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ABSTRACT 
An important component of the New England Electric System Companies’ 
(the ‘System’) total electricity sales is attributable to commercial customers. 
Commercial growth has recently been strong; moreover the System’s peak 
demand is highly sensitive to commercial load. In a typical month this class 
represents 33 per cent of total System sales. Accurate short-run forecasts of 
total kWh sales are important for rate making, budgeting, fuel cause 
proceedings, and corporate planning. In this study we use a variety of 
econometric and time-series techniques to produce short-run forecasts of 
commercial sales for two geographical areas served by two separate retail 
companies. 
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In the first section of this study we present nine years of monthly data for commercial sales by 
Massachusetts Electric. (Massachusetts Electric Company and the Narragansett Electric Company 
are wholly owned subsidiaries of the New England Electric System, serving retail customers in 
Massachusetts and Rhode Island, respectively.) These data are used to construct a variety of 
forecasting models, including a Box-Jenkins ARIMA model, a seasonal autoregressive model, a 
state-space model, a model using exponential smoothing, and two econometric models. We 
provide a detailed discussion of the model-building process for each of these methods. In the next 
section we construct a set of models for Narragansett Electric. We then use our models to construct 
out-of-sample forecasts covering 12 months. These forecasts are compared to the actual values of 
the data, and the forecasting methods are ranked and compared. To preview one of our results, we 
find that the econometric models perform better than most of the time series models. This occurs 
because the econometric model is more able to predict the strong increase in sales arising from the 
economic expansion in late 1983 and early 1984. The exponential smoothing model is a strong 
competitor, and the ARIMA models perform relatively poorly. In the final section of the study we 
summarize our results with some concluding remarks. 
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MASSACHUSETTS ELECTRICAL COMMERCIAL SALES-DATA AND MODELS 

Data 
Before developing the models (using FORECAST,MASTER) we would like to present some plots 
and descriptive statistics for our data. These will show the gross features of the data that our 
models will have to capture. In Figure 1 we present a plot of monthly observations for Mass 
Electric Commercial sales from January 1975 to September 1983. The plot is very informative. The 
data exhibit a fairly regular seasonal pattern, with peaks occurring during the heavy winter heating 
and summer cooling months. There appears to be an upward secular trend in the data. The sample 
average of the trend and seasonal variation in the series can be determined by regressing the series 
on a linear trend and twelve seasonal dummies. The substantial serial correlation in the residuals 
suggests that the standard errors of the estimated coefficients are incorrect, but the regression does 
capture many of the salient features that are present in the graph. In particular, we see that the 
trend-adjusted series has a broad peak in January-February, followed a decline of roughly 
50 GWh (gigawatt-hours) to a trough in May, an increase of 35 GWh to the August peak, followed 
by another decline of 30 GWh to a trough in October. The trend increase is small. The seasonally- 
adjusted series tends to increase by 0.44 GWh per month or  46 GWh over the 105-month sample 
period. 

Comparing the regression results with the plot of the data, we see that the regression masks some 
of the important features of the data. First, the regression forces a constant trend on the data, 
whereas the plot suggests that the trend slowed considerably in the second half of the sample 
period. Next, the regression shows constant peaks in January and August, whereas the data show 
that the magnitude and timing of these peaks varies over the sample period. The winter peaks in 
1981 and 1982 are much more pronounced than the peaks in previous years. The timing of the 
peaks also evolves through time: A careful look at the data shows that the winter peaks occurred in 
Januaryin 1978,1979,1980,1981 and 1983,and occurredinFebruaryin 1975,1976,1977and 1982. 

The summary statistics from the regression also include some useful information about the data. 
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Figure 1. Mass Electric commercial sales. 
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The coefficient of variation (=standard deviation/mean) is 10 per cent, suggesting that the series is 
reasonably volatile. The standard error of the forecast-the within-sample standard deviation of 
the residuals-is 10.87 GWh, which can serve as a bench-mark for the other models that we will 
consider below. We'll now describe each of the forecasting models in turn. 

Box-Jenkins model 
Before estimating the Box-Jenkins model we must choose any necessary preprocessing 
transformations. The purpose of these transformations is to remove any trend in the data, and to 
make the data covariance stationary. The plot of the data does not suggest exponential growth, so 
we did not preprocess the data by taking logs. The preliminary analysis above suggested a trend in 
the data, so that we choose to difference the data. Because of the severe seasonality, we decided to 
use seasonal differences. 

A reasonable model of this for our series might be 
Yz - Yz-  12 = c + u, 9 

where u, is an error term which has a mean of zero and cis the annual trend. We will allow the error 
term to be serially correlated, and it is this serial correlation that the Box-Jenkins procedure will 
attempt to capture. To investigate the form of the serial correlation in u, we calculated the 
autocorrelations in y ,  - y ,  - 12: 

Lag 1 2  3 4 5 6  7 8 9 10 11 12 13 

Autocorrelation 0.25 0.10 -0.02 0.05 0.07 0.01 -0.13 -0.03 -0.08 -0.02 -0.02 -0.21 0.29 

There are large autocorrelations at  lags 1,12, and 13. Unfortunately, FORECAST MASTER does 
not allow us to directly estimate an ARMA model which incorporates lags as large as 12 or 13. We 
can, however, consider a model for u, of the form 

In this model the autoregressive coefficient 4 picks up the significant correlation in u at lag 1, the 
seasonal moving average coefficient p picks up the seasonal autocorrelation at lag 12, and the 
product of 4 and p accounts for the correlation at  lag 13. To estimate this model in FORECAST 
MASTER, we first use the ARMA deseasonalization option. By setting the seasonal AR 
Coefficient to 1, this procedure will seasonally difference the data, and by setting the seasonal MA 
coefficient to p we incorporate a seasonal moving average of the error term. An AR(1) model can 
then be estimated to calculate the value of 4. The program does not automatically choose an 
optimal value of p, but by trying a sequence of different values we can arrive at a good estimate. 
Below we show the estimated forecast standard error for the AR(1) model as a function of the 
seasonal moving average coefficient. 

(1 - 4B'2)uz = (1 - p P ) e , .  

