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Photochemistry

-chemical reactions initiated by light
-energy is absorbed or emitted by matter in discrete
 quanta called photons
 
 
 
 
-absorption of light leads to an electronic excitation
  (ground state→excited state)
-promote an e- like n→π∗ or π→π∗

-most chemistry takes place from S1 and T1 excited
  states

E = hν = hc/ λ
short λ light corresponds to high energy

S1 have a shorter lifetime
and higher E (10-9 to 10-5)

T1 have a longer lifetime
b/c spin flip req. (10-5 to 10-3)



Photochemistry
-If a molecule absorbs energy, it can undergo a reaction or  
 undergo loss of energy by two methods:
     •radiative processes-involve emission of a photon
        -phosphorescence-relaxation to a lower state with different
                                         multiplicity, such as T1→S0 (spin forbidden)
           -fluorescence-relaxation to lower state of same multiplicity, 
                                 such as S1→S0 (spin allowed)
     •non-radiative processes-no emission
        -internal conversion-involves no spin change, such as S1→S0
        -intersystem crossing-involves change in spin multiplicity
            •one way competes with phophorescent decay of the lowest triplet
             state to the ground state
            •another way converts the lowest excited singlet state to the lowest
             triplet state (competes with fluorescence and IC)[gives access to 
             triplet state]
-Excitation by E transfer is Sensitization (deactivation is Quenching)



Geometrical Isomerism
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Rhν

-cis/trans (E / Z) isomerism under photochemical conditions 
  commonly leads to thermodynamically less stablecis-isomer 
-cis-isomer typically absorbs at a lower λ due to decreased 
  conjugation b/c of non-bonded interactions
-reactions come to photostationary state unless optical pumping 
  is performed (irradiation of just 1 isomer to drive the equilibrium)

hν

w/o sensitizer photostationary state: E / Z : 8/92
w    sensitizer photostationary state: E / Z :50/50



Geometrical Isomerism

α-pyran: G. Büchi and N.C. Yang J. Am. Chem. Soc. 1957, 79, 2318.
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Geometrical Isomerism
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Electrocyclizations

-reactions generate a new σ-bond between the termini of the
  conjugated π-system
-concerted process-bond breaking occurs at the same time 
                                  as bond formation
-reactions also come to photostationary state based on 
  absorption coefficient at the λ of irradiation

Thermal Reactions 
-occur via HOMO
4n - conrotatory
4n + 2 - disrotatory

Photochemical Reactions 
-occur via LUMO
4n - disrotatory
4n + 2 - conrotatory



4π-Electrocyclizations
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8 and 6π-Electrocyclizations
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hν

8π-electrocyclizations
occur with disrotatory
ring closure under 
photochemical 
conditions and 
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conrotatory ring
closure
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6π-Electrocyclization in Synthesis
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retro-6π-Electrocyclization
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Di-π-methane rearrangement

-Howard E. Zimmerman has studied this reaction extensively
-Reaction takes 1,4-dienes or 3-phenylalkenes to vinyl or phenyl
  cyclopropanes

barrelene semibullvalene

61%

hν

hν

O O

66%

hν



Oxa-di-π-methane rearrangement
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Di-π-methane rearrangement in Natural Products

S. Look, W. Fenical, D. Van Engen, J. Clardy J. Am. Chem. Soc. 1984, 106, 5026.
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Oxa-di-π-methane vs. 1,3-Acyl Migration

T. Uyehara, Y. Kabasawa, T. Kato Bull. Chem. Soc. Jpn. 1986, 59, 2521
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1,3-Acyl Migration in Natural Products

J. Shin, W. Fenical J. Org. Chem. 1991, 56, 1227
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[2 + 2] Cycloaddition
-[2+ 2] photocycloadditon is the cyclization of two olefinic units to 
  provide a cyclobutane (generate 2 new C-C bonds and up to four
  new stereocenters)
-1908 Ciamician observed the first [2 + 2] reaction when exposure
  to Italian sunlight for 1 year generated carvone camphor from carvone
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hν

