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SUMMARY
A meta-analysis is a systematic, quantitative review of a subject.
Using very explicit procedures, the analyst reviews the existing
studies of a subject and re-analyzes their results to arrive at a
more robust and comprehensive result. Three major features dis-
tinguish this method from a traditional narrative literature re-
view:
●

●

●

the formal and comprehensive search for relevant data;
the explicit, objective criteria for selecting studies to be in-
cluded; and
the quantitative statistical analysis of the studies’ results.

The justification for analyzing studies’ results together in a
meta-analysis is that all the component studies provide results
that address the same research question.l Where all the results
come from similar randomized controlled experiments, meta-
analysis is widely recognized as a powerful technique for evalu-
ating the effectiveness of health technologies. Where the existing
studies are less ideal for a meta-analysis, using the principles of
this technique (e.g., making one’s criteria for selecting and re-
viewing studies formal and explicit) can still improve the ana-
lyst's ability to undertake an objective, comprehensive review.

Several issues regarding the appropriateness and method-
ological rigor of meta-analyses are still matters ofdiscussion and

1 The definition of the term same in this context depends on the goal of the specific
investigation. It may mean that the studies were virtually identical but carried out indiffer-
ent places or that the studies were quite different but addressed a similar problem.

I 93



94 I Tools for Evaluating Health Technologies

debate. These include:
1.

2.

3.

Issues relating to the combinability of studies.
Whether to use meta-analysis for nonexper-
imental or dissimilar studies is controversial
and best evaluated on a case-by-case basis.
The approach can, however, sometimes provide
important insights that might not be evident
with traditional narrative review methods.
Issues relating to publication bias. Results
from unpublished studies can be different from
published study results. Thus, not including all
available studies can lead to bias. Meta-ana -
lysts differ in how they attempt to overcome this
problem.
Issues relating to the procedure for conduct-
ing a meta-analysis. Meta-analysts also differ
in the specific procedures they follow to try to
ensure that the review is unbiased and to recog-
nize differences in the quality of the studies be-
ing reviewed.

Despite the continuing discussion of these issues,
and their importance for readers to consider when
evaluating the quality and validity of any particu-
lar meta-analysis, the general technique is now
well-established, and its applications continue to
grow. 

T he practice of combining the results of dif-
ferent studies to obtain a more powerful
and conclusive result has along history. In
1904, Pearson summarized the relation

between mortality and inoculation against enteric
fever by calculating the average correlation be-
tween mortality and inoculation across five com-
munities (75). Statistical methods for combining
the results of agricultural experiments were devel-
oped in the 1930s (42). Several applications of sta-

tistical methods for combining results across stud-
ies appeared in the medical literature in the 1950s
(2,64), but it was the application of meta-analysis
in the social sciences in the 1970s (37,59) that led
to its frequent use in medicine today.

Applied to medical care, meta-analysis can be
used to evaluate a treatment effect on any sort of
outcome (e.g., to assess a treatment that is sup-
posed to reduce the level of serum cholesterol) or
to describe other characteristics when no treat-
ment is involved (e.g., to calculate across studies
the average sensitivity of a screening test, the av-
erage level of cholesterol indifferent populations,
or the average correlation between sex and
height). This paper focuses on the use of meta-
analysis for assessing the effect of a treatment2 on
a health outcome, such as the risk of death, and as-
sumes that the effect of a treatment is compared
with an alternative-no treatment, a placebo, or
an accepted treatment.

Rationale
The traditional method of combining the results of
previous studies is the narrative review of a sub-
ject. Narrative reviews have generally been con-
sidered an acceptable evaluation and synthesis of
data, but they have several well-known draw-
backs. The method of identifying and selecting in-
formation is rarely defined, the information may
be reviewed haphazardly, and the quality of the
data is rarely assessed systematically (71). Be-
cause the narrative review approach is not quanti-
tative, nor formally and explicitly systematic in its
procedures, a traditional literature review may fail
to include important studies and (because of its
nonquantitative approach) may fail to make full
use of the available data (91). The reviewer’s
biases may influence the assessment of the data,
and directly comparing results across studies can
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be difficult when the treatment effects are ex-
pressed differently.3 In addition, in traditional re-
views, authors often assess evidence by “vote
counting” (tallying the number of studies that pro-
vide evidence for and against the presence of a
given treatment effect (40)) without considering
that some studies are larger or better than others.

In contrast, in a meta-analysis, the existing
studies of the subject of interest are reviewed sys-
tematically and quantitatively, using formal and
explicit procedures (box 4-1 ). The advantages of
meta-analysis stem from two factors:
1.

2.

The use of explicit procedures for identify-
ing and processing the study results. The
comprehensive search for relevant studies
minimizes the possibility y that available data are
omitted. Explicit procedures for evaluating and
handling the study results assure, to the extent
possible, an unbiased assessment of the data in
each study. These explicit procedures also help
the reader to assess the competency and ap-
propriateness of the meta-analysis.
The expression of the results of individual
studies in comparable quantitative terms. A
meta-analysis expresses the results of each
study in a uniform way, facilitating compari-
sons of the results and their relation to the size
of the individual studies. The uniform expres-
sion of results in a meta-analysis allows the
analyst to calculate a summary number repre-
senting the average effect of a treatment across
studies (if such a summary is of interest). A
treatment effect is more easily detected when
the results of several studies are considered to-
gether than when the results are examined indi-
vidually; a related benefit is that a treatment ef-
fect within a subgroup of participants may
become clear in the huge sample that is formed
when study results are combined. The meta-
analytic method facilitates objectivity and reli-
ability, and the use of statistical methods can

help researchers identify reasons for any varia-
tion in the studies’ results (39,54,62,63,84).
Identification of patterns in the variation of the
treatment effect may contribute to the under-
standing of the generalizability of the result
(31) and may suggest new hypotheses (34).

The astute traditional narrative reviewer may
take the size and quality of studies into account,
but such steps are key features of the meta-analyt-
ic approach. In a recent comparison of conclu-
sions from traditional reviews and meta-analyses,
Antman and his associates found that traditional
reviews had often failed to recognize important
treatment effects that were clearly evident from
meta-analyses (l).

Although some authors have asserted that
traditional narrative reviews are no longer useful
(90), that view seems extreme. If the resources to
support a meta-analysis are unavailable or the data
are too different for statistical combination, a
well-conducted review may be the only altern-
ative. The review, however, will be most useful if
the principles of meta-analysis are incorporated to
the extent feasible.

The theoretical justification of meta-analysis
rests on the assumption that the component stud-
ies all address the same research question. If the
populations, the treatment, the study design, and
the outcomes measured in each study are virtually
identical, the studies essentially replicate the same
protocol. Consequently, any differences in the
treatment effect across studies can be presumed to
occur by chance. Under these circumstances, a
meta-analysis and an analysis of data from a mul-
ticenter clinical trial differ only slightly, and even
a skeptic is likely to view a meta-analysis as ap-
propriate.

In practice, however, the studies being com-
bined in a meta-analysis are seldom virtually iden-
tical. As the component studies of a meta-analysis
become less similar, the appropriateness of ana-

group, and another author expressed the treatment effect as the ratio of the mortality rate in the treated and untreated groups, the results would
not be directly comparable.
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The term meta-anatysis was coined in 1976 by Glass, a social scientist (37), who defined it as “the

statistical analysis of a large collection of analysis results from individual studies for the purpose of inte-

grating the findings.”1 Other broad definitions in frequent use in the medical and health care literature

include:
●

●

●

“the practice of using statistical methods to combine the outcome of a series of different experiments
or investigations” (54);
“a quantitative summary of research in a particular area” (31); and
“[the use of the results of collections of research papers to answer specific questions, usually in a quanti-
tative manner” (63).

The National Library of Medicine has developed a detailed definition that actually specifies the proce-

dures to be followed in a meta-analysis (92). It defines this analytic tool as:

“aquantitative  metho dof combining the results of independent studies (usually drawn from the published liter-
ature) and synthesizing summaries and conclusions which may be used to evaluate therapeutic effectiveness,
plan new studies, etc., with application chiefly in the areas of research and medicine. The method consists of four

steps: a thorough literature review, calculation of an effect size for each study, determination of a composite effect

size from the weighted combination of individual effect sizes, and calculation of a fail-safe number (number of un-
published studies with opposing conclusions needed to negate the published literature) to assess the certainty of
the composite size.”

The elements common to most definitions of meta-analysis are that the analysis is quantitative, that it is

based on observations in independent studies, and that the results of the independent observations are

summarized across studies.2 The most prominent difference among the definitions of meta-analysis re-

lates to the kinds of studies that may be included in the analysis. Some definitions stipulate that only re-

sults from randomized trials should be analyzed (1 1,98).

The exact systematic procedures used (such as literature searches and quantitative analyses) vary

somewhat among published meta-analyses. Thus, the meta-analytic approach is more a set of general

principles than a set of standard rules invariably followed. Nonetheless, it is note worthy that at least for the

meta-analysis of randomized clinical trials, “meta-analysis has matured as a scientific discipline, with well-

documented standards and methods” (57).

Some authors (78) use the term meta-analysis to refer to a combined analysis (47) or a pooled analysis

(17,60), Unlike other meta-analyses, however, in a combined or pooled analysis the data for the individual

participants in different studies are combined into one data set and analyzed as if they were from a multi-

center study with a common protocol.3 In contrast, in most meta-analyses, the studies’ results—rather than

the original data—are combined. In practice, the results of a combined or pooled analysis usually are

virtually identical to those from other meta-analyses. Pooling can be more difficult to perform than other

meta-analyses, because It often requires the cooperation of many scientists (to obtain their raw data), but

it has the advantage of facilitating the analysis of treatment effects in subgroups of participants.

1 For a scholarty discussion of the etymology of the term, see Dickersin (24).
2 other terms sometimes used to describe meta-anafyses include systematic overviews, pooling, data syntheses, and quantitative

syntheses (24) and, less frequently, integrative research reviews, research integrations, research consolidations, research syntheses,
quantitative assessments, surveys, re-analyses, and quantitative reviews (50,69).

3 A study protocol defines the characteristics of people who are eligible to be in the study, describes the nature and duration of the
treatment, discusses how the effect of treatment is assessed, and provides other details of how the study is conducted.

SOURCE: Matthew Longnecker, 1995
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lyzing them jointly becomes a matter of judgment
and, therefore, subject to debate. Yet even when
the results that are combined come from some-
what dissimilar studies, meta-analysis may be
useful—not so much for calculating a summary
treatment effect as for allowing the analyst to ex-
amine how the treatment effect varies according to
study characteristics or across subgroups of par-
ticipants (72).

Current Applications: An Example
A good illustration of the manner in which meta-
analyses are being used can be found in the work
of Yusuf and his associates (101), who assessed
whether a drug that dissolves blood clots (fibrino-
lytic therapy) decreased mortality in patients who
had heart attacks (myocardial infarctions). The
motivation for their assessment was that the re-
sults of individual clinical trials addressing this
topic appeared contradictory and unreliable. The
analysts examined data from studies in which pa-
tients were assigned at random to receive either
treatment or no treatment (randomized clinical
trials).

Using a computerized literature search, review-
ing abstracts from scientific meetings, and con-
tacting investigators who had completed trials but
not published the results, the analysts located rele-
vant studies and identified 24 eligible trials. For
each trial, the number of patients treated with the
fibrinolytic therapy, the number not treated with
the therapy (the control group), and the number of
deaths occurring in each of these two groups were
noted. The analysts then used a relatively simple
statistical method to calculate across all 24 studies
the average effect of the treatment on mortality.

When the data from all the studies were consid-
ered together, 51 fewer deaths were found in the
group treated with the fibrinolytic therapy than
would have been expected if the treatment had no
effect on mortality rates. This reduction was found
to be statistically significant (see box 4-2). In con-
trast, just five of the 24 studies had individually
shown a statistically significant beneficial effect
of treatment. Using the quantitative methods of

meta-analysis to consider the results of all the
trials simultaneously demonstrated that the treat-
ment was effective in reducing mortality, in a way
that a simple narrative review of the results of in-
dividual studies would not. (For a detailed discus-
sion of the quantitative methods used in this and
other meta-analyses, see appendix 4-A.)

CONDUCTING A META-ANALYSIS
Before conducting a meta-analysis, the analyst
should evaluate its utility and desirability and the
combinability of the studies. Questions to be
asked include:

Are there any good studies that address the re-
search question?
If so, are the study designs similar enough that
combining them makes sense?
Given the available data, are the results of the
meta-analysis likely to make an important con-
tribution to knowledge?

If the answers to these questions are positive, the
analyst then proceeds.

Conducting a meta-analysis is a systematic
process (30,50,53,85) that entails the following
steps:

1.
2.
3.
4.

5.
6.
7.

8.
9.

defining the research question,
defining the admissibility criteria for studies,
searching for relevant data,
reviewing the retrieved data to determine ad-
missibility,
assessing the quality of the eligible studies,
correcting for bias,
performing the data analysis (including sensi-
tivity analysis and influence analysis),
assessing the publication bias, and
interpreting the results.

Defining the Research Question
In defining the research question, the analyst spec-
ifies the treatment under investigation, the treat-
ment’s alternative, the outcome, the study popula-
tions, and the quantitative measure of the effect in
which the analyst is interested.
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“Statistical significance” is a phrase that traditionally has been used to indicate the researcher’s be-

lief that the effect observed in an experiment represents a real phenomenon and is unlikely to be due

entirely to chance. It is sometimes contrasted with “clinical significance, ” which indicates that the effect

is not only real but is large enough or important enough to have a meaningful impact.

In a typical medical experiment to determine whether a new treatment has a beneficial effect

(compared with plausible alternatives), the researchers begin by assuming that it does not (the “null

hypothesis”) and then attempting to disprove that assumption. If the study is a well-designed, random-

ized trial, it is unlikely that an observed apparent treatment effect will be due to chance alone. In statis-

tics, tradition holds that if an observed effect has less than a 5-percent probability of being observed

where no treatment effect exists (i.e., p<.05), the treatment effect is most likely not zero. In that case, the

treatment effect is said to be statistically different from zero (statistically significant).

The use of the 5-percent cutoff level is a popular scientific convention that is somewhat arbitrary;

one could also justify choosing 1 percent, or 0.1 percent, or some other low value, as the cutoff for

significance. Thus, whether a result is considered statistically significant depends, in part, on the cho-

sen significance level.

An alternative approach, which is growing in favor with researchers and analysts alike, is to place

confidence limits around an observed treatment effect, concerning oneself more with the size of the

treatment effect and one’s certainty about how big it is than with an absolute answer to whether it exists.

A 95-percent confidence interval, for example, indicates that in 95 of 100 hypothetical repetitions of the

experiment, the true treatment effect would fall within the range of estimated treatment effects included

in the confidence interval. (For a complete discussion of confidence intervals, see Rothman (83)).

SOURCE: Matthew Longnecker, 1995.

Defining the Admissibility Criteria
The next step is to define formal admissibility cri-
teria for the component studies. The research
question is expressed in specific terms that facili-
tate the decisions about whether potentially eligi-
ble studies should be included. The criteria might
require, for example, that to be admissible a study
must:

● be double-blinded,4

● have a placebo as the alternative treatment,
● have the dose of the treatment be in a certain

range,

● have study participants whose ages are within
a certain range,

● present its results in a manner that permits the
relevant effect to be calculated,

● evaluate the effect of treatment on the outcome
within a specific length of time, and

■ be written in English.5

Expertise on the research topic is indispensable at
this stage (33).

Searching for Relevant Data
The computerized literature search (45), the most
important part of the formal search for study re-

4 In a double-blinded study, neither the patient nor the clinician administering the treatment know which treatment the patient is actually

receiving.
5 Note that this criterion tight eliminate many otherwise eligible studies.
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suits, requires special training and is often done in
consultation with a qualified librarian. The librari-
an performs an over-inclusive search using the ad-
missibility criteria for the meta-analysis. Search-
ing at least two different computer databases for
studies to include in the meta-analysis increases
the number of eligible studies found (14,86).

Because computerized searches can miss im-
portant references (23), meta-analysts usually
supplement the searches by perusing the reference
lists of the identified articles and by consulting ex-
perts in the field, abstracts of conferences where
relevant papers are likely to have been presented,
and any other informally identified sources.

Reviewing the Data for Admissibility
The articles and papers resulting from the litera-
ture search are then reviewed to determine wheth-
er they meet the criteria for admissibility. Careful
documentation of the rejected studies has been ad-
vocated (85). The relevant information is ab-
stracted from the admissible articles, and the
study results are re-expressed in a standard fash-
ion, if necessary, for subsequent statistical analy-
sis. The characteristics of the individual studies
are recorded for use in the data analysis. Ensuring
that the analysis does not include multiple studies
based on the same participants prevents the inclu-
sion of redundant data (18).

Some authors recommend that the information
in the admissible studies be re-abstracted by a sec-
ond researcher as well, and the extracted data
double-checked (35,100). This process is time-
consuming but is believed to improve the quality
and objectivity of the analysis.

Assessing the Quality of Studies
Many meta-analysts assess the quality of the eligi-
ble studies with the aid of standard, published cri-
teria (10,1 4,21 ) or with criteria specially tailored
to the research question under investigation
(6,60). Subjective methods of assessing quality
have also been employed (6). Examples of criteria
used to assess the quality of a randomized clinical
trial are:

■

●

whether the participants knew what they re-
ceived (the treatment or the placebo),
whether the investigators knew which partici-
pants received the treatment and which re-
ceived the placebo during the trial,
whether the presentation of the data was ap-
propriate, and
whether the statistical analyses were appropri-
ate.

Meta-analysts often try to quantify the quality of
the studies by awarding points that reflect how
well each study approached the ideal for each cri-
terion; the sum of these points for a given study is
then used as its summary quality score (16).

Correcting for Bias
The manner in which a study was designed, con-
ducted, or analyzed can cause the observed effect
of the treatment to differ from what would have
been observed if the study had been done better.
For example, investigators who are aware of what
the participants received during a trial tend to find
larger treatment effects than do investigators who
are blinded to the participants’ treatment or lack
thereof (19). This may occur because of the inves-
tigators’ desire to find the new therapy effica-
cious, which interferes with their ability to make
equally accurate assessments of the outcomes in
the treatment and control groups. High-quality
studies are presumed to provide better estimates
of the true effect of the treatment.

If the treatment effect observed in a given study
is not an accurate measure of the true effect of the
treatment, the result of the study is biased. The
amount of bias is reflected by the difference be-
tween the observed effect and the true effect.