P Standard error 

0.0 11.71 
0.1 11.41 
0.2 11.18 
0.3 11.00 
0.4 10.88 
0.5 10.84 
0.6 10.88 
0.7 11.03 
0.8 11.32 
0.9 11.78 
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Table 1. Massachusetts Electric commercial sales, descriptive statistics 

Variable Coefficient Std. Error T-statistic Probability 

Trend 0.442874 0.035094 12.619650 1 .oooOOo 
January 
February 
March 
April 
May 
June 
July 
August 

287.510275 
282.356291 
268.91 3417 
244.3 14989 
235.349892 
243.14035 1 
252.097480 
269.699049 " 

September 254.822849 
October 240.533042 
November 244.777674 
December 269.134801 

Autocorrelations of lagged residual errors 

M 0.47 0.37 0.31 0.38 
0.27 0.08 0.08 0.13 

Lag: 1 2 3 4 

Statistic 

4.0 10095 
4.025269 
4.040691 
4.056357 
4.072266 
4.088414 
4.104799 
4.12 141 8 

71.696619 
70.145940 
66.551347 
60.230142 
57.793345 
59.470573 
61.41 5302 
65.438419 

.oO0000 

.oO0oO0 

.oO0000 

.oooooo 

.oooooo 

.oooooo 

.oooOOo 

.OoOooo 
4.138267 61.577192 1 .oooooo 
4.253765 56.545922 1 .oooooo 
4.268938 57.339245 1 .oooooo 
4.284345 62.8 18194 1 .oooooo 

5 6 7 8 9 10 11  12 
0.31 0.23 0.15 0.23 0.19 0.18 0.11 0.12 
0.14 0.07 

Value Probability 

Number of observations 
Mean value of M 
Standard deviation of M 
Standard error of forecast 
RZ (corrected for mean) 
F( 13,92) 
Adjusted R 2  
Ljung-Box test = x 2  ( 5 )  
Durbin-Watson statistic 
AIC error statistic 
Schwartz error statistic 

I05 
28 1.37 1428 
23.487 168 
1 0.8 68043 
0.810593 

30.286666 
0.783829 

117.703 585 
0.990208 

11.513846 
13.569750 

1 .oooooo 
1 .oooooo 
0.999999 

The smallest standard error is associated with p = 0.5. The entire set of results for this model are 
shown in Table 2. 

The diagnostics shown in the table suggest that the model is reasonable, but there is still 
significant residual serial correlation at lag 13. As an additional check on this specification we fitted 
an AR(2) model to the seasonally adjusted series. The estimate of the AR(2) coefficient was small 
(0.07) and the various order determination criteria supported the AR(1) model. The AR( 1) model is 
used below in our forecasting comparison. 

In an attempt to adequately capture the substantial serial correlation at  lag 13, we considered a 
seasonal autoregressive model. 

Seasonal Autoregressive models 
In the Box-Jenkins procedure we eliminated the trend in the data by taking 12 month differences of 
the data. This is a sensible thing to do  when seasonal peaks and troughs appear during regular 
times throughout the year. When peaks and troughs can drift from month-to-month (because of 
the timing of severe weather for example) a modification seems to be appropriate. To  motivate this 
modification, consider a sequence ofwinter peaks: when a January peak in one year is followed by 
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Table 2. Mass Electric commercial sales. SSI-BJ optimized Box-Jenkins forecasting 

Summary of ARMA (1,O) Parameters 
Seasonally differenced data 
AR coefficients: 0.367 
Seasonal MA coefficient: 0.50 

Autocorrelations of lagged residual errors 
Lag: 1 2 3 4 5 6 7 8 9 10 1 1  12 
M 0.01 0.11 -0.01 0.13 0.10 0.02 -0.12 0.01 -0.05 -0.00 -0.05 -0.09 

0.34 -0.08 -0.06 -0.03 0.03 0.02 

Statistic Value Probability 

Number of observations 
Mean value of M 
Standard deviation of M 
Standard error of forecast 
RZ (corrected for mean) 

Adjusted R 2  
Ljung-Box test = x 2  (17) 
Durbin-Watson statistic 
AIC error statistic 
Schwartz error statistic 

F(L92) 

93 
285.376344 

21.432788 
10.836979 
0.744342 

267.855971 1 .oooooo 
0.741 563 

20.882856 0.768426 
2.073 110 0.093 543 

10.895082 
11.044445 

a January peak in the next year, a 12 month difference in the data is appropriate. However, when 
the January peak in one year is followed by a February peak in the next, a 13 month difference 
seems more appropriate. Conversely, when the peak occurs in February of one year and is followed 
by a January peak in the next, a 11 month difference seems appropriate. We will specify and 
estimate a model that incorporates this kind of behaviour. 

To be precise about the .behaviour, we will assume that 

(1) An 11 month difference is appropriate with probability n,  
(2) A 12 month difference is appropriate with probability n2  
(3) A 13 month difference is appropriate with probability n3 (= 1 - n, - n2). 

In any month chosen at  random we want to take a weighted average of the differences ( y ,  - y ,  - 
( y ,  - y,- 12), and ( y ,  - y,-  13) with weights n,, n2, and n3. This yields the 'differenced' series 

Cn1b* -Yt-  1 1 )  + X z ( Y 1  -Y t -  12) + x3(Yr -Y*-13)1 = c + 4 (1) 

where c is the annual trend in the data, and u, an error term. 
If we are to use the model for forecasting, we must estimate the probabilities n,, nz, and n3, the 

constant c, and the parameters describing the serial correlation in the error u,. To accomplish this, 
rearrange (1) to yield 

y , - y , - , 2 = c + n 3 ( Y t - 1 3 - Y t - 1 2 ) + n 1 ( Y t - 1 1  -yt-l2)+'t (2) 

which isjust a regression model with a serially correlated error. The probabilities T C ~ ,  n2, and n3, can 
be estimated by least squares using the Autopro section in FORECAST MASTER. The results for 
the model, assuming that u, follows an AR(1) process are shown in Table 3 .  

The residual autocorrelations, together with the basic set of diagnostics suggest that the model 
provides an adequate fit. The complete battery of diagnostics, however, suggested that important 
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Table 3. Mass Electric commercial sales, seasonal autoregressive model. Dependent variable is 
M-M( - 12) 

- ~ 

Variable Coefficient Std. Error 7'-statistic Probability 

M (  - 1l)-M( - 12) 0.182378 0.06 1 193 2.98035 1 
M (  - 13)-M( - 12) 0.299697 0.060927 4.91 8941 
CONST 6.400605 2.195988 2.9 1468 1 
AUTO [ - 11 0.475742 0.100799 4.7 19704 

Autocorrelations of lagged residual errors 
Lag: 1 2 3 4 5 6 7 8 9 10 
M-M(-12) -0.02 0.04 -0.07 0.08 0.19 0.01 0.01 0.01 -0.06 0.06 

0.20 -0.00 -0.08 -0.06 0.12 0.07 

Statistic 

Number of observations 
Mean value of M-M( - 12) 
Standard deviation of M-M( 12) 
Standard error of forecast 
R2 (corrected for mean) 
F(4,87) 
Adjusted R2 
Ljung-Box test = ~'(14) 
Durbin-Watson statistic 
AIC error statistic 
Schwartz error statistic 

Value 

91 
6.204395 

13.174226 
10.973082 
0.329369 

10.6821 129 
0.298535 

14.3496 14 
2.103690 

11.211337 
11.847410 

Diagnostic test statistics 

YLAG [ - 11 lagged variable x 2  ( 1 )  3.36 
AUTO [ - 121 serial correlation x 2  (1) 0.56 
YLAG [ - 123 lagged variable x 2  (1) 6.47 
AUTO [l--  123 serial correlation x 2  ( 1  1) 6.16 
YLAG [l--123 lagged variable x 2  (12) 15.58 
TIME TREND test x 2  (1)  0.45 

