Costs and Effectiveness of Prostate Cancer Screening in Elderly Men

May 1995
OTA-BP-H-145
GPO stock \#052-003-01414-9

Costs and
 EFFECTIVENESS OF

PROSTATE CANCER
SCREENING IN
ELDERLY MEN

Foreword

Recommended Citation U.S. Congress, Office of Technology
Assessment, Costs and Effectiveness of Prostate Cancer Screening in Elderly Men, OTA-BP-H-145 (Wa shington, DC: U.S. Government Printing Office, May 1995).

0ver the last 15 years, interest in strategies to promote health and prevent disease among elderly people has grown substantially. This trend has at least partially resulted from the desire to moderate rising health care costs among this segment of the population. As it has done in the case of this background paper, the House Committee on Ways and Means has periodically asked the Office of Technology Assessment to analyze the costs and effectiveness of providing selected preventive health services to elderly men under the Medicare program. The Senate Committee on Labor and Human Resources had earlier requested that OTA provide information on the value of preventive services to the American people.

Past work by OTA on prevention for elderly people has focused on studies of the costs and effectiveness of pneumococcal and influenza vaccines, and screening for breast, cervical, and colorectal cancer and for glaucoma and elevated cholesterol. This background paper focuses on the procedures of digital rectal examination and the more recently developed, less-invasive prostate-specific antigen blood test-both used to help detect prostate cancer.

The background paper summarizes the evidence on the effectiveness and costs of prostate cancer screening and treatment in elderly men and explores the implications for Medicare of offering this preventive technology as a Medicare benefit. This analysis illustrates the hard policy choices in deciding whether to expend federal resources for screening and treatment as well as risk their attendant complications before scientific research has definitively established the effectiveness of different technologies attempting to cure disease detected in varying stages and circumstances.

Roger C. Herdman OTA Director

Project staff

Clyde J. Behney

Assistant Director, OTA

Sean R. Tunis
Health Program Director

MICHAELE. GLUCK Project Director
Romulo E. Colindres Resea rch Assista nt

ADMINISTRATIVE STAFF

Louise Staley Office Administrator
Carolyn Martin Administrative Sec retary
Monica Finch Word Processing Spec ia list
Carolyn Swann PC Specia list
Charlotte Brown Word Processing Specia list

CONIRACTORS

Michael A. Barry Massa c husetts General Hospital, Boston, Ma ssa chusetts
Christopher M. Coley Massa c husetts General Hospital, Boston, Ma ssa c husetts
Craig Feming Health Outcomes Associates, Vancouver, Wa shington
Joseph E Oesterling University of Michigan Medic a I Center,
Ann Arbor, Michigan
Marianne C. Fahs Intemational Longevity Center (U.S.), Department of Community Medic ine, Mt. Sinai Medic al Center, New York, New York

Michael Sanders Intemational Longevity Center (U.S.), Department of Community Medicine, Mt. Sinai Medical Center, New York, New York

Clare Lippert Intemational Longevity Center (U.S.), Department of Community Medic ine, Mt. Sinai Medic al Center, New York, New York

ScottD. Ramsey Department of Veterans Affairs Medic al Center,
Seattle, Wa shington
Stephen D. Finn Department of Veterans Affairs Medic al Center, Seattle, Wa shington

Acknowledgments

OTA wishesto thank
the individuals and organizations listed here for their a ssistance. These individuals and orga nizationsdo not necessa rily
approve,
disa pprove, or endorse this background paper.

OTA assumesfull responsibility for the background paper and the a c curacy of its contents.

Bob Andersen U.S. Executive Office of the President, Office of Management and Budget
Hans Olov Adami Cancer Epidemiology University of Upsula, Sweden
PeterC. Albertsen Department of Urology, University of Connectic ut
Gerald L. Andriole, J r. Division of Urologic Surgery, Wa shington University
David Bostwick Department of Pathology, Mayo Clinic
Martin Brown National Institutes of Health, U.S. Department of Health and Human Services
Reginald Bruskewitz Department of Surgery, Medic al School, University of Wisc onsin-Madison
Eugene Cartton Americ an Urological Association, Baylor College of Medic ine
Nancy Cartton Merck a nd Company
Gerald W. Chodak Department of Urology, School of Medic ine, University of Chic ago
Megan Cohen Americ an Urological Association
Momis F. Collen Division of Resea rch, Ka iser-Permanente Medic al Care Program
Louis J. Denis Intemational Prostate Health Council, Koning in Elisa bethei, Antwerp, Beligum
Jean L Fourcroy Food and Drug Administration, U.S. Department of Health and Human Services
Gary D. Friedman Epidemiology and Biostatistics, Division of Research, Permanente Medical Group, Inc.

Donald Gleason Pa thologist, Minnea polis, Minnesota
Allen C. Goodman Department of Economics, Wa yne State University
Carolyn Green Office of Health Technology Assessment, University of British Columbia, B.C.
Gabriel P. Haas Department of Urology, School of Medic ine, Wayne State University
Richard J. Howe US TOO
Don Iverson, ASPN University of Colorado
Linda Ivor Government Affairs, Hybritech, Inc.
Bamy Kramer Division of Cancer Prevention and Control, National Cancer Institute
Robert Lawrence Health Sciences, Rockfeller Foundation
J. Michael McGinnis D.C. Department of Health and Human Services, Office of Disease Prevention and Health Promotion

Curtis Mettlin Roswell Pa rk Ca ncer Institute
James E. Montie Department of Urology, School of Medicine, Wayne State University
Alfred I. Neugut School of Public Health, Columbia University
Paul Nutting Department of Fa mily Medic ine, Medic al School, University of Colorado
Gilbert Omenn School of Public Health and Community Medicine, University of Washington
Kenneth Pienta Michigan Cancer Foundation, Prentis Comprehensive Cancer Center
v

Amold L Potosky National Cancer Institute

Paul F. Schellhammer Eastem Virginia Graduate School
Kit Simpson Department of Health Policy and Administration, School of Public Health, University of North Carolina

Bo Standaert Provincial Instituut voor Hyg iene, Antwerp, Belgium
J ames Talcott Da na-Fa rber C a ncer Institute
Lucy ThelheimerAmeric an Association of Retired Persons
Patrick Walsh J ohns Hopkins Hospital
Kevin Weiss George Wa shington University Medical Center
Willet F. Whitmore Memorial Sloan-Kettering Cancer Center

Abbreviations

ACS	American Cancer Society
ACS-NPCDP	Americ an Cancer Society National Prostate Cancer Detection Project
AMA	Americ an Medical Association
AUA	Americ an Urological Association
BPH	benign prostatic hyperplasia
CA	cancer
CDC	Centers for Disease Control and Prevention
Cl	confidence interval
CPT-4	Current Procedural Terminology, 4th Edition
CT	computerized tomography
DRE	digital rectal examination
DRG	diagnosis-related group
FDA	Food and Drug Administration
HCFA	Health Care Financing Administration
HMO	health maintenance organization
HT	hormonal therapy
LY	life-years
MRI	magnetic resonance imaging
$\mathrm{ng} / \mathrm{mL}$	nanograms per milliliter
NPV	negative predictive value
PC	prostate cancer
PCS	Pattems of Care Studies
PDQ	Physicians Data Query
PIVOT	Prostate Cancer Intervention Versus Observation Trial
PL	pelvic lymph node dissection (metastasis)
PLCO	Prostate, Lung, Colorectal, and Ovarian Screening Trial
pPSA	predicted prostate-specific antigen
PPV	positive predictive value
PSA	prostate-specific antigen
PSAD	prostate-specific antigen density
RBRVS	resource-based relative value scale
RCT	randomized controlled trial
RPX	radical prostatectomy
RT	radiation therapy
RTOG	Radiation Therapy Oncology Group

vii

TNM	tumor-node-metastasis
TRNB	transrectal needle biopsy (of the prostate)
TRUS	transurethral ultrasound
TURP	transrectal resection of the prostate
TX	treatment
UCR	usual, customary, and reasonable
VACURG	VeteransAdministration Cooperative Urologic Research Group

Contents

Chapter One	1	SUMMARY
	1	Key Findings
	3	Prostate Cancer in Older Men
	3	Technologies to Detect Prostate Cancer
	5	The Effectiveness of Treatment
	7	Benefits, Risks, and Costs of Sc reening
	9	Research to Resolve Uncerta inties
Chapter Two	11	PROSTATE CANCER IN OLDER MEN
	11	Screening Versus Diagnosis
	12	Rationale for Early Detection and Treatment
	13	Special Issues in Screening Medicare-Age Men
	14	Conflic ting-Guidelines on Ea rly Detection
	15	Basic Biology of Prostate Cancer
	16	Risk Factors for Prostate Cancer
	18	The Prevalence of Prostate Cancer
	18	Prostate Cancer Morta lity
Chapter Three	21	TECHNOLOGIESTO DEIECTPROSTATE CANCER
	23	Digital Rectal Examination
	24	Prostate-Spec ific Antigen
	28	Combination of DRE a nd PSA
	28	Followup Testing
	30	Screening the Medicare Population
Chapter Four	33	TREATING PROSTATE CANCER
	33	Strategies to Determine Cancer Stage
	34	The Effectiveness of Trea tment
	41	Followup Treatment after Curative Therapy

Chapter Five

CHAPIER
 1

Summary ${ }^{1}$

prostate cancer is a common and serious malignancy among Medicare-age men. In 1995, 244,000 new cases and 40,400 deaths are anticipated from this disease; men age 65 and older bear most of the burden of illness. In recent years, the prostate cancer diagnosis rate has increased dramatically, with a slower increase in age-specific mortality. At least in part, the increasing incidence undoubtedly reflects more aggressive efforts at early detection of prostate cancer, particularly through the use of a new blood test, prostate-specific antigen (PSA).

This background paper examines the implications of a potential Medicare benefit to cover prostate cancer screening using a combination of the PSA and digital rectal examination (DRE), a time-honored test performed in the physician's office.

KFY RNDINGS

The Office of Technology Assessment (OTA) concludes that research has not yet been completed to de-
termine whether systematic, early screening for prostate cancer extends lives. The evidence of benefit for other preventive services already covered by Medicare (e.g., breast and cervical cancer screening, influenza and pneumoccocal vaccines) is substantially more developed and stronger than for prostate cancer screening. Because scientific knowledge is limited, but the consequences of prostate cancer and its treatment are serious, an informed and reasonable patient could equally well decide to have screening or forgo it. Hence, each patient, in consultation with his physician, must use his own values to weigh the potential benefits of screening against the risks of incontinence, impotence, and other adverse outcomes that may result from treating cancers uncovered by screening.

Given the state of current knowledge about prostate cancer, it may be reasonable for Medicare to consider reimbursement of the screening test. Reimbursement could be seen as ensuring that out-of-pocket screening expenses (however small) not

[^0]impede well-informed discussion and decisionmaking between physician and patient. Such a Medicare screening benefit could be unrestricted as are similar benefits for cervical and breast cancer screening. However, an unrestricted, permanent benefit might imply that science actually has established the benefit of early detection. An alternative would be to offer screening on a temporary basis subject to reconsideration as evidence from clinical trials about the effectiveness of screening and treatment becomes available. Such a benefit could also be coupled with efforts by the federal government to involve as many patients as possible in effectiveness research and to ensure patients and physicians are well informed about potential benefits and risks of treating cancers discovered by screening.

The technical analysis in this background paper shows that in terms of the expected cost per life-year saved, prostate cancer screening could indeed be as costeffective as other disease screening services already covered by Medicare. However, this conclusion is extremely sensitive to assumptions about: 1) the effectiveness of treating prostate cancer, and 2) the rate at which untreated cancers spread to other parts of the body and ultimately cause death. Relatively small changes in these assumptions make the same prostate cancer screening benefit appear very expensive without any health benefit, and the true values for these assumptions are unknown to medical scientists due to the lack of appropriate research noted above. As also indicated above, treatment of detected cancers would result in complications including death, substantial rates of impotence and incontinence, and heart disease.

Why Might Screening Not Be Beneficial?

Intuitively, one would expect that early detection efforts should find more prostate cancers before they have spread outside of the prostate gland, which should in turn lead to more prostate cancer cures with aggressive treat-
ment. Indeed, evidence shows that patients with cancers discovered by screening tend to do well. Furthermore, most men who have a positive PSA test followed by surgery that reveals the cancer has not yet spread beyond the prostate gland strongly believe that early detection and treatment have saved their lives. One of the factors that may act to strengthen this belief is the fairly large number of men who become impotent or incontinent as a result of surgery. The belief that surgery was necessary to avoid a fatal illness could be an important means of accepting these troublesome symptoms.

However, it is not clear that these outcomes are the result of screening and subsequent treatment. Good outcomes may reflect the fact that screening advances the point of diagnosis, without changing the destined course of the cancer (lead-time bias); or that screening may preferentially find slower-growing cancers already destined to do well (length bias). Because of these biases, early diagnosis would appear to improve survival, even if treatment were worthless (or harmful).

These problems are compounded by the fact that in most cases, prostate cancer is a slow-growing disease. Most men whose localized prostate cancers are discovered by screening might never suffer any effects of their disease, ultimately dying from some other cause. Hence, even if treatment is ultimately proven to be beneficial for men with very aggressive localized prostate cancers, it would still be unnecessary for most. The dilemma for policymakers arises from the fact that current diagnostic measures are not sufficient to determine a priori and precisely which cancers are likely to cause harm. Were there no risks or costs associated with treatment, it might more clearly make sense to treat all cancers found. However, in light of these treatment risks and the current uncertainty about treatment benefit, the decision about screening and any subsequent treatment must currently rest with the patient in consultation with his physician. As our un
derstanding of this disease and of our ability to intervene in it grows, science will be able to provide more definitive guidance to both clinical and policy decisions.

PROSTATE CANC ER IN OLDER MEN Screening Recommendations

While the American Cancer Society (ACS) and the American Urological Association recommend adding PSA to annual digital rectal examination for early detection of prostate cancer, the U.S. Preventive Services Task Force and Canadian Task Force on the Periodic Health Examination, citing lack of evidence of benefit from controlled studies, do not. ${ }^{2}$ All of these groups agree that research has yet to document that on a popula-tion-wide basis, PSA testing reduces the risk of dying from prostate cancer. The differences in recommendations reflect different philosophies about whether clinical medicine and public policy should encourage the use of potentially beneficial, but unproven, cancer prevention strategies before controlled studies definitively establish that they do more good than harm.

Prostate Cancer Biology and Risk Factors

The prostate is a golf-ball-sized gland that helps produce semen, the fluid ejaculated with sperm. It is found below the bladder and surrounds the urethra through which urine passes as it is voided. Most early prostate cancers seem to be slow-growing, with doubling
times of two years or more. The future course of prostate cancer is predicted by tumor grade (the extent to which cancerous cells are different from normal cells) and stage (extent of cancer spread); patient age does not seem to influence the rate at which tumors spread and become life-threatening. Determining the stage of prostate cancer without surgery is unreliable. ${ }^{3}$ Once prostate cancer spreads to bones or other organs, hormonal treatments can only achieve temporary remissions often measured in months. ${ }^{4}$

Those most at risk for prostate cancer are African American men and men with a family history of prostate cancer. Recently, prior vasectomy and a high-fat diet have been proposed as possible additional risk factors. In addition, the probability of harboring an asymptomatic prostate cancer increases as men age: about 22 percent of men in their 60 s and 39 percent of men in their 70 s . For those cancers greater than 0.5 mL in volume (which are more likely to cause future problems), the age-specific probabilities of having prostate cancer are about 9 and 15 percent, respectively.

TECHNOLOGIESTO DEIECT PROSTATE CANCER

DRE and PSA are both feasible tests for early detection of prostate cancer. Transrectal ultrasound (TRUS) and transrectal needle biopsy (TRNB) are followup tests used to further investigate suspicious results on DRE or

[^1]PSA. The true false-negative rates ${ }^{5}$ of DRE and PSA are unknown, because studies have generally not determined what proportion of men with nonsuspicious DRE and PSA results in fact harbor cancer.

Digital Rectal Examinations

Among older men, digital rectal examinations are less likely to detect small and probably insignificant cancers than PSA, but it is more likely to detect cancers that have already spread beyond the prostate. Available data indicate that a suspicious DRE raises the likelihood that a patient has intracapsular (and possibly curable) prostate cancer $11 / 2$ - to 2-fold above the average risk faced by men of the same age. In a recent large study, DRE was suspicious in 15 percent of male volunteers over age 50, and 21 percent of men with a suspicious DRE had prostate cancer at biopsy. However, these high percentages were dependent upon a low threshold for considering the DRE abnormal, and upon the performance of multiple biopsies on volunteers with a suspicious DRE. In fact, about half the cancers found by TRNB in this study were found elsewhere in the prostate than the palpably suspicious area. ${ }^{6}$

Prostate-Specific Antigen

The prostate-specific antigen is a protein produced by prostate tissue and measurable in blood. It can be elevated in men both with and without prostate cancer, and the level at which a PSA measurement should be considered suspicious is controversial. On the two most commonly used assays, levels above 4 nanograms per millili-
ter ($\mathrm{ng} / \mathrm{mL}$) of blood are often considered abnormal. ${ }^{7}$ Available data suggest that a PSA elevation from 4.1 to 10.0 nanograms per milliliter ($\mathrm{ng} / \mathrm{mL}$) of blood raises the likelihood that a man harbors an intracapsular prostate cancer one and one-half to threefold above the average risk for men his age. Methods to improve the ability of PSA to discriminate between men with and without cancer are under active investigation; at present, there is no consensus on an optimal method. PSA does a particularly poor job at separating men with benign prostatic hyperplasia (BPH), a common nonfatal disease of aging, from men with intracapsular, possibly curable prostate cancer.

Combined DRE and PSA Screening

What is gained by doing both DRE and PSA rather than just DRE? Research indicates that by adding PSA testing to DRE in a one-time screening program, and by adopting an aggressive strategy of systematic prostatic biopsies for suspicious results on either test, prostate cancers can be found in about 4.2 percent of men age 65 (as opposed to about 2.4 percent with DRE alone), at a cost of performing multiple biopsies in 19 percent. At age 75 , cancer would be found in about 7.2 percent of men (as opposed to 3.5 percent with DRE alone), with 27 percent of men requiring biopsy. Some of the cancers that are found in screening programs are discovered because of the high percentage of men who undergo multiple systematic biopsies, rather than because of the discriminating capacity of the tests themselves.

[^2]
Followup Testing

TRUS is not accurate enough to serve as a primary screening test. TRNB is the test usually used to confirm whether cancer is present, and TRUS is often used to help direct where tissue samples are taken during biopsy. Many experts now recommend that patients with a suspicious DRE or PSA undergo multiple (four to six) prostatic biopsies (usually done in a single session). TRNB is uncomfortable and has a low but finite risk of bleeding and infection.

THE EFFECTIVENESS OF TREATMENT

For the early detection of prostate cancer to improve outcomes, treatment for cancers found at screening needs to be effective. In other words, knowledge of the presence of cancer will not save any lives unless treating those cancers makes a difference. There is considerable controversy regarding optimal treatment for cancer that does not appear to have spread beyond the prostate gland. Urologists generally argue that radical prostatectomy, a procedure to remove the entire prostate gland, results in the best outcomes for these men. As a result, rates of this procedure have risen dramatically in recent years, in response to the precipitous increase in diagnosis of early prostate cancer. However, expectant management (also called "watchful waiting"), in which the clinician treats symptoms and complications without attempting a cure, and radiation therapy are two other commonly used treatment strategies. Prostate cancer management tends to be more conservative in Western European countries than in the United States. No trial that shows which of the various treatment strategies saves the most lives (if any) has yet been completed.

Controversy about treatment effectiveness exists because of a lack of well-controlled studies comparing the main strategies for managing localized prostate cancer. To date, the only completed studies are based on observational studies. To the extent that any of these studies show that patients receiving a particular treatment option do better than those receiving another treatment, one cannot definitively conclude that the observed result was due only to treatment and not due to other differences between the patient groups.

Determining Cancer Stage

Before men begin treatment for a prostate cancer discovered by DRE or PSA, they would often undergo some staging tests to help determine the best treatment strategy. Patients with cancers that have already spread outside the capsule of the prostate gland, and particularly cancers that have spread to lymph nodes in the pelvic area or to bones are much less likely to be helped by aggressive treatments with curative intent. Computerized tomography (CT) or magnetic resonance imaging (MRI) scans and surgical examination of pelvic lymph glands, commonly employed to determine if the cancer has spread, are not particularly accurate for this purpose. As a result, even if a CT or MRI scan suggests spread, clinicians often proceed to treatment out of fear of withholding a potential cure. Despite some substantial misclassification rates, recent mathematical models designed to predict cancer spread suggest clinicians could use some staging tests more sparingly. ${ }^{8}$

Expectant Management

Expectant management is a strategy of reserving treatment for symptoms or complications related to

[^3]prostate cancer, without necessarily attempting a cure. It is commonly used in Western Europe, and until recently, for many men with cancers found incidentally during surgery for BPH. Men treated expectantly risk developing symptoms due to local progression of their cancer (such as bladder outflow obstruction) or from spread of the prostate cancer to other parts of the body (which may lead to death). ${ }^{9}$ The prognosis for men with clinically localized prostate cancer depends on the aggressiveness of the cancer, particularly its grade. A recent synthesis of data from several studies of expectant management suggests a 10-year cancer-specific death rate of 13 percent for men with well and moderately differentiated prostate cancer (the most common types found by early detection with DRE and PSA) compared with a 66 percent death rate for men with poorly differentiated cancers. ${ }^{10}$

Radiation Therapy

Radiation therapy for prostate cancer, most commonly delivered as external beam x-irradiation, attempts to deliver a maximal dose of radiation to the tumor while minimizing the side effects from exposure to other, nearby radiation-sensitive tissues. Patients usually receive five weekday treatments over six or seven weeks (i.e. 30 to 35 treatments total). Although much recent literature has focused on surgical treatment of prostate cancer (radical prostatectomy), as late as 1990 radiotherapy was the most common treatment administered for every stage of prostate cancer in the United States. ${ }^{11}$

The comparative effectiveness of radiotherapy versus radical prostatectomy or expectant management has
not been well studied. The medical literature suggests worse outcomes for patients with localized prostate cancer treated with radiotherapy compared with these other two strategies, but results are confounded by radiotherapy series including more older patients whose tumors have less favorable prognostic characteristics. While urologists have raised concerns about the high proportion of patients treated with radiotherapy having subsequently positive biopsies for cancer or rising PSA levels post-treatment, selected series suggest very good outcomes in terms of rate of future metastatic disease and cancer death. Although radiation therapy is more likely to result in bowel injury than is radical prostatectomy, other side effects are less common than those associated with prostatectomy.

Radical Prostatectomy

Radical prostatectomy entails removing the entire prostate with its fascial coverings and the seminal vesicles. More aggressive early detection efforts for prostate cancer in recent years have been accompanied by precipitous rises in population-based rates of radical prostatectomy. Recent modifications in surgical technique, resulting in an "anatomic" radical prostatectomy, have reduced the risk of surgical complications in some centers. While some men with prostate cancer treated surgically have done extremely well, the benefit of radical prostatectomy is unclear; only one controlled study has compared its outcomes against other treatment strategies. This single randomized trial, which showed no difference in mortality between radical prostatectomy and

[^4]expectant management, was too small to detect a clinically important benefit from surgery, if it really existed.

The risks of radical prostatectomy include operative death, perioperative medical complications, incontinence, impotence, and urethral stricture formation. In a recent survey of a random sample of all Medicare patients who underwent this procedure in the United States between 1988 and 1990, 31 percent of men were wearing pads to help deal with wetness, 60 percent reported no full or partial erections since the surgery, and 20 percent indicated they had been treated for a stricture. The attributable ${ }^{12} 30$-day postsurgical death rate was 0.6 percent.

Followup Treatment

Men whose initial cancer has spread to other parts of the body, or men who are found to have cancer that has spread postoperatively can be treated with hormonal (androgen deprivation ${ }^{13}$) therapy. After initial treatment by radical prostatectomy, clinicians also often consider adjuvant radiation or androgen deprivation therapy for men considered at higher risk of harboring residual cancer. Cancers that have spread to other parts of the body tend to be responsive initially to hormonal treatment, but then become unresponsive ("refractory"). There are no data from well-controlled studies that indicate that any adjuvant therapies improve survival.

BENEFIS, RISKS, AND COSTS OF SCREENING

In the absence of controlled studies documenting that early detection of prostate cancer does more good
than harm, this analysis used a quantitative decision model to estimate risks, benefits, and costs of an early detection program under different sets of assumptions. It examined the implications of an illustrative, onetime screening program for three cohorts of 100,000 men, ages 65,70 , and 75 , respectively.

Realistically, a Medicare benefit would most likely cover periodic screening, for example, a DRE and PSA every year as the ACS currently recommends, or every two or three years as Medicare currently does for breast and cervical cancer screening respectively. Understanding the true effects of an actual Medicare benefit would also require accounting for the fact that some men would have already received screening before their 65th birthday. However, as this analysis demonstrates, current understanding does not allow a definitive assessment of the cost-effectiveness of even a one-time benefit with its relatively simplified set of assumptions, much less a more complex, but realistic periodic benefit. The uncertainty concerning treatment effectiveness and the true rate at which smaller cancers eventually spread and cause death overwhelm other assumptions in the model.

Modeling an Illustrative Screening Benefit

The model employs a quantitative tool known as a Markov process ${ }^{14}$ to calculate what happens to men in each of the three age groups examined once they are screened for prostate cancer. It initially incorporates many assumptions favorable to early detection and treatment, including: 1) relatively high metastatic rates (that predict a higher-than-actually-observed lifetime proba-

[^5]bility of prostate cancer death in the cohorts), ${ }^{15}$ and 2) a 100-percent cure rate by surgery for cancers that have not spread beyond the prostate (resulting in overall cure rates of 97, 70, and 56 percent for all well-, moderately, and poorly differentiated cancers respectively). The analysis estimates the impacts of a one-time screening program under these assumptions, and then examines how relaxing the favorable assumptions about treatment efficacy changes the results.

Health Effects of Screening

Using the baseline assumptions, the model predicts a very favorable mix of potentially curable cancers would be discovered by early detection efforts with DRE and PSA. A large number of prostate biopsies would be performed as a result of this program; a much higher proportion of patients would require further invasive evaluation as a result of their initial testing than for other commonly used cancer screening strategies, such as guaiac testing for colorectal cancer or mammography for breast cancer. The proportion of men screened who undergo biopsy would range from 19 percent at age 65 to 27 percent at age 75. Treating cases of clinically localized prostate cancer with radical prostatectomy would render about 300 out of every 100,000 men screened incontinent, about 1,400 to 1,600 out of every 100,000 men screened impotent, and an additional 400 to 500 out every 100,000 both incontinent and impotent. About another 20 out of every 100,000 screenees would die from biopsy or treatment complications.

However, at the same time, early detection might save as many as 4,353 life-years in the 65 -year-old cohort of 100,000 men, 2,774 life-years in the 70-year-old
cohort, and 1,415 life-years in the 75-year-old cohort. ${ }^{16}$ The benefits diminish considerably as the assumption of relatively high rates of metastasis and treatment effectiveness are relaxed.

Cost-Effectiveness

The analysis also estimates the cost-effectiveness of this illustrative, one-time DRE/PSA screening benefit. Adopting a Medicare perspective to estimate costs associated with screening and subsequent treatment, the model incorporates charges for physician services using the 1992 Medicare fee schedule and appropriate diagnosis related group (DRG) reimbursements for hospital services. The analysis discounts both future costs and health benefits at 5 percent annually.

The costs per year of life saved with the favorable assumptions (compared to doing no screening at all) was competitive with other commonly-used early detection maneuvers ranging from $\$ 14,200$ per year of life saved at age 65 to $\$ 51,290$ per year of life saved at age 75. However, these results are extremely sensitive to the assumptions made about the effectiveness of treatment and the rate at which intracapsular cancers spread and cause death. Reducing the estimates of future risk of metastases modestly to levels found elsewhere in the published literature and assuming treatment cures only half of all intracapsular cancers greater than 0.5 mL in volume substantially raises the estimated costs per year of life saved; under these assumptions, these estimates would range from $\$ 94,458$ at age 65 to $\$ 506,909$ at age 75.

As indicated earlier, current scientific evidence is insufficient to know the true risk of metastasis or whether treatment actually enhances survival, and hence,

[^6]whether or not prostate screening (even under the simplified assumptions needed to analyze a one-time program) is similar to other early detection programs for Medicare in its cost per life-year saved, or substantially more expensive. Regardless of whether screening and subsequent treatment extend life and regardless of the cost of any such health benefit, it is certain that populationbased screening would subject men to the risks of impotence, incontinence, and other health problems caused by screening and treatment.

RESEARCH TO RESOLVE UNCERTAINTIES

Very little data from controlled studies are available to determine whether the benefits of early detection and treatment of prostate cancer outweigh the risks. One case-control study suggested that digital rectal exams do not reduce the risk of developing late-stage prostate cancer. And one trial of inadequate size showed no difference in the survival of men treated with expectant management versus radical prostatectomy. However, researchers are now initiating a number of well-designed
randomized trials of adequate size to address this issue. Trials comparing expectant management versus aggressive treatment with radical prostatectomy or radiation therapy for men with known clinically localized prostate cancer are underway or about to start in Scandinavia, the United Kingdom, and the United States. Trials comparing intensive screening with DRE and PSA versus no screening or "usual care" are being initiated in both Europe and the United States. Unfortunately, from the perspective of policymakers, the relatively indolent nature of many prostate cancers means that 10 to 15 years may be required to see enough prostate cancer deaths among men in these studies to obtain adequate comparisons of the strategies being tested.

This analysis of the estimated risks, benefits, and costs of early detection of prostate cancer highlights the uncertainty surrounding this topic. Any decision in the shortterm about whether Medicare should cover (and, hence, encourage) prostate cancer screening must weigh the resources required and the known complications that will result from screening and treatment against an uncertain health benefit.

CHAPIER
 2

Prostate Cancer in Older Men

prostate cancer is a major health problem in the United States. In 1995, 244,000 new cases (up 44,000 from 1994) of prostate cancer and 40,400 deaths (up 2,400 from 1994) due to this disease are expected among all American men (199). However, most cases of prostate cancer and deaths from the disease occur in older men. Of the 32,378 U.S. prostate cancer deaths observed in 1990, 12,423 (38 percent) occurred in men ages 55 to 74 and 19,622 (61 percent) in men ages 75 and above. See table 2-1 for a comparison of the number of prostate cancer deaths with other causes of death for older men (40). The lifelong probability of dying of prostate cancer for men in the United States is 2.5 to 3 percent $(308,314) .{ }^{1}$

Patients who are diagnosed because they report symptoms (such as bone pain or difficulty urinating) generally have cancer spread outside of the prostate gland, and are incurable. Although these patients may initially show some improvement through treatment, these responses often do not last, and followup treatments have been disappointing (131).

Given this burden of illness and the difficulty in treating symptomatic disease, early detection using a
simple clinical procedure called digital rectal examination (DRE) and a blood test called prostate-specific antigen (PSA) measurement would seem to be a commonsense strategy for reducing the morbidity and mortality from prostate cancer in the United States. This background paper examines the validity of this conclusion This chapter gives an overview of the rationale for screening and provides background on the nature of prostate cancer. Chapter 3 discusses technologies for the screening and diagnosis of prostate cancer, and chapter 4 reviews evidence on the effectiveness of treating the disease. Chapter 5 presents some illustrative analyses of the potential costs and effectiveness of a one-time prostate cancer screening program and considers its implications for a potential Medicare screening benefit.

SCREENING VERSUS DIAGNOSIS

Before proceeding, it is useful to consider what is meant by the term screening and how it differs from diagnosis. While screening is an attempt to identify a condition in the absence of symptoms, diagnosis is performed in response to a patient's symptoms. This distinction has important public policy implications since the

[^7]TABLE 2-1: NUMBERS OF DEATHS BY LEADING CAUSES, U.S. MEN AGES 55 TO 74 AND 75+, 1990

Ages 55 to 74	Ages 75+		
All causes	430,713	All causes	447,303
Heart disease	152,323	Heart disease	173,558
Cancer (other than prostate)	129,364	Cancer (other than prostate)	75,117
Chronic obstructive lung disease	21,964	Cerebrovasculardisease	33,594
Cerebrovasculardisease	18,602	Chronic obstructive lung disease	25,580
Prostate cancer	12,423	Pneumonia, influenza	24,897
		Prostate cancer	19,622

Source: Office of Technology Assessment, 1995. Data from C.C. Boring, T.S. Squires, Tong, T., et al. "Cancer Statistics, 1994," CA-A Cancer Journal for Clinicians (44):7-26, 1994.
federal Medicare program that provides health insurance to almost all Americans over age 65 pays for outpatient diagnosis, but it only pays for limited types of disease screening. Currently, prostate cancer screening is not among the services covered by Medicare. In this bakground paper, the use of prostate cancer detection technologies in mass screening programs as well as by clinicians in their offices are considered together as "early detection." ${ }^{2}$

RATIONALE FOR EARIY DEIECTION AND TREATMENT

Theoretically, surgical removal of the entire prostate (radical prostatectomy) or radiation therapy (curative radiotherapy) should cure prostate cancer that is confined within the prostate capsule. The survival probabilities for patients with early-stage prostate cancer are clearly and dramatically better than for patients with late-stage disease, such as is commonly seen in the absence of screening. Screening tests are currently available that result in the detection of disease that is more
often localized to the prostatic capsule than would be the case among men presenting with symptoms. Therefore, it is tempting to conclude that screening for prostate cancer will result in the curative treatment of pre-symptomatic cancers destined to cause future morbidity and mortality, reducing the burden of illness among older men (95, 295). However, this hypothesis has not yet been tested in well-controlled scientific research and, despite its attractiveness, might not be correct.

Why might screening fail to result in reducing prostate cancer mortality and morbidity? These potential problems are both general to screening for any cancer, and relatively specific to prostate cancer. Data from uncontrolled screening studies that report the probability of detected cancers progressing to more serious stages (stage shift data) do not necessarily predict long-term reductions in cancer mortality. This is because of "leadtime bias," the phenomenon of a screening test finding cancers earlier in their courses without changing their ultimate outcomes, and because of "length bias," in which a test may preferentially find low-risk, slow-growing

[^8]cancers (81, 136). As described by Sackett and colleagues (292), on the basis of stage shift data, "...early diagnosis will always appear to improve survival, even when therapy is worthless!"

Prostate cancer screening, in particular, presents some additional conceptual challenges. Prostate cancers are commonly discovered by chance at autopsy and during a surgical procedure called transrectal resection of the prostate (TURP) performed for symptoms of a common, noncancerous enlargement of the prostate, benign prostatic hyperplasia (BPH). Many of these cancers would never have caused any symptoms, and would not place the patient at increased future risk of more serious cancer. Advocates of screening believe that the screening tests currently available for prostate cancer cannot generally detect these small, harmless cancers (12, 295); however, aggressive strategies of performing systematic biopsies of the prostate following suspicious screening tests will increase their detection (338).

The true, untreated, natural history of cancers discovered by screening (i.e., whether they would ultimately cause any harm to the patient) is unknown. Because many prostate cancers grow relatively slowly, the true benefit of treating cancers detected by screening remains unknown. The fact that many prostate cancers, even those detected by screening, have already spread through the prostate capsule, further dilute any benefit of screening. Furthermore, according to one theory drawn from observations of breast cancer (and untested for prostate cancer), prostate cancers destined to cause mortality may actually spread outside the prostate early on, even when they appear to be confined to the prostate upon examination of tissue removed in a prostatectomy (17, 240). And finally, aggressive curative treatment of prostate cancer carries risk itself; these risks, which include post-operative heart disease, impotence, inconti-

TABLE 2-2: LIE EXPEC TANCY FOR U.S. MEN BY AGE
AND RACE (Years)

	Life expectancy	
Age	White men	African American men
50	26.7	22.5
55	22.5	19.0
60	18.7	15.9
65	15.2	13.2
70	12.1	10.7
75	9.4	8.6
80	7.1	6.7
85	5.2	5.0

Source: U.S. Bureau of the Census, Statistical Abstract of the United States: 1993, 113th Ed.,) (Wa shington, DC: U.S. Govemment Printing Office, 1993).
nence, and a small chance of surgical death, must be weighed against evidence of reductions in mortality to make screening worthwhile.

SPECIALISSUES IN SC REENING MEDICARE-AGE MEN

This report focuses on screening Medicare-age men, 65 and older. Because prostate cancer prevalence and mortality increases substantially with age, Medicare beneficiaries would appear especially likely to benefit from screening (assuming treatment works). However, these men also have a higher risk of dying from medical problems other than prostate cancer, and they have fewer years of life expectancy during which to reap the potential benefits of screening (see table 2-2). Furthermore, some of the risks of aggressive prostate cancer treatment also increase with age, making these men pay a higher "price" for any expected benefit of screening. The difficulty of current screening technology in distinguishing between potentially curable prostate cancer and the noncancerous condition BPH, whose prevalence increases
with age, also reduces the value of screening. ${ }^{3}$ Finally, older men are also at higher risk of harboring large cancers and cancers with a poor prognosis that have already spread outside the prostate (233).

CONFICTING GUIDELNES ON EARLY DEIECTION

At present, the American Cancer Society (ACS) and the American Urological Association (AUA) recommend DRE and PSA determinations to evaluate the prostate gland for cancer starting at age 50 (age 40 for men at increased risk), although ACS acknowledges that, "reduction in mortality from screening has not yet been documented" (11, 237). ACS recommends annual exams. In addition, the American Medical Association (AMA) recommends that PSA should be covered every three years for men over age 50 as part of standard insurance benefits package (10).

ACS and AUA do not specify a definite "stopping age" for screening, although ACS recommendation acknowledges that, "generally, men with a life expectancy of at least ten years after detection may benefit from examination." These guidelines, which were adopted after the introduction of PSA into usual urologic practice, are consistent with recent published reviews that suggest physicians reserve early detection and aggressive treatment for men with a life expectancy of more than ten years (50, 204); in the United States, for men with average comorbidity, this threshold would come at about age 73. AMA recommends coverage of PSA testing up through age 70 (10).

The 1993 U.S. Preventive Services Task Force update (352) and the 1991 Canadian Task Force on the Periodic Health Examination (57) found evidence insufficient to recommend for or against DRE, and fair evidence to exclude PSA, from the periodic health examination. The College of American Pathologists recommends that PSA not be used for screening among the general asymptomatic male population, reserving its use for cases where prostate cancer is suspected (200).

The National Cancer Institute (NCI) used to recommend that men over age 50 receive a DRE, but not a PSA test. Recently, however, NCI has decided not to make any recommendations concerning cancer screening, deferring instead to the evidence-based policy guideline development processes used by the U.S. Preventive Services Task Force and the U.S. Agency for Health Care Policy and Research (AHCPR) (199). ${ }^{4}$

Reasons for Conflic ting Recommendations

In the absence of well-controlled studies that establish the risks and benefits of screening for prostate cancer, or even large, controlled trials that document the benefit of aggressive curative treatment for cancer that has not spread beyond the prostate, it is possible to interpret the nonexperimental data that do exist to support any of these guidelines. However, differences in perspectives among policymakers, clinicians, and patients also contribute to the current controversy about prostate cancer screening. For example, Adami and colleagues (2) recently concluded that, given the possibility that early detection of prostate cancer does more harm than

[^9]good, even a randomized trial of screening for prostate cancer might be unethical.

From a policy perspective, some experts emphasize an ethical imperative to avoid the harms of early detection efforts in general, and mass screening in particular, unless there is definitive proof of a net benefit from clinical trials $(34,80,167,302,322)$. Others emphasize the need to do everything possible to lower the risk of cancer until the results of those studies are available ($12,13,68$, 131, 217, 258). Sackett (291) has referred to the protagonists represented in these basic ideological disputes as either advocates of the scientific method ("snails"), or advocates of screening ("evangelists"). The former perspective is incorporated into sets of criteria used by many groups for determining the net benefit of preventive maneuvers in general and cancer screening in particular, including the Canadian Task Force on the Periodic Health Examination (56), the U.S. Preventive Services Task Force (351), and the World Health Organization (368). No matter what expert groups recommend for populations, on the level of individual patients and clinicians, differences of opinion and variations in actual practice will exist (219, 238, 247).

The rapid increase in medical care costs in recent years has placed greater scrutiny on the effectiveness of medical interventions. In the past, medical interventions that seemed conceptually sound were often administered until clinical trials proved they did not work (111). More recently, the burden of proof for some interventions has begun to shift to those who want to use the treatment, suggesting that these interventions be withheld until clinical trials establish that they work (112). Although recommendations may also vary depending on whether they consider the health care costs associated with early

FGURE 2-1: CROSS-SECTIONAL IUUSIRATION OF NORMAL MALE PEVIC REGION

Source: The Americ an Prostate Society, Inc.
detection, none of the guidelines described above directly took these costs into account.

BASIC BIOLOGY OF PROSATE CANCER

The prostate is a golf-ball-sized gland whose primary function is the manufacture of semen, the fluid ejaculated with sperm. It is found below a man's bladder and surrounds the urethra through which urine passes on its way from the bladder (see figure 2-1). Prostatic carcinoma (prostate cancer) is a relatively slow-growing malignancy, with the potential for spread related to both volume of the tumor and degree of cell differentiation (the extent to which the cancerous cells are different from the normal cells from which they arose), ${ }^{5}$ which themselves are related.

[^10]In careful studies of autopsy material, McNeal and colleagues have documented that tumors less than approximately 0.5 mL are commonly found among older men, and are rarely associated with penetration of the prostate capsule (called capsular penetration) (233). Above 0.5 mL , penetration of the prostatic capsule begins to be seen, and overt metastases (spread of the cancer) begin to be seen with tumors above 1 mL , and particularly above 3 mL , along with more frequent capsular penetration and invasion of the surrounding tissue. Older patients have larger tumors, and larger tumors are more likely to be less well differentiated. Clinically localized cancers are estimated to have a doubling time of two years or more (299, 325, 328). Based on epidemiologic observations, Stamey and colleagues (328) doubt that cancers less than 0.5 mL in volume are likely to cause future morbidity and mortality given this long doubling time; however, all large prostate cancers were undoubtedly small at some point.

Prostate cancers are described by tumor grade (the extent of cell differentiation) and stage (how advanced the cancer has become). In studies of the natural history of prostate cancer, grade and stage are used to predict malignant behavior. The most common grading system is the Gleason score, which yields a sum of 2 to 10 based on the two most common patterns of cell differentiation in the tissue sample. Tumors assigned scores of 2 to 4 are considered "well differentiated"; 5 to 7, "moderately differentiated"; and 8 to 10 , "poorly differentiated."

The two predominant staging systems for prostate cancer are the Whitmore (A-D) system and the Tumor-Node-Metastasis (TNM) system (245). ${ }^{6}$ Table 2-3 describes the two predominant systems. Although increasing stages of prostate cancer generally indicate a poorer prognosis, different stages can behave similarly (i.e., Stage T1b/A2 and T2/B1 (340). ${ }^{7}$ As will be discussed later, clinicians' attempts to stage patients' cancers are unreliable, and many cancers thought to be localized to the prostate are found to be more advanced upon surgery. In addition, the grade of a tumor evaluated from a biopsy (a procedure for removing a small sample of tumor to determine if it is cancerous) may diverge from the grade determined from an examination of the surgically removed prostate (7). These phenomena make it difficult to compare the prognosis of prostate cancer patients staged and treated by different methods.

RISK FACTORS FOR PROSTATE CANCER

The cause of prostate cancer is not known, although evidence points to both genetics and environment as having roles (62, 85, 273, 310):

- Age is the most important risk factor, with the incidence ${ }^{8}$ of both prostate cancer diagnosis and death increasing sharply with age (table 2-4). ${ }^{9}$
- Family history is also a determinant of risk. Men with one immediate relative with prostate cancer have a twofold increased risk, which increases to roughly

[^11]| Clinic al stage | | |
| :---: | :---: | :---: |
| Whitmore (A-D) | TNM system ${ }^{\text {a }}$ | Definition |
| 1. Clinic ally nonpalpable cancers | | |
| A_{1} | $\mathrm{T}_{1 \mathrm{a}}$ | Incidental finding of cancer in $\leq 5 \%$ resected (removed) tissue from TURP. |
| A_{2} | $\mathrm{T}_{1 \mathrm{~b}}$ | Incidental cancer finding $>5 \%$ resected tissue. Moderately or poorly differentiated grade with $<5 \%$ resected tissue from TURP.b |
| B_{0} | $\mathrm{T}_{1 \mathrm{c}}$ | Cancerdetected by needle biopsy (e.g., following elevated PSA). |
| 2. Palpable cancers apparently confined within prostate capsule | | |
| B_{1} | $\mathrm{T}_{2 \mathrm{a}}$ | Involves one-half of one lobe of the prostate orless. |
| B_{1} | $\mathrm{T}_{2 \mathrm{~b}}$ | Involves more than one-half of one lobe, but not both lobes. |
| B_{2} | T_{2} | Involves both lobes of gland but apparently confined (B_{2}, but not $T_{2 c}$ cancers can be greater than 1.5 cm but still involve only one lobe). |
| 3. Local extra-capsular penetration | | |
| C_{1} | $\mathrm{T}_{3 \mathrm{a}-3 \mathrm{~b}}$ | Penetration of the prostate capsule palpable without evidence of invasion of the seminal vesicles outside the prostate. |
| C_{2} | $\mathrm{T}_{3 \mathrm{c}}$ | |
| | $\mathrm{T}_{4 \mathrm{a}-4 \mathrm{~b}}$ | Palpable invasion of seminal vesicles. Invasion of the bladder neck, external sphincter, rectum, or pelvic muscles. |
| 4. Metastatic Disease | | |
| | Nx | Cannot assess; no apparent nodal involvement. |
| D_{1} | $\begin{aligned} & N_{1} \\ & N_{2} \\ & N_{3} \end{aligned}$ | Metastasis in a single lymph node 2 cm , metastasis single nodes $2-5 \mathrm{~cm}$, or multiple nodes (all $\geq 5 \mathrm{~cm}$), metastasis in node $\geq 5 \mathrm{~cm}$. |
| D_{2} | M_{1} | Distant meta stasis. |
| | $\mathrm{M}_{1 \mathrm{a}}$ | Lymph nodes outside the region of the prostate. |
| | $\mathrm{M}_{1 \mathrm{~b}}$ | Bone. |
| | $\mathrm{M}_{1 \mathrm{c}}$ | Othersite(s). |

a In the "TNM" system, "T" refersto characteristic sof the tumor, " N " refersto the extent cancerouscellsare found in lymph nodes, and " M " refersto the extent of metastasis (spread of the cancer).
${ }^{\mathrm{b}}$ Criteria forcancergrade (well-, moderately-, orpoorly-differentiated) and percentage of resected volume fordefining stage A_{2} variesacrossdifferentstudies.

KEY: PSA = prostate-specific antigen blood test.
TURP = Transurethral resection of the prostate, a procedure fortreating benign prostatic hypertrophy (BPH), a noncancerousenlargement of the prostate, by surgic ally removing parts of the gland.

SOURCE: Office ofTechnology Assessment, 1995. Based on information presented in M.J. Bamy, C.M. Coley, C. Fleming, et. al, "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the Congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Ma ssa chusetts General Hospital, Boston, MA, J une 30, 1994.
fivefold with two affected family members (323, 332). A recently described hereditary clustering of prostate cancer in families may be responsible for about 40 percent of cases in men under age 55 and 10 percent of prostate cancer cases overall $(59,60)$.

- African American men, who have generally been unrepresented in voluntary prostate cancer screening programs (104), have a 1.3 to 1.6 fold higher risk of prostate cancer than do non-African-American men

ABLE 2-4: AGE-SPECIRC INCIDENCE AND MORTALTY

RROM PROSTATE CANCER FOR AL U.S. MEN

SOURCE: Office of Technology Assessment, 1995. Based on data from SEER, 1992.
(21). In the 50 to 54 year age group, the risk is twofold higher (73).

- Research has shown a statistical association between dietary fat, particularly animal fat from red meat, and prostate cancer $(142,286)$. Although fat may not directly cause prostate cancer, it may contribute indirectly by affecting certain hormone levels in men (272).
- Several studies have found a weak statistical association between prior vasectomy and prostate cancer (140, 141, 288). However, because the association is weak, because contradictory data exist (14), and because there is no convincing biological explanation for this result, causality cannot be considered proven (153, 169).

The lack of data on risk factors that could change (except perhaps reductions in dietary fat intake) makes the potential for preventing prostate cancer before it develops modest at this point. However, considerable interest has arisen in trying to prevent prostate cancer with drugs. A randomized clinical trial of prostate cancer prevention using finasteride, a drug employed in treating some cases of BPH, is just getting underway (343).

THE PREVALENCE OF PROSTATE CANCER

In order to analyze the potential impact of a screening program as is attempted in chapter 5, it is necessary to know the age-specific prevalence of latent prostate cancer in the population. Table 2-5 presents estimates for prostate cancer prevalence derived from a synthesis of autopsy studies $(24,113,128,134,159,222,293,305)$ together with McNeal's analysis of the volume of cancers found at autopsy (233). It presents estimates of the probabilities of men age 65 and older falling into one of the four following states of health: no cancer, cancers 0.5 mL or less in volume, cancers greater than 0.5 mL still confined to the prostate, and cancers greater than 0.5 mL spread beyond the prostate capsule.

Appendix A describes the methods used to derive table 2-5. These probabilities can only be considered estimates because patients coming to autopsy may not be representative of the general population, and because scarce data exist describing distributions of autopsy cancers by host age, and tumor volume and extent. However, autopsy studies were excluded from this analysis unless patients with cancers suspected before death were specifically excluded.

PROSTATE CANCER MORTALTY

The discussion of treatment effectiveness in chapter 4 reviews epidemiologic data on the natural history of untreated, clinically-significant prostate cancer. The age-standardized mortality rate for prostate cancer increased from about 21 to 25 per 100,000 males in the United States between 1960 and 1988 (39); meanwhile, the incidence of prostate cancer in the United States has increased much more dramatically, at first due in part to wider use of the surgical procedure, transurethral resection of the prostate, for symptoms of BPH (274). Increasing early detection efforts have sustained this trend in re-

Age	Overall prevalence b	$\begin{gathered} \text { Cancer } \\ <0.5 \mathrm{mLC} \end{gathered}$	Cancer $>0.5 \mathrm{~mL}$, intracapsular ${ }^{\text {d }}$	Cancer $>0.5 \mathrm{~mL}$, extracapsulare ${ }^{\mathrm{e}}$
40-49	12\%	7.2\%	3.5\%	1.3\%
50-59	15	9.0	4.4	1.6
60-69	22	13.2	6.4	2.4
70-79	39	23.4	11.4	4.2
$80+$	43	25.8	12.6	4.6

${ }^{a}$ Appendix A describes the methods used to derive this table.
${ }^{\mathrm{b}}$ Numbers rounded to the nearest whole. Weighted average formen over age 50 is $30 \%(547 / 1811)$.
cEstimated weighted mean prevalence of prostate cancers less than 0.5 mL in men overage 50 is 18%.
${ }^{d}$ Estimated weighted mean prevalence of intracapsular prostate cancers exceeding 0.5 mL for men over age 50 years is 8.8%
eEstimated weighted mean prevalence of extracapsular prostate cancer exceeding 0.5 mL in men overage 50 years is 3.2%.

SOURCE: Office of Technology Assessment, 1995. Data sources described in appendix A.
cent years (105). These trends are reflected in an increased tendency to diagnose cancer at less advanced stages, and improved stage-specific five-year survival rates $(238,330)$.

These statistics also emphasize the danger of using "stage shift" data to make conclusions about underlying cancer mortality; a shift toward more localized cancers and better outcomes for individual patients in recent
years has actually been accompanied by a small increase in the rate of prostate cancer mortality, from a national perspective. However, since aggressive early detection efforts are a relatively new phenomenon, some years may be required before this strategy results in any decrease in population-based rates of prostate cancer mortality.

CHAPIER

3

Technologies To Detect Prostate Cancer

the most commonly used technologies for detecting and diagnosing prostate cancer are digital rectal examination (DRE), prostate-specific antigen (PSA) measurement, transrectal ultrasound (TRUS), and transrectal needle biopsy of the prostate (TRNB). For primary-care based case-finding and mass screening, TRUS and TRNB would be logistically difficult to include as primary screening tests given their relative complexity and invasive nature. Moreover, the marginal value of TRUS above DRE and PSA seems to be small ($18,91,215$), and the risk and discomfort of TRNB would seem to obviate its use as a primary screening test. Therefore, this chapter considers the use of DRE and/or PSA as primary screening tests, and TRUS and TRNB as followup, confirmatory tests.

To analyze the impact of screening, it is necessary to know the "operating characteristics" of each screening technology. In general, the operating characteristics, which refer to the ability of a test to find all cancers that would cause harm and to find only those cancers, are expressed in terms of the sensitivity and specificity of the test. (Box 3-1 describes these concepts.) Unfortunately, the "true" operating characteristics of DRE and PSA cannot be defined since few studies have evaluated them in populations where the true underlying prevalence of
clinically-significant prostate cancer is known. The fact that small volume, well-differentiated cancers should be considered as "nondisease" and that it is relatively easy to detect advanced cancer which may offer no therapeutic benefit further complicates the design and analysis of these studies.

What are usually available are studies of the "positive predictive value" of tests, the proportion of positive or suspicious test results that ultimately turn out to be cancer (see box 3-1); in these studies, patients with "negative" test results do not receive followup TRNB (even though they may harbor significant prostate cancers that the screening test did not find). Furthermore, these studies use different combinations of primary screening tests and different strategies of followup evaluation. Finally, the studies do not uniformly provide age-specific predictive values, which are important to an analysis of screening older men.

To overcome these problems, this analysis presents "likelihood ratios" of disease (292) for DRE and for PSA. These likelihood ratios are estimates of how many times more likely a patient with a particular test result is to have a given type of cancer than if the patient did not have the test. The probabilities of cancer with no test are the prevalence estimates found in table 2-5. Appendix C

BOX 3-1: DESCRIBING THE ACCURACY OF SCREENING TESTS

To analyze the impact of a screening program, it is necessary to understand the accuracy of each screening technology, sometimes referred to as the "operating characteristics" of the test. These operating characteristics, which include the ability of a test to find all existing disease and to find only disease, are usually expressed in terms of the test's sensitivity and specificity. Sensitivity is the percentage of all screened people with disease who test positive, while specificity is the percentage of all healthy screened people who test negative. In other words, sensitivity is the ability of a test to find people with disease, while specificity represents the test's ability to label healthy people correctly. These characteristics relate inversely to the false-positive rate (the percentage of people free of disease who test positive) and the false-negative rate (the percentage of people afflicted by the disease whose screening results are negative). For example, a test with sensitivity between 70 and 95 percent would have a false-negative rate of 5 to 30 percent. The figure below displays the calculation of sensitivity and specificity and the relationship of these indicators to false-positive and false-negative rates.

Calculating sensitivity and specificity requires

CALCULATION OF SENSIIVITY AND SPECIRTY

Calculation of Sensitivity and Specificity

Test result:	Positive	Disease	
		Present	Not present
		a	b
	Negative	c	d
		$a+c$	$b+d$
$a+b+c+d=$ Total number of tests administered			
Sensitivity $=$	a	Specificity	d
	$a+c$		$b+d$
False-negative rate $=1$-sensitivity $=$			c
			$a+c$
False-positive rate $=1$-specificity $=$			b
			$b+d$

SOURCE: Office of Technology Assessment, 1990. that one know the true underlying prevalence of disease in the screened population, regardless of screening test results. In other words, it would require performing definitive followup tests on all screenees, even those whose screening test is negative. This is usually not done in studies of prostate cancer screening because of the invasiveness, costs, and risks of such followup procedures (usually transrectal needle biopsies). Hence, most studies report a less useful measure of a screening technology's accuracy, the positive predictive value (PPV). The PPV is the percentage of people with positive test results who ultimately tum out to have cancer. Conversely, the negative predictive value (NPV), is the percentage of people with negative test results who ultimately tum out to be free of disease. Calculation of PPV does not require knowing the true underlying prevalence of disease among all people screened. The PPV for a specific condition is directly related to the prevalence of the condition being screened for and, all else being equal, is inversely related to the false-positive rate. A low PPV usually indic ates a high false-positive rate, although it is sometimes possible to have both a low PPV and a low false-positive rate. This occurs if the disease is rare. With rare conditions, because the prevalence of a previously undetected disease would decrease as the frequency of testing increases, prolonged studies implementing periodic rescreening normally yield declining PPVs as the studies progress.

The PPV is a limited measure of screening accuracy. In most circumstances a low PPV indicates that for every cancer detected a substantial number of individuals undergo the risks and costs associated with followup testing. However, policymakers or clinicians may decide that reductions in mortality and morbidity associated with screening in a population are large enough to justify the risks and costs associated with screening and followup among healthy individuals. The uncertainty conceming whether this is true for prostate cancer screening is a major issue in the analysis presented in this background paper.
discusses the methods used in making these estimates. The estimates themselves are presented in the sections on DRE and PSA respectively below. ${ }^{1}$

A potential problem with these estimates is that the positive predictive value in different studies depends heavily on the aggressiveness of the followup strategy employed for a suspicious test. Studies tend to find more cancer by performing multiple systematic biopsies (and even repeated sets of multiple systematic biopsies) in response to a suspicious primary test (70). Using this methodology, a test that has poor sensitivity and specificity but is "positive" in a large proportion of the population will appear to perform well if one examines only the predictive value of the strategy. For example, a strategy of performing multiple sets of biopsies on all men with brown eyes would probably have a rather high "yield" in terms of the number of prostate cancers detected, despite eye color having no information value as a test for prostate cancer. Eye color, in essence, becomes a lottery for receiving the more accurate diagnostic test, TRNB. A recent study of DRE and PSA suggests that this phenomenon occurs with prostate cancer screening $(72,123)$. Although the predictive value of a suspicious DRE in this study was about 22 percent (72), the percentage of palpably suspicious quadrants of the prostate that yielded cancer was only about 11 percent, implying that roughly half the cancers found as a result of selecting patients for biopsy based on a suspicious DRE were actually found elsewhere in the prostate as a result of the systematic biopsy.

DIGITALREC TALEXAMINATION

The digital rectal examination, in which the clinician attempts to feel abnormalities in the size or shape of the prostate gland through the rectum, is a time-honored test for the early detection of prostate cancer despite very weak agreement among published guidelines about its value (100). The DRE is limited in sensitivity because of an inability to detect tumors deep within the prostate gland. Because larger tumors are easier to feel, DRE is unlikely to detect insignificant cancers (although this risk will increase if a suspicious DRE triggers a set of systematic biopsies in addition to a biopsy of the suspicious area). The detection of larger cancers also means that a relatively high percentage of DRE-detected tumors (half or more) will have already spread beyond the confines of the prostatic capsule (139, 279, 271). Many investigators have been concerned about variation among physicians in their ability to detect cancers by DRE (271), especially the possibility that DREs performed by primary care physicians may not be as discriminating as urologists' exams. However, little empirical evidence exists to address this concern (354).

Appendix C lists studies of primary DRE screening for prostate cancer, with brief descriptions of study methods and results. Comparisons are difficult given different patient populations, different thresholds for calling a DRE "suspicious," and different strategies of followup testing. One study by Chodak and colleagues (79) provides the most detailed presentation, and allows es-

[^12]
TABLE 3-1: ESTIMATED UKEUHOOD RATIOS FOR RESULTS OF DIGITAL REC TALEXAMINATION CHANGING THE ODDS OF SIGNIFCANT PROSTATE CANCER ($>0.5 \mathrm{~mL}$) OF DIFFERENTPATHOLOGIC EXTENTS'

DRE result	Likelihood Ratio	
	Intracapsular cancer	Extracapsular cancer
"Suspicious"		
Chodak (1989) ${ }^{\text {c }}$	1.5	8.6
Richie (1993) ${ }^{\text {d }}$	2.0	2.7
"Nonsuspic ious"		
Chodak (1989)	0.96	0.53
Richie (1993)	0.83	0.72
a Probability of prostate cancer $<0.5 \mathrm{~mL}=11 \%$ based on J.E. Oesterling, V.J. Suman, H. Zncke et al., "PSA-Detected (Clinical Stage Tic or BO) Prostate Cancer. Pathologic ally Signific ant Tumors," Urologic Clinics of North America 17:719-737, 1990.		
${ }^{\mathrm{b}}$ See appendix C formethods deriving these estimates.		
c G.W. Chodak, P. Keller, and H.W. Schoenberg, "Assessment of Screening for Prostate Cancer Using the Digital Rectal Examination," Journal of Urology 141:1136-1138, 1989.		
dJ .P. Richie, W.J . Catalona, F.R. Ahmann, et al., "Effect of PatientAge on Early Detection of Prostate Cancerwith Serum Prostate-Spec ific Antigen and Digital Rectal Examination," Urology 42:365-374, 1993.		

Source: Office of Technology Assessment, 1995. Based on information from M.J. Bary, C.M. Coley, C. Fleming et. al, "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the Congressional Office of Technology Assessment" OTA contractpaperno. K3-0546.0 Massa chusetts General Hospital, Boston, MA J une 30, 1994.
timation of the likelihood of cancers with and without capsular penetration (table 3-1) for each DRE test result. ${ }^{2}$ Appendix B discusses the methods used to produce these estimates. No clinical trials of the use of DRE alone for the early detection of prostate cancer are available. However, neither a case-control study (129) nor a decision model (241) has suggested an important survival benefit for men screened with DRE.

PROSTATE-SPECIRC ANTIGEN

Prostate-specific antigen is a glycoprotein produced in the prostate gland with a probable role in the transport
of semen. Because cancerous prostate tissue, gram for gram, produces greater quantities of PSA than does normal or benignly enlarged tissue, and because prostate cancer may increase the likelihood that PSA "leaks" into the general circulatory system, serum (blood) PSA levels appear to have some discriminating capacity for prostate cancer (99, 257). Preliminary evidence suggests prostate cancers need to be greater than 1 mL in volume before they cause an increase in serum PSA (49).

Three PSA assays have been commonly used clinically and described in the literature (172). Hybritech's Tandem PSA assays detect PSA with monoclonal antibody

[^13]probes; these assays use radioactive antibodies and enzymatic reactions to perform the measurement. The Tandem PSA tests are currently the only assays approved by the U.S. Food and Drug Administration (FDA) for use in conjunction with DRE as an aid in the detection of prostate cancer in men over age 50. ${ }^{3}$ Abbott's IMx PSA assay uses a microparticle enzyme immunoassay technique. Yang's Pros-Check PSA assay uses a polyclonal antibody probe to measure PSA (356). The levels of PSA measured by the Hybritech and Abbott assays appear roughly similar $(190,355)$, while the polyclonal assay runs values about 1.6 -fold higher (148,339). However, investigators have recently raised concerns about the calibration of the Hybritech and Abbott assays (48, 149, 226,266), which together dominate the PSA assay market. Clinicians need to know which test their laboratory uses, and to consider a switch in assays in the "differential diagnosis" of a changing PSA in a given patient.

One potential difficulty with this screening test is that factors other than prostate cancer can temporarily elevate PSA levels for several weeks: acute inflammation of the prostate (prostatitis), acute urinary retention, a diagnostic medical procedure called rigid cystoscopy, TRUS, TRNB, or prostate surgery $(193,262)$. A recent study has also found temporary elevations in PSA following ejaculation (250). However, several studies have now documented that there is no clinically important elevation in PSA values following routine DRE (95, 371), an important finding since physicians often perform DRE and PSA at the same visit.

TABLE 3-2: PROPOSED AGE-SPECIRC NORMAL REFERENCE RANGES FOR PROSTATE-SPECIRC ANTIGEN MEASUREMENTS

	Nommal reference range (ng/mL)	
Age	Oesterling, 1993c a	Dalkin, 1993b
$40-49$	$0-2.5$	-
$50-59$	$0-3.5$	$0-3.5$
$60-69$	$0-4.5$	$0-5.4$
$70-79$	$0-6.5$	$0-6.3$

a J .E. Oesterling, S.J .J a cobsen, C.G. Chute, etal., "Serum Prostate-Spec ific Antigen in a Community-Based Population of Healthy Men: Establishment of Age-Specific Reference Ranges," Journal of the American Medical Association. 270:860-864, 1993.
b B.L. Dalkin, F.R. Ahmann, and J.B. Kopp, "Prostate Specific Antigen Levels in Men OlderThan 50 Years Without Clinic al Evidence of Prostatic Carcinoma," Journal of Urology 150:1837-1839, 1993.

SOURCE: Office of Technology Assessment, 1995. Based on information from M.J. Barry, C.M. Coley, C. Fleming et. al, "The Safety, Effectiveness, and Costof Early Detection and Treatment of Prostate CancerAmong Older Men: A Report to the Congressional Office of Tec hnology Assessment", OTA contract paperno. K3-0546.0, Massa chusetts General Hospital, Boston, MA J une 30, 1994.

Most studies consider an Abbott or Hybritech PSA level up to 4.0 nanograms per milliliter of serum (ng/ mL) (equivalent to a Yang PSA level up to $7 \mathrm{ng} / \mathrm{mL}$) as nonsuspicious (148,339). ${ }^{4}$ However, "normal" PSA values increase as a man ages, reflecting the increasing size of the prostate with age (88). Two recent articles have proposed age-specific reference ranges for normal PSA values (table 3-2). One study used the 95th percentile of serum PSA among men without evidence of prostate cancer as the upper boundary of the reference range

[^14](260, 261), while the other used a slightly different, but methodologically similar approach ${ }^{5}$ to define the upper limit (101). ${ }^{6}$ Another recent study compared the performances of several PSA test kits as part of an international PSA standardization conference (329).

Appendix D lists published studies that use PSA as the primary screening tool to detect prostate cancer (DRE used only to followup a suspicious PSA). ${ }^{7}$ Although these studies generally have a somewhat higher proportion of subjects with a cancer detected than do the studies of primary DRE, these proportions are likely underestimates of the maximal attainable yield since patients were often not biopsied unless a followup DRE or TRUS was also suspicious. Using data from the Catalona and Brawer studies, likelihood ratios for Hybritech PSA results of different categories were calculated as described in appendix B and are provided in table 3-3 (44, 66, 70). ${ }^{8}$

Variations in the use of PSA for screening have been proposed to improve the operating characteristics of this test for prostate cancer $(96,182)$. These variations, each of which has its own drawbacks, include: 1) PSA density (PSAD), a method of correcting the raw PSA value by
the volume of the prostate, as measured by TRUS (32, $33,284)$; 2) a predicted PSA (pPSA) based on gland volume against which measured PSA is compared to make decisions about proceeding to biopsy (206); and 3) PSA velocity, the rate of change of PSA over time $(63,64) .{ }^{9}$ Research currently underway may lead to a test for more specific types of PSA $(36,37,106,211,212,213)$ or other types of biological substances $(171,298)$ that more precisely identify men with prostate cancer.

One-Time Versus Repeated PSA Screening

Much less is known about the results of repeated screening with PSA than about one-time screening. This gap in our knowledge is significant since a Medicare prostate cancer screening benefit would most likely cover periodic screenings, not one screening per lifetime. The few studies that are available suggest a decrease in the proportion of screenees with cancer over repeated screenings $(46,47)$, while the proportion of patients with cancer confined to the prostate capsule appears to increase: 71 percent as opposed to 63 percent in one series $(13,70)$, and 87 percent versus 56 percent in another series (46). Appendix E summarizes these studies.

[^15]
TABLE 3-3: ESTIMATED UKELHOOD RATIOSFOR DIHERENTRESULTS OF PROSTATE-SPECIRC ANTIGEN TESTING CHANG ING THE ODDS OF SIGNIFCANT ($>0.5 \mathrm{~mL})^{\text {a PROSTATE CANCER }}{ }^{\text {b }}$

PSA result	Likelihood ratio	
	Intracapsular cancer	Extracapsularcancer
Pooled Catalona, 1991 ${ }^{\text {d }}$ and Brawer, 1992e		
$<4.0 \mathrm{ng} / \mathrm{mL}$	0.98	0.09
$4.1-10 \mathrm{ng} / \mathrm{mL}$	1.4	5.1
$>10 \mathrm{ng} / \mathrm{mL}$	0.4	49.6
Richie, 1993 ${ }^{\text {f }}$		
$<4.0 \mathrm{ng} / \mathrm{mL}$	0.7	0.4
$\geq 4.1 \mathrm{ng} / \mathrm{mL}$	3.0	4.6
Catalona, 1993c9		
$<4.0 \mathrm{ng} / \mathrm{mL}$	0.8	0.5
$4.1-10 \mathrm{ng} / \mathrm{mL}$	2.8	3.2
$>10 \mathrm{ng} / \mathrm{mL}$	3.0 h	23.7
${ }^{\text {a }}$ Asdescribed in appendixC, probability of a detected cancer $<0.5 \mathrm{~mL}$ isassumed to be 11% based onJ.E. Oesterling, V.J. Suman, H. Zncke, etal., "PSA-Detected (C linic al Stage Tic or BO) Prostate C ancer. Pathologic ally Signific ant Tumors," Urologic Clinics of North America 17:719-737, 1990.		
${ }^{\mathrm{b}}$ See appendix C formethods of deriving these estimates.		
c Results based on Hybritech assay.		
${ }^{d}$ W.J . Catalona, D.S. Smith, T.L. Ratliff, et al., "Mea surement of Prostate-Spec ific Antigen in Serum asa Screening Test forProstate Cancer," New England Journal of Medicine 324:1156-1161, 1991.		
e M.K. Brawer, M.P Chetner,, J. Beatie, et al., "Screening for Prostatic Carcinoma with Prostate Specific Antigen," Journal of Urology 147:841-845, 1992.		
${ }^{f}$ J.PRic hie, W.J.Catalona, F.R. Ahmann, etal., "Effect of PatientAge on Early Detection of Prostate Cancerwith Serum Prostate-Spec ific Antigen and Digital Rectal Examination," Urology 42:365-374, 1993.		
9 W.J. Catalona, D.S. Smith, T.L. Ratliff, et al., "Detection of Organ-Confined Prostate Cancer Is Increased Through Prostate-Specific Antigen-Based Screening," Journal of the American Medical Association 270:948-954, 1993.		
${ }^{\mathrm{h}}$ The discrepancy between thisvalue and the coresponding derivation (0.4) from the pooled earlierstudiesisexplained by the observed difference in probability of pathological localization for cancers ($>0.5 \mathrm{~mL}$) detected by PSA $>10 \mathrm{ng} / \mathrm{mL}$ ($32 \% \mathrm{vs} .5 \%$).		

Source: Office of Technology Assessment, 1995. Based on information from M.J. Bary, C.M. Coley, C. Fleming, et. al, "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate Cancer Among Older Men: A Report to the Congressional Office of Technology Assessment," OTA contract paper no. K3-0546.0, Massachusetts General Hospital, Boston, MA J une 30, 1994.

PSA Screening Among Men with Symptoms of BPH

As noted earlier, benign prostatic hyperplasia (BPH) can raise PSA levels complicating PSA measurement. Given the widespread prevalence of urinary symptoms indicative of BPH among older men, PSA screening for prostate cancer among this large group may yield little useful information. Men with symptoms of BPH do not appear to be at much greater risk of harboring cancer (ex-
cept as conferred by their age) (235) and in one large study, when controlling for age, men with symptoms of prostatism actually had a lower chance of being found to have cancer through DRE and PSA screening (72). In addition, because BPH and prostate cancer share symptoms and the likelihood of elevated PSA levels, the specificity of PSA deteriorates to 50 to 79 percent among men with clinical evidence of BPH (173, 309). Furthermore, there appears to be a great degree of overlap
among men with localized (intracapsular) prostate cancer and BPH, further limiting the value of PSA testing among men with these symptoms (309). ${ }^{10}$

COMBINATION OF DRE AND PSA

Although combination screening with both DRE and PSA may currently, be the most popular strategy of aggressive office-based early detection of prostate cancer among U.S. urologists, studies of the predictive value of this strategy are only just becoming available for low-risk populations. DRE and PSA each detect some cancers not identified by the other modality; therefore, the yield of a screening program (the percentage of screenees who ultimately have a cancer confirmed) can be increased (to roughly 4 percent) by combining both tests. In addition, the studies of combination testing reported recently have generally performed a set of systematic biopsies if either test is suspicious, as well as biopsies of suspicious lesions noted on followup TRUS; this more aggressive use of TRNB also contributes to the higher yield seen in these studies.

However, these more aggressive strategies result in performing biopsies on up to a third of all screenees; the additional cancers detected must be weighed against the cost and risk of biopsy. Furthermore, these studies were conducted among volunteers, and some data suggest that volunteers may have a higher "prior probability" of prostate cancer than unselected men in the community (261). ${ }^{11}$

The newest studies where DRE and PSA are performed in the same men make it clear that PSA is a better single test than DRE in terms of detecting cancers and of detecting cancers still confined within the prostatic capsule $(28,72,119,263,279)$.

FOШOWUPTESTING

Increasingly, followup strategies for a suspicious DRE or PSA include both TRUS and TRNB. Most investigators use TRUS to guide biopsies of areas determined to be suspicious by DRE or TRUS. Many clinicians now perform multiple systematic (four to six) biopsies of the prostate (in a single procedure) in addition to biopsies of suspicious areas, since a patient with a normal TRUS may actually harbor cancer 12 to 33 percent of the time (depending on the PSA level) (157). Others base decisions about whether to perform systematic biopsies on raw PSA values or PSAD values (29, 99, 306). Although some investigators advocate simply following men with mild PSA elevations (i.e., in the 4.1 to $10.0 \mathrm{ng} / \mathrm{mL}$ range) if the DRE and TRUS are negative, when aggressively evaluated, this group yields the highest percentage of intracapsular cancers, the real targets of screening.

There is also variability in how clinicians follow men who have a negative set of biopsies after a suspicious PSA test. Some urologists recommend repeating the systematic biopsies at least once (particularly for a PSA greater than $10 \mathrm{ng} / \mathrm{mL}$); others perform followup PSA

[^16]tests more frequently than annually and rebiopsy for either persistent elevations or a rising PSA value. Often then, a suspicious screening test, even if followed by a negative biopsy, will lead to heightened surveillance for prostate cancer and further tests and biopsies in the future. On the other hand, this more intensive surveillance in turn increases the yield of screening to some degree.

Transrectal Ultrasound

Because of the anatomy of the prostate gland itself, TRUS has much better sensitivity for cancers found in certain parts of the prostate than for others (334). Appendix F lists studies that use TRUS as a primary means for early prostate cancer detection. In one of these studies, a demonstration project of the American Cancer Society, about 14 percent of men had a suspicious TRUS, and 15 percent of these men had cancer, a lower predictive value than studies of DRE or PSA alone (Mettlin, 1991). In the absence of a suspicious DRE or elevated PSA, the predictive value in this series dropped to 5.4 percent (19, 215). In a study based in a urologic practice where the prevalence of cancer was especially high (detection rate of 14.6 percent), and where about half of the men were biopsied based on results of combined screening (DRE, PSA, and TRUS), Cooner and associates found that if men had a PSA less than $4 \mathrm{ng} / \mathrm{mL}$ and a nonsuspicious rectal exam, the yield of ultrasonographic screening was about 2 percent. Put in another way, the overall yield of the testing strategy only increased from 13.5 to 14.6 percent through the performance of TRUS in addition to DRE and PSA (91).

Several studies provide more direct evidence about the true sensitivity and specificity of TRUS than is available for DRE and PSA. Two studies were able to estimate the operating characteristics of preoperative TRUS performed on men already scheduled for radical prostatec-
tomy for cancer or BPH. The study on men scheduled for prostatectomy for cancer showed a TRUS sensitivity of 52 percent and a specificity of 68 percent (61), and the study of men with BPH showed a sensitivity of 30 percent (315). These relatively low sensitivity estimates for TRUS are a major reason for the increasing tendency to perform systematic biopsies for suspicious DRE or PSA results, even if TRUS does not indicate anything suspicious. Furthermore, these and other studies (337) suggest that TRUS tends to underestimate the size of cancers that are detected, making it a problematic technology for identifying men with small cancers who may not need aggressive treatment. Finally, evidence also suggests that BPH may also erode the ability of TRUS to detect cancer (74).

TRUS itself does not appear to pose any risk for patients, although it does pose costs to patients or their health insurers. In 1992, Medicare reimbursements were $\$ 89$ for a diagnostic TRUS by itself and $\$ 189$ for a TRUS-guided biopsy.

Transrectal Needle Biopsy

Modern transrectal needle biopsies (TRNBs) are usually done with ultrasound guidance using a needle mounted in a spring-loaded biopsy "gun." Biopsies can be directed toward areas deemed suspicious by DRE or TRUS, or performed systematically to sample the entire prostate; often six biopsies are taken in a sextant pattern from different parts of the prostate gland (326). TRNB is uncomfortable and can be complicated by infection or bleeding (89). Complications of biopsy include urinary tract infections in 0.5 to 5 percent of patients and urosepsis in an estimated 0.5 percent (no deaths), despite routine antibiotic prophylaxis $(16,91,109,160)$. Some patients also experience bleeding (less than 1 percent) with very few (one out of 835 biopsies in one study) requiring transfusion (91, 109).

TRNB is often considered the "gold standard" test for the diagnosis of prostate cancer; however, it is increasingly clear that the gold standard is "tarnished" to some degree. In terms of the sensitivity of TRNB, investigators from Washington University have found that when men are found to have a persistent mild elevation in PSA (4 to $9.9 \mathrm{ng} / \mathrm{mL}$), repeated biopsies find a large number of cancers presumably missed by previous biopsies. In one preliminary report, 25 percent of these men with one previously negative biopsy had cancer, as well as 14 percent with two previously negative biopsies and 10 percent with three previously negative biopsies (187). Although many of these patients had original biopsies that were directed by abnormal DRE or TRUS results instead of multiple, systematic biopsies, simulation modeling has also suggested systematic biopsies may be relatively insensitive (103).

In terms of specificity, TRNB can detect "incidental" cancers of less than 0.5 mL in volume, which (as discussed in chapter 2) may likely pose no threat to the patient's health, making them conceptually equivalent to "false positives." This risk increases as more biopsies are performed, and particularly with repeated systematic biopsies. Terris and colleagues recently estimated that the probability of finding an incidental cancer on a set of six biopsies was approximately 4 percent (338).

SCREENING THE MEDICARE POPULATION

Age has a complex effect on the results of screening for prostate cancer. The prior probability of cancer increases with age, but the percentage of organ-confined cancers decreases. Furthermore, the specificity of PSA, and probably DRE as well, deteriorates as more men in
the population have greater amounts of BPH. Richie and colleagues (279) present the net effect of these factors using data from their large, six-center study of screening:

- The deteriorating specificity of the tests with age resulted in a steeply increasing number of patients with suspicious results on either DRE or PSA that would generate a recommendation for biopsy: 15 percent at ages 50 to 59,28 percent at ages 60 to 69 , and 40 percent at ages 70 to 79 .
- The rising prevalence of cancer maintained the predictive value relatively constant, so that cancer was detected in 2,4 , and 7 percent of these age groups, respectively.
- Among men whose cancers were pathologically staged, the percentages that were organ confined (definition not specified) by age groups were 74, 76, and 60 percent.
- In this study, for men ages 60 to 69 , adding PSA increased the percentage of men with a suspicious screening evaluation from 16 percent (with DRE alone) to 28 percent; interestingly, the percentage of patients with pathologically localized cancer did not decrease with the addition of PSA in this age group. For men ages 70 to 79, adding PSA to DRE increased the percentage of suspicious evaluations from 2041 percent, with an increase in the resulting percentage of organ- confined cancers detected from 45 to 60 percent. ${ }^{12}$

All of these data suggest that as screening programs, especially those employing PSA as one screening technology, are directed toward older populations, the number of patients requiring more costly, invasive, and

[^17]riskier followup also increases, with a larger number of the cancers ultimately found being confined within the prostate and quite possibly not destined to cause health problems. For policymakers, the decision about whether to support screening depends on the number of followup
tests and incidental cancers they are willing to endure in order to find more cancers that may threaten patients' health or lives. This balance may depend on medicine's ability to cure more aggressive prostate cancers, the question addressed in chapter 4.

CHAPIER
 4

Treating Prostate Cancer

there is controversy about the optimal treatment for clinically localized prostate cancer (i.e., cancer that appears not to have spread beyond the prostate based on information available without performing surgery). ${ }^{1}$ In the United States, the preference is for aggressive treatment, with urologists generally preferring radical prostatectomy (203, 318). However, recent research has revealed considerable variability in stage-specific treatments actually administered (219, 238, 247). In other developed countries, urologists have tended to be more conservative regarding both early detection $(78,302,303)$ and treatment $(5,175,364)$.

Although observational studies exist to determine the outcomes of men who receive different treatments and to measure their risks of adverse outcomes, few well-designed trials exist to determine whether observed outcomes are actually the result of the treatment or due to some other uncontrolled and unmeasured factor. As shown in chapter 5, this uncertainty about treatment effectiveness is the greatest impediment to evaluating the cost-effectiveness of a potential Medicare prostate screening benefit.

STRATEG IES TO DEIERMINE CANCERSTAGE

One problem with current strategies for early detection of prostate cancer is that screening will detect some cancers that are not destined to cause morbidity or mortality and do not need treatment, as well as some cancers that have already spread through the prostate capsule and are less likely to be cured or slowed by treatment. Unfortunately, many patients may need to undergo a surgical staging procedure such as pelvic lymphadenectomy, or even radical prostatectomy itself, to establish the true stage of their cancer. Better, less invasive staging tests might allow physicians to withhold treatment from patients unlikely to benefit, sparing both the risks and costs of these procedures.

In terms of determining preoperatively whether cancers are likely to be insignificant (which this background paper defines as well-differentiated and less than 0.5 mL in volume), clinicians have developed some algorithms using data from systematic biopsies, and if necessary, rebiopsies (338). Unfortunately, however, other investigators have documented that these algorithms
predict incorrectly in a quarter to a third of cases (98, 191, 192).

As far as predicting preoperatively which tumors have spread to other parts of the body, detection of metastasis to bone by using radiographic bone scans is relatively straightforward, and algorithms do exist to help identify low-risk subsets of men in whom bone scans are unlikely to be helpful $(84,357)$. However, the use of other diagnostic technologies (e.g., computerized tomography (CT), magnetic resonance imaging (MRI), transrectal ultrasound (TRUS)) have not yet replaced operative pathological examinations to determine if the cancer has spread to the pelvic lymph nodes $(76,164,281)$ or to determine if the cancer is extracapsular (97, 137, 285). Models that use the results of multiple tests to assess the probability of organ confinement and lymph node involvement also result in substantial misclassification rates for most patient groups (1, 191, 192, 267, 283, 369).

While better staging techniques, such as molecular staging strategies currently under active investigation (185), may allow better prediction of which tumors are likely to be dangerous enough to threaten a patient's longevity but still potentially curable, selective treatment of only those tumors most likely to benefit may still be practically difficult. As shown later in this chapter, evidence establishing the effectiveness of treatment is currently weak. Once a clinician finds cancer, in the absence of data that there is not at least some net benefit from treating even apparently inconsequential or unconfined cancers, patients and physicians may have difficulty in forgoing therapy, even when the expected net benefits are clearly less than for other types of cancers.

Many patients with negative bone scans undergo a dissection of the pelvic lymph nodes to determine if the cancer has spread in the region of the prostate prior to a radical prostatectomy, one type of treatment with curative intent. ${ }^{2}$ Most clinicians would not proceed with a radical prostatectomy in light of the discovery of involved pelvic nodes, although a minority feel that aggressive surgical treatment of node positive disease improves outcomes $(254,375)$. Recently, some urologists have begun to question the need for a pelvic lymph node examination prior to radical prostatectomy among men with better differentiated tumors, or in men with lower prostate-specific antigen (PSA) values (38, 102, 126, 138).

Another new strategy sometimes employed before radical prostatectomy is the use of hormonal drugs to decrease the likelihood that the cancer is found to extend beyond the outside of the prostate capsule or beyond the surface of the surgically removed specimen (known as surgical margin positivity). Controversy exists about whether this treatment (known as androgen ablation therapy) actually causes a shrinking of the tumor (regression) as opposed to only decreasing PSA levels (223, 259,321). Although a recently presented clinical trial suggests that preoperative androgen ablation therapy actually does cause some regression (202), there is no evidence such treatment improves patient outcomes with prolonged followup.

THE ETEC TIVENESS OF TREATMENT

This chapter examines three strategies for treating prostate cancer: 1) expectant management (or "watchful

[^18]waiting"), 2) radiation therapy, and 3) radical prostatectomy.

Expectant Management

Expectant management, a commonly used strategy for clinically localized cancer worldwide (367), can take two basic forms: 1) only monitoring the patient for symptoms related to cancer progression and treating these symptoms as necessary or 2) monitoring for disease progression and attempting cure with radiation treatment or prostatectomy in that circumstance. Even in the United States, where the approach to prostate cancer is much more aggressive, a 1990 study by the American College of Surgeons Commission on Cancer found that almost two-thirds of Stage A cancers were not actively treated (238).

Many men with prostate cancer treated expectantly will have evidence of local progression by digital rectal examination (DRE) over time (342). Local progression of prostate cancer can cause symptoms from bladder outlet obstruction or invasion of surrounding tissues. Bladder outlet obstruction can be treated mechanically (by transrectal resection of the prostate (TURP) ${ }^{3}$ or, less commonly, stenting).

Treatment involving deprivation of the male hormone testosterone (an androgen) is often used as part of an expectant management therapy when the disease becomes symptomatic (168) or, more recently, for evidence of cancer progression in asymptomatic men. ${ }^{4}$ Clinicians can accomplish androgen deprivation therapy by orchiectomy (surgical removal of the testes) or by medi-
cal means with other hormones or drugs (301). The latter option is more common despite considerably higher costs and the risk of patient noncompliance, at least partially because of patient preference $(53,65,311) .{ }^{5} \mathrm{Al}-$ though the initial response to hormonal therapy for advanced prostate cancer is often gratifying, it is also frequently short-lived, with the results of subsequent chemotherapy generally disappointing $(94,108)$.

What Is the Effect of Expectant Management?

Although the outcomes of expectant management have been studied around the world $(3,4,114,135,175$, 176, 249), few investigators in the United States have done so $(178,366)$.

A number of case series of men with clinically localized prostate cancer in "watchful waiting" strategies have been reported from around the world. As shown in table 4-1, a recent structured literature review and synthesis of 23 nonexperimental studies showed that receiving expectant management for localized prostate cancer had rates of metastasis and death no different from radical prostatectomy and lower than radiation therapy (362). However, these comparisons are inferior to wellcontrolled, experimental results $(333,362)$. This literature synthesis has been criticized for the inclusion of series describing predominantly the outcomes of early, inconsequential Stage T1a/A1 cancers, and for including series using early androgen deprivation therapy $(132,360)$. In addition, patients receiving radiation therapy had more poorly differentiated patients than those receiving other treatment options.

[^19]TABLE 4-1: PATIENTCHARACTERISIICS AND OUTCOMES OF LOCALIZD PROSTATE CANCER TREATMENT

	Watchful waiting		Radiation therapy		Radic al prostatec tomy	
	Median (CI)	n	Median (CI)	n	Median (CI)	n
Patient characteristics						
Age	$\begin{gathered} 71 \\ (69-73) \end{gathered}$	27	$\begin{gathered} 66 \\ (64-66) \end{gathered}$	49	$\begin{gathered} 63 \\ (61-64) \end{gathered}$	33
Percent of cancers poorly differentiated	$\begin{gathered} 7 \\ (6-11) \end{gathered}$	19	$\begin{gathered} 21 \\ (13-24) \end{gathered}$	45	$\begin{gathered} 11 \\ (6-25) \end{gathered}$	22
Outcomes						
Annual mortality rate						
All causes	$\begin{gathered} .060 \\ (.050-.04) \end{gathered}$	27	$\begin{gathered} 045 \\ (.040-.052) \end{gathered}$	45	$\begin{gathered} .032 \\ (.020-.044) \end{gathered}$	27
Cancer-specific	$\begin{gathered} .009 \\ (.006-.012) \end{gathered}$	23	$\begin{gathered} .023 \\ (.010-.030) \end{gathered}$	22	$\begin{gathered} 009 \\ (.007-.013) \end{gathered}$	23
Metastatic rate	$\begin{gathered} .017 \\ (.011-.043) \end{gathered}$	15	$\begin{gathered} .050 \\ (.030-.095) \end{gathered}$	17	$\begin{gathered} .023 \\ (.014-.025) \end{gathered}$	18

KEY: $\mathrm{CI}=95 \%$ confidence interval; $\mathrm{n}=$ number of studies, which varies since not all studies supply all data of interest.
Source: Office of Technology Assessment, 1995. Data from J.H. Wasson, C.C. Cushman, R.C. Bruskewitz, et al, "A Structured Literature Review of Treatment for Locarized Prostate Cancer," Archives of Family Medicine 2:487-493, 1993.

A literature synthesis of seven studies (586 patients) of outcomes of men with palpable, clinically localized cancers (Stage T2) reported since 1980 yielded rates of metastasis, overall mortality, and prostate cancer-specific mortality higher than those presented in the Wasson review described above (6). However, one would expect these higher rates in an analysis restricted to palpable cancers. Only two studies provided data on cancer-specific survival at 10 years among men treated expectantly with a mean of 84 percent. In this analysis, the results of studies reporting outcomes of radical prostatectomy were better, while studies reporting outcomes for radiation therapy were worse.

One of these expectant management studies enrolled men with localized prostate cancer from a welldefined geographic area in Sweden between 1977 and 1984 and has an unusually long duration of followup (175, 176, 177). It excluded men with moderately or poorly differentiated cancer or a few men receiving curative treatment, leaving a sample of 223 with a mean age of 72 . At 12.5 years of average followup, there have been 23 prostate cancer deaths in the cohort (10 percent), and 148 deaths from other causes (66 percent). Ten-year me-tastasis-free survival (corrected for deaths from other causes) was 83 percent. Tumor grade was the dominant predictor of prognosis. ${ }^{6}$

[^20]Another recent study with long-term followup showed similar results. It presented data from men diagnosed with clinically localized prostate cancer in Connecticut between 1971 and 1980, and treated with immediate or delayed hormonal therapy when necessary. Again, grade, but not age, predicted cancer-specific survival. For men over 65, cause-specific 15-year survivals were: well differentiated, 82 to 93 percent; moderately differentiated, 67 to 78 percent; and poorly differentiated, 46 to 53 percent (194).

Chodak and colleagues have recently conducted a meta-analysis including 828 men (mean age 70) enrolled in expectant management studies from six centers with 10-year adjusted cancer survival rates: well differentiated, 87 percent; moderately differentiated, 87 percent; and poorly differentiated, 34 percent $(82,83)$. Grade was once again the dominant independent determinant of the rate of prostate cancer mortality. The predicted metasta-sis-free survival at 10 years was lower than the survival statistics would indicate: 81,58 , and 26 percent for well, moderately, and poorly differentiated disease, respectively. ${ }^{7}$

The Risks of Expectant Management

The risks of expectant management for clinically localized cancer include any higher rate of the development of metastases and prostate cancer-specific mortality that this strategy imposes over and above the rates seen with active treatment. ${ }^{8}$ The magnitude of these added risks, if any, has not been defined. More clearly, men managed expectantly have increased risks of local cancer progression compared with men treated with radical
prostatectomy; however, the clinical significance and quality-of-life implications of local cancer progression have not been well studied (343). Johansson reported that 22 percent of the men in his study developed evidence of progression by DRE to Stage T3 over 10 years; however, he recently reported that in only six cases were local problems "substantial" and resistant to treatment (176). ${ }^{9}$

Radiation Therapy

Radiation therapy administered for cure (also known as radiotherapy) usually involves x-rays from an external source delivered in maximal doses to the prostate, lesser doses to the seminal vesicle (located above the prostate), and minimal radiation to the small bowel, rectum, anal canal, and urethra (270). Adjustments are made in the dose and targets based on the specific tumor and host. Much less commonly, radioactive "seeds" are placed in the prostate as primary therapy, or in combination with external beam radiotherapy, to increase the dose delivered to the prostate while better protecting nearby tissues. Patients usually receive external beam radiotherapy in five weekday treatments over six or seven weeks (20). Research is actively underway to identify new methods of radiotherapy, such as three-dimensional conformal therapy, that may avoid underdosing the prostate while more effectively excluding surrounding normal tissues, reducing the associated risks (209).

The relatively little attention given to radiation therapy in the recently published literature on prostate cancer detection and treatment may reflect the fact that urol-

[^21]
38 Costs and Effectiveness Of Prostate Cancer Screening In Eleerly Men

ogists, who most often recommend radical prostatectomy for localized prostate cancer, have conducted these studies (362). However, as recent as 1990, a study by the American College of Surgeons Commission on Cancer found that radiotherapy was used more commonly than radical prostatectomy in the United States for every_stage of prostate cancer (238). ${ }^{10}$ In addition, a recent study suggested that prostate cancer patients in health maintenance organization settings were more likely to receive radiotherapy rather than surgery compared with patients in fee-for-service settings (152). ${ }^{11}$

How Effective Is Radiation Therapy?

The effectiveness of radiotherapy, compared with either expectant management or radical prostatectomy, for reducing mortality and morbidity among men with clinically localized cancer has not been well studied. A single randomized clinical trial of 97 men with Stage A2 or B cancers found a significant improvement in time-torecurrence with surgery compared with radiation, but no mortality difference $(269,359)$. However, because many patients "crossed-over" to the other treatment after randomization and the analysis was based on "treatment given" rather than "intention to treat," these conclusions may not be valid.

Although the results of only one imperfect clinical trial are available, some additional evidence is available from two cohort studies ${ }^{12}$ of patients with clinically
localized cancer treated with radiotherapy for cure -the Patterns of Care Studies (PCS) $(161,197)$ and the Radiation Therapy Oncology Group (RTOG) study (\#7706) (15). At 10 years, overall survival among patients receiving radiation was no different than expected survival for age-matched men without cancer (63 percent in PCS and 64 percent in RTOG). In the 1978 PCS, about 83 percent of the 10 year survivors had no evidence of disease. For men with palpable, clinically localized T2 cancers, overall survival at 10 years was 46 percent (i.e., about 20 percent lower than for cancer-free men of similar age), with about 74 percent of the survivors classified as diseasefree (165). Radiation oncologists argue that, out to 10 years, these outcomes are equivalent to radical prostatectomy, particularly given the unknown nodal status of the radiotherapy patients $(87,117,161,163,165,184$, 208). In fact, for a subset of men in RTOG study with negative lymph node dissections, most of whom had T2 cancers, cancer-specific survival was 86 percent after 10 years, with 79 percent metastasis-free survival (162).

In one of the literature reviews mentioned in the section on expectant management, only one study was found to have stratified patient outcomes following radiotherapy by grade and stage of disease (362). In all the available cases of patients treated with radiotherapy, these men had higher median rates of development of distant metastases and cancer- specific mortality than men treated with radical prostatectomy and expectant management, but they also had more men with poorly

[^22]differentiated cancers than series of either of the other treatments (table 4-1). These nonexperimental comparisons may also be invalid because of the older age of radiotherapy patients, and the fact that patients with lymph node involvement are included in radiotherapy series but excluded from surgical series.

Many urologists worry that evidence of residual cancer in many men following radiotherapy augurs poorly for the prognosis of men treated this way (51, 75, $183,210,294,297,327,359$). On the other hand, rates of biopsies after radiotherapy have been lower in some recent small series of Stage T1 and T2 disease (cancers confined to the prostate) given radiation treatment in a particular manner (125), and the prognosis for men with positive biopsies after radiotherapy is debated (275).

Risks of Radiation Therapy

Injury from radiotherapy to the radiosensitive tissues of the bladder and urethra can cause cystitis ${ }^{13}$ and incontinence. Injury to the rectum can cause proctitis, ${ }^{14}$ and injury to the nerves and blood vessels adjacent to the prostate can cause impotence (205). Table 4-2 provides estimates of these risks based on a structured review of the medical literature published since 1981 (362). ${ }^{15}$ This literature does not allow estimation of the hazards of radiotherapy specifically among Medicare-age men. However, preliminary analysis of a survey of complications of external beam radiotherapy among Medicareaged men suggests that about 5 percent of men use pads to deal with incontinence and that 35 percent had noted
no partial or full erections since their treatments (27). These results compare favorably to published data on the complications of radical prostatectomy collected using the same methods and discussed below (127).

Radical Prostatectomy

The third treatment strategy, radical prostatectomy, entails removing the entire prostate with the tissues that cover it and the seminal vesicles that sit above the gland. In recent years, modification of the procedure by Walsh and colleagues and a better understanding of the anatomy of the area (50) has allowed wider excision around the prostate, but with special attention to nearby nerves and blood vessels to reduce blood loss and post-operative incontinence and impotence. However, attempts to preserve these nerves in cases of capsular penetration increases the risk of surgical margin positivity ${ }^{16}(267,287)$.

How Effective Is Radical Prostatectomy?

Observational data indicate that men who undergo radical prostatectomy tend to do well with prognosis dependent on disease stage (331). Those with organ-confined cancer have a low risk of recurrence and normal life expectancies. For men with unconfined disease, one recent study noted localized recurrence in 8 percent of men within five years as opposed to metastases in 30 percent. ${ }^{17}$ This suggests that prostatectomy improves cancer control in the area around the prostate, even in situations when the rate of development of metastatic disease elsewhere in the body may be unchanged (50, 248).

[^23]TABLE 4-2: PERSISTENTADVERSE OUTCOMES OF LOCALZED PROSTATE CANCER TREATMENT (from literature published since 1981)

	Radical prostatectomy	External beam radiation
Mortality		
Weighted mean	1.1\%	0.2\%
Sample size (number of men)	400.0	496.0
Median probability ${ }^{\text {a }}$	2.0\%	0.0\%
Number of studies	6.0	8.0
Any incontinence		
Weighted mean	26.6\%	6.1\%
Sample size (number of men)	301.0	443.0
Median probability ${ }^{\text {a }}$	16.0\%	6.5\%
Number of studies	8.0	6.0
Complete inc ontinence		
Weighted mean	6.8\%	1.2\%
Sample size (number of men)	719.0	739.0
Median probability ${ }^{\text {a }}$	6.0\%	1.0\%
Number of studies	11.0	11.0
Any bowel injury		
Weighted mean	2.7\%	11.4\%
Sample size (number of men)	407.0	1,148.0
Median probability ${ }^{\text {a }}$	1.5\%	13.5\%
Number of studies	4.0	12.0
Bowel injury (requiring long-term treatment or colostomy)		
Weighted mean	1.3\%	2.3\%
Sample size (number of men)	551.0	1,680.0
Median probability ${ }^{\text {a }}$	1.0\%	1.0\%
Number of studies	6.0	17.0
Stricture requining long-term treatment		
Weighted mean	12.4\%	4.5\%
Sample size (number of men)	542.0	959.0
Median probability ${ }^{\text {a }}$	9.0\%	2.5\%
Number of studies	9.0	12.0
Impotence		
Weighted mean	84.6\%	41.5\%
Sample size (number of men)	374.0	415.0
Median probability ${ }^{\text {a }}$	62.0\%	44.0\%
Number of studies	7.0	5.0

SOURCE: Office of Technology Assessment, 1995. Data fromJ.H. Wasson, C.C. Cushman, R.C. Bruskewitz, et al., "A Struc tured Literature Review of Treatment forLoc alized Prostate Cancer," Archives of Family Medicine 2:487-493, 1993.

However, the attributable benefit of radical prostatectomy is less clear. ${ }^{18}$ The structured literature synthesis of prostate cancer treatment, already described in the discussion of expectant management, found rates of death and metastasis that were not statistically different for radical prostatectomy and expectant management (table 4-1) (362). The good outcomes for men receiving radical prostatectomy noted in observational studies are in part due to better preoperative staging, and the exclusion of men whose cancer is found preoperatively to have spread to the pelvic lymph nodes. Hence, nonexperimental comparisons of outcomes of expectant management, radiation therapy, and radical prostatectomy are potentially confounded by different mixes of cancer among these studies.

Only one clinical trial has compared expectant management and radical prostatectomy directly. In a Veterans Administration Cooperative Research Group (VACURG) clinical trial, 61 men with clinically localized prostate cancer were randomized to radical prostatectomy and 50 men to expectant management; about half had cancers found at TURP and half palpable cancers. After seven years and again after 15 years, there is no statistically significant difference in survival between the two treatment strategies (54, 147). However, the trial's small sample size impedes detection of any real difference that may exist. ${ }^{19}$

The Risks of Prostatectomy

As indicated in table 4-2, Wasson's synthesis of the medical literature since 1981 indicates that the median
risk of death associated with radical prostatectomy itself is about 1.1 percent; any incontinence, 27 percent; complete incontinence, 7 percent; impotence, 85 percent (31 percent in two studies of the never-sparing procedure); and stricture (obstruction or narrowing of the urethra) requiring long-term treatment, 12 percent. However, the definitions of adverse outcomes vary considerably among the studies, and as with radiation therapy, the likelihood of these outcomes are likely to vary with the experience and skill of the surgeon and hospital (50, 69, 276). On the other hand, these may be a lower-bound of the risks faced by typical patients since publication bias may lead to underestimates (27). Furthermore, Medicare patients may face higher risks because of age and comorbidities.

A recent survey that used Medicare claims data to choose a national probability sample of men who have received radical prostatectomy provides more generalizable estimates of the risks associated with this procedure for Medicare beneficiaries (127). ${ }^{20}$ The results are presented in table 4-3 and stand in contrast to the less frequent adverse outcomes suggested by the preliminary analysis mentioned earlier of a similar survey of Medi-care-age men (albeit older ones) who underwent radiation therapy. Within this cohort of men over 65 , the risk of these complications was not related to age at surgery.

FOШOWUP TREATMENTAFIER CURATIVE THERAPY

After initial treatment by radiation or radical prostatectomy, clinicians often consider additional therapy if

[^24]
TABLE 4-3: ADVERSE OUICOMES OF RADICALPROSTATECTOMY AMONG MEDICARE BENERCIARIES

Condition

Attributable 30-day post-operative mortalitya
Cardiopulmonary complications ${ }^{\text {b }}$
Incontinence

- Wore pads or other devic es for incontinence ${ }^{\text {c }} 31.0$
- Dripped more than a few dropsdaily 23.0
- Underwent surgic al treatment for incontinence 6.0
- Had a catheter 2.0

Impotence

- Had ability to have erections priorto surgery 90.0
- No full or partial erections since surgery 61.0
- Had erections firm enough for intercourse in previous month 11.0 Underwent medic al/surgic al treatment for stric ture,
$2-4$ years a fter surgery 20.0

Percent of men reporting
0.6\%
4.0-5.0
a Total 30-day post-operative mortality (1\%) minus probability of death for other causes.
${ }^{\mathrm{b}}$ Congestive heart failure, myocardial infection, pulmonary embolism, or respiratory failure.
c Over 80% of these men reported dripping every day, indic ating these pads and devices were not just used prophylactically.

SoURCE: Office of Technology Assessment 1995. Data from F.J. Fowler, M.S. Bamy, A. Roman, et al. "Patient-Reported Complic ationsand Follow-up Treatment After Radical Prostatectomy, The National Medicare Experience: 1988-1990 (Updated June 1993), " Urology 42(6):622-629, 1993.
there is evidence of recurrence, spread, or indications that the patients are at high risk of such problems. For men who have had radiation treatment, the clinician can consider "salvage" radical prostatectomy with evidence of local progression $(297,370)$, but the results are usually disappointing (67).

After initial treatment by radical prostatectomy, clinicians often consider adjuvant radiation or androgen deprivation therapy for men at higher risk of harboring residual cancer, particularly those with positive surgical margins or PSA test values that do not fall to female levels, although it is controversial whether these adjuvant treatments improve survival (77, 373). Furthermore, clinicians follow patients closely for evidence of recurrent disease with periodic DRE and PSA testing (35, 289). Men with evidence of recurrence are often consid-
ered for additional treatment with radiation. As is the case for men treated expectantly, androgen deprivation therapy may be instituted for men with locally symptomatic cancer recurrence, for men who develop distant metastases, or for some men without symptoms but a progressive abnormality on DRE or a rising PSA.

In the survey of Medicare-age men who underwent radical prostatectomy between 1988 and 1990 discussed above, 5 percent reported followup radiation therapy within the first year (probably for residual disease), and another 13 percent underwent radiation therapy between the beginning of the second and the end of the fourth year of followup (probably for evidence of recurrence). Ten percent of men had hormonal therapy prescribed in the four years following their operation, and 15 percent had an orchiectomy.

CHAPIER

5

Benefits, Risks, and Costs of Screening

this chapter draws from the literature reviewed in the previous three chapters to analyze the impact of a hypothetical prostate cancer screening program for Medicare-age men. In addition, it uses data on Medicare reimbursements to examine some of the economic implications of early detection in this age group. As explained below, the screening benefit analyzed is designed to be illustrative of the difficulties in drawing unambiguous conclusions about the value of screening, rather than to predict the impacts of a screening benefit as it actually would likely be implemented as part of Medicare.

A number of decision models have been published or presented dealing with prostate cancer screening or treatment (58, 124, 195, 196, 217, 316). These models have yielded different results, due to widely different "base case" assumptions about the probabilities and values of the various outcomes of these clinical policies. The lack of definitive data on which to base such assumption, particularly for the effectiveness of treating
localized prostate cancer, and the different values different patients may place on potential outcomes make it possible to support analyses of screening that use divergent sets of assumptions. ${ }^{1}$

This paper only considers a one-time screening of men at ages 65, 70, and 75. Realistically, a Medicare benefit would most likely cover periodic screening for example, a digital rectal examination (DRE) and pros-tate-specific antigen (PSA) every year as the American Cancer Society (ACS) currently recommends, or every two or three years as Medicare currently does for breast and cervical cancer screening respectively. Understanding the true effects of an actual Medicare benefit would also require accounting for the fact that some men would have already received screening before their 65th birthdays. However, as this analysis will demonstrate, current understanding does not allow a definitive assessment of the cost-effectiveness of even a one-time benefit with its relatively simplified set of assumptions, much less a more complex, but realistic periodic benefit.

[^25]The analysis is presented in three stages:

- The first stage models the health outcomes of a onetime screening program for three cohorts of 100,000 men 65,70 , and 75 years old respectively using a baseline set of assumptions.
- The second stage adds in the costs of screening, treatment, and associated procedures to estimate the costeffectiveness of this illustrative one-time screening in terms of dollars life-years gained compared with not screening at all.
- The third stage examines how much these measures of cost-effectiveness change with changes in the assumptions about the effectiveness of treating prostate cancer and other assumptions important to screening.

MODELNG THE HEALTH OUICOMES OF SCREENING

To estimate the health outcomes of a one-time screening program for each of the three age groups, the model follows a hypothetical cohort of 100,000 men. It assumes a certain underlying distribution of prostate cancers of different types. It subjects the men to a combined DRE/PSA screening program (using a $4 \mathrm{ng} / \mathrm{mL}$ PSA cutpoint) and follows them with assumptions about diagnostic and treatment strategies as well as the probabilities of the different outcomes of these strategies.

Rather than assign different "values," or "utilities," to nonfatal outcomes such as postsurgical incontinence or metastatic disease, which will be valued differently by different patients (317), the analysis simply records the number of patients with these problems and the lifeyears over which these problems must be endured, al-
lowing the reader to weigh the risks and benefits of the decision whether to screen. At this stage, the analysis does not downvalue (discount) future years of life, or account for future life-years that would be of lower quality due to disability, loss of independence, or other health problems (225). ${ }^{2}$

The discussion that follows outlines the assumptions used in this model and ties them to the literature review in the preceding chapters. Table 5-1 summarizes these assumptions for 65- and 75-year-old men. All agespecific probabilities for 70-year-old men are the average of the probabilities for those 65 and 75 .

Assumptions in the Model

The model employs a Markov process that extends one developed for a published study of the outcomes of treating clinically localized prostate cancer (124). ${ }^{3}$ It simulates the clinical course of each cohort of men by allowing them to make transitions from one health state to another in increments of six months. During any six month period, men who harbor prostate cancer in the cohort may present with either local obstruction requiring therapy or develop new metastatic disease. Grade-specific rates of developing metastases come from a patientlevel meta-analysis recently conducted by Chodak and colleagues (83).

Probabilities of Prostate Cancer

The model distinguishes among three types of cancer by size: 1) $<0.5 \mathrm{~mL}$, all assumed to be contained with the prostate capsule; 2) $>0.5 \mathrm{~mL}$ with $<1 \mathrm{~cm}$ of capsular penetration; and, 3) $>0.5 \mathrm{~mL}$ with $>1 \mathrm{~cm}$ of capsular pen-

[^26]TABLE 5-1: BASELNE ASSUMPIONS USED TO MODEL HEALTH OUTCOMES OF PROSTATE CANCER SCREENING OF MEN AGE 65 AND 75 WITH DIGITAL REC TAL EXAM AND PROSTATE-SPECIFC ANTIGEN

Assumption	Probability	
	65-year-old men	75-year-old men
Derivation of poor probabilities of prostate cancer		
1. Probability of any cancer $=(\mathrm{A})$	0.22	0.39
2. Probability of cancer being $<0.5 \mathrm{~mL}$ (insignific ant, assume all confined) $=(\mathrm{B})$	0.60	0.60
3. Probability of cancer being $>0.5 \mathrm{~mL}$ (signific ant) with $<1 \mathrm{~cm}$ of capsular penetration (intracapsular) $=(\mathrm{C})$	$0.4 \times 0.73=.29$	$0.4 \times 0.73=.29$
4. Probability of cancer being $>0.5 \mathrm{~mL}$ (signific ant) with $>1 \mathrm{~cm}$ of capsular penetration (extracapsular) =(D)	$0.4 \times 0.27=.11$	$0.4 \times 0.27=.11$
5. Derived prior probability of insignific ant ($<0.5 \mathrm{~mL}$) cancer $=(\mathrm{AxB})$	0.132	0.234
6. Derived prior probability of signific ant cancer ($>0.5 \mathrm{~mL}$), intrac apsular $=(A x C)$	0.064	0.114
7. Derived prior probability of signific ant cancer ($>0.5 \mathrm{~mL}$), extrac a psular $=(A x D)$	0.024	0.042
Probabilities of cancers having different grades		
Insignific ant cancers (<0.5 mL)		
8. Well differentiated	0.65	0.65
9. Moderately differentiated	0.26	0.26
10. Poorly differentiated	0.09	0.09
Signific ant ($\mathbf{~} \mathbf{0 . 5} \mathbf{~ m L}$) intrac apsular cancer		
11. Well differentiated	0.33	0.33
12. Moderately differentiated	0.56	0.56
13. Poorly differentiated	0.11	0.11
Signific ant ($\mathbf{0 . 5} \mathbf{~ m L}$) extrac apsular cancers		
14. Well differentiated	0.04	0.04
15. Moderately differentiated	0.70	0.70
16. Poorly differentiated	0.26	0.26
Derivation of screening results		
17. Probability of a suspicious DRE or PSA requining biopsy $=(\mathrm{E})$	0.28	0.40
18. Overall probability of detection of cancer (actual yield) $=(\mathrm{F})$	0.042	0.072
19. Proportion of detected cancers with insignific ant ($<0.5 \mathrm{~mL}$) volume $=(\mathrm{G})$	0.11	0.11
20. Derived probability of finding an insignific ant canceramong men who harbor them $=$ $(F x G) /(A x B)$	0.035	0.034
21. Probability that screen detected cancers are extracapsular $=(\mathrm{H})$	0.24	0.40
22. Derived probability of detecting extracapsularcancers among men who harbor them $=(F x H) /(A x D)$	0.42	0.69
23. Derived probability of detecting signific ant, intracapsularcancers among men who harborthem $=\mathrm{Fx}(1-\mathrm{G}-\mathrm{H}) /(\mathrm{AxC})$	0.43	0.31
Probabilities of biopsy complic ations (with antibiotic prophylaxis)		
24. Urinary tract infection	0.056	0.056
25. Urosepsis	0.005	0.005

TABLE 5-1: BASEUNE ASSUMPIONS USED TO MODEL HEALTH OUTCOMES OF PROSTATE CANCER SCREENING OF MEN AGE 65 AND 75 WTH DIGIIAL REC TALEXAM AND PROSTATE-SPECIFC ANTIGEN CONTNUED

[^27]SoURCE: Office of Technology Assessment, 1995. Based on data from M.J. Barmy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the CongressionalOffice of Technology Assessment," OTA contractpaperno, K3-0546.0. Massachusetts General Hospital, J une 30, 1994.
etration. The underlying prevalence of each of these cancers in the population is derived from autopsy data presented in table 2-5 and explained in appendix A. Pathological data from Oesterling's study (263) of 208 nonpalpable, PSA-detected, Stage T1c prostate cancers provide the probabilities of each size of cancer being well differentiated (Gleason Score of 2 to 4), moderately
differentiated (Gleason Score of 5 to 6), or poorly differentiated (Gleason Score of 7 to 10) (256).

Screening and Biopsy

The probabilities that screening yields a suspicious DRE or PSA requiring biopsy (table 5-1, line 17) comes from Richie and colleagues' community-based screen-
ing study (279), ${ }^{4}$ as do the overall probabilities that screenees will have a cancer detected and the probabilities that cancers detected through screening will not be confined to the prostate gland (table 5-1, lines 18 and 21). ${ }^{5}$ The analysis assumes that transrectal needle biopsy (TRNB) is the "gold standard" for confirming or rejecting suspicious DRE/PSA results. In the Richie study, only 69 percent of men ages 60 to 69 with suspicious PSA or DRE results actually received biopsy. For men ages 70 to 79 , the biopsy compliance rate is 68 percent. These compliance rates are implicit in the probabilities that screening will detect cancer in both the Richie study and the analysis in this chapter (table 5-1, line 18). The probabilities that detected cancers will be of small volume ($<0.5 \mathrm{~mL}$) come from Oesterling and colleagues' study of the pathology of nonpalpable T1c cancers described above. ${ }^{6}$

Combining these data on screening results with the data on the prior probabilities of harboring cancers allow the estimation of age- and volume-specific sensitivities for a one-time combined DRE and PSA screening (table $5-1$, lines 20, 22, and 23). ${ }^{7}$

As indicated in chapter 3, biopsy itself can result in infection even with antibiotic prophylaxis. Assumptions about the rates of infections confined to the urinary tract $(16,89$,$) and urosepsis (91$) are taken from the literature.

Treatment Strategies and Cure Rates

Because biopsy cannot determine the volume, grade, and extent of spread of discovered cancers, this analysis assumes all men found to have cancer are offered aggressive treatment. Based on data from Richie (279), 70 percent of 65 -year-old men are assumed to accept that recommended treatment; the analysis assumes a 48-percent compliance rate for 75-year-old men.

[^28]
48 Costs and Effectiveness Of Prostate Cancer Screening In Elderly Men

Because there is no evidence from controlled studies that aggressive treatment (by either radical prostatectomy or radiation therapy) reduces the risk of death compared with expectant management, this analysis assumes that men with cancers confined to the prostatic capsule (absence of complete capsular penetration of more than $1 \mathrm{~cm}^{2}$) are cured by aggressive treatment, regardless of other prognostic factors, such as degree of tumor differentiation. This assumption, which is favorable to screening (all else being held equal) is based on the work of Epstein (118), who has documented a worse prognosis for tumors with established, complete capsular penetration, as opposed to partial capsular penetration. ${ }^{8}$

Although there are two strategies for aggressive treatment (radical prostatectomy and radiation therapy), the baseline analysis examines only radical prostatectomy. This initial assumption seems reasonable despite older data that radiotherapy has been more commonly used, as the urologic literature now strongly endorses radical prostatectomy as the best treatment for localized prostate cancer, and because men with suspicious screening tests would almost always see a urologist for TRUS and biopsy. The rapidly rising rates of radical prostatectomy in the United States also support this initial assumption. Assuming equal effectiveness for radiation therapy (in the absence of strong evidence to the contrary) would result in similar estimated benefits; however, estimated risks would be much lower. ${ }^{9}$

Patients who are found to have distant metastases are assumed to receive hormonal therapy. Patients re-
ceiving such therapy are assumed to be responsive to it for a period of time, but then enter a "refractory" period characterized by no further benefit as well as pain or other discomfort before dying from the cancer or, infrequently, from some other cause.

All patients with intracapsular cancers (whether $>0.5 \mathrm{~mL}$ or $<0.5 \mathrm{~mL}$ in volume) who undergo and survive treatment are assumed to have the same life expectancy they would have had if they never had cancer (14.45 years for 65 -year-old men and 8.95 years for 75 -year-old men). In addition to the extra years of life they gain, these patients also avoid years of both hormone-responsive and refractory disease and associated morbidity. At the same time, though, they do risk the complications of aggressive treatment as outlined in the next section. Treated patients whose cancers are found to have spread beyond the prostate capsule at time of surgery have the same life expectancy as untreated patients with extracapsular cancer.

Finally, the analysis assumes that following radical prostatectomy, no additional cancer treatment is administered unless patients develop documented metastatic disease (as described below). In fact, in a survey of Medicare beneficiaries, 18 percent of men without metastatic disease reported followup radiation therapy within four years of radical prostatectomy, 10 percent reported hormonal therapy, and 15 percent reported orchiectomy (124). As is the case for primary aggressive treatment, there is no evidence from controlled studies that any such interventions (in the absence of documented metastases, at least) improve patient outcomes. Exclusion of

[^29]the costs associated with these additional treatments in the cost-effectiveness analysis later in this chapter reduces the total costs associated with screening, thus generating more favorable cost-effectiveness ratios.

Treatment Complications

Assumptions about the rate of complications following prostatectomy come from the survey of Medicare beneficiaries by Fowler and colleagues (124) since these are the most generalizable data available (see table 4-3). Among these risks, the model uses relatively conservative definitions for incontinence and impotence. Only men who drip more than a few drops of urine every day are considered incontinent ${ }^{10}$; while only preoperatively sexually active men who have had no partial or full erections since surgery are considered impotent. ${ }^{11}$

Although pelvic lymphadenectomy has its own complications (229), we assume no complications for this procedure as some clinicians question whether it is necessary at all. The analysis disregards other, less frequent complications of surgery and radiotherapy, such as rectal injury (230).

Prognosis and Life Expectancy

The analysis assumes that prognosis is determined entirely by grade, rather than extent of tumor; that is, a moderately differentiated cancer has the same prognostic impact whether it is intracapsular or extracapsular. The only exception is for well-differentiated tumors less
than 0.5 mL in volume, which are assumed not to have potential for metastasis, and hence, equivalent to not having cancer at all.

Table 5-1 details life expectancies for untreated cancers. ${ }^{12}$ Age-specific probabilities of death from causes other than prostate cancer used in the model were derived from U.S. life tables (350). Grade-specific rates of developing metastatic cancer come from an individual patient level meta-analysis by Chodak and colleagues (83). These data also generated grade-specific estimates of life expectancy for men with untreated cancers. The impact of treatment on rates of metastasis and these life expectancies are described above.

To model the progression from hormonally-responsive to hormonally-refractory metastatic cancer and the excess mortality associated with advanced prostate cancer, the model incorporates data from a randomized trial of hormonal treatment of late-stage disease (93). The data yield a progression rate to refractory prostate cancer of 36 cases per 100 patient years, and an excess mortality rate from hormonally-refractory metastatic cancer of 80 deaths per 100 patient years. ${ }^{13}$

Men who have prostate cancer are susceptible not only to metastatic disease, but to complications from local progression as well. Obstructive symptoms or bleeding from progression in the prostate may require transurethral resection of cancer tissue for palliation. Men who still have a prostate in place may also eventually re-

[^30]
50 Costs and Effec tiveness Of Prostate Cancer Screening In Elderly Men

quire transrectal resection of the prostate (TURP) for progressive benign prostatic hyperplasia (BPH). This analysis assumes that radical prostatectomy completely eliminates these risks and their associated costs. Assumptions used to calculate costs of transurethral resection for those men with cancer who do not receive radical prostatectomy are reviewed in the section on costs later in this chapter.

The assumptions about prognosis and cure rates from treatment are particularly favorable to screening; to the extent that relatively more future morbidity and mortality result from cancers that have already spread beyond the prostate (a likely scenario), the benefits of screening will be less impressive. Another way of viewing the impact of these assumptions is through the reduction in the rate of metastases through the treatment patients receive. For well-differentiated cancers, the model predicts a 97 percent decrease in the metastatic rate compared with 70 percent for moderately differentiated, and 56 percent for poorly differentiated cancers.

Net Impact of Assumptions

As indicated in the sections above, many of the assumptions made in this baseline analysis of the health outcomes of a one-time screening benefit are favorable to screening. These include relatively high yields of screening itself, high rates of metastasis and cancer-specific death with untreated cancers, and 100 percent cure rates for treated intracapsular cancers. ${ }^{14}$ Given these assumptions, the estimated health outcomes for screening with subsequent aggressive treatment in this baseline
analysis probably represent the maximally attainable benefits of one-time screening.

Results

Tables 5-2 through 5-4 provide "balance sheets" with baseline estimates of the risks and maximal benefits of a one-time screening of 100,000 men ages 65,70 , and 75 with DRE and PSA. Table 5-5 presents estimates of treatment complications that would accrue if all patients undergoing treatment received radiation therapy instead of radical prostatectomy. These estimates are based on rates of complications reported in the literature and summarized in chapter 4 (362).

The model indicates that a one-time screening would result in a very large number of prostatic biopsies (19,330 to 27,200 per 100,000, depending on age), a small number of surgical deaths (18 to 23 per 100,000), and a larger number of men rendered incontinent (260 to 311 per 100,000), impotent (1,357 to 1,622 per 100,000), or both $(405$ to 483 per 100,000$)$ as a result of surgical treatment. Because these complications must be endured from the start, a very large number of life-years with these complications are generated by early detection efforts. Over time, using the optimistic assumptions about the efficacy of treatment, 653 men age 65,570 men age 70 , and 427 men age 75 who would otherwise have developed metastatic prostate cancer (542, 449, and 314 of whom would become hormone-refractory and die, respectively) would die of something else first in each of these cohorts of 100,000 screenees. The net benefit of

[^31]TABLE 5-2: HEALTH OUTC OMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 65-YEAR-OLD MEN WTH DRE/ PSA

No cancer	Cancer $<0.5 \mathrm{~mL}$	Intracapsular	Extracapsular	Total number	V lost	LY morbidity
Numberscreened 78,000	13,200	6,424	2,376	100,000		
Estimated ham						
CA missed by DRE/PSA/biopsy (compliance with biopsy 69\%)	12,744	3,743	1,363	17,850		
CA detected by DRE/PSA/biopsy	456	2,681	1,013	4,150		
Suspicious DRE/PSA				28,000		
TRUS/biopsy (compliance with biopsy 69\%)				19,330		
Urinary tract infections from biopsy				1,083		
Urosepsis from biopsy				96		
Death from urosepsis				1	$(14)^{\text {a }}$	
Radic al prostatectomy (compliance with RPX 70\%)	320	1,877	709	2,906		
Deaths from radical prostatectomy	2	12	,	18		
Life-years lost from radical prostatectomy deaths	(28)	(167)	(50)		(245)	
Morbidity from radic al prostatectomy						
Incontinence: $\quad$$n$ affected life-years affected						
Impotence: $\quad$$n$ affected life-years affected						
Both incontinence and impotence $\quad \begin{aligned} & n \text { affected } \\ & \text { life-yearsaffected }\end{aligned}$						
Total ham from screening (life-years)					(259)	$(27,510)$
Total harm per patient screened (days)					(1)	(100)
	Total harm per pa	tient treated (day			(33)	$(3,455)$

52 Costs and Effectiveness of Prostate Cancer Screening in Elderly Men
TABLE 5-2: HEALTH OUICOMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 65-YEAR-OLD MEN WMTH DRE/PSA CONTNUED

	Cancer $\boldsymbol{>} 0.5 \mathrm{~mL}$				Total number	I saved	LY improved
	No cancer	Cancer $<0.5 \mathrm{~mL}$	Intracapsular	Extracapsular			
Estimated maximal benefit							
Survive radic al prostatec tomy		318	1,865	705	2,888		
Hormonally-responsive metastatic cancer							
Number spared by treatment		45	608	0	$653{ }^{\text {b }}$		
Life-years affected		72	731	0			803
Hormonally-refractory metastatic cancer							
Number spared by treatment		38	504	0	$542{ }^{\text {b }}$		
Life-years affected		27	260	0			287
Cancerdeaths prevented		38	504	0	$542^{\text {b }}$		
Additional years of life attained		338	4,274	0		4,612	
	Total benefit from screening (life-years)					4,612	1,090
	Total benefit perpatient screened (days)					174	
	Total benefit perpatient treated (days)					579	137
a Life-years and days lost through screening are presented in parenthesis.							
${ }^{\text {b }}$ Sixadditional cases of homonally-responsive metastatic disease leading to five casesof hormonally refractory metastatic disease and death are a verted through immediate operative deaths; these cases are not counted as benefits.							
KEY: CA: cancer, DRE = digital rectal exa mination; LY = life-years; PSA = prostate-specific antigen; RPX = radical prostatectomy; $\operatorname{TRUS}=$ transrectal ultrasound.							
Source: Office of Technology Assessment, 1995. Based on data from M.J. Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detec tion and Treatment of Prostate Cancer Among Older Men: A Report to the Congressional Office of Technology Assessment," OTA contract paper no. K3-0546.0, Boston, MA: Ma ssac husetts General Hospital, June 30, 1994.							

TABEE 5-3: HEALTH OUTCOMES OF A ONE-TIME PROSTATE CANC ER SCREENING OF 100,000 70-YEAR-OLD MEN WTH DRE/ PSA

	No cancer	Cancer <0.5 mL	Cancer $\boldsymbol{>} 0.5 \mathrm{~mL}$		Total number	IY lost	
			Intracapsular	Extracapsular			LY morbidity
Numberscreened	69,500	18,300	8,906	3,294	100,000		
Estimated ham							
CA missed by DRE/PSA/biopsy (complia	with biopsy 69\%)	17,674	5,671	1,460	24,805		
CA detected by DRE/PSA/biopsy		626	3,235	1,834	5,695		
Suspic ious DRE/PSA					34,000		
TRUS/biopsy (compliance with biopsy 6					23,460		
Urinary tract infections from biopsy					1,314		
Urosepsis from biopsy					117		
Death from urosepsis					1	(12)	
Radical prostatectomy (compliance w	59\%)	369	1,909	1,082	3,360		
Deaths from radic al prostatec tomy		2	12	7	21		
Life-years lost from radic al prostate	deaths	(27)	(140)	(66)		(233)	
Morbidity from radic al prostatec tomy							
Incontinence:	n affected				301		
	life-years affected						$(3,229)$
Impotence:	n affected				1,569		
Both incontinence and impotence	life-years affected n affected				467		(6,908$)$
	life-years affec ted						$(5,050)$
		I harm from screening	(life-years)			(245)	$(25,187)$
		I harm per patient screer	reened (days)			(1)	(92)
		I harm per patient tre	ated (days)			(27)	$(2,736)$

TABLE 5-3: HEALTH OUTCOMES OF A ONE-TIME PROSTATE CANCER SCREFNING OF 100,000 70-YEAR-OLD MEN WITH DRE/PSA CONTINUED

[^32]TABLE 5-4: HEALTH OUTCOMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 75-YEAR-OLD MEN MTH DRE/ PSA

	No cancer	Cancer $<0.5 \mathrm{~mL}$	Cancer $\boldsymbol{>} 0.5 \mathrm{~mL}$				
			Intrac apsular	Extracapsular	Total number	L lost	LY morbidity
Numberscreened	61,000	23,400	11,388	4,212	100,000		
Estimated ham							
CA missed by DRE/PSA/biopsy (compliance with biopsy 68\%)		22,604	7,843	1,318	31,765		
CA detected by DRE/PSA/biopsy		796	3,545	2,894	7,235		
Suspic ious DRE/PSA					40,000		
TRUS/biopsy (compliance with biopsy 68\%)					27,200		
Urinary tract infections from biopsy					1,523		
Urosepsis from biopsy					136		
Death from urosepsis					1	(9)	
Radic a l prostatectomy (compliance with RPX 48\%)		382	1,702	1,389	3,473		
Deaths from radical prostatectomy		3	11	9	23		
Life-years lost from radic al prostatectomy deaths		(23)	(100)	(71)		(194)	
Morbidity from radic al prostatec tomy							
Incontinence:	n affected				311		
	life-years affec ted						$(2,597)$
Impotence:	n affected				1,622		
	life-years affec ted						$(13,598)$
Both incontinence and impotence	n affected				483		
	life-years affec ted						$(4,062)$
Total harm from screening (life-years)						(203)	$(20,257)$
Total harm per patient screened (days)						(1)	(74)
Total harm per patient treated (days)						(21)	$(2,129)$

TABLE 5-4: HEALTH OUTC OMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 75-YEAR-OLD MEN WITH DRE/ PSA CONTINUED

[^33]TABLE 5-5: EXPEC TED HARM RROM A ONE-TIME PROSTATE CANCER SCREENING (DRE/ PSA) OF 100,000 MEN, AGES 65, 70, OR
75, FOR CURATIVE RADIATION THERAPY 75, FOR CURATIVE RADIATION THERAPY

Morbidity

Life-years of morbidity

Age 65

	Incontinence	1,385
	Impotence	11,275
	Both incontinence and impotence	593
	Total harm from screening	13,253
	Total harm perpatient screened (days)	48
	Total harm perpatient treated (days)	1,664
Age 70		
	Incontinence	1,269
	Impotence	10,337
	Both incontinence and impotence	544
	Total harm from screening	12,150
	Total harm perpatient screened (days)	45
	Total harm perpatient treated (days)	1,321
Age 75		
	Incontinence	1,023
	Impotence	8,329
	Both incontinence and impotence	438
	Total harm from screening	9,790
	Total harm per patient screened (days)	36
	Total harm perpatient treated (days)	1,029

So URCE: Office of Technology Assessment, 1995. Based on data from M.J . Bary, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the CongressionalOffice of Technology Assessment." OTA contractpaperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
screening in each cohort would be 4,353, 2,774, and 1,415 life-years saved (without discounting) for the 100,000 men ages 65,70 , and 75 ; or 16,10 , and 5 days per man screened, respectively.

If, in fact, contrary to our initial, "best case" assumptions, aggressive treatment of prostate cancer is ineffective at reducing the rate of distant metastases and death, these cohorts would loose about 200 life-years due to operative mortality and endure over 20,000 lifeyears with incontinence, impotence, or both. The net benefit predicted by the model is very sensitive to the as-
sumptions regarding the efficacy of treatment. For example, if in this undiscounted analysis the proportion of intracapsular prostate cancers that are cured by aggressive treatment is decreased from 100 to 50 percent, the net days of life saved per patient screened at ages 65,70 , and 75 drops to seven, four, and two days, respectively.

DRE/PSA Together Versus DRE Alone

Many physicians already perform DREs in older men to seek evidence of both prostate and colorectal cancer. What is the marginal value of adding PSA to the

DRE? In the recent combined screening described by Richie and colleagues (279), DRE, which was suspicious in 16 percent of men ages 60-69, had a predictive value of 21 percent, yielding cancer in 2.4 percent of the screenees. Adding PSA increased the detection rate to 4.2 percent. Therefore, since the ratio of intracapsular to extracapsular disease was roughly equal (at 3:1) between the DRE-detected cancers and the cancers detected by combination screening, one can assume that roughly 60 percent of the risks and maximal benefits presented in table 5-2 would be accrued by screening with DRE alone. However, such results would only be seen if DRE were performed with a very low threshold to proceed to systematic biopsies for any minor palpable abnormality, an approach not common in current clinical practice. Again, roughly half the cancers detected using this DREalone strategy would actually be found in palpably normal areas of the prostate as a result of the systematic biopsies. For men ages 70 to 79 in the Richie study, DRE detected cancer in 3.5 percent of screenees versus 7.2 percent for combined DRE/PSA screening, but a lower proportion of DRE-detected cancers was intracapsular compared with all cancers found by combined DRE/ PSA screening (45 percent versus 60 percent). Therefore, about half the risks presented in table 5-4 would be expected to accumulate with DRE screening, accompanied by less than half the maximal benefits.

MODEUNG THE COST-EFECTIVENESS OF ONE-TIME SCREENING

The overall costs of a screening program would comprise the upfront costs of the screening tests themselves, subsequent ultrasound (TRUS) exams and biopsies, staging tests, early treatment, and therapy for treat-
ment complications. To the extent that early detection and treatment are effective, savings accrue from averting costs of subsequent treatment of local cancer progression, metastatic disease, and end-stage cancer. Appropriate discounting diminishes the value of these later savings since policymakers or patients in the present would rather realize benefits now than in the future. Moreover, older men treated for prostate cancer, on average, extend their lives an average of 6 (age 75) to 19 (age 65) months (see tables 5-2 through 5-4), given their risks of death from other causes. ${ }^{15}$

Beyond whether or not a prostate cancer screening benefit would result in net costs or savings for Medicare, one can also consider whether the health benefit realized for each extra dollar spent for prostate cancer screening (and subsequent treatment) is more or less than those of screening programs or other services already covered by Medicare. This ratio of a benefit per dollar spent is the "cost effectiveness" of the screening program. This section models the cost-effectiveness of the illustrative, one-time screening benefit examined in the previous section. As indicated earlier, the actual estimates produced in this analysis are unlikely to be the same as those for an actual Medicare benefit since Medicare would most likely cover multiple, periodic screenings rather than a one-time benefit. However, as will be seen, this simplified analysis does illustrate how sensitive the costeffectiveness of screening is to assumptions about the effectiveness of treating prostate cancer.

Cost Assumptions

The Cost of Specific Resources

To estimate the costs of an early detection program with DRE and PSA among our hypothetical cohorts of

[^34]100,000 men ages 65, 70, and 75, this analysis adopts the perspective of the Medicare program and considers only direct medical care costs. ${ }^{16}$ Cost estimates for resource inputs are based on the 1992 Medicare fee schedule and diagnosis-related groups (DRG) reimbursements for relevant hospitalizations. ${ }^{17}$ Appendix G details these cost estimates. Tables 5-6 through 5-8 combine these costs for individual resource inputs into low, medium, and high estimates of the costs of different steps in the process of early detection and treatment, respectively. The low, medium, and high estimates reflect uncertainty about how resources would be utilized and billed in actual practice. ${ }^{18}$ The analysis discounts all future health care costs and health benefits are both discounted at an annual rate of 5 percent.

Other Cost Assumptions

The analysis assumes the marginal costs for the care of hormonally refractory prostate cancer, compared with all other causes of death, to be $\$ 6,260$ in the last year of life (in 1992 dollars), based on the work of Riley and colