940 C,-1, 
(0.036) 

(I = 0.0082, 

SE=0.0085, Q(20)= 14.9, LLF= 314.3. 

The models are clearly very close to one another in terms of their one-step- 
ahead forecast ability and likelihood values. If we set the variance of the 
cyclical component to zero, the UC model implies that x, is a random walk, so 
that the random walk model is nested within the UC model. It is therefore 
possible, in principle, to test the competing models, using a likelihood ratio 
test. Unfortunately, the test is complicated by the fact that the AR coefficient 
in the model for c, is not identified under the random walk hypothesis, but it 
is identified in the more general model. This complicates the distribution of 
the likelihood ratio statistic; it will not have the usual asymptotic distribution. 
This problem has been discussed in detail in Watson and Engle (1985) and 
Davies (1977). They show that the correct (asymptotic) critical value for 
carrying out the test (using the square root of the likelihood ratio statistic) is 
bounded below by the critical value for the standard normal distribution. In 
this example, the square root of the likelihood ratio statistic is 0.77, which 
implies a lower bound of the (asymptotic) prob-value of 0.27. This suggests 
that the random walk hypothesis cannot be rejected at levels of 27% or less. 

The examples in this section tell a consistent story. The short-run forecast- 
ing performance of the ARIMA and UC models are very similar. At longer 
forecast horizons, the forecasts from the models differ markedly. This dif- 
ference in the long-run properties of the estimated models, leads to very 
different estimates of the underlying trend components and cyclical compo- 
nents. 

5. Regression examples 

In this section we investigate the relationship between non-durable con- 
sumption expenditures and the cyclical component of disposable income. We 
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test the proposition that the change in consumption from period t to t + 1 is 
uncorrelated with the cyclical component of disposable income dated t or 
earlier. The empirical validity of this proposition, first tested in Hall (1978), 
has been the subject of ongoing controversy. [See, for example, the papers by 
Flavin (1981), and Mankiw and Shapiro (1985).] The model that we consider 
implies that the change in log consumption from period t to period I + 1 
should be unpredictable using information available at time t. We test this 
implication using the cyclical component of disposable income at time f. The 
importance of using a stationary variable (like the cyclical component of 
income) rather than a non-stationary variable (like the level of income) has 
been pointed out by Mankiw and Shapiro (1985). We begin by motivating the 
empirical specification that is used in this paper. 

Assume that a consumer is choosing consumption to maximize a time-sep- 
arable utility function, subject to an intertemporal budget constraint, i.e., the 
consumer solves 

ycyE( C (1 + S)-iuCC,+i)ll,), I i-0 
(5.1) 

subject to 

E C (1 +r)-iC,+iII, 
i-0 

where W, is wealth at time t (which includes the expected discounted value of 
future earning), 6 is a time-invariant subjective discount factor, I, is the 
information set at time t, and r is the constant one-period interest rate. The 
first-order conditions for utility maximization imply 

E(Zt+,V,) = (1 + a)(1 + d-l, (5 4 

where Z, + t = u’(C,+J/u’(C,) is the marginal rate of substitution for con- 
sumption between periods t and t + 1. An empirical specification follows from 
an assumption concerning the functional form of the utility function and the 
probability distribution for Z,. Here, we follow Hansen and Singleton (1983). 
Let z, = logZ,, and assume that z,+rl1, - N(p,, a*). The log normality of Z,+i 
implies that E(Z,+;II,) = exp(p,+ 0*/2). But (5.2) implies that E(Z,+,lI,) is 
constant, so that p, = ~1 for all r. If we now assume that u(C) is of the 
constant relative risk aversion form, so that u(C) = (1 - @-‘C’-fi, then 
z, = -&c,+r - c,), with c, = logC,. When c, is in the information set I,, this 



hf. W. Warson, Deirending methodr with stochastic trends 71 

implies 

E(C r+1K) = c, + a5 

with a = /3-‘[(02/2) + r - 61, so that 

c I+1 =C,+"+e,+l, (5.3) 

where e,,, is uncorrelated with information available at time t. We will test 
this proposition by investigating the correlation between (1 - B)c, and lagged 
values of the cyclical component of disposable income. 