HETEROSCEDASTICITY with TIME x 2  (1) 1.93 
HETEROSCEDASTICITY with X x 2  (3) 8.22 
HETEROSCEDASTICITY with YFIT x 2  (1) 0.08 
ARCH [ - I] process test x 2  (1) 1.82 

ARCH [ l - -  121 process test x 2  (12) 13.5 1 
CHOW test for changing parameters F(4, 83) 0.54 

AUTO [ - 21 serial correlation x 2  (1) 0.21 

NONLINEARITY in x test x 2  (0) 0.00 

ARCH [ - 121 process test x 2  (1) 1.99 

0.997 12 1 
0.999999 
0.996440 
0.999998 

11 12 
-0.1 1 -0.03 

Probability 

1 .o00000 

0.575997 
0.164092 

p = 0.351 
p = 0.933 
p = 0.544 
p = 0.989 
p=0.137 
p = 0.789 
p = 0.498 

p = 0.835 
p = 0.958 
p = 0.226 
p = 0.822 
p = 0.842 
p = 0.667 
p = 0.297 

p = o.oO0 

lagswereabsent from themodel. They suggested that(y,-, -yt-13)and(y,-lz -y,-,,)should be 
added to the model. When this was done, the coefficient on (ytPl3  - Y , - ~ ~ )  became insignificant, 
and this-variable was dropped for the model. The complete set of results are shown in Table 4. 

Both of the models estimated in this section may provide good forecasts. The basic time varying 
seasonality model shown in Table 3 produced reasonable results. It will be used as one of our 
candidate forecasting models. In addition, the final model presented, passed a sequence of 
stringent diagnostic tests, so that it too will become one of our candidate models. 
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Table 4. Mass Electric commercial sales, seasonal autoregressive model. Dependent variable is M-M(-l 2) 

Variable Coefficient Std. Error T-statistic Probability 

M (  - l 3kM(  - 12) 0.165055 0.063427 2.602300 0.990740 
M (  - l ) -M(  - 13) - 0.335021 0.099676 -3.361 102 0.999224 
M (  - 12)-M( - 24) - 0.442983 0.096846 -4.5741 14 0.999995 
CONST 9.841855 4.2399 13 2.321 240 0.979726 
AUTO [ - I ]  0.125282 0.097075 7.471355 1 .oooooo 

Lag: 1 2 3 4 5 6 7 8 9 10 11 12 
Autocorrelations of lagged residual errors 

M-M( - 12) 0.03 -0.05 -0.18 0.13 0.19 0.07 -0.10 -0.02 0.00 -0.01 -0.03 0.01 
0.1 1 -0.07 -0.05 -0.01 0.1 1 0.08 

Statistics Value Probability 

Number of observations 
Mean value of M - M (  - 12) 
Standard deviation of M-M(  - 12) 
Standard error of forecast 
R 2  (corrected for mean) 
4 5 ,  75) 
Adjusted R2 
Ljung-Box test = x 2  (1 3) 
Durbin-Watson statistic 
AIC error statistic 
Schwartz error statistic 

80 
5.063749 

13.01661 3 
10.153888 
0.422299 

10.965000 
0.383786 

12.901868 
1.990582 

10.465535 
1 1.274300 

1 .oooooo 
0.544580 
0.202280 

Diagnostic test statistics 
AUTO [ - 21 serial correlation 
AUTO [ - 121 serial correlation 
AUTO [ 1- - 123 serial correlation 
TIME T R E N D  test 
NONLINEARITY in Y test 
HETEROSCEDASTICITY with TIME 
HETEROSCEDASTICITY with X 
HETEROSCEDASTICITY with YFlT 
ARCH [ - 11 process test 
ARCH [ - 121 process test 
ARCH[I--12] process test 
CHOW test for changing parameters 

0.22 
0.36 
6.93 
0.04 
0.00 
1.47 
2.62 
0.39 
4.09 
1 .36 

12.87 
0.48 

p = 0.359 
p = 0.453 
p = 0.195 
p = 0.163 

p = 0.115 
p = 0.377 
p = 0.470 
p = 0.957 
p = 0.756 
p = 0.62 1 
p = 0.208 

p = 0.000 

State space model 
The univariate state space model can be viewed as a special case of the general ARMA model. For 
example, the state space model of order 1 is an ARMA model of order (1,l) with constraints across 
the AR and MA coefficients. With this in mind, we expected to find that the univariate state space 
model would be very similar to the Box- Jenkins model. This was not the case. We used the same 
deseasonalization option as the Box-Jenkins model and chose a state-space model of order 1. 
(Recall, that the Box-Jenkins model was an AR( l).) 

The estimated model, in ARMA form, was 

ya, = - 0 . 4 5 ~ ~ ~  - + W, + 0 . 4 5 ~ ~  - 1 
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Table 5. Mass Electric commercial sales. Bivariate state space model 

Endogenous Variable 1 : M-M( - 1) 
Endogenous Variable 2:  M (  - 12)-M( - 13) 
Summary Statistics for Model with three canonical variables 

Autocorrelations of lagged residual errors 
Lag: 1 2 3 4 5 6 7 8 9 10 1 1  12 
M -0.12 0.02 -0.19 -0.07 0.01 -0.13 -0.07 -0.04 -0.11 0.04 0.07 0.11 

0.31 -0.02 -0.06 -0.09 -0.01 -0.12 

Statistic Value 

Number of observations 
Mean value of M 
Standard deviation of M 
Standard error of forecast 
R2 (corrected for mean) 
F(6,83) 
Adjusted R2 
Ljung-Box test = x 2  
Durbin-Watson statistic 
AIC error statistic 
Schwartz error statistic 

89 
285.926966 
21.537793 
12.3601 34 
0.689373 

30.700232 
0.6669 18 

23.859666 
2.25201 8 
12.768665 
13.885995 

Probability 

1 .oooooo 
0.978746 
0.742638 

where ya, is the seasonally adjusted value of y, and w, is the error term. The model produced 
residuals with substantial serial correlation. If we rewrite the model using B, the ‘Backward shift’ 
operator, (with Bx, = x ,  - for any variable x,) the reason for this serial correlation becomes clear. 
The model can be written as 

(1 + 0.45B)ya, = (1 + 0.45B)~,.  

Notice that both sides of the equation have the common factor (1 + 0.45B). If we ‘cancel’ this 
common factor from both sides we have 

ya, = w,. 

The state space procedure models the seasonally adjusted series as white noise! But from the 
analysis in the Box-Jenkins model we know that ya, has significant serial, correlation. The state 
space model is seriously misspecified. Increasing and decreasing the order of the state space model 
did nothing to improve its forecastability. We abandoned this univariate framework, and 
considered another approach. 

