Phosphine Catalysis: Generation of Phosphonium Enolates

Justin Roberts Organic Supergroup January 25, 2006

Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535-544.
Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035-1050.

Why Phosphine?

• Leaving group potential $- pK_a = Et_3PH^+ = 8.7 \rightarrow better LG$

 $Et_3NH^+ = 10.7$

• Nucleophilicity

 $Et_{2}PhP + \swarrow_{I} \xrightarrow{K_{1}} Et_{2}PhP^{+} \checkmark_{I}$ $Et_{2}PhN + \swarrow_{I} \xrightarrow{K_{2}} Et_{2}PhN^{+} \checkmark_{I}$

 $- K_1/K_2 > 500$

 $-\uparrow$ with e⁻ donating alkyl groups on phosphine

• Phosphonium stabilizes adjacent carbanion

•Davies, W. C.; Lewis, W. P. G. J. Chem. Soc. 1934, 1599.

Internal Redox

- •Ketones, esters, amides
- AcOH promotes reaction
- •More nucleophilic phosphines produced considerable amounts of oligamers.
- • R_3N or $(RO)_3P = NR$
- •E,E-diene selective

Trost, B. M.; Kazmaier, V. J. Am. Chem. Soc. 1992, 114, 7933-7935.
Guo, C.; Lu, X. J. Chem. Soc., Chem. Commun. 1993, 1921-1923.

•Rychnovsky, S. P.; Kin, J. J. Org. Chem. 1994, 59, 2659-2660.

•E & Z enynes transfer selectively to E,E,E-trienes
•Ynoates transfer to dienes @ rt with PhOH

•Guo, C.; Lu, X. J. Chem. Soc., Chem. Commun.1993, 394-395.

Morita-Baylis-Hillman Reaction

•Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. **1968**, 41, 2815.

•Basavaiah, D.; Rao, A. J.; Batyanarayana, T. Chem. Rev. 2003, 103, 811-891.

•Stephen Goble "The Morita-Baylis-Hillman Reaction" Organic Supergroup Meeting, November 19, 2003.

•Li, W.; Zhang, Z.; Ziao, D.; Zhang, X. J. Org. Chem. 2000, 65, 3489-3496.

R	С _н + С) <u>10 %</u> F T	<u>6 Lewis Base</u> PEt ₃ , 48 h HF, -10 °C	R [−]	он о	
Entry	R	Lewis Base	% yield	% ee	•	
 1	PhCH ₂ CH ₂	А	88	90	=	
2	Су	В	71	96		A: X =
3	^{<i>i</i>} Pr	В	82	95		
4	Ph	А	40	67		
 5	PhCHCH	В	39	81	_	B·X=
					_	D. X =

•McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 123, 12094-12095.

•Shi, M.; Xu, Y. Tetrahedron Asym. 2002, 13, 1195-1200.

Rauhut-Currier Reaction

•Rauhut, M.; Currier, H. U. S. Patent 3074999 1963

$$\bigcirc CN \qquad \frac{PPh_3, {}^tBuOH}{MeCN, 45 {}^\circC} \qquad NC \qquad CN$$

 Reaction let to polymerization without proton donor to terminate process

•Baizer, M. M.; Anderson, J. D. J. Org. Chem. 1965, 30, 1357-1360.

McClure, J. D. U. S. Patent 3,225,083 1965.
McClure, J. D. J. Org. Chem. 1970, 35, 3045-3048.

Increased rate with polar solvent

•PBu₃addition is indiscriminate: 5-member ring is trapped by cyclization

6-member ring \rightarrow cyclization becomes rate determining

•Wang, L.; Luis, A. L.; Agapiou, K.; Jang, H.; Krische, M. *J. Am. Chem. Soc.* **2002**, *124*, 2402-2403.

•Frank, S. A.; Mergott, D. J.; Roush, W. R. *J. Am. Chem. Soc.* **2002**, *124*, 2404-2405.

•With acetone-d6, not deuterium incorporation was observed

•Presumably PMe₃ is slow to eliminate allowing for proton transfer

Ricciocarpin

•Agapiou, K.; Krische, M. J. Org. Lett. 2003, 5, 1737-1740.

•Thioenolates work well with MBH reactions

•Keck, G. E.; Welch, D. S. Org. Lett. 2002, 4, 3667-3690.

•Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906-2908.

•Zhu, G.; Chem, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. *J. Am. Chem. Soc.* **1997**, *119*, 3836-3837.