The analysis of the last section casts some light on the hypothesis embodied 
in (5.3). There we showed that the hypothesis that c, was a univariate random 
walk was consistent with the data. We calculated a ‘r-statistic’ associated with 
this hypothesis that had a value of 0.77. In this section we ask whether 
(1 - B)c, can be predicted by linear combinations of disposable income. The 
models that we will estimate in this section all have the form 

(l-B)c,=a+p(B)y,“_,+e,, (5 -4 

where y; is the cyclical component in disposable income, and p(B) is a 
one-sided polynomial in B. Under the assumption of the life cycle consump- 
tion model outlined above, p(B) = 0 for any choice of a (one-sided) poly- 
nomial. Since y,’ is not directly observed, the model (5.4) cannot be estimated 
by OLS. We will estimate the model using various proxies for the unobserved 
y,’ data. The sample period is 1954:l to 1984:2.’ 

Before proceeding to a test of this hypothesis using the data described in the 
last section, one issue concerning the data should be addressed. When this 
random walk hypothesis is tested using macro data, the consumption and 
income figures are usually deflated by population before the analysis begins. 
This expresses all variables in per-capita terms, so that the data are loosely 
consistent with a representative consumer notion. We have chosen not to 
follow this course. ,While we agree that this transformation is useful in 
principle, in practice it can lead to serious problems. These problems arise 
from the errors in the quarterly population series. While the underlying trend 
in the population estimate is probaly close to the trend in the true series, the 
quarter-to-quarter changes in the estimates series is, most likely, almost 
entirely noise. Indeed, over 50% of the sample variation in quarterly post-war 
population growth rates can be attributed to three large outliers in the data 

5 We have started the sample period in 1954 to eliminate the observations in which the estimates 
y& are very imprecise. See the discussion in footnote 3. 
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Table 1 
Consumption and income regressions. 

Equation 1’ Equation 2b Equation3' 

constant 0.007 
(0.001) 

Yf=- I 0.201 
(0.101) 

u,=- 2 -0.264 
(0.151) 

I?-3 0.231 
(0.128) 

Y,'- 2 - 0.192 
(0.075) 

DW 1.6 
F 2.7 

0.007 0.008 
(0.001) (0.001) 
0.203 0.115 

(0.075) (0.131) 
-0.289 - 0.201 
(0.111) (0.169) 
0.108 0.479 

(0.111) (0.261) 

-0.074 -0.445 
(0.076) (0.218) 

1.8 1.7 
3.8 2.3 

“y:,, used as a proxy for u:; coefficients estimated by OLS. 
by:/r used as a proxy for y,‘; coefficients estimated by OLS. 
‘y& used as a proxy for y,‘; coefficients estimated by N. 

series6 Since our specification is in quarterly changes (for c,) or deviations 
from a stochastic trends (for y:), this increase in the noise-to-signal ratio will 
lead to serious inconsistencies. Rather than introduce this additional noisy 
series into the analysis, we will use the raw log differences of the non-durable 
consumption data and the stochastically detrended estimates of the log of 
disposable income. 

The first model we estimate regresses (1 - B)c, on four lags of yl’/, (i.e., 
Y,c-l,r-l~Y,c-Z,r-2,.-.~ y,!$,+,). Since each of these constructed variables is a 
linear combination of data at time t - 1 or earlier, the population OLS 
coefficients should be zero. The results of this regression are shown in the first 
column of table 1. Individually, the coefficients are large and have t-statistics 
ranging from 1.7 to 2.6. The last entry in the table shows the F-statistic, which 
tests that all of the coefficients are equal to zero. It takes on the value 2.7, 
larger than the 5% critical value. 

In the next column, the results are presented for the same model, but with 
y&, the two-sided estimates, used as proxies for y,‘. The results are similar. 

‘jThe quarterly population data (published by the Department of Commerce, Bureau of 
Economic Analysis) are very close to a deterministic trend. The trend is interrupted by three very 
huge quarterly outhers. Over the period 1948:l to 1980:4, the average quarterly population growth 
rate was 0.34% with a sample standard deviation of 0.12%. The data show a 0.85% population 
growth rate in 1959:i, a 0.79% growth rate in 1971:4, and a -0.23% growth rate in 1972:l. These 
three data points are responsible for most of the sample variance in post-war population growth 
rates. They account for 51% of the sample sum of squares. When these data are used to deflate the 
consumption and income series used in the regressions, the results are dominated by these three 
data points. 
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The F-statistic is now 3.8, which is significant at any reasonable level. The 
results in this column, however, are perfectly consistent with the theory. Recall 
that the two-sided estimates contain future values of disposable income. Since 
future values of disposable income are not included in 1,-i, (1 - B)c, may be 
correlated with these variables. (Indeed we would expect innovations in 
consumption to be correlated with innovations in income.) If we proxy the 
components v,’ by the smoothed values and estimate the coefficients using 
data in 1,-i as instruments, then the coefficients should not be signi6cantly 
different from zero. The results of this exercise are shown in the third column. 
Only the last coefficient is now significant and the F-statistic has fallen to 2.3, 
significant at the 10% but not the 5% levels. 

The results of this section suggest that aggregate post-war US data are not 
consistent with the life cycle model outlined above. 

6. Concluding remarks 

This paper was motivated by the desire for a flexible method to eliminate 
trends in economic time series. The method that was developed in this paper 
was predicated on the assumption that deterministic trend models were too 
rigid and not appropriate for most economic time series. The altema- 
tive - modelling economic time series as non-stationary stochastic processes of 
the ARIMA class - confused long-run and cyclical movements in the series. 
The useful, fictitious decomposition of a time series into trend and cyclical 
components could not be used when modelling series as ARIMA processes. 
The method described in this paper maintains the convenient trend/cycle 
decomposition, while allowing flexibility in the models for both of the compo- 
nents. 

In addition to discussing a new method for ‘detrending’ economic time 
series, this paper makes an important empirical point. The paper compares 
two empirical approximations to the Wold representation for the changes in 
GNP, disposable income, and non-durable consumption expenditures. These 
two empirical approximations correspond to ARIMA and UC models. The 
models imply very similar short-run behavior for the series: the one-step-ahead 
forecasts from the models are nearly identical. The implied long-run behavior 
of the models are quite different. The UC models imply that innovations in the 
process have a much smaller impact on the long-run level of the series than is 
implied by the ARIMA model. It is very difficult to discriminate between the 
competing models on statistical grounds: their log-likelihoods are nearly 
identical. Since both competing models describe the data equally well, we are 
left with the conclusion that the data are not very informative about the 
long-run characteristics of the process. While this may seem to an obvious 
conclusion, one must keep in mind that very different conclusions would be 
reached using the implied large-sample confidence intervals constructed from 
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either the UC or the ARIMA models. The difference arises because these 
large-sample confidence intervals are conditional on the specific parameteriza- 
tion of the Wold representation. 

The paper also discussed the use of stochastically detrended data in the 
construction of econometric models. Here we demonstrated that care has to be 
taken to avoid inconsistencies arising from complications similar to errors- 
in-variables. Our empirical example investigated the relation between the 
change in consumption of non-durables and lags of the cyclical component of 
disposable income. Here we found a significant relation, which indicates that 
the simple life cycle model, with its maintained assumptions of constant 
discount rates, no liquidity constraints, and time-separable utility, is not 
consistent with aggregate post-war US data. 
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