In this alternative state space model we did not use the de-seasonalization pre-processing. 
Rather, we removed the trend in the data by first differencing and included Ay,-, as an additional 
exogenous variable in the state space model. We experimented with a variety of orders and finally 
chose a model of order 3 .  The results from this exercise are shown in Table 5. 

Exponential smoothing 
The exponential smoothing models are conceptually much simpler than any of the other models 
discussed thus far. To estimate the model we must make two choices: (1) the form of the model used 
-(a) level only, (b) level + trend, or (c) level + trend + seasonal; (2) the values of the smoothing 
parameters. The seasonality and trend presented in our data made (lc) the reasonable model 
choice. We let the program optimally choose the parameters of the model. The results are shown in 
Table 6. 
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Table 6. Mass Electric commercial sales. Exponential smoothing 

Smoothing parameter values 
Level = 0.224 Trend = 0.01 5 Seasonal = 0.268 

Autocorrelations of lagged residual errors 
Lag: 1 2 3 4 5 6 7 8 9 10 1 1  12 
M 0.11 -0.03 -0.06 0.14 0.07 -0.07 -0.17 0.00 -0.01 -0.02 -0.12 -0.07 

0.28 -0.04 0.00 0.10 0.12 0.01 

Statistic Value Probability 

Number of observations 105 
Mean value of M 281.371428 
Standard deviation of M 23.4871 68 
Standard error of forecast 9.370289 
RZ (corrected for mean) 0.843897 

Adjusted R2 0.839306 
Ljung-Box test = x 2  ( 1  5 )  23.993668 0.934799 
Durbin-Watson statistic 1.829158 0.740747 
AIC error statistic 9.5031 34 
Schwartz error statistic 9.870350 

F(3, 102) 183.804784 I .oooooo 

Econometric model 
Construction of an econometric model is much more difficult than construction of the time series 
models discussed above. For those models we had to make decisions concerning pre-processing 
transformations, functional forms, and the number of lags to include in our  specification. In the 
econometric model we begin by choosing a set of relevant explanatory variables, and then face the 
questions that arose in the time series models for each of these variables. This greatly complicates 
the model building process. 

We used economic theory (together with common sense) to choose a set of possible explanatory 
variables. These can be divided into two categories. First, we chose a set of variables to explain the 
large seasonal variation in the series. Weather is the cause of most of this seasonal variation, and we 
chose two variables to capture these weather-induced effects. Our second category of variables was 
needed to explain secular movements in the data. Since our data represent market sales from a 
large number of customers, our first logical variable was the size of the market, measured by the 
number of commercial customers. Electricity is used in the commercial sector as a factor of 
production, and we can view the demand for electricity as a derived demand for the final goods and 
services produced by the commercial sector. We postulated that the demand for the final goods and 
services produced in the sector was driven by aggregate economic conditions in the region, and we 
included a measure of aggregate economic activity in the region to proxy for this demand. Finally, 
we postulated that the demand for electricity depended on its price. The exact variables that were 
chosen and some descriptive statistics are: 

CUST = Number of Commercial Customers (in 10 thousands) 

CDD = Cooling Degree Days (65 degree base) 

HDD = Heating Degree Days (65 degree base) 

mean = 6.56 

mean = 51.6 

mean = 527.4 

st. dev = 0.22 

st. dev. = 77.4 

st dev. = 445.7 

Coef. of Variation = 3.35% 

Coef. of Variation = 150% 

Coef. of Variation = 84.4% 
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UNEMP = Massachusetts unemployment rate (Seasonally adjusted) 

P = Four month moving average of real average price charged to commercial customers 

In addition, a dummy variable, REC, is included to capture a reclassification of customers that 
occurred in August 1979. The CDD and HDD variables are widely used in utility modelling for 
capturing the effects of weather on the sales of electricity. The UNEMP variable was chosen as a 
proxy for aggregate regional economic activity. The moving average of price variable requires 
some discussion. Economic theory suggests that demand will respond to the marginal cost of 
electricity, and this motivates the inclusion of price in our specification. Theory also suggests that 
there are important dynamic dimensions in the relationship between price and sales. With a fixed 
stock of capital, a firm's demand for electricity will change very little in response to a short run 
change in price. Sales will respond to longer run movements in price as firms invest in new capital 
and energy saving conservation measures. We have included a moving average of price to proxy 
these longer run, trend movements. 

Our initial specification included the variables above. The results are shown in Table 7. They 
look quite reasonable. The magnitudes and signs of the coefficients seem sensible. The large 
residual serial correlation coefficient at lag 12 suggests that the weather variable have not 
completely captured the seasonality. 

The regression diagnostic statistics are very informative. They suggest misspecified dynamics 
and possible omitted variables. They also provide important clues indicating how these problems 
can be cured. The significant statistics for AUTO([-121, YLAG[-121, and AUTO[l-121 suggest 
that the error term should be corrected for seasonal autocorrelation. The significant statistics for 
XLAG[-11 suggests important omitted variables. We corrected for serial correlation by including 
an AUTO[-121 term, and then used the specific tests for omitted variables. These tests pinpointed 
HDD[-I] and CDDC-11 as important excluded variables. (The omitted variable test on HDD[-11 
and CDD[-11 yielded a ~ ' ( 2 )  statistic of 11.52 and a p-value of 0.997). lncorporating these 
modifications led to the results shown in Table 8. All of the diagnostics, with the exception of 
HETEROSCEDASTICITY with YFIT, suggest that this is a reasonable specification. This model 
will be used in our forecasting comparison. 

We decided to take a careful look at the heteroscedasticity problem. The diagnostic suggested 
that the model performed poorly for extreme values of the fitted value of the model, which arise 
from extreme values in the independent variables. To find out which of the independent variables 
was causing the problem, we regressed the squared residuals from the model on some possible 
explanatory variables. Since each squared residual can be viewed as a sample variance, this 
procedure can help us find the cause of the heteroscedasticity. The results from the regression were: 

mean = 7.2 

mean = 0.026 

st. dev. = 1.9 

st. dev. = 0.002 

Coef. of Variation = 26.4% 

Coef. of Variation = 7.69% 

Variable 

Constant 
CUST2 
CDD 
CDD2 
HDD 
HDD2 

Coefficient 

- 193.2 
0.00 

- 0.49 
0.00 

-0.25 
0.00 

t-statistic 

- 1.43 
2.60 

0.04 

2.19 

-0.68 

- 1.64 

R 2  = 0.20 
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Table 7. Mass Electric commercial sales. Econometric model dependent variable is M 

Variable Coefficient Std. Error T-statistic Probability 

HDD 
CDD 
CUST 
UNEMP 
REC 
CUST * HDD 
P 
CUST * CDD 
CONST 

- 0.039889 
0.057329 
0.005821 

- 2.365034 
- 3.292648 

0.014473 

0.026792 
- 170.59096 

- 1 13.403514 

Autocorrelations of lagged residual errors 
Lag: 1 2 3 4 
M 0.01 -0.25 -0.00 0.03 

