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1. Summary

This technical report contains the statements and proofs of the lemmas and
theorems in Stock and Watson (1988).

Cointegrated multiple time series share one or more common trends. In Stock
and Watson (1988), we develop twe tests for the number of common stochastic
trends (i.e. for the order of cointegration) in a multiple time series with and
without drift. Both tests involve the roots of the OLS coefficient matrix
obtained by regressing the series onto its first lag. Critical values for the
tests are tabulated, and their power is examined in a Monte Carlo study.

Economic time series are often modeled as having a unit root in their
autoregressive representation, or (equivalently) as containing a stochastic
trend. But both casual observation and economic theory suggest that many series
might contain the same stochastic trends, so that they are cointegrated. If
each of n series is integrated of order one but can be jointly characterized by
k < n stochastic trends, then the vector representation of these series will
have k unit roots and n-k distinct stationary linear combinations. Our tests
can be viewed as tests of the number of common trends, the number of
autoregressive unit roots, or the number of linearly independent cointegrating
vectors.

Both of the proposed tests are asymptotically similar but differ in their
treatment of the nuisance parameters of the process. The first test (qf) is
developed under the assumption that certain components of the process have a

finite order VAR representation, and the nuisance parameters are handled by



estimating this VAR. The second test (qc) entails computing the eigenvalues of
a "corrected" sample first order autocorrelation matrix, where the correction is
essentially a sum of the autocovariance matrices.

Previous researchers have found that U.S. postwar interest rates, taken
individually, appear to be integrated of order one. In addition, the theory of
the term structure (equating the expected future spot rate to the implicit
forward rate, plus a stationary risk premium) implies that yields on similar
assets of different maturities will be cointegrated. Applying these tests to
postwar U.S. data on the Federal Funds rate and the three- and twelve- month
Treasury Bill rates, we find support for this prediction: the three interest

rates are found to be cointegrated, possessing a single common trend.
2. Theorems and Lemmas
This section contains the statements of the theorems and lemmas concerning
the proposed tests of the number of common trends. For definitions and

discussion, see Stock and Watson (1988).

Theorem 3.1. Suppose that DRRD, that Wt is generated by {(3.1) with W0-7-0,

that fi(L)BRyI(LIR,Y, and that max (77 )<p,<o. Then

(1) T(4¢-1,) => Ry¥T Ry
(ii) T(Ag-0) => Xy
(iii) T(|Agl-¢) => Re(dy)



Lemma 4.1, If maxiE(vgt)$p4<w and 51-52—0 in (2.7), then

T(8-I) - [E(L)¥E) ¢ + M ] [E(T &)1 L B o

-1 -2
where ¥ o =~ T "Y€, qv{, Ty = T “}€.€!, and

* o ' ] ]
M '[EF-O(Cj'Cj)Cj + 8] - EE;_lut_jut .

Lemma 4.2. Let 0 be a kxk matrix such that 0Q'=8(1){(1l)’. Then, under

the conditions of Lemma 4.1,

R |

(ii) T(Rg-t) => Ay .

Theorem 4.1. Suppose that DBRD and HRRZHRé.

of Lemma 4.1,

ym-1.-1_ -1
(i) T(&c-lk) => RO¥ T "0 'R,
(ii) T(ic-a) = A, .

Then under the assumptions



Theorem 5.1. Suppose that BBRD, that W, is generated by (3.1), that
f(L)BR,I(LIR;Y, and that max,E(n],)sp,<e. Then

a. if vy = 0 and W, is an arbitrary constant,

(a.1) T(E-T,) => Ry (rf) “lg;t
(a.ii) T(Ag-1) => 2k
(a.iii) T(|84]-1) => Re(A)

b. if v and WO are arbitrary constants,

(b.1) T(8]-1,) => Ry’ (M) 'Ryt
(b.ii) T(Sf-;) -> AL
(b.iii) T(|SE[-¢) => Re(A})

Lemma 5.1. If maxiE(u?t)5p4<m and

(i) if ﬁ2 =0 in (2.7) and ﬁl is an arbitrary comstant, then
T(F-1) - [CLIHLE(L)" + M ycTi e 1T B o

(ii) if ﬁl and 52 in (2.7) are arbitrary constants, then
T(8'-1) - [EL¥LEL)’ + M ] [EDTIEW 1t B o

vhere ¥h. T 1{5" 168k, T T"Znge“', ¢;I-T'1Z§;_1A§;',

and T’ T =T zete , where st-Et'TkGOT and E;'Et'TkelT'T-kBZTt' where

0,0=T /2T a; £, 1=0,1,2, with ag,~1, aj =4-6(t/T),

and azt--6+12(t/T), and where M = EZ?—lut-jué .

TR



Theorem 5.2. 1f BBRD and ﬂHRZMRé, then under the assumptions of Lemma
5.1,

a. if By = 0 in (2.7) and A, is an arbitrary constant, then

(a.1) T(84-1) => Ryoul (i) “la7 Rt

(a.ii) T(SE-0) = Ak

(a.iii) T(|351-¢) => Re(2])

b. if g, and By in (2.7) are arbitrary constants, then

(b.1) T(8]-1) => Ryl (rf) T st

(b.ii) T(Ag-¢) => AL

(b.iii) T(1AZ1-¢) => Re(A]) .

3. Proofs

Proof of Theorem 3.1.

. -1
(i) We first show that T[&g-I,]1-TR,[&;-1,1R;" Bo.

5f and 6f and the (almost sure) invertibility of Ty, this follows if

T-lzf:~1ﬁf£ - RzT-Ith-lﬁféké Bo

“EYE B -2 rpr
T 22§t§t - RyT™Fe SRy B0

To show (A.la), since { =M(L)S DX_ and ft-ﬁ(L)SkDXt.

-1 - » '1 ] ]
T U 1880 - RoT "6 1AC{R)

- SP ¢P -15T rarfye
§u12imi My ST Lop oK 5 1 8XL )07 S

P TP -1¢T ' IQITIIR?
- Rpliu1 X3 Ui SIP(T ReopaoXe. 118K {)D SEIURS

From the definitions of

(A.2)



For fixed (i,j), under the stated conditions it is straightforward to show that
-lzt-p e-1-18%¢. j-Op(l) (e.g. Stock 1987). By assumption, BERD and
niRRZHiRZ , so that niSkDRRznikilskRD' Since S R=R,S,, the difference
on the right hand side of (A.2) thus converges in probability to zero, proving
(A.la). The proof of (A.1b) is analogous, using the fact that
kY Y ~0 (1) for fixed (1,j). Since, from (3.2), T[&p-T Je>e T L
t-1Xe-3 o Xe 3. nce, om .2), £ Ik k

k ]
-1,-1
it follows that T[& Ik]->R21FkI‘k R2 .

(ii) Let i} denote the vector of ordered eigenvalues of Tléf-Ik]. It
follows from (i) and the continuity of the eigenvalues as functions of the
elements of T[ﬁf-Ik] that 1;—>A*. But deet[&f-AIk]-
det[T(&f-Ik)-T(A-l)Ik], 50 X}-T(if-c), from which it follows that

T(Xf-c)->l*.

i .=1)m=a. =/-1. ii . 0
(iii) Write T(fo 1) aJ+ibj, where i=/-1. By (ii), ay and by are p(L)

random variables. Now

T[I8ggi-1] = TLIL+(ag+iby)/T| - 1) = T[((1+aj/T)2+b§/T21* 1]

- T[(1+aj/T) + OP(T ) -1] = aJ. + op(l)

so that T(ixf;-;)-ne[rcfoL)lﬂo. Also, from part (ii) of this Lemma,

Re[T(if-c)]->Re(A*). Thus T(le|—1)->Re(A*), the desired result. o

Proof of Lemma 4.1.



First write T(&-Ik) as
1

T(@-Ik)-TU&Vi (A.3)

-2«T Fl '2T [
where Up=T ZZWt-IAWt and V=T XZ“t-lwt-l‘ Using (2.7) with g;=,=0,

VT can be written,
-2¢T-1 * *
Vp = T L1 (ELEATT(MIv I [S(LIE AT (LIv )"
Under the stated conditions, Stock’s (1987) Theorem 1 applies directly, and
Vp = é(l)PnTC(l)' + op(l). (A.4)
where rnT is defined in the statement of the Theorem. Using Chan and Wei (1988,
Theorem 2.4), PnT->Fn-f$Bn(t)Bn(t)'dt, vhere Bn(t) is a n-dimensional Wiener
process and => denotes converence on C[O,l]n. Since €(1) has full row rank
under the null, [C(l)PnTC(l)'] is almost surely invertible in the limit,
Turning to Uy, write TUT-T'IZWtAWE-T'IZAWtAWE. Now
-1 ,
T  Jaw avy B E;_ocjﬁj (a.5)

from (2.5). Using (2.5) and (2.7),

T WAL = BT I (6w, ) + TINE v I [EWIv, " (A.6)



The second term in (A.6) converges to a constant matrix:
S , L
T T8 (LY, 1 [ELv, )’ B E?_Ocjcj . (A.7a)

The first term in (A.6) can be treated using the decomposition in Stock’s (1987)

Theorem 1, yielding
ST 1T [ELv 1" - B [+ 18 B o . (A.7b)
Combining (A.5), (A.6) and (A.7),
TUp - [E(L) @IS’ - Tj_of8) + E;-06§631 Ro. (A.8)
Combining (A.3), (A.4) and (A.8) yields the desired result with
M—[C(I)C(l)'+E;_0(C;-Cj)éj]. The second expression for M in the

Theorem obtains by direct calculation. ]

Proof of Lemma 4.2.

(i) Using Lemma 4.1 (i) and the definitions of Up and V, given in its proof,

1

T(&c-Ik) (TUp - M)'Vi

[ [] -'1
(E(L)¥E(L) " -M]* [E(LITg8(1) 17 + o (1). (a.9)

From Theorem 2.4 of Chan and Wei (1988), (Wn 'rnT) - (wn,rn). Letting

o' =G (1)E(1) ' (where 0 is kxk), [C(I)Bn(t)} has the same distribution as



{GB, (t)}. Thus (C(l)WnC(l)',ﬁ(l)FnC{l)') has the same distribution as

(a4 0,0 0'). Since C(1) has full row rank by construction, ((’.:(1)I‘nfi(1)')—1

exists almost surely. It follows that T(éc-Ik)->(0Wk0’)'(ﬂPkQ')‘l
pp=la-1
=l a0 "
(ii) The proof of Theorem 3.1 (ii) applies directly. O

Proof of Theorem 4.1.

(1) Let Op=T"2Ff, AW, and U=T"20, ,@! ;. Then:
T{dy-I,] = (T0p - B 071 (A.10)
Comparing (A.9) and (A.10), one finds that the result (i) follows if

TOp-R,TULRY B o (A.1la)

Vp-RyVgRS Bo . (A.11b)
To show (A.lla), use W.=S,DX,, wt-skbxt, and S5 R=R,S, to write
t '1 1fhror '1 IMIrpsor
TOp-R,TUgR) = S, BT "JX, ,8X(D’'S{ - S, RDT "JX, ,AX!D'R Sy -

Since DBRD by assumption and since T'lzxt_laxt-op(l), (A.11a) follows. The

proof of (A.1lb) is similar. Thus, from Lemma 4.2 (i),

T[&c-Ik] - [Rzé(l)WnTC(l)'Ré]'[RZC(I)PnTC(l)'Ré]-l + op(l)

-9 .



The argument used to prove Lemma 4.2 (i) implies that

T(8_-T, ) => [R ¥ Q'Ry]' [RyfANA'RY) T

-1,-1

' 'lr -

(ii) This result is an immediate consequence of (i) since Wﬁril and

1,.-1,-1

RzﬂW&Fi Q R2 are similar matrices. a

It is convenient to prove Lemma 5.1 before proving Thecrem 5.1.

Proof of Lemma 5.1.
We prove (ii) first. Let alt-k-ﬁ(t/T),azt--6+12(t/T), and wtsﬂ3ft+ﬁ4(L)ut
{(so that from (2.7) Yt = ﬁl + ﬂ2t + wt). Using the definition of Wy and

Chebyschev’s inequality one obtains

s -3/2
T °(B1-81) T Yaq.w [: X
[ Lot ] - [ e e t] + 0y(1) = [53 1T] + 0,(1) (A.12)
T (By-£y) T YAy 3821

-3/2 .
where eiTaT / Xaitft’ i=1,2.
Turning to the moment matrices comprising Gc. write

Y{=uw - (B1-B1)- (By-By)t. Since We=S, Y,

T2WTWT Y = 5,1 2T [w,- (By-B1) - (By-By)t] [we- (By-Bp) - (By-Bp)El'Sf - (A.13)

- 10 -



Using (A.12), Chebyschev’s inequality, and the bound on the fourth moment of Ve,

direct calculation of each of the nine terms in (A.13) shows that

-2, T T, ' ] ' ¢
T WM = CQ) [Tpp- (878 1+, 18h7) - (3185 1+09n850)

+41(0) 185 7+8,18] 1) +8; 18] p+1/30,705,18(1) ¢ + o, (1) (A.14)

where BOT-T'3/2EEt and B3T-T'3/2E(t/T)£t. This can be rewritten to give the

desired result,
T2 - E(LTTE1) B o (A.15)

where P;T-T'zzfzez’, where £: is defined in the statement of the Lemma.
To obtain a limiting representation in terms of functionals of Wiener
processes, note that eit->f%ai(s)3(s)dssei. i=0,..,3, by the continuous

mapping theorem, where ao(s)-l, al(s)-A-Gs, a2(s)--6+12s, and a3(s)-s. Thus the

terms in (A.14) converges to their counterparts expressed as ei and Fn, which
can be rewritten as P;T->F;-I%B;(t)ng(t)'dt, where
T
Bn(t)-Bn(t)-el-ezt.
Turning to the term T'lzwg_lAWZ', use AW;'Sk[Awt'(Bz'ﬁ2)] to write,
-1 . -1 tQr
TOTRNE 1AV = S, T Tlw 1 -(By-B1)-(By-Bp) (£-1)] (A - (By-By) 1Sy (A.16)

Expanding (A.16) using (A.12), defining GQT-T'kﬁT and 95T-T'kz(t/T)vt, and using

Chebyschev’s inequality, one obtains:

= 11 -



“lw.7 T, ' ¢ ¢
T" W 180" = () (Vg - €987 - 857851 - BorPar
+ 81708 + 30p18571E(1)" + M + o (1) (A.17)

=G E(L) '+ M+ o (1)

which in combination with (A.15) gives the desired result. By direct
calculation and Theorem 2.4 of Chan and Wei (1988),

1
Ul m>¥T m[oB7 (£)dB ()’ .
(1) The proof of (i) is similar to the proof of (ii) but simpler. By
assumption, B,=0 so that Y =f;+w .. Letting Bl-T'let, Yﬁ-Yt-ﬁl-wt-(ﬁl-ﬂl),

one obtains
T3, - = T/ %u, = B49gr + 05 (1) => B8y -

Thus the limits of the two matrices comprising 62 can be computed as in the

proof of (ii):

25wt = 5, 1 2w, - (By-B) ) [u,- (By-B1)1'SE
= S(1) [Tp-8pp8p]C(L) ' + o, (1)
- 6(1)rgTC(1)' + 0,(1)

- ccl)rgccl)' (A.18)

TR (ARG = ST Sl p- (By-By) JAugsy
= E(1) [¥p-8p04p]C(L) " + ' + o (1)
I '
- C(l)!llnTC(l) + ¥ + op(l)
- 6(1)w36(1)' + M (A.19)

- 12 -



where PﬁT and WﬁT are given in the statement of the theorem and where
1 1 '
Th=oBh(E)BL(E) "at and whafoBA(t)dBR (L), where
Bf(t)=B_(t)-8,. The desired result obtains from (A.18), (A.19), and the

definition of &ﬁ. m]

Proof of Theorem 5.1.

(b.i) We prove (b.i) first, initially considering the case that D and II(L) are
known. To examine the OLS coefficient matrix based on W;, let
T(i;-lk)-TﬁEi(V;T)'l, where U;T - T'22§;_1A§;', and

Vgp = T725¢T 1¢T1,, where ¢T-I(L)W]. Use (3.1) and the definition

§t-Z:_1qs to write H(L)Wt-n(l)WO-H(L)1t+§t. Also let WO and vy denote the
coeficients from a regression of Wt onto (1,t). Noting that H(L)t-H(l)t+H*(1),

where I (L)=(1-L) 1[{I(L)-I(1)], one obtains:

T

ST = Se - MU (Fg-Wy) - ML) (-1t - T(1)(F-7)

Analysis like that leading to (A.12) shows that

T'*(ﬁo-wo) n(1)'131T
s, - = -1 + op(1) (A.21)
T°(v-v) I(1) "Eprp

where EiTET-3/2Zait§t' i=1,2. Using (A.21) to provide rates of convergence for

WO-WO and y-v and applying Chebyschev’s inequalty, one obtains

Tifp = T 8001 Byp-Epp(e-1) ] (ng-Fppl* + op(1)

T T

L s



fr = T N0 oy By Epp (e D 1181 -Eyp-Bpp(E-1)]" + 0p(1)

T T

T T r,-1
Thus T(®g-I)=>¥ ' (T ) .
The extension of this result to the case that D and N(L) are consistently

estimated (up to the normalization matrix R) parallels the proof of Theorem 3.1

(1) and is omitted.

(a.i) The proof of (a.i) is similar to the proof of (b.i), with modifications

like those used to extend the proof of Lemma 5.1 (ii) to Lemma 5.1 (1i).

(a.ii), (a.iii), (b.ii), (b.iii). The proofs of (a.ii), (a.iii), (b.ii),

(b.iii) parallel the proofs of Theorem (3.1) (ii) and (iii) and are omitted.

Proof of Theorem 5.2.

The proof of Theorem 5.2 parallels the proofs of Theorem 4.1 and is omitted.

i Y& =
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