In some studies, the size of the bias is known
with enough certainty that the observed treatment
effect can be adjusted for the bias (28,39,93). The
adjustment entails taking the treatment effect ob-
served in a study and making it larger or smaller by
an amount proportional to the bias (before the
study’s result is included in the meta-analysis).
Correcting the results of studies for bias has not
been a frequent practice, however, because it often
is nearly impossible to determine whether a given
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Reduction in moritality ●

Klein I I , // ●

SMIT I ,, ●

Olson
Witchitz
Lippschutz
Australian
2nd European
Gormsen
Austrian
Dewar
3rd European
2nd Frankfurt
Brochier
Lasierra
Schreiber
Fletcher

Overall results

19.4 NS
8.9 NS

NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
p<0.02
NS
p<0.0l
NS
p<0.0l
p<0.0l
p<0.05
NS
NS
NS

p<0.00l

type of bias occurred in a study or not. Even if a
bias is known to have occurred, the degree to
which the bias reduced or increased the observed
treatment effect is difficult to estimate with cer-
tainty.

1 Analyzing the Data
The quantitative data analysis sets meta-analyses
apart from other systematically conducted re-
views. In the data analysis, the meta-analyst  first
examines the results of the component studies.
Graphical representation of the studies’ results are
well-suited to this purpose. For example, figure

4-1 represents the data from the i. ~-analysis
conducted by Yusuf and his associates described
above. This figure demonstrates that most of the
studies found a beneficial effect of treatment (i.e.,
an odds ratio less than 1), that the variation in
study-specific treatment effects appeared rather
large (suggesting heterogeneity), and that many of
the individual studies were imprecise.

The reasons for variation among studies’ re-
sults may be identified by analyzing subgroups of
studies separately or by using regression analysis.
The degree of variation in the studies’ results is as-
sessed with a formal statistical calculation. If a
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summary estimate of the treatment effect is ap-
propriate, the effects from the different studies are
combined (see appendix 4-A).6

Sensitivity analyses are then conducted to de-
termine the extent to which the findings of the
meta-analysis depend on assumptions made by
the analysts. If, for example, the authors of a meta-
analysis excluded several studies on grounds that
others might challenge (e.g., the authors excluded
studies not published in English), the meta-analy -
sis could be repeated after including those studies
to determine whether the overall results were sen-
sitive to those exclusion criteria. If the second
meta-analysis yields essentially the same results
as the first one did, the authors’ findings can more
readily withstand criticism.

Influence analyses are another way of testing
the robustness of the results. They examine
whether the findings of the meta-analysis depend
on the inclusion of the results of any particular
study, such as a single large study or a study in
which the treatment effect is extreme. In an influ-
ence analysis, the analyst recalculates the results
of the meta-analysis after excluding the particular
study of interest (e.g., the study with the unusual
treatment effect) to determine whether the new re-
sults support the conclusions that were reached
when all the data were included. If the results of
the meta-analysis do not depend on the inclusion
of such studies, the analyst can be more confident
of the results.

Information regarding the quality of the studies
may be considered in the data analysis. For exam-
ple, summary quality scores may be included
in the calculation of the overall result, in a regres-
sion analysis, or in the sensitivity or influence
analyses.

Assessing Publication Bias
In the data analysis, the effect of publication bias
on the result of the meta-analysis is assessed. Pub-
lication bias occurs when the published studies are
not representative of the results of all the studies
that have been conducted on the research ques-
tion. Publication bias reflects the preference for
publishing studies that have statistically signifi-
cant findings or that support popular ideas (23).
The analyst evaluates the potential effect of publi-
cation bias when graphically representing the in-
dividual studies’ results (3,58) or after estimating
the summary treatment effect (48,81 ).

Interpreting the Results
Like other analysts, meta-analysts conclude the
process by interpreting the results so that their
generalizability and their implications for practi-
tioners and researchers are clear.

RELIABILITY AND VALIDITY

Reliability
A reliable meta-analysis is one that gives the same
result when used again to assess the same research
question using the same set of studies. If the iden-
tical studies were available to two meta-analysts
and both were addressing precisely the same re-
search question, the comparison of the results of
the two meta-analyses would be a direct reflection
of the reliability of the method. In practice, how-
ever, the research questions in replicate meta-
analyses usually differ slightly, or the meta-analy -
ses are done at different times, when different
studies are available. Thus, some differences be-
tween replicate meta-analyses are expected.

6 Meta-analyses often require specialized statistical methods, because the units of observation in meta-analyses differ from those used in
traditional statistical analyses. The units of observation in meta-analyses are the results of independent studies, whereas the units of observation
in clinical trials are the data for individual participants. Several reviews of statistical methods in meta-analysis  are available (39,42,54) for read-

ers interested in the technical details.
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Meta-analyses appear to be at least moderately
reliable. In an investigation of 20 replicated meta-
analyses done by others, Chalmers and his
associates (13) found that the differences among
meta-analyses of the same research question were
“almost always of degree rather than direction.”
The authors’ interpretations of the findings in the
replicate meta-analyses differed more than did the
estimates of the summary treatment effects.

In a more recent examination of the reliability
of meta-analyses (44), 20 more research questions
were examined in replicate meta-analyses. These
meta-analyses appeared to be more reliable than
the ones studied by Chalmers and his colleagues
(13). Henry and Wilson attributed the disagree-
ments between the meta-analyses to differences in
the research questions addressed by the analysts.
In meta-analyses of progestins to prevent early
pregnancy failure, for example, one group found
no effect, whereas another group-which focused
on studies whose subjects were women with histo-
ries of recurrent miscarriages-found evidence
that the treatment was effective.

Inasmuch as the quality of meta-analyses be-
fore 1987 was found to be highly variable (85), the
greater reliability of recent meta-analyses may re-
flect their improved quality.

Validity
Assessing the validity of meta-analysis requires
the comparison of the results of applying this tech-
nique with the treatment’s true effect, which is
rarely known. As a substitute, investigators often
use the results from a large clinical trial (one that
is not part of the meta-analysis) as an estimate of
the true effect. Where the true effect is unknown,
this practice may be the most reasonable method
for assessing validity.

Two teams of investigators have compared the
results of meta-analyses with the results of single,
large randomized clinical trials (15,44). Compar-
ing three meta-analyses with the results of their re-
spective clinical trials, Chalmers and his
associates found that only one pair clearly agreed
on the treatment effect (15). The researchers of-
fered no explanation for the disagreement be-

tween another meta-analysis and its large trial but
suggested that the third meta-analysis was based
on such a small number of subjects that its result
might have been greatly influenced by publication
bias. Henry and Wilson (44) compared a large trial
of oral anticoagulants with a meta-analysis ad-
dressing the same question and” found their results
comparable. Although similar examples are easily
identified (57), their importance is unclear. There
has been no comprehensive survey to test the va-
lidity of meta-analysis. (Box 4-3 discusses what
such a survey might look like if it were con-
ducted.)

The reliability and validity of meta-analyses
are likely to improve as the quality of meta-analy -
ses improve. Several investigators have proposed
guidelines for assessing the quality of meta-analy-
ses (69,74,79,85). Whether these guidelines
succeed in identifying meta-analyses of greater
reliability and validity has not been established.

ISSUES AND CONTROVERSIES
Meta-analytic results can be controversial (66) be-
cause of concerns regarding the combinability of
results, publication bias, or the meta-analytic pro-
tocol.

Combinability
Important questions regarding the combinability
of studies (72) include the following:
■

■

What types of studies should be included in a
meta-analysis?
Are the study protocols similar enough to war-
rant combining the results?
What should be done if the treatment effects
vary widely across studies?

Including Studies with Different Designs
Although evidence from good randomized clini-
cal trials is widely accepted as valid, the validity
of results from nonrandomized trials is less clear.
Because the quality of randomized studies is re-
lated to the size of the treatment effect that is ob-
served (19), some researchers believe that nonex-
perimental data—which presumably are partic-
ularly susceptible to bias—have no place in a

.
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Existing studies that have examined the validity of meta-analyses on particular subjects are few and

have somewhat conflicting results. One possible way to examine the question more conclusively would

be to conduct a comprehensive survey to address this topic.

Such a survey would begin with the definition of the broad research area about which an investiga-

tion of validity is desired. If the area were defined as, for example, the effects of all drugs on total

mortality, the investigator would enumerate all the specific drugs for which meta-analyses of the effects

on mortality have been done, select at random several specific drug-mortality meta-analyses to evalu-

ate. For each drug-mortality meta-analysis, the investigation would perform a new meta-analysis in the

following way: the investigator would order the original studies according to their dates of publication,

then take the first five studies and compare the inverse variance of their combined meta-analytic esti-

mate of treatment effect to the inverse variance of the treatment effect of the next published report. If the

inverse variance of the next report is at least 50 percent of the inverse variance of the meta-analytic

estimate, a comparison of the estimates of the treatment effect will provide information about validity If

the inverse variance is less than 50 percent, the meta-analytic estimate should be recalculated to in-

clude the result of the sixth study. This result should be compared with that of the seventh study, and

the process should be repeated, if necessary.

Some refinement might be required to make this approach work. If it could be carried out, however,

its results would enable users of meta-analyses to be more confident of the validity of their results.

SOURCE Matthew Longnecker, 1995.

meta-analysis, and these results are excluded from meta-analysis of alcohol consumption in relation
many meta-analyses (76). Some researchers even
define meta-analysis as including only data from
randomized trials (1 1,98).

For many research questions, however, data
from such trials either are unavailable (4) or not
currently possible to collect (e.g., for logistical or
ethical reasons). If data from randomized clinical
trials (experimental data) are not available, a
meta-analysis of observational (nonexperimental
data) may still provide a more useful summary of
data than a traditional narrative review would pro-
vide. The analyst’s interpretation of the results of a
meta-analysis of observational data should be ap-
propriately conservative, as should the interpreta-
tions of the underlying individual observational
studies.

Some types of observational studies are more
susceptible to bias than others (box 4-4), a fact
which meta-analysts must take into account. In a

to the risk of breast cancer, for example, the ana-
lysts examined the results of followup studies and
case-control studies separately (60). The treat-
ment effect in the followup studies was found to
be larger than that in the case-control studies, and
the results of the two types of studies were not
combined, because the analysts felt that the results
of the followup studies were more likely to repre-
sent an unbiased estimate of the treatment effect.
This represents an empirical approach to deci-
sions regarding combinability. A consensus re-
garding the appropriateness of combining the re-
sults of observational studies with different
designs (regardless of their results) has not been
reached (85). At this time, it is common in meta-
analyses of observational studies to present there-
sults separately according to the types of study de-
sign.
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Study designs can be classified according to the methods of obtaining data: simple observation

(nonexperimental studies) or observation after some type of intervention (experimental studies). The de-

signs can be further classified according to the units upon which the observations are made: a popula-

tion (for example, ecologic studies) or individuals (e.g., followup and case-control studies). Study de-

signs vary with respect to the type of bias most likely to occur and the likelihood that the bias would

materially affect the result.

In theory, experimental studies (randomized controlled trials) are the best method by which to as-

sess the effect of a treatment. Data obtained from clinical trials are the most powerful for making causal

inferences and are the least likely to be biased. Unfortunately, clinical trials are sometimes infeasible for

practical, financial, or ethical reasons, When clinical trials cannot be performed, followup and case-

control studies are the two nonexperimental study designs most commonly used. In a followup study,

the occurrence of disease among the individuals who have and have not undergone the treatment of

interest is compared. In case-control studies, the prior treatment experience of persons who already

have the disease is contrasted with that in nondiseased (control) subjects, who represent samples of

the population in which the cases occur. In general, the results of followup studies are considered less

likely to be biased than are the results of case-control studies.

An example of an ecologic study is an examination of the rate of death from breast cancer in relation

to per capita sales of fat in different countries, Ecologic studies such as this provide only weak evi-

dence for causal inference, because it is not known whether the subjects who ate fat are the ones who

got breast cancer, and because some factor (other than fat intake) correlated with fat sales may be the

true reason for the variation in rates of breast cancer across countries.

SOURCE: Matthew Lortgnecker, 1995.

Different Protocols
Another combinability issue is whether the proto-
cols of the studies (e.g., a group of randomized
trials) are similar enough to warrant the combin-
ing of the studies’ results. The answer depends on
the particular research question, and the decision
to combine the results depends on the judgment of
the meta-analysts and their audience.

Many of the criticisms of meta-analysis have
been related to decisions regarding combinability
in a specific meta-analysis rather than to the meth-
od itself (9,34,36,46,52). In conducting a meta-
analysis of nonmedical treatments for chronic
pain, for example, Malone and Strube (65) calcu-
lated the average effect of one treatment on several
different kinds of pain, including headache pain
and cancer pain. Holyrod and Penizen (46) criti-
cized the meta-analysis because the treatment ef-

fect might have been very different for headache
and cancer pain, and the summarization across
different types of pain might have obscured a
treatment effect.

In another example, Held and associates (43)
performed a meta-analysis in which they sought to
summarize the effect of a general class of drugs
(calcium antagonists) on preventing death among
persons who had had heart attacks. The meta-anal-
ysis was criticized (9) because specific drugs
within this class differed in their treatment effica-
cy. One subclass of drugs (which lowered the heart
rate) reduced morbidity and mortality, whereas
another subclass increased these outcomes. By
analyzing all these drugs together, Held’s team
had come to the potentially misleading conclusion
that the general class of drugs was not effective in
reducing mortality and morbidity.
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Fleiss and Gross (34) have presented an interesting hypothetical example that illustrates some of the

issues regarding the choice between the fixed-effects model and the random-effects model (described

in greater detail in appendix 4-A). One meta-analysis includes two published studies with odds ratios’

of 1.0 and 6.0, and another includes two published studies with odds ratios of 2.0 and 3.0. All four odds

ratios have the same variance (of the logarithm of the odds ratio): 0.01. When a fixed-effects model is

used for both meta-analyses, the summary odds ratio is 2.45, and the 95-percent confidence intervals

extend from 2.13 to 2.81. In both of these meta-analyses, the fixed-effects model’s confidence intervals

do not even include the values upon which they are based.

If a random-effects model is used to analyze the same data, however, the 95-percent confidence

intervals are 0.5 to 10.0 in the first meta-analysis and 1.65 to 3.64 in the second. In both cases, the

random-effects confidence intervals include the values upon which they are based, and the width of the

confidence intervals reflects the amount of variation in treatment effect between the studies.

To take the example further, note that the random-effects summary in the first meta-analysis (2.45)

gives the impression that, on average, a treatment effect exists, even though one of the two studies

showed no treatment effect at all (an odds ratio of 1). Although the confidence interval is wide, an ob-

server might look at the summary estimate and fail to appreciate that some studies showed no effect.

Despite the disadvantages of summaries from random-effects models, however, the disadvantages of

fixed-effects models are often even greater. As a result, random-effects models are gaining widespread

acceptance (57).

1 The odds ratio is the ratio of the odds of an event occurring under one set of circumstances to the odds of the event occurring

under another set of circumstances

SOURCE Matthew Longnecker, 1995

Heterogeneous Results
A third combinability issue arises where the treat-
ment effects in the component studies vary mark-
edly—for example, when several studies show a
large beneficial effect but other studies show a
harmful effect. Large variation (heterogeneity) in
the results of individual studies, when present, is
usually evident when the study-specific results are
represented graphically (see figure 4-1 ). The ana-
lyst can also assess the degree of variability to ap-
plying formal statistical tests of this characteristic.
Summarizing a treatment effect across studies
even when the study results are heterogeneous has
been common in meta-analysis, although the
practice is a subject of debate (39,77).

Also debated is the appropriate statistical pro-
cedure for summarizing the treatment effect in

such cases (68,77). The two methods used most
frequently to summarize treatment effects across
studies are the fixed-effect model and the random-
effects model (described in greater detail in appen-
dix 4-A). In practice, if the treatment effects found
in the component studies vary greatly, the results
of meta-analyses using the two approaches maybe
somewhat different (box 4-5). If the results of the
studies are homogeneous, however, the two ap-
proaches give the same result.

The assumptions underlying the fixed-effects
model are that all studies are estimating the same
treatment effect and that the difference in effect
observed across studies results by chance. The as-
sumptions underlying the random-effects model
are that the treatment effect truly differs across
studies and that the goal is to determine the aver-
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age of the different effects. Fixed-effects models
have been used frequently in the past and still have
some strong advocates (39,77), although the use
of random-effects models to summarize the treat-
ment effect has been favored recently (20,34,72).

Critics of random-effects models (39) question
the assumption underlying the model: that the
studies were sampled from a hypothetical uni-
verse of studies where the true treatment effect va-
ries. They also note that the meaning of random-
effects summaries are often misinterpreted. (The
correct interpretation is that the random-effects
treatment effect is an estimate of the average treat-
ment effect in the universe of hypothetical studies
with differing treatment effects.) Proponents of
random-effects models argue that they are ap-
propriately imprecise when heterogeneity is pres-
ent (34).

Publication Bias
Publication bias refers to the fact that results are
more likely to be published if they are statistically
significant than if they are not (3,23,27). The like-
lihood of publication is also greater for results
from large studies or results that are perceived as
important (27). The exclusion of unpublished study
results thus can cause the results of a meta-analy -
sis (or any literature review) to be misleading (3).

Informal graphic methods of detecting publica-
tion bias have been proposed (58). These methods
are easy to use and are widely employed, although
their sensitivity and specificity are unknown.

Formal statistical methods for detecting and
assessing publication bias have also been pro-
posed (5,48,81 ), but experts disagree about which
formal statistical approach is best (49). Some of
these methods are more easily implemented (81)
than others (5,48). An advantage of the more com-
putationally intensive methods (5,48) is that they
can be used to estimate the true effects of treat-

ment (what would have been observed if there
were no publication bias). Estimating the true ef-
fects of treatment or determining the number of
negative studies necessary for canceling out a pos-
itive finding in a meta-analysis is possible, how-
ever, only if assumptions are made, and these as-
sumptions may be untestable or not entirely
reasonable. The Iyengar and Greenhouse (48) ap-
proach, for example, relies on the assumption that
the often inappropriate fixed-effects model is used
for summarizing treatment effect and that only re-
sults significant in one direction7 are published,
which apparently is not entirely true (82). Berlin’s
approach relies on the assumption that a study’s
size is unrelated to the size of the treatment effect,
which may be incorrect, as well (5). Thus, the for-
mal approaches to assessing publication bias are
useful but imperfect solutions to the problem.

The definitive method of correcting publica-
tion bias is to include all unpublished results in a
meta-analysis, subjecting them to the same inclu-
sion criteria and quality scoring methods as pub-
lished studies. Accordingly, some authors suggest
that analysts routinely attempt to include all the
relevant unpublished data in meta-analyses (35,
100).

However, tracing unpublished studies can be
difficult. Registries of studies undertaken in a giv-
en field are becoming more common (26), but
where registries are unavailable, the inclusion of
every unpublished study may be impossible for
lack of information (22) or may be infeasible on
practical grounds (97). When unpublished results
can be easily obtained, their inclusion in a meta-
analysis, at least in a sensitivity analysis, is rea-
sonable.

Because of a concern that unpublished results
may be less reliable than published ones, includ-
ing unpublished results to combat publication bias
is not universally accepted (4).8 This concern is
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probably unwarranted: there is no strong evidence
that a study’s quality is related to its publication
(22,27), and the quality of the component studies
may be assessed and considered in a meta-analy-
sis.

Protocol Controversies
The third major category of issues regarding meta-
analysis concerns the details of the meta-analytic
protocol—the specific procedures followed when
conducting the meta-analysis.

Variations in the Standard
Meta-Analytic   Protocol
Chalmers (12) has long advocated the use of
blinding in evaluating the studies for a meta-anal-
ysis: to minimize bias in the evaluation process,
identifying information is obscured on each ar-
ticle that is potentially eligible for inclusion in the
meta-analysis. Thus, the names of the authors,
where they did their study, whether they found an
effect of treatment, and other pieces of informa-
tion that might bias an assessment are not avail-
able to the person who determines whether to in-
clude the study in the meta-analysis. Blinding also
helps ensure an unbiased evaluation of the study’s
quality. Nonetheless, the added assurance that
studies are chosen and evaluated in an unbiased
fashion comes at a price. If a large number of stud-
ies must be reviewed, the blinding process can
substantially increase the cost of the meta-analy -
sis. Although the theoretical justification for such
blinding is understandable, its actual benefit has
not been studied.

Chalmers also recommends that two persons
independently evaluate the quality of the studies
in a meta-analysis (12). This practice serves as a
form of quality control, but its cost-effectiveness
has not been documented.

Some statisticians who have spent considerable
time thinking about the analytic issues in meta-
analysis have recommended that procedures to
correct bias be implemented (39,70,84). In prac-

tice, however, few investigators have done so.
This fact stems partly from a lack of the informa-
tion necessary for correcting the bias. More im-
portant, as mentioned previously, the validity of
bias-correction procedures depends on strong as-
sumptions that may be untestable, wrong, or con-
troversial. Furthermore, bias-correction proce-
dures complicate the analysis and may decrease
the understandability of its results. Nonetheless,
such procedures may be the only sensible ap-
proach when optimal analysis of flawed data is a
priority.

How best to incorporate assessments of the
quality of the component studies in a meta-analy -
sis has not been resolved. One issue is whether a
summary measure of a study’s quality should be
used. Another issue is how to use the summary
measure.

The debate as to whether a summary measure of
a study’s quality has a use in meta-analysis stems
from uncertainty about whether such measures re-
liably and validly identify biased studies. The spe-
cific weaknesses that bias a study’s observation of
the treatment effect are often unknown. A summa-
ry score that reflects what the meta-analyst sus-
pects are specific flaws in a study thus may ex-
clude information that is, in fact, related to the
findings. If certain studies in a meta-analysis are
given less weight because of the analyst’s impres-
sion that an irrelevant aspect of the study was not
ideally conducted, the results of the meta-analysis
may be misleading (92). Also, the summary score
of quality may contain too much “noise” to ade-
quately reflect the problem of interest.9 Further-
more, because of space limitations in publica-
tions, authors may not present enough informa-
tion for the quality of the study to be fully as-
sessed; this problem is particularly acute for those
attempting to assess observational studies.

Rubin (84) has suggested that individual fea-
tures of the quality of the studies be examined in
relation to the treatment effect, so that important
features can be identified. One possible compo-

9 Noise refers (to the random variation that may obscure the general trend or characteristics of the Item of interest.
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nent of a summary measure of quality, for examp-
le, is whether the study participants were blinded
to the treatment they received. Analysts could ex-
amine whether the treatment effect found in stud-
ies with blinding differed from that found in stud-
ies where blinding was not used. Although this
approach is sensible, it is of limited use in prac-
tice: the attributes of different studies are often so
highly correlated and the numbers of studies so
limited that analysts have dificulty linking spe-
cific aspects of the quality of a study to the size of
the treatment effect observed.

How best to incorporate a summary measure of
the quality of a study into a meta-analysis is also
unclear. Detsky (21) has outlined the major op-
tions for using the information. The first option is
to exclude poor studies from the analysis. The sec-
ond option is to weight a given study not only ac-

cording to its statistical precision, but also accord-
ing to its quality. Finally, the quality scores may
be included as terms in statistical models or serve
as the basis for sensitivity or subgroup analyses. A
consensus about which of these methods is
theoretically preferable has not emerged in the lit-
erature on meta-analysis.

Bayesian Meta-Analysis
A Bayesian approach to meta-analysis (box 4-6)
is strongly supported by some investigators (29).
Few meta-analysts have used Bayesian methods
and few empirical comparisons between the re-
sults from the Bayesian and traditional methods
have been presented (79).

Bayesian methods have three potential advan-
tages. First, the statistical results are more easily
interpreted than are those from the traditional fre-

The frequentist and Bayesian approaches to data analysis are two different ways to use data to

make inferences about the treatment effect, The frequentist approach is more prevalent throughout the

sciences, though the use of the Bayesian approach is growing.1

The frequentist approach assumes that a given study could hypothetically be repeated an infinite

number of times, and that the particular treatment effect observed in the study actually done is just one

of all possible observations, selected at random.

In the Bayesian approach to statistics, the analyst specifies in quantitative terms his or her belief

(and certainty in that belief) about the size of the treatment effect under investigation, and the observa-

tions made in a particular study are used to modify the analyst’s belief.

A frequentist, at the end of the data analysis, specifies an estimate of the size of the treatment effect

(based only on the data in the study performed) and also presents a p-value or an equivalent 95-per-

cent confidence interval (see box 4-2). This confidence interval describes statistically the interval within

which the true effect of the treatment would lie in 95 of 100 hypothetical repetitions of the experiment.

Because most studies cannot be repeated multiple times, the assumptions upon which the statistics are

based cannot be verified directly,

A Bayesian, at the end of the data analysis, specifies an estimate of the size of the treatment effect

and an interval in which he or she believes with 95-percent certainty the true treatment effect lies. This

approach gives validity to the analyst’s subjective beliefs, a controversial issue behind some of the re-

sistance to broader use of Bayesian statistics in the sciences,

1 For an in-depth discussion of these two approaches, see Oakes (73).

SOURCE: Matthew Longnecker, 1995.
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quentist approach (box 4-6) (38). Second, when
adjusting treatment effects for bias, the analysts
may incorporate their degrees of certainty or un-
certainty about the adjustment into the analysis.
Third, greater flexibility is possible when combin-
ing different types of information about the treat-
ment effect.

The Bayesian approach also has three disad-
vantages. First, even fewer people understand
Bayesian methods than understand the frequentist
approach. Second, performing Bayesian analyses
requires specialized computer software that has
only recently become widely available (29).
Third, because Bayesian analyses can be based on
even more assumptions than can frequentist anal-
yses, the Bayesian results maybe subject to more
debate. Once empirical comparisons of the two
methods are available and more investigators
have experience with Bayesian methods, the rela-
tive merits of the approach will be easier to assess.

FUTURE APPLICATIONS
Meta-analysis is gaining in popularity, especially
in the medical field. The tool has been used fre-
quently for assessing technology and promises to
be useful for improving assessments of risk and,
by strengthening the estimates of the effects of
treatments, for increasing the accuracy of cost-ef-
fectiveness analyses.

The number of meta-analyses conducted each
year is growing. Dickersin and her associates (24),
in their examination of the literature, found three
meta-analyses published between 1966 and 1969,
nine published between 1976 and 1978, and 44
published between 1985 and 1987. Seventy per-
cent of these meta-analyses were on medical top-
ics. The computerized database of the National Li-
brary of Medicine began formally identifying
meta-analyses and related work in 1989. A com-
puterized search for articles relating to meta-anal-
ysis in that database resulted in 232 articles for the

year 1989,297 articles for 1990, and 368 articles
for 1991. Although only a portion of these articles
are themselves meta-analyses (many are merely
about meta-analysis), the increasing prominence
of this tool in the medical literature is evident.

The use of meta-analyses is also growing. For
example:
■

●

■

m

Influential medical professionals use evidence
from meta-analyses to evaluate treatment effi-
cacy (57,67,91).
The Food and Drug Administration allows the
results of meta-analyses to support New Drug
Applications (34).
The U.S. General Accounting Office (GAO)
has endorsed meta-analysis as a method of
assessing treatment efficacy (93).
The Agency for Health Care Policy and Re-

search is using meta-analyses to guide policy
regarding medical procedures that will be reim-
bursable under Medicare (23).

GAO (93) has proposed that meta-analyses
combining results from randomized clinical trials
and “database analyses” be conducted. 10 The jus-
tification for combining results among studies
conducted using different designs is that random-
ized clinical trials tend to measure the treatment
effects in only small subsets of all the types of sub-
jects who might receive the treatments in practice.
Database analyses provide an estimate of the treat-
ment effect in a much more diverse group of sub-
jects, and they reflect the effect of treatment as ad-
ministered by physicians in general, not just those
specialists conducting clinical trials. They are also
observational studies, however, and an estimated
treatment effect based on observational data alone
is often not reliable (see J. Whittle, “Analysis of
Large Administrative Databases,” background
paper #2).

GAO has named this type of data synthesis
“cross-design synthesis.” The technique entails
combining the results from studies with different
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designs and analyzing raw data from the data-
base(s) as part of the analysis, whereas meta-anal-
ysis entails simply analyzing the results of stud-
ies. The validity of cross-design synthesis will be
even more difficult to establish than the validity of
traditional meta-analysis has been. Still, like
meta-analysis in general, cross-design synthesis
might sometimes facilitate more efficient use of
existing data than is possible with the traditional
narrative approach to evaluating the effects of
treatments.

The potential for meta-analysis to improve risk
assessments 11 has been recognized by several ob-
servers (32,87). Meta-analysis may improve the
accuracy of cost-effectiveness analyses and can
identify effective therapies, gauge the treatment
effect, and estimate other quantities that influence
cost-effectiveness (88).

Because the meta-analytic approach can be ap-
plied to virtually any problem in the evaluation of
medical technology that has been previously stu-
died (28), its use in the health care field can be ex-
pected to increase, but the benefit of a given meta-
analysis in relation to its cost deserves critical
evaluation. The cost of a meta-analysis depends
on the number of potentially eligible studies, the
number of admissible studies, the use of blinding
(or lack there of), the usability of the format in
which the data have been presented, the experi-
ence of the analysts, the number of decisions that
the analysts must make, and other factors.

For meta-analysis to be beneficial, its results
must be persuasive. The results of a meta-analysis
are most likely to be persuasive where there is
little controversy about how it was done or how its
results should be interpreted. The credibility of a
meta-analysis is likely to be greatest when the ap-
proach is applied to clearly combinable, homoge-
neous results from methodologically strong ran-
domized clinical trials that were identified
through a registry of all trials conducted on a given
research question. As the circumstances of a meta-

analysis depart from this ideal, the validity of its
results will be less clear and increasingly difficult
to assess. Even when the results of a meta-analysis
are controversial, however, they may provide in-
sights into data not attainable with traditional re-
view methods. Several authors have suggested
criteria to be used in evaluating the results of a
meta-analysis (53,85), and these may assist an
evaluation of a meta-analytic result. With or with-
out such guidelines, the evaluator must have sub-
ject-matter expertise to fully appreciate the worth
of a given meta-analysis.

CONCLUSION
Despite the controversies, meta-analysis appears
to be generally accepted as a useful tool for ana-
lyzing data from, at least, randomized clinical
trials (51,89). Yet unquestioning reliance on the
results of meta-analysis (67) has been criticized
(55), because despite the advantages of meta-anal-
ysis’ explicit, formal approach, the results of
meta-analyses are still influenced by the some-
times fallible judgments of their authors (93).

The usefulness of meta-analysis may best be
considered on a case-by-case basis. Where the set-
ting is ideal for a careful meta-analysis, the meth-
od may accelerate and aid the evaluation of health
care technologies and practices. Where the setting
is less than ideal, the method may help investiga-
tors to identify the combination of treatment and
participant characteristics where the efficacy is
greatest or the circumstances under which more or
better data regarding a treatment effect are need-
ed.

Although the results of meta-analyses may re-
duce the number of randomized controlled trials
needed to evaluate a technology (57), meta-analy -
sis should not eclipse the need for randomized
trials. In fact, a meta-analysis may clarify the need
for a trial when the meta-analytic result suggests
that a treatment effect is present but the estimate of
the effect is imprecise.
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Meta-analysis, properly done, requires signifi-
cant resources, including access to experts in the
specific technique and in the subject being stu-
died. Since identifying relevant studies is one of
the most time-consuming steps, the systematic
registration of randomized clinical trials (and oth-
er studies) could improve the efficiency of this
technique.
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APPENDIX 4-A: QUANTITATIVE METHODS
IN META-ANALYSIS
The quantitative methods appropriate for any
analysis, including a meta-analysis,  depend on the
research question to be addressed. Although meta-
analysis has many uses in health care-e. g., cal-
culations across studies of the average value of a
laboratory result, a disease rate, a population char-
acteristic, or the sensitivity of a diagnostic test—
the discussion here focuses on meta-analytic  tech-
niques for evaluating the effect of a medical
treatment on an outcome.

I Determining the Treatment Effect
in a Single Study

Ca/cu/Mg the Size of the Treatment Effect
In evaluating a controlled trial of a medical treat-
ment, the outcome measure in the treatment and
control groups is usually expressed as a propor-
tion, rate, or mean. One might be interested in a
drug’s effect, for example, on the proportion of
participants who develop side effects, on the rate
at which subjects die or develop a disease, * or on
their mean level of cholesterol. In the meta-analy-
sis of fibrolytic  therapy performed by Yusuf and
his associates, the outcome measure for the treat-
ment and control groups in each of the component
studies was the proportion of patients with myo-
cardial  infarction who died within a specified peri-
od of time.

The treatment effect in a study is the outcome
measure in the treated group compared with that in
the control group. The comparison between out-
come measures may be a difference, a ratio, or a
related measure. Where the outcome is a propor-
tion, one might be interested, for example, in the
difference in the proportion who died in the
treated and control groups (the proportion dead in
the treatment group minus the proportion dead in
the control group); in the ratio of these proportions
(the proportion dead in the treatment group di-

vided by the proportion dead in the control group);
or in the difference in the rates (rate difference) or
the ratio of the rates (rate ratio) between the treat-
ment and control groups. Where the outcome is a
mean, the treatment effect usually examined is the
difference of the means in the treated and control
groups.

In practice, the treatment effect is often ex-
pressed as: 1) the difference between the observed
and expected number of deaths in the treatment
group, and 2) the odds of death in the treatment
group divided by the odds of death in the control
group (odds ratio). (Odds are related to propor-
tions in that a proportion divided by one minus the
proportion is the odds.) Neither expression is a
simple example of a difference or a ratio of out-
come measures, but they are worth explaining in
detail because they are commonly used in the
evaluation of medical therapies.

The first treatment effect commonly measured
is the difference between the observed and ex-
pected numbers of deaths in the treatment group.
The outcome in the Yusuf meta-analysis  of fibri-
nolytic  therapy was a proportion (the number of
deaths in a treatment or control group divided by
the number of subjects in that group) (table
4-A-l). The observed number of deaths is the nu-
merator in the proportion. Thus, for the Fletcher
study (the first study shown in table 4-A-l), the
observed number of deaths in the treatment group
was one, and the total number of study partici-
pants in the treatment group was 12. Thus, the pro-
portion of observed deaths in the treated group
was 1/12, or 8.3 percent. If the treatment had no
effect, the proportions of deaths in the treatment
and control groups could be expected to be the
same.

The authors of the meta-analysis  computed the
proportion of deaths that would be expected in the
treatment group if the treatment had no effect.
This was accomplished by combining the number
of deaths in the treatment and control groups, then
dividing by the number of participants in both

1 A death ~te is calculated as the number of deaths per unit of person-time. If 100 study participants are observed for 2 years, for example,

and one of them dies during that period, the death rate is 1/200 person-years. The proportion of participants who die in the 2-year period is 1/100.
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study Group I Grow
No. (1) Author (2) Desths (3) Total (4) Deaths (5) Totsl (6) 0- E a ~ V(O - E)b (8)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Fletcher
Dewar
1st European
Heikenheimo
Austrian
Italian
Australian
NHLBI SMIT
Frank
Valere
UK
Witchitz
Lasierra
3rd European
Olson
Schreiber
2nd European
2nd Frankfurt
Klein
N, German
Lipshultz
Gormsen
Brochier
European

Totals

1
4

20
22
37
19
51

7
6

11
48

5
1

25
5
1

69
13

4
63

6
2
2

41

463

12
21
83

219
352
164
376

53
55
49

302
32
13

156
28
19

373
102

14
249

43
14
60

172

2,961

4
7

15
17
65
18
63

3
6
9

52
5
3

50
5
4

94
29

1
51

7
3
8

34

553

11
21
84

207
376
157
371

54
53
42

293
26
11

159
24
19

357
104

9
234

41
14
60

169

2.896

-1.6
-1.5
2.6
2.0

-1 2.3C

0.1
-6.4
2.0

-0.1
0.2

-2.8
-0.5
-1.2

-12.1 C
-0.4
-1.5

-1 4.3C
-7.8C
1.0
4.2

-0.7
-0.5
-30C

3.2

-51 .4C

1.0
2.1
7.0
8.9

21.9
8.2

24.2
2.3
2.7
3.9

20.8
2,1
0.9

14.3
2.0
1.1

31.7
8.4
1.0

21.8
2.8
1.1
2.3

14.7

207.1
a O - E refers to the difference between the observed and the expected number of deaths in the treated group (see main text).
b V(O - E) refers to the variance of O  - ‘
c p <0.05

SOURCE: Adapted from S. Yusuf, R. Collins, R. Pete, et al., “Intravenous and Intracoronary Fibrinolytic Therapy in Acute Myocardial
Infarction: Overview of Results on Mortality and Side-effects from 33 Randomized Controlled Trials, ” European Heart Jouma/
6:556-558,  1985. Only data from studies of the effect of intravenous streptokinase are shown,

groups combined. For the Fletcher study, this
number is 5/23 (i.e., (1 +4)/(12 + 1 l)), or 21.7 per-
cent. If the treatment had no effect, 21.7 percent of
the subjects in the treatment and control groups
should have died. The expected number of deaths
in the treated group is 21.7 percent of 12, or 2.6.
Expressed as a formula,

E = rid/N,
where:
■ E is the expected number of deaths in the treat-

ment group if there were no treatment effect,

8
m

●

N is the total number of participants in the trial,
n is the number of treated participants, and
d is the number of deaths in the treated and con-
trol groups combined.

Thus, among the treated participants, one case
was observed and 2.6 were expected. The differ-
ence, -1.6 (i.e., 1- 2.6), is the treatment effect for
the Fletcher study (see table 4-A-l); it suggests
that treatment reduced (by 1.6)13 the number of
deaths that occurred in the treatment group. Cal-
culating the difference in the proportions of deaths

13 me cannot, of Courw, acma]]y  reduce a fraction of a real death. Statistically, however, one is assuming that the 12 meated patien~ in the
study are representative of a larger population. If that population were sampled many times, drawing a sample of 12 people each time, on aver-

age the deaths in each sample would be reduced by 1.6.



1 Fletcher
2 Dewar
3 1st European
4 Heikenheimo
5 Austrian
6 Italian
7 Australian
8 NHLBI SMIT
9 Frank

10 Valere
11 UK
12 Witchitz
13 Lasierra
14 3rd European
15 Olson
16 Schreiber
17 2nd European
18 2nd Frankfurt
19 Klein
20 N. German
21 Lipschultz
22 Gormsen
23 Brochier
24 European

Totals

Summary Treatment Effect

1
4

20
22
37
19
51

7
6

11
48

5
1

25
5
1

69
13

4
63

6
2
2

41

463

12
21
83

219
352
164
376

53
55
49

302
32
13

156
28
19

373
102

14
249

43
14
60

172

2,961

4
7

15
17
65
18
63

3
6
9

52
5
3

50
5
4

94
29

1
51

7
3
8

34

553

11
21
84

207
376
157
371

54
53
42

293
26
11

159
24
19

357
104

9
234

41
14
60

169

2,896

0.16
0.47
1.46
1.25
0.56
1.01
0.77
2.59
0.96
1.06
0.88
0.78
0.22
0.42
0.83
0.21
0.64
0.38
3.20
1.22
0.79
0.61
0.22
1.24

Fixed-Effects Model, odds ratio 0.79 (95-percent confidence interval, 0.69-0.91)
Random-Effects Model, odds ratio 0.79 (95 percent confidence interval, 0.64-1.00)

1.48
0.52
0.15
0.11
0.05
0.12
0.04
0.52
0.38
0.26
0.05
0.48
1.54
0.08
0.50
1.37
0.03
0.14
1.48
0.05
0.37
1.01
0.66
0.07

0.67
1.91
6.80
8.72

20.49
8.18

23.92
1.93
2.67
3.87

20.77
2.06
0.65

13.02
2.02
0.73

31.03
7.35
0.68

21.59
2.73
0.99
1.51

14.53

2.55
0.26
0.38
0.21
0.11
0.06
0.00
1.42
0.04
0.09
0.01
0.00
1.59
0.40
0.00
1.76
0.05
0.54
1.97
0.19
0.00
0.06
1.57
0.21

1.72
0.50
2.61
1.87
2.30
0.52
0.01
2.74
0.11
0.35
0.25
0.00
1.03
5.26
0.01
1.28
1.41
3.94
1.34
4.11
0.00
0.06
2.38
3.05

-1.24
-1.44
2.58
1.93

-11.81
0.10

-6.34
1.84

-0.11
0.23

-2.75
-0.52
-0.98

-11.42
-0.39
-1.14

-14.09
-7.16
0.79
4.21

-0.65
-0.49
-2.26
3.16

198.83 36.86 -47.96
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in the treatment and control groups, -28.1 percent
(i.e., 8.3 to 36.3 percent) would have yielded a
similar conclusion.

The second measure of treatment effect in com-
mon use is the odds of death in the treatment group
divided by the odds of death in the control group
(odds ratio). An odds ratio is, under usual circum-
stances, an approximation of the ratio of the rate of
disease in the treated group to the rate of disease in
the control group (rate ratio or, in more generic
terms, the relative risk). In the Fletcher study (see
table 4-A-2), the proportion of deaths in the treat-
ment group was 8.3 percent (1/1 2), and the odds of
death were (8.3 percent/(100 percent -8.3 per-
cent)), or 0.091. (Note that 1/(12 - 1) is another
way to calculate the odds and is equal to 0.091.)
The odds of death for the control group were 4/7,
or 0.571. The ratio of these two odds is
0.091/0.571, or 0.16, the odds ratio (see table
4-A-2). If the odds of death were the same in the
treatment and control groups, the odds ratio would
be 1. In the Fletcher study, the odds ratio was
much smaller than 1, which suggests that treat-
ment decreased the odds of death. Calculating the
proportion ratio-(1/12)/(4/l 1), or 0.23—would
show that the proportion of cases in the treated
group was about one-quarter of that in the control
group. Note again the similarity in conclusion, re-
gardless of the particular method of calculating a
treatment effect.

Although there are various methods for expres-
sing treatment effects, the choice of the type of
treatment effect calculated is somewhat arbitrary
and is often based on tradition and interpretability
as well as practical and theoretical statistical con-
siderations. As a general rule, so long as the treat-
ment effect is correctly interpreted, the manner of
expressing the treatment effect is not important.

Calculating fhe Precision
of the Measured Effect
For each expression of the size of the treatment ef-
fect, there is an associated value (a variance) that
reflects the precision with which the treatment ef-
fect has been measured. This measure of precision
is similar to the concept of a standard deviation

and is, in fact, calculated as the square of the stan-
dard deviation. If the variance of a treatment effect
is large, the treatment effect has not been precisely
measured.

The variance of a treatment effect reflects the
amount of information in the study. The result of a
small study is imprecise and offers little informa-
tion about the treatment effect. Conversely, the re-
sult of a large study is precise and conveys much
information about the treatment effect. As preci-
sion (information) increases, variance decreases,
and vice versa. In other words, the inverse of the
variance of the treatment effect reflects the infor-
mativeness of the study results.

The variance of a treatment effect is calculated
from a simple formula. Understanding why the
formulas for variances are constructed as they are
is not important for understanding the basic con-
cepts of meta-analysis. Nonetheless, the follow-
ing examples show how variances are calculated.

The treatment effect for the Fletcher study (see
table 4-A-1 ) is -1.6. The variance associated with
this value is

E(l - n/N)(N - d)/(N - 1),
where:

● E is the expected number of deaths in the treat-
ment group if there were no treatment effect,

● N is the total number of participants in the trial,
 n is the number of treated participants, and
● d is the number of deaths in the treated and con-

trol groups combined.
E is equal to rid/N, as explained earlier. Thus, for
the Fletcher data, the variance is 2.6(1 - 12/23)(23
- 5)/(23 - 1), or 1.02 (see table 4-A-1). The square
root of the variance (1.02) is the standard error
(like a standard deviation) of the treatment effect
(O - E), which in this case is 1.01.

Taking the ratio of the treatment effect to its
standard error (-1 .6/1 .01 ) yields -1.58, a statistic
that can be used to test the significance of the treat-
ment effect. The ratio of an observed treatment ef-
fect to its standard error reflects the probability
that an effect as large as the observed treatment ef-
fect would have been found if, in fact, no real treat-
ment effect were present. The ratio is compared
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with values in a statistical table (of the Z distribu-
tion), which shows that if the absolute value of
this ratio is <1.96, the probability of an effect of
this size being observed by chance if no treatment
effect existed is >0.05 (see box 4-2). If the proba-
bility of an observed treatment effect is >0.05, the
analyst accepts the hypothesis that there was no
evidence of a treatment effect in the study.3 For the
Fletcher data, with ratio-1.58, the treatment effect
observed was not significantly different from the
effect of no treatment.

The same example can be used to illustrate how
the variance of an odds ratio is calculated. A popu-
lar variance formula for the odds ratio is compli-
cated (78). In this example, because a much sim-
pler formula (81) works nearly as well, it is
presented instead. The variance can be estimated
by the sum of the inverse of the number of deaths
and nondeaths in the treatment and control group:
1/1 + 1/(12- 1)+ 1/4+ 1/(11 - 4), or 1.48 (see table
4-A-2). The standard error is 1.48, or 1.22. The
statistic to test the significance of the odds ratio is
obtained by dividing the natural logarithm of the
odds ratio4 by its standard error, which is
ln(O. 16)/1.22, or -1.50. As before, because the ab-
solute value of this ratio is <1.96, the probability
of an effect of this size being observed by chance if
no treatment effect existed is >0.05. Thus, the ana-
lyst would accept the hypothesis that there was no
evidence of a treatment effect in this study. Note
that the smallest value of the number of deaths and
nondeaths in the treatment and control group-1
in this example—is the most important in deter-
mining the variance.

Summarizing the Treatment
Effect Across Studies

The two methods used most frequently to summa-
rize treatment effects across studies are the fixed-

effects model and the random-effects model. The
assumptions underlying the fixed-effects model
are that all studies are estimating the same treat-
ment effect and that the difference in the effects
observed across studies results by chance. The as-
sumptions underlying the random-effects model
are that the treatment effect truly differs across
studies and that the goal is to determine the aver-
age of the different effects. Although fixed-effects
models were used frequently in the past, the use of
random-effects models to summarize the treat-
ment effect has been favored recently (70). In
practice, if the results of the studies are homoge-
neous, the two approaches give the same result.

When the results from different studies are
ready to be analyzed jointly, the analyst may
choose either to search for different characteristics
of the study designs or study populations that
might account for the variation in results, or to
evaluate the homogeneity of the results. If the re-
sults prove to be heterogeneous, varying consider-
ably among studies, the analyst has two options:

1. to refrain from summarizing the results across
studies (summarizing, instead, within groups
that have similar results or not calculating a
summary at all, if the results are markedly het-
erogeneous), or

2. to summarize the results across studies using a
random-effects model.

One could also summarize heterogeneous results
using a fixed-effects model, but although this has
been a common practice in the past it is no longer
recommended.

The search for characteristics of the studies or
study populations that might account for variation
in results can be undertaken by grouping the study
results according to the characteristic under study
and summarizing results within groups. The sum-
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mary treatment effects are then compared across
groups. Regression techniques that effectively ac-
complish the same goal can also be used.

Evaluating the Homogeneity of Results
Results sometimes vary greatly and inexplicably
from study to study, which may influence how a
meta-analysis is interpreted. If the study results
are markedly heterogeneous, for example, one
might have little confidence in one’s ability to pre-
dict the effect of treatment in any future study.

The evaluation of the homogeneity of results
across studies in a meta-analysis is based on the
homogeneity chi-square statistic(81 ). This statis-
tic is a sum across all studies of the square of the
difference between the study-specific treatment
effects and the summary treatment effect, multi-
plied by the inverse variance of the study-specific
treatment effect. In statistical terms, the homo-
geneity chi-square statistic is as follows:

Thus, the squared difference of each study’s re-
sult from the overall average is weighted by the
precision of the study. In this way, the deviation of
a small study from the summary treatment effect
contributes little to the homogeneity statistic,
whereas the deviation of a large study from the
summary treatment effect contributes much more.
This makes sense intuitively, because smaller
studies are more likely to deviate from an overall
mean by virtue of sampling error alone (4). Devi-
ation of a large study from the overall mean sug-
gests that the studies in the meta-analysis may
have been samples from populations in which the
treatment effects differed. The expected size of the
homogeneity chi-square statistic is based on the
number of studies in the meta-analysis and is
found in a statistical table for values of chi-square.

The statistical evaluation of homogeneity can

be illustrated using the meta-analysis of fibrolytic
therapy discussed previously. The calculation of
the homogeneity chi-square statistic is based on
several columns in table 4-A-2. Column 7 con-
tains the study-specific odds ratio, and column 9
contains the study weight (l/vi). Column 10 con-
tains the squared difference of the logarithm of the
study-specific odds ratio from the logarithm of the
summary odds ratio (described below). Column
11 contains the product of the study weight and the
squared difference of the effects. At the bottom of
column 11 is the sum of the contribution of each
study, which is the homogeneity chi-square statis-
tic. In this example, the chi-square statistic is 36.9.
The value expected under homogeneity is 35.2 or
less. (This is the value from a chi-square table for
23 degrees of freedom and p=O.05. The degrees of
freedom are the number of studies minus 1.) Thus,
the variation in study results is greater than ex-
pected, suggesting that something other than
chance accounts for the differences in the find-
ings. Perhaps the effect of the drug differs depend-
ing on the exact dose used, the patient population,
the length of time the patients were studied, or
some other factor.

One problem with the homogeneity chi-square
statistic is that it may not detect a variation that has
biologic or practical importance. Therefore, a
search for factors related to study results is recom-
mended, regardless of whether statistical homo-
geneity is present.

Combining Results Across Studies
Once homogeneity has been evaluated, the results
across studies may be summarized, if deemed ap-
propriate, using a fixed-effects model or a ran-
dom-effects model. In a fixed-effects model, the
contribution of each study within the meta-analy -
sis to the summary treatment effect is inversely
proportional to its variance. Thus, larger studies
contribute more to the summary treatment effect
because they have smaller variances. Random-ef-
fects models, however, weight the contribution of
individual studies according to their inverse vari-
ance and according to a measure of the variability
of results across studies. In random-effects mod-
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els, as the degree of heterogeneity increases, the
studies tend to be given more equal weight, as in
a simple average. An advantage of the random-ef-
fects summary for heterogeneous results is that
the estimate of the summary effect is less precise
than that calculated in a fixed-effects model, re-
flecting the greater degree of variation in the study
results.

The random-effects model is now generally
considered preferable where substantial hetero-
geneity exists (70). The illustration below of the
method of calculating a summary treatment effect
across studies uses a fixed-effects model, how-
ever, because that procedure is more straightfor-
ward and reflects the essential points about how
the results from different studies are combined in a
meta-analysis.

To illustrate the fixed-effects model, assume
that the treatment effects for the data from the Yu-
suf meta-analysis were homogeneous. The most
straightforward method of combining results
across studies is to calculate the simple average of
the treatment effects, in which the results of each
study carry equal weight. The fixed-effects model,
however, is a weighted average in which each
treatment effect is weighted by the inverse of the
precision of the estimate (inverse variance
weights). The previous section described how to
calculate the observed deaths minus the expected
number of deaths in the treatment group, O - E,
and its variance, v(O - E), for an individual study.
Summing the O - E across studies is a form of in-
verse-variance-weighted summary treatment ef-
fect. Note that if there were no treatment effect, the
sum of O - E would be zero. If the treatment re-
duced the number of observed cases by 10 percent,
the sum would change accordingly. The 0- E of a
study with a large number of treated subjects
would be larger than that of a study with a small
number of treated subjects. In this way, the larger

studies contribute more to the summary treatment
effects

The sum of 0- E for all studies of fibrinolytic
therapy is -51.4 (seethe bottom line of column 7 in
table 4-A-l). (In statistical notation, this is Z(Oi -
Ei), where i indexes the study and the summation
is across all studies.) In other words, there were
51.4 fewer deaths than expected in all the treat-
ment groups combined. The variance of this sum-
mary treatment effect is the sum of the variances
of each treatment effect, which is 207.1 (see the
bottom line of column 8 in table 4-A- 1 ). In statisti-
cal notation, this is Zvi(Oi - Ei). The square root of
207.1 is 14.4, the standard error; taking the ratio of
the summary treatment effect to its standard error
(-51.4/14.4) yields -3.57, which has an absolute
value greater than 1.96 and thus is statistically sig-
nificant at the p<O.05 level. Therefore, the meta-
analysis supports the conclusion that fibrinolytic
therapy is effective in reducing death after myo-
cardial infarction.

Using data from the same example, one can cal-
culate the summary treatment effect as an odds ra-
tio. This approach more directly illustrates the
principle of the weighted average. The formula for
the natural logarithm of the summary odds ratio is

Zwiln(ORi)/Zwi,

where Wi = l/vi (the inverse variance), OR is the
odds ratio, and i indexes across study results. In
other words, the weight for each study result is
multiplied by the natural logarithm of the study’s
odds ratio. This quantity is then summed across all
i studies (see the bottom line of column 12 in table
4-A-2) and divided by the sum of all the study
weights (see the bottom line of column 9 in table
4-A-2). In the example, this yields an answer of
-48.0/199, or -0.24, the natural logarithm of the
summary odds ratio. Exponentiation of the loga-
rithm of the summary odds ratio (e - 024) gives the
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odds ratio, 0.79. The variance of the summary log
odds ratio is l/Xwl, or 0.005 (i.e., 1/199). The
square root of the variance is the standard error of
the logarithm of the odds ratio, or 0.071. Calculat-
ing the ratio of the summary logarithm of the odds
ratio to its standard error (-0.24/0.071) yields
-3.38, which has an absolute value greater than
1.96 and thus is significant at the p<O.05 level.
This significance means that it is unlikely that a
treatment effect this large would have been ob-
served by chance if there truly were no treatment
effect. Thus, the results suggest a benefit of treat-
ment.

The standard error of the logarithm of the odds
ratio can also be used to calculate the confidence
limits of an odds ratio. The width of the confi-
dence interval is proportional to the standard error
of the odds ratio. Thus, a large confidence interval
implies small precision, and vice versa. A confi-
dence limit for an odds ratio that excludes 1 indi-
cates that the treatment effect is statistically sig-
nificant. The 95-percent confidence interval
around the fixed-effects estimate for the example
data is 0.69 to 0.91, which excludes 1 (see table
4-A-2).

The details of calculating a random-effects
summary are beyond the scope of this document,
although the calculation is not markedly more
complicated than the procedures illustrated
above. In this example, the random-effects model
summary treatment effect is an odds ratio of 0.79
(95-percent confidence interval 0.64 to 1.00).
Note that the confidence interval around this esti-
mate is wider than the confidence interval around
the fixed-effects estimate (see table 4-A-l). The
greater width of the confidence interval reflects
the fact that the study results were more variable
than would be expected if chance were the only
reason for variation. The heterogeneity in this ex-
ample was relatively small; if more marked heter-
ogeneity were present, the difference between the

results of the fixed-effects and random-effects
models would be greater (7).

Regression methods can also be used to com-
bine studies’ results (8,39,40,82). The regression
approach allows the shape of dose-response
curves to be estimated and provides a convenient
method for identifying patterns in study results
associated with characteristics of the study
populations or study designs. Both fixed-effects
and random-effects regression models can be
constructed.

The frequentist approach, which is used rou-
tinely in medical meta-analysis, has been used for
summarizing the treatment effects presented in
this appendix. Another method of summarizing
treatment effects is the Bayesian approach (see
box 4-6 in main text). The Bayesian meta-analyst
specifies his or her belief about the size of a treat-
ment effect and the certainty about that belief prior
to examining any of the results of the studies in a
meta-analysis (28,29,77). In the absence of a
strong prior belief, the Bayesian meta-analyst
may find all possible values of the treatment effect
equally likely (and thus has no certainty about its
size). The results of the studies in the meta-analy -
sis are then used to modify the analyst’s belief
about the size of the treatment effect. The result is
an expression of the analyst’s belief about the size
of the treatment effect that primarily reflects the
results of the studies and only minimally reflects
the prior belief. The contribution of the prior be-
lief (or data) relative to the contribution of the new
data (the studies in the meta-analysis) depends on
the strength of evidence from each source. For ex-
ample, when there is much prior information
about the size of a treatment effect and only a few
small studies are in the meta-analysis, the result of
including the new data in the synthesis may not
much alter the estimate of the treatment effect. In
practice, Bayesian methods give quantitative re-
sults that are similar to those from a random-ef-
fects model.


