# Absolute Asymmetric Synthesis [AAS] by Photochemistry on Solid-State



Qihui Jin

Supergroup Meeting Sept. 28, 2005

#### What is an absolute asymmetric synthesis?

Absolute asymmetric synthesis: An asymmetric synthesis starting from an achiral reagent and in the absence of any external chiral agent





# **Chiral Crystal**

A crystal lacking both a center of symmetry and a glide plane is defined as chiral. Such a chiral crystal must belong to a chiral space group.

Space group: 230 Chiral Space Group: 65

Table: The 10 most common space groups:

| Order | Space group                | %    | Order | Space group       | %   |
|-------|----------------------------|------|-------|-------------------|-----|
| 1     | <i>P</i> 2 <sub>1</sub> /c | 36.0 | 6     | <i>P</i> bca      | 4.3 |
| 2     | PĪ                         | 13.7 | 7     | <i>P</i> nma      | 1.9 |
| 3     | P212121                    | 11.6 | 8     | Pna2 <sub>1</sub> | 1.8 |
| 4     | <i>P</i> 2 <sub>1</sub>    | 6.7  | 9     | <i>P</i> bcn      | 1.2 |
| 5     | C2/c                       | 6.6  | 10    | <i>P</i> 1        | 1.1 |



Sakamoto, M. In *Molecular and Suparamolecular Photochemistry: vol 11, Chiral Photochemistry*; Inoue, Y.; Ramamurthy, V. Eds; Marcel Dekker: New York; 2004, p415-461



#### **Asymmetric Induction by Chiral Quartz**



*I*- and *d*-quartz Flack, H. D. www.flack.ch/howard/cristallo/publcns.html





Soai, K.; Osanai, S.; Kadowaki, K.; Yonekubo, S.; Shibata, T.; Sato, I. J. Am. Chem. Soc. 1999, 121, 11235.

# Forming Desired Chiral Crystal

Spontaneous Chiral Crystallization: Equal chance to form *D* or *L* Crystal



Kondepudi, D. K.; Kaufman, R. J.; Singh, N. Science 1990, 250, 975.



## The First Absolute Asymmetric Synthesis Using Crystals





# Absolute Asymmetric Photochemistry on Solid-State

- Unimolecular
  - Di-π-Methane Photorearrangement
  - Electrocyclization
  - [2+2], [4+4]
  - Hydrogen Abstraction Followed by Cyclization
  - Migration and Radical Pair
- Intermolecular
  - Single Component Crystal
  - Cocrystal
- Racemic-to-Chiral



#### Di- $\pi$ -Methane Photorearrangement



Evans, S. V.; Garcia-Garibay, M.; Omkaram, N.; Scheffer, J. R.; Trotter, J.; Wireko, F. J. Am. Chem. Soc. 1986, 108, 5648.



SVB NVMINE

Zimmerman, H. E.; Armesto, D. Chem. Rev. 1996, 96, 3065.

#### Di- $\pi$ -Methane Photorearrangement



Roughton, A. L.; Muneer, M.; Demuth, M.; Klopp, I.; Kruger, C. J. Am. Chem. Soc. 1993, 115, 2085.



#### **Photo Electrocyclization**



Toda, F.; Tanaka, K. Superamol. Chem. 1994, 3, 87.



Wu, L.-C.; Cheer, C. J.; Olovsson, G.; Scheffer, J. R.; Trotter, J.; Wang, S.-L.; Liao, F.-L. Tetrahedron Lett. 1997, 38, 3135.



# [2+2] Cycloaddition



Sakamoto, M.; Hokari, N.; Takahashi, M.; Fujita, T.; Watanabe, S.; Iida, I.; Nishio, T. *J. Am. Chem. Soc.* **1993**, *115*, 818. Sakamoto, M.; Takahashi, M.; Mino, T.; Fujita, T. *Tetrahedron* **2001**, *57*, 6713.



Sakamoto, M.; Takahashi, M.; Arai, T.; Shimizu, M.; Yamaguchi, K.; Mino, T.; Watanabe, S.; Fujita, T. Chem. Commun. 1998, 2315.



# [2+2] Cycloaddition



Sakamoto, M.; Takahashi, M.; Arai, T.; Fujita, T.; Watanabe, S.; Iida, I.; Nishio, T.; Aoyama, H. J. Org. Chem. 1993, 58, 3476.



DEI SVB NVMINE VIGET

Sakamoto, M.; Takahashi, M.; Fujita, T.; Watanabe, S.; Nishio, T.; Iida, I.; Aoyama, H. J. Org. Chem. 1997, 62, 6298.

# [4+4] Cycloaddition



Kohmoto, S.; Ono, Y.; Masu, H.; Yamaguchi, K.; Kishikawa, K.; Yamamoto, M. Org. Lett. 2001, 3, 4153.



#### **H** Abstraction and Cyclization



Sakamoto, M.; Takahashi, M.; Kamiya, K.; Yamaguchi, K.; Fujita, T.; Watanabe, S. J. Am. Chem. Soc. 1996, 118, 10664.



Sakamoto, M.; Takahashi, M.; Arai, W.; Nino, T.; Yamaguchi, K.; Watanabe, S.; Fujita, T. Tetrahedron 2000, 56, 6795



#### **H** Abstraction and Cyclization



Irngartinger, H.; Fettel, P. W.; Siemund, V. Eur. J. Org. Chem. 1998, 2079.



#### **H** Abstraction and Cyclization



Evans, S. V.; Garcia-Garibay, M.; Omkaram, N.; Scheffer, J. R.; Trotter, J.; Wireko, F. J. Am. Chem. Soc. 1986, 108, 5648.



# **Migration of Radical Pair**



Sakamoto M.; Takahashi, M.; Moriizumi, S.; Yamaguchi, K.; Fujita, T.; Watanabe, S. J. Am. Chem. Soc. 1996, 118, 8183.



Sakamoto M.; Seikine, N.; Miyoshi, H.; Mino, T.; Fujita, T. J. Am. Chem. Soc. 2000, 122, 10210.



#### Intermolecular [2+2]



Addadi, L.; van Mil, J.; Lahav, M. J. Am. Chem. Soc. 1982, 104, 3422.



#### Intermolecular [2+2]



45% yield, 95% ee

Hasegawa, M.; Chung, C.-M.; Muro, N.; Maekawa, Y. J. Am. Chem. Soc. 1990, 112, 5676.



#### Intermolecular [2+2]: Cocrystal



Elgavi, A.; Green, B. G.; Schmidt, G. M. J. J. Am. Chem. Soc. 1973, 95, 2058.



Suzuki, T.; Fukushima, T.; Yamashita, Y.; Miyashi, T. J. Am. Chem. Soc. 1994, 116, 2793.



#### **Cocrystal For AAS**





Koshima, H.; Ding, K.; Chisaka, Y.; Matsuura, T. J. Am. Chem. Soc. 1996, 118, 12059.

# Frozen Molecular Chirality Memorized by Chiral Crystallization





| T, °C | Conditions  | Yield, % | <b>A</b> : <b>B</b> | <b>A</b> , ee, % | <b>B</b> , ee, % |
|-------|-------------|----------|---------------------|------------------|------------------|
| 15    | Solid State | 100      | 95:5                | >99              | -                |
| 0     | THF         | -        | 67:33               | 0                | 0                |
| -20   | THF         | -        | 68:32               | 51               | 31               |
| -60   | THF         | -        | 81:19               | 87               | 79               |

Sakamoto, M.; Iwamoto, T.; Nono, N.; Ando, M.; Arai, W.; Mino, T.; Fujita, T. J. Org. Chem. 2003, 68, 942.



#### **Chirality Retention: From Solid-State to Homogenous Solution**



Tissot, O.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoin, G. G. A. Angew. Chem. Int. Ed. 2001, 40, 1076.



#### Racemic-to-Chiral: Optical Activity Generated by Crystallization



Louis Pasteur, 1947

Spontaneous Solid-State Resolution:



Pincock, R. E.; Wilson, K. R. J. Am. Chem. Soc. 1970, 93, 1291.



#### **Optical Enrichment of a Racemic Chiral Crystal by X-ray Irradiation**



Volumn of reaction cavity: R7.49 XS11.57 XRequired volume for the racemization:11.5 X

Osano, Y. T.; Uchida, A.; Ohashi, Y. Nature 1991, 352, 510.