0.09 -0.22 0.04 0.1 1 

Statistic 

0.156638 
0.83 1652 
0.002058 
0.770302 
3.14331 1 
0.023925 

567.70640 
0.126430 

136.570821 

-0,254657 
0.068934 
2.828086 

- 3.070269 
- 1.047509 

0.604923 

0.2 1 1909 
- 0.30049 1 

- 0.830364 

5 6 7 8 9 10 
-0.13 -0.16 -0.20 0.04 0.12 -0.03 
-0.11 -0.20 

Value 

Number of observations 
Mean value of M 
Standard deviation of M 
Standard error of forecast 
R 2  (corrected for mean) 
F(9,  81) 
Adjusted RZ 
Ljung-Box test = x 2  (9) 
Durbin-Watson statistic 
AIC error statistic 
Schwartz crror statistic 

Diagnostic test statistics 
AUTO [ - I ]  serial correlation 
YLAG [ - I] lagged variable 
AUTO [- 121 serial correlation 
YLAG [- 121 lagged variable 
AUTO [l-- 121 serial correlation 
YLAG [ I - -  121 lagged variable 
TIME TREND test 
XLAG [ - 13 lagged variables 
HETEROSCEDASTICITY with TIME 
HETEROSCEDASTICITY with X 
HETEROSCEDASTICITY with YFIT 
ARCH [ - 13 process test 
ARCH [- 121 process test 
ARCH [ I - -  121 process test 
CHOW test for changing parameters 

90 
285.545555 

2 1.7 19970 
9.282591 
0.833768 

45. I41 156 
0.815298 

45.300059 
2.043604 
9.732399 

11.028148 

0.01 
1.23 

13.89 
11.87 
26.08 
19.51 
0.00 

19.94 
1.56 
5.85 
3.57 
2.90 
0.55 
8.18 

14.55 

0.20 101 2 
0.054958 
0.995318 
0.997861 
0.705 135 
0.454770 
0.236 198 
0.167822 
0.593667 

11 12 
-0.00 0.39 

Probability 

1 .oooooo 
0.999999 
0.081235 

p = 0.083 
p = 0.733 

p = 0.999 
p = 0.990 
p = 0.923 
p = 0.038 
p = 0.999 
p = 0.788 
p = 0.245 
p = 0.941 
p = 0.91 1 
p = 0.541 
p = 0.229 

p = 0.000 

p = 1.000 
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Table 8. Mass Electric commercial sales. Econometric model. Dependent variable is M 

Variable Coefficient Std. Error T-statistic Probability 

H D D  
CDD 
CUST 
UNEMP 
REC 
H D D  ( -  1) 
C D D  ( -  1) 
P 
CONST 
AUTO ( -  12) 

0.062696 
0. I878 13 
0.006748 

- 1.931296 
- 3.963391 
-0.007330 

0.069908 
- 3 1 1.99600 
- 174.098940 

0.309669 

Autocorrelations of lagged residual errors 
Lag: 1 2 3 4 
M -0.04 -0.24 -0.12 -0.02 

0.13 -0.09 -0.05 0.11 

Statistic 

0.005203 
0.023320 
0.000963 
0.776000 
2.586696 
0.005216 
0.023 190 

65.731042 
0.104763 

41 9.25643 

5 6 7 
0.07 0.04 -0.12 

-0.04 -0.03 

Value 

12.051005 
8.053883 
7.007722 

- 1.532221 

3.014588 

- 2.488784 

- 1.405401 

-0.744173 
- 2.648656 

2.955905 

8 9 10 
0.03 0.04 0.07 - 

I .000000 
1 .oooooo 
I .oooooo 
0.9871 82 
0.874532 
0.840098 
0.997427 
0.543228 
0.99 191 9 
0.996883 

1 1  12 
0.06 0.01 

Probability 

Number of observations 
Mean value of M 
Standard deviation of M 
Standard error of forecast 
R2 (corrected for mean) 
F ( 1 0 ,  80) 
Adjusted R2 
Ljung-Box test = x 2  (8) 
Durbin-Watson Statistic 
AIC error statistic 
Schwarz error statistic 

Diagnostic test statistics 

-CHDD -CCDD 
. J A N - F E B - M A U P R M A Y - J U N _ J U L . .  
COMMON FACTOR test 
AUTO [ - 13 serial correlation 
YLAG [ - I]  lagged variable 
AUTO [ - 241 serial correlation 
YLAG [ - 121 lagged variable 
AUTO [I-- 121 serial correlation 
YLAG [ 1- - 121 lagged variable 
TIME T R E N D  test 
XLAG [ - I]  lagged variables 
NONLINEARITY in x test 
HETEROSCEDASTICITY with TIME 
HETEROSCEDASTICITY with X 
HETEROSCEDASTICITY with Y FIT 
ARCH [ - I]  process test 
ARCH [ - 121 process test 
ARCH [I-- 121 process test 
CHOW test for changing parameter 

90 
285.545555 
21.719970 
7.748287 
0.885609 

61.935389 
0.871 3 10 

14.853387 
2.1 29 142 
8.163651 
9.379906 

0.15 
11.12 
6.28 
0.00 
0.16 
0.48 
0.83 

12.16 
12.63 
0.10 
1.58 
4.59 
0.63 

14.01 
9.33 
0.0 1 
2.98 
4.80 
0.55 

1 .oooooo 
0.937940 
0.303788 

p = 0.07 I 
p = 0.567 
p = 0.493 
p = 0.024 
p = 0.307 
p = 0.510 
p = 0.638 
p = 0.649 
p = 0.603 
p = 0.25 1 
p = 0.096 
p = 0.290 
p = 0.571 
p = 0.878 
p = 0.998 
p = 0.097 
p = 0.916 
p = 0.036 
p = 0.144 
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Table 9. Mass Electric commercial sales. Econometric model. Dependent variable is MICust 

Variable Coefficient Std. Error T-statistic Probability 

CUST- '  
C D D  
H D D  
P 
C D D  ( -  1) 
UNEMP 
-JAN 
_FEB 
-DEC 
-CONST 
-AUTO [ - 123 

-97.24075 
0.026284 
0.007467 

0.011581 

2.05 1724 
0.950438 
1.246292 

56.402781 
0.2401 16 

- 74.00429 

- 0.305025 

Autocorrelations of lagged residual errors 
Lag: I 2 3 4 
MICust -0.06 -0.20 -0.06 0.02 

0.15 -0.09 -0.04 0.07 

Statistic 

48.63 1961 
0.003442 
0.000795 

62.789440 
0.002995 
0.1 I4778 
0.845246 
0.836853 
0.694490 
7.452265 
0.10603 5 

- 1.999524 
7.635821 
9.388561 

3.8662 18 
-2.657529 

2.427368 
1.1 35728 
1.794543 
7.568542 
2.264485 

- 1.17861 1 

5 6 7 8 9 10 
0.02 -0.02 -0.14 0.02 0.11 0.09 - 

-0.04 -0.00 

Value 

0.954448 
1 .000000 
1 .OOoo0o 
0.761447 
0.999889 
0.992 129 
0.984791 
0.743930 
0.927273 
1 .000000 
0.976456 

11  12 
0.10 -0.02 

Probability 

Number of observations 
Mean value of M/Cust 
Standard deviation of M/Cust 
Standard error of forecast 
R2 (corrected for mean) 
F(11, 79) 
Adjusted R2 
Ljung-Box test = x 2  (7) 
Durbin-Watson statistic 
AIC error statistic 
Schwarz error statistic 

Diagnostic test statistics 

-M AR-APR _MAY _JUN_JUL-AUG-SEP 
AUTO [- 13 serial correlation 
YLAG [ - 11 lagged variable 
AUTO [ -241 serial correlation 
YLAG [ - 123 lagged variable 
TIME T R E N D  test 
NONLINEARITY in .Y test 
HETEROSCEDASTICITY with TIME 
HETEROSCEDASTICITY with X 
HETEROSCEDASTICITY with YFIT 
ARCH [- 11 process test 
ARCH [ - 121 process test 
ARCH [ l - -  121 process test 
CHOW test for changing parameters 

90 
43.627219 

3.05 1664 
1.1 72048 
0.8 69065 

47.668626 
0.850834 

13.737817 
2.170319 
1.240847 
1.44565 I 

9.04 
0.05 
0.07 
1.75 
1.86 
1.78 
0.00 
0.0 I 

21.26 
8.59 
0.00 
1.97 
5.05 
0.60 

1 .000000 

0.943954 
0.448280 

p = 0.661 
p=0.175 
p = 0.214 
p=O.814 
p = 0.827 
p = 0.8 I7 
p = 0.000 
p = 0.074 
p = 0.981 
p = 0.997 
p = 0.039 
p = 0.839 
p = 0.044 
p=0.168 
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While the coefficients on CUST2 and HDD2 were too small to be printed out, their t-statistics 
strongly suggest that they are responsible for the heteroscedasticity. 

Since the error variance seems to be proportional to the square of the number of customers, the 
necessary correction is to divide all of the variables in the model by the number of customers. This 
suggests that the original model should have been specified to explain sales per customer, rather 
than the total market sales. This is a reasonable alternative to the model shown above. Rather than 
carry out a mechanical correction for heteroscedasticity we decided to specify and estimate a 
model for sales per customer. 

After some experimentation, we arrived at the specification in Table 9. Residual plots from a 
variety of specifications suggested that our models were having difficulty explaining the winter 
peaking months. To allow more flexibility in the specification for these months we incorporated 
dummy variables for December, January, and February, as well as the weather variables. The table 
indicates that these are useful explanato,ry variables. The diagnostics also indicate that we have not 
completely cured the heteroscedasticity problem. A variety of weighting procedures were used for 
weighted least squares estimation. These reduced the heteroscesdasticity. The point estimates of 
the regression coefficients changed very little. 

NARRAGANSETT ELECTRIC-DATA AND MODELS 

In Figure 2 we present a plot of the sales of electricity to commercial customers by Narragansett 
Electric. The basic pattern of sales seems very similar to Mass Electric’s. There are a few important 
differences to note. First, the summer peak in sales is more pronounced; the average peak summer 
sales is slightly higher than the average peak winter sales over the sample period. Second, the trend 
in the data seems more regular; the slowing of the trend in the second half of the sample period that 
was present in the Massachusetts Electric data is not as dramatic. Because of the similarity in the 
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Figure 2. Narragansett Electric commercial sales. 
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two series there is little marginal gain in a detailed description of the model building process for 
Narragansett; we will just highlight the differences between the Narragansett and Massachusetts 
Electric models. 

Box-Jenkins model 
We found that an AR( 1) model applied to the seasonally differenced data provided an adequate fit. 
The seasonal moving average coefficient was chosen by the same ‘grid-search’ procedure that we 
used for Mass Electric. 

Seasonal autoregressive models 
The time variation in the seasonal pattern led us to consider the same model that was estimated for 
Mass Electric. We regressed (y , -yy, -12)  onto a constant, ( y r - l l  - y t P l 2 ) ,  and -yr -12)  to 
estimate the probabilities discussed in the last section. An AR( 1) model was used for the 
disturbance term. 

A look at the detailed diagnostics suggested possible improvements. They showed significant 
correlation between the residuals and ( y , -  - y t -  13).  This led us to consider another model that 
incorporated this lag and (again led by diagnostics) an AUTO[-121 term. 

State space models 
Experimentation with a univariate model led to the same kind of unsatisfactory results that we 
found with Mass Electric. We were led to a bivariate model relating the ‘two’ variables Ayl and 
Ayr-12. 

Exponential smoothing 
We used the same procedure as we described in the Mass Electric section 

Econometric model 
We retained the basic specification that we used for Mass Electric. The relevant means and 
standard deviations for Narragansett and the Rhode Island area are: 

Variable Mean St. Dev. Coef. of Variation 

CDD 62.2 96.3 155% 
HDD 472.8 421.0 89.2% 
CUST 2.402 0.044 1.83% 
P 0.027 0.002 7.4 1 yo 
UNEMP 7.40 1.92 25.9% 

The diagnostics from the initial model led us to consider a specification which included seasonal 
dummies for the winter peaking months, the seasonal lag of the dependent variable together with a 
correction for seasonal autocorrelation in the disturbance. The diagnostics suggested that an 
additional seasonal lag of the dependent variable or of the error term may be appropriate. Because 
of our small sample size, we decided that the cost of this correction (1 2 observations) was too high. 
We also estimated a model using sales per customer as the dependent variable. 

COMPARING FORECASTS 

The models that were described in the last two sections were used to forecast commercial sales for 
both companies for two forecast periods. The first forecast period covers the months from October 
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Figure 3. Massachusetts Electric commercial sales. 

1983 to September 1984. Following this forecast comparison we re-estimated each of the models 
using data through September 1984, and then used these new models to construct forecasts from 
October 1984 through May 1985. Figures 3 and 4 show the sample data augmented by the values 
over the forecast period. The forecast period is characterized by the same general seasonal pattern 
as the sample period. The underlying trend is much different. This undoubtedly arises from the 
rapid aggregate economic expansion which occurred over the forecast period. The average annual 
increase for Mass Electric was 6.5 GWh over the sample period. During the forecast period the 
average annual increase was over three times larger. For Narragansett the annual increase during 
the forecast period was more than two times larger than during the sample period. This change in 
trend motivates our decision to carry out two forecasting experiments. The first experiment 
explores the performance of the methods when the series undergoes a sharp change in trend. In the 
second experiment, the trend in the forecast period is much like the trend in the last 12 months of 
the augmented sample period. We suspected that some of the methods might perform best during 
one of the forecast periods, while other might perform best over the other period. 

For both companies we have formed forecasts using seven different models. They are: 

BJ the Box-Jenkins Model 
SARI 
SAR2 
ss 
EXSM Exponential Smoothing 
REG1 
REG2 

To construct the forecasts using the econometric models, we require forecasts of the exogenous 
variables. Forecasts for HDD and CDD were constructed using a set of ‘Normals’ estimated by 

The first Seasonal Autoregressive Model [shown in Table 31 
The second Seasonal Autoregressive Model [shown in Table 41 
The bivariate State Space model 

Econometric Model 1 [Shown in Table S] 
Econometric Model 2 [shown in Table 91 



M. W. Watson, L. Pastuszek and E, Cody Commercial Sales 133 

1975/1 
MONTHLY TIME SERIES D A N  

198515 
, I  -l 13 

12 
3 r 

11 I 

8 

Figure 4. Narragansett Electric commercial sales. 

New England Power Service. Forecasts of the unemployment rate and the number of commercial 
customers were constructed from ARIMA models. Price schedules are generally known 1 year in 
advance, and this led us to use the actual values for price. 

Forecasting experiment 1-October 1983-September 1984 
In Table 10 we show the actual values of the data during the forecast period together with the 
forecasts from the seven competing models. In Table 11 we report summary statistics for the 
implied forecast errors. The results are unambiguous. For both companies, the forecasts 
constructed from the econometric models have the lowest root mean square error. Exponential 
smoothing and the State Space Model also perform well. Exponential Smoothing performs 
relatively better for Mass Electric, and the State Space Model performs relatively better for 
Narragansett Electric. The Box-Jenkins and Seasonal Autoregressive Models perform poorly 
relative to the other methods. 

A careful look at the tables show the reason for the poor performance. These models were 
unable to predict the increase in the trend over the forecast period. The actual average annual trend 
growth over the forecast period was 20.6 for Mass Electric. The annual trend increases predicted 
by Box-Jenkins was only 1.9. The two seasonal autoregressive models did a bit better with 
predicted trend increases of 7.1 and 7.7. The corresponding predicted annual average increase by 
the econometric models were 21.4 and 17.4, much closer to the actual trend increase. The State 
Space Model and the Exponential Smoothing Model predicted average annual increases of 16.6 
and 16.1 respectively. Similar results were found for Narragansett. 

Forecasting experiment 2-October 1984-May 1985 
In Table I2 we show the actual and forecast values of the data during the second forecast period. In 
Table 13 we present some summary statistics comparing the methods during this forecast period. 



Table 10. Forecast October 1983-September 1984 

Massachusetts Electric 
Obs M MBJ MSARl MSAR2 MSS MEXSM MREGI MREG2 

1983.10 
1983.1 1 
1983.12 
1984.0 1 
1984.02 
1984.03 
1984.04 
1984.05 
1984.06 
1984.07 
1984.08 
1984.09 

302.1000 
285.4000 
33 1.2000 
356.3000 
340.6000 
322.0000 
309.8000 
289.5000 
318.3000 
329.8000 
344.5000 
326.2000 

Narragansett Electric 
Obs N 

1983.10 
1983.1 1 
1983.12 
1984.01 
1984.02 
1984.03 
1984.04 
1984.05 
1984.06 

14.4000 
06.7000 
14.9000 
26.2000 
19.5000 
17.0000 
09.8000 
08.1000 
14.3000 

290.7000 
28 5.7000 
3 10.4000 
329.9000 
324.3000 
308.8000 
288.4000 
282.0000 
289.7000 
297.4000 
3 17.2000 
306.6000 

NBJ 

107.71 14 
105.1 158 
11  1.1708 
117.9191 
118.1451 
106.3722 
106.8202 
105.2329 
109.7253 

293.4000 
290.9000 
308.0000 
324.5000 
322.5000 
3 13.1000 
299.7000 
292.3000 
296.0000 
307.7000 
322.9000 
3 2 3.9000 

NSARI 

110.2000 
108.1000 
11 1.7000 
1 18.4000 
1 17.6000 
1 1 I .2000 
107.2000 
108.9000 
109.8000 

287.7000 
294.2000 
3 17.2000 
334.0000 
341.8000 
310.5000 
299.6000 
28 5.7000 
296.0000 
3 00.2000 
323.1000 
3 1 1.5000 

306.2000 
300.8000 
3 19.8000 
336.5000 
332.7000 
3 19.9000 
305.1000 
301.9000 
309.7000 
321.3000 
32 1.3000 
3 29.9000 

29 3.7000 
299.1000 
328.5000 
351.7000 
344.4000 
328.1000 
303.0000 
293.5000 
301.4000 
3 10.6000 
33 1.6000 
3 16.0000 

296.1000 
30 1.7000 
325.3000 
34 1.6000 
3 3 7.6000 
3 33.4000 
3 1 1.4000 
3 03.6000 
304.6000 
325.8000 
345.1000 
339.1000 

294.7000 
296.9000 
323.9000 
343.7000 
335.7000 
3 26.9000 
306.9000 
298.6000 
298.9000 
3 l9.9OOO 
339.2000 
3 32.6000 

NSAR2 NSS NEXSM NREGl NREG2 

1 12.0000 
109.4000 
112.7000 
1 19.9000 
1 16.4000 
1 12.5000 
105.6000 
109.9000 
109.1000 

1 12.1000 
108.4000 
114.1000 
1 19.6000 
12 1 .oooo 
1 14.6000 
I 1 1.9000 
1 1 1.6000 
1 18.5000 

109.1000 
108.4000 
1 1  5.5000 
122.4000 
122.8000 
1 14.3000 
109.5000 
106.9000 
110.2000 

112.3000 
1 09.3 000 
1 13.4000 
122.8000 
123.8000 
1 12.8000 
1 12.7000 
1 10.9000 
1 09.6000 

11 1.6927 
110.4354 
1 1 1.7801 
123.0910 
124.6847 
1 13.7830 
1 13.2840 
1 12.0470 
1 10.5492 

1984.07 126.2000 110.7498 116.4000 117.6000 118.8000 116.8000 119.5000 121.4808 
1984.08 126.2000 122.2310 120.6000 119.5000 124.3000 125.1000 125.8000 127.1252 
1984.09 123.9000 116.5341 120.4000 122.6000 120.1000 120.3000 122.7000 124.0077 

Table 1 I .  Forecast performance-Forecast comparison 1 

Massachusetts Electric. Forecast error 
RMSE Model Mean Std. Deviation 

Box-Jen kins 
Seasonal AR Model 1 
Seasonal AR Model 2 
State Space 
Exponential Smoothing 
Econometric Model 1 
Econometric Model 2 

Narragansett Electric. Forecast error 
Model 

18.7 9.6 ' 

13.4 11.6 
12.8 10.9 
4.0 12.2 
4.5 9.9 

- 0.8 10.7 
3.1 9.4 

Mean Std. Deviation 

20.8 
17.4 
16.5 
12.3 
10.5 
10.3 
9.5 

RMSE 

Box--Jenkins 
Seaaonal AR Model 1 
Seasonal AR Model 2 
State Space 
Exponential Smoothing 
Econometric Model 1 
Econometric Model 2 

5.8 
3.9 
3.3 
1 .o 
2.2 
1 .o 
0.3 

4.1 
3.2 
3.3 
3.8 
3.4 
3.5 
3.6 

7.0 
5.0 
4.6 
3.7 
3.9 
3.5 
3.4 
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Table 12. Forecast October 1984-May 1985 
~~ ~ 

Massachusetts Electric 
Obs M MBJ 

1984.10 301.5000 303.3041 
1984.1 I 309.2000 292.9893 
1984.12 341.3000 328.0764 
1985.01 372.7000 350.1513 
1985.02 362.3000 339.0791 
1985.03 341.8000 321.491 1 
1985.04 330.6000 304.6310 
1985.05 3 19.7000 29 1.1661 

Narragansett Electric 
Obs N NBJ 

MSARl 

307.1292 
303.3969 
329.8535 
353.6873 
348.8194 
332.3659 
3 17.0308 
308.0478 

NSARl 

MSAR2 

300.1426 
294.0785 
321.21 47 
354.4460 
343.9289 
330.4273 
3 12.3412 
301.9331 

MSS 

316.3263 
304.4595 
320.3413 
343.1000 
342.2429 
323.5561 
307.8038 
300.6842 

MEXSM 

3 1 1.0609 
3 1 1.6075 
346.4699 
371.141 I 
362.3548 
345.2369 
32 1.4370 
308.9977 

NSAR2 NSS NEXSM 

M REG 1 

310.7520 
3 14.4803 
344.3558 
363.9013 
354.33 I5 
344.2085 
328.73 12 
308.8794 

NREGl 

MREG2 

309.2377 
3 I 1.2849 
345.7982 
370.0574 
357.1984 
342.1505 
327.93 13 
310.2929 

NREG2 

1984. I0 
1984.1 1 
1984.12 
1985.01 
1985.02 
1985.03 
1985.04 
1985.05 

1 14.6000 
I 15.7000 
122.7000 
127.4000 
126.5000 
120.8000 
115.8000 
1 13.2000 

114.3035 
108.4070 
115.1404 
123.9910 
120.4455 
11 4.1 276 
110.4318 
108.8455 

116.5026 
114.1510 
1 17.4628 
123.1353 
123.7342 
1 18.2639 
114.2761 
113.1768 

11 5.0033 
I 13.8256 
116.6131 
124.0635 
124.6 I23 
117.5574 
114.2343 
112.9103 

1 16.6622 
1 12.3966 
I 17.2584 
125.5673 
125.1832 
121.3533 
115.6577 
114.2509 

I 15.0993 
I 1  3.1732 
120.8 I25 
128.5880 
127.8661 
120.3937 
114.7873 
112.2829 

117.5570 
114.5240 
122.5 160 
130.1374 
129.9854 
122.1753 
120.1436 
1 17.6480 

117.2849 
1 15.0084 
12 I .  I474 
130.1686 
129.3965 
122.3347 
119.0926 
1 16.0324 

Table 13. Forecast performance--forecast comparison 2 

Massachusetts Electric. Forecast error 
Model Mean Std. Deviation RMSE 

Box-Jenkins 
Seasonal AR model 1 
Seasonal AR model 2 
State space 
Exponential smoothing 
Econometric model 1 
Econometric model 2 

Narragansett Electric. Forecast error 
Model 

18.5 
9.8 

15.1 
15.1 
0.1 
1.2 
0.6 

Mean 

9.6 20.9 
7.3 12.2 
6.2 16.3 

13.9 20.5 
6.9 6.9 
7.4 7.5 
5.5 5.5 

Std. Deviation RMSE 

Box-Jenkins 5.1 2.4 5.7 
Seasonal AR model 1 2.0 2.3 3.0 
Seasonal AR model 2 2.2 2.0 3.0 
State space 1 .o 2.5 2.7 
Exponential smoothing 0.5 1.4 1.5 
Econometric model 1 - 2.2 2.1 3.0 
Econometric model 2 - 1.7 1.8 2.5 
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The ranking of the methods is broadly similar to the ranking in the first forecast period. Looking 
first at the results for Massachusetts Electric, we see that the exponential smoothing and the two 
econometric models perform far better than the competing time series models. The performance 
(measured by RMSE) of Box-Jenkins is roughly the same as in the first period. The seasonal 
autoregressive models improve slightly in terms of their RMSE. The performance of the State 
Space Model deteriorates substantially, and is now similar to the BJ model. The exponential 
smoothing and econometric models have RMSE that are approximately 40% smaller than in the 
first forecasting period. This is what one would expect. These methods have trends that adapt 
according to behaviour in the recent past (using time series models to forecast the economic 
variables that account for the trend in the econometric model). Since the trend in the second 
forecast period is similar to the trend at the end of the augmented sample period, these methods 
perform very well. 

The forecasting results for the Narragansett Electric contain some differences. Again the 
exponential smoothing procedure performs very well. All of the other methods, with the exception 
of Box-Jenkins, perform nearly as well as one another. 

ACKNOWLEDGEMENTS 

We would like to thank Diane Collins, Leslie Barnhart, Alan Bailey, and Frank Lin for valuable 
comments and suggestions during the course of this project. 

This paper is based upon work undertaken as part of project RP2279 for the Electric Power 
Research Institute and is published here with permission. 

Authors' hiogruphies: 
Mark W. Watson is an Associate Professor of Economics at  Northwestern University and a consultant for 
Quantitative Econometric Research Incorporated. He received his Ph.D. in Economics from the University of 
California at San Diego and his fields of interest include econometrics, time series analysis, forecasting, and 
applied microeconomics. 

Eric P. Cody is Manager, Load Forecasting & Analysis at New England Power Service Company in 
Westborough, Massachusetts. He is responsible for short and long range forecasting of electric sales and 
demand and customer load research for New England Electric System companies. Mr. Cody holds the 
Bachelor of Arts degree from Amherst College and a Masters in City and Regional Planning from Harvard 
University, where he specialized in Energy Planning and Policy Analysis. 

Lydia M. Pastuszek is Director of Demand Planning for the New England Power Service Company. She is 
responsible for directing load management and conservation programs and research, load forecasting, load 
research and program evaluation. She holds a Bachelor of Arts degreL in government from Clark University 
and a Masters in City and Regional Planning from Harvard University. 

Authors' addresses: 
Mark W. Watson, Department of Economics, 2003 Sheriden Road, Northwestern University, Evanston, 1 L 
60201, U.S.A. 
Eric P. Cody, New England Power Service Company, 25 Research Drive, Westborough, Massachusetts 
01 582-0099, U.S.A. 
Lydia M. Pastuszek, New England Power Service Company, 25 Research Drive, Westborough, 
Massachusetts 01 5824099, U.S.A. 