-photochemical conditions create charge like umpolung
  of enone (β-carbon is electron rich)
-intermolecular variants also well known, but regioselec.
  can be highly dependent on both olefinic partners
-this [2 + 2] follows the "rule of 5" and none of the other
  regioisomer is observed
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"Rule of 5"
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[2 + 2] Cycloaddition in Synthesis
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periplanone: S. Schreiber, C. Santini Tetrahedron Lett. 1981, 22, 4651
saudin: J. Winkler, E. Doherty J. Am Chem. Soc. 1999, 121, 7425
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de Mayo Reaction
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-[2 + 2] cycloaddition involving double bond of an enol 
and another olefin and the retro-aldol reaction



Paterno-Büchi Reaction

-Paterno and Chieffi observed the first example of a [2 + 2] cycloaddition
  between a carbonyl and an olefin to make an oxetane

O
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O Ohν

-many examples of intermolecular reaction, but regioselectivity and 
  product distributions are highly case dependent
-many synthetic examples of intramolecular variant
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vitamin D3 analogs: M. Mihailovic, L. Lorenc, V. Pauolvic, J. Kalvoda Tetrahedron 1977, 33, 441



Paterno-Büchi Reaction in Synthesis
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Furan-Carbonyl Variant of the Paterno-Büchi Reaction
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-this variant of the [2 + 2] offers
  a photochemical variant of the
  aldol reaction through 
  transformations of the 
  photoadduct



Furan-Carbonyl Variant of the Paterno-Büchi Reaction
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Arene-Olefin Cycloadditions

-cycloadditions between arenes and an olefin
         •ortho cycloadditions-[2 + 2]
         •para cycloadditions-[4 + 2]
         •meta cycloadditions-[3 + 2]

R1 R2
R1 R2hν R1 = OMe R2 = CN

R1 = CN    R2 = OAc
R1 = H       R2 = CN
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Para Cycloadditions
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Meta Cycloadditions

hν

H H H

H R

R
R

R

hνBryce-Smith and Blair dispelled
the long standing myth that arenes
are photochemically inert

In 1966, Wilzbach and Kaplan and Bryce-Smith, Gilber and Orger 
codiscovered the meta arene olefin cycloaddition
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Meta Cycloadditions in Synthesis
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Meta Cycloadditions in Synthesis
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Photoinduced Electron Transfer

Acceptor Donor A•- D•+
hν

chemistry

polar solvents facilitate the generation of radical ions 
and subsequent chemical reactions

Witkop Cyclization
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Witkop Cyclization in Synthesis

A. Burgett, Q. Li, Q. Wei, P. Harran Angew. Chem. Int. Ed. 2003, 42, 4961
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Additional Photochemical Reactions

-Norrish Type I and II (α-cleavage of carbonyl and H-abstraction 
   and fragmentation)
-nitrogen extrusion (generate carbenes such as the Wolff 
   rearrangment or to give diradical)
-sigmatropic rearrangements such as (1,3), (1,5),  and (1,7)
-1O reactions
-deprotections (such as cleavage of nitroarenes)
-many other PET reactions
       •isomerizations
       •rearrangements
       •fragmentations
       •arene substitutions and reductions
       •photooxygenations
       •and many more reactions



Problem 1 (Were you paying attention to the last slide?)

R. Danheiser, A. Helgason J. Am. Chem. Soc. 1994, 116, 9471
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Problem 1 Solution

R. Danheiser, A. Helgason J. Am. Chem. Soc. 1994, 116, 9471
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Problem 2

Y. Kwak, J. Winkler J. Am. Chem. Soc. 2001, 123, 7429
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Problem 2 Solution

Y. Kwak, J. Winkler J. Am. Chem. Soc. 2001, 123, 7429
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