Ts protection is necessaryOne regioisomer

•Xu, Z.; Lu, X. *Tetrahedron Lett.* **1997**, *38*, 3461-3464. •Xu, Z.; Lu, X. *J. Org. Chem.* **1998**, *63*, 5031-5041.

Aryl aldimines only
PBu₃ necessary for initial 1,4-addition

•Zhu, X.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276-6282.

Wang, J.; Ng, s.; Krishe, M. J. J. Am. Chem. Soc. 2003, 125, 3682-3683.
Wang, J.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855-5857.

2267-2268.

- \rightarrow Free hydroxyl or pyrrolyl groups were disastrous
- → Aliphatic imines, if stable to reaction conditions, gave 85 % with NaCO₃

•When BOC protected indole was used, 84 %, 1.1:1 dr

•Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289-4291.

>5 % catalyst needed without 2nd ester group
Various aromatic aldimines tolerated

•Yields 75-99 %, >96 % ee, >9:1 cis:trans

•Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234-12235.

Umpolung

EWG = ester, ketone, amide E₁, E₂ = ketone, ester, nitrile, SO₂R

→Phosphine acts as a nucleophilic trigger
 →Suitable pronucleophiles: pK_a < 16
 →Less EWG reacts better with less acidic nucleophile

•Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167-3168.

•Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819-10820.

•α-substituents require more nucleophilic phosphine and longer reaction times

•γ-substituents give redox products

Protonation of initial enolate requires higher acidity

•Zhang, C.; Lu, X. Synlett 1995, 645-646.

•Phthalimide requires phenol as cocatalyst

•Trost, B. M.; Dake, G. R. J. Am. Chem. Soc. 1997, 119, 7595-7596.

Highly stereoselectivePM3 calculations:

Michael Reaction

•White, D. A.; Baizer, M. M. Tetrahedron Lett. 1973, 14, 3597-3600.

•PPh₃, PBu₃, PCy₃, dppf
•Discovered while studying Ru catalyzed Michael reaction

-phosphine ligand thought to dissociate

•Gómez-Bengoa, E.; Cuerva, J. M.; Mateo, C.; Echavarren, N. M. *J. Am. Chem. Soc.* **1996**, *118*, 8553-8565.

Entry	V R	Y	% yield
1	0 ₂ N-{	Н	90
2	MsO S	Н	96
3	ру	Н	88
4	ⁱ Bu	Н	89
5	Cy	Н	88
6		Н	90
7	MsO - S	Me	84
8	Et	Me	84

•Bhuniya, D.; Mohan, S.; Narayanan, S. Synthesis, 2003, 7, 1018-1024.

$$R \xrightarrow{N} OH + EWG = \frac{MeCN (2.0 M)}{20 \% PPh_3, 65°C, 2 h} R \xrightarrow{N} O \xrightarrow{EWG}$$

A:
$$R = m - NO_2C_6H_4$$
, $Y = H$
B: $R = Ph$, $Y = Me$

_	Entry	Oxime	EWG	% yield
	1	А	CO ₂ Et	80
	2	В	"	50 (75) ^a
	3	А	CN	80
	4	В	"	62 (75) ^a
	5	А	SO ₂ Ph	95
	6	В	"	87
	7	А	COMe	87
	8	В	66	85

^a Reaction in parenthesis run with 3 eq. acceptor for 16 h
 @ rt.

_	Entry	Catalyst	Time (h)	% conv.	
_	1	PMe ₃	6	95	M-BPE =
	2	PBu ₃	6	95	
	3	Me-BPE	4	93	
	4	Quinuclidene	48	54 ^a	
	5	DABCO	16	0 ^a	$\langle \langle \rangle_2 \langle \rangle_2$
	6	O=PMe ₃	20	0^{a}	

^a 10 % catalyst.

•Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696 -8697.

Entry	EWG	R ₁	ROH	Time (h)	% yield
1	COEt	Me	H ₂ O	20	77
2	"	"	MeOH	24	85
3	COMe	Н	MeOH	1	56
4	"	"	Me ₂ CHOH	1	83 ^a
5	"	"	PhOH	16	59 ^a
6	CO ₂ Me	Me	MeOH	36	71
7	CN	Н	MeOH	4	79

^a MeCN as solvent.

Conclusions

- Simple & readily available
- Various reactions stemming from phosphonium enolate
- Efficient reactivity
- Lesson: Always run the control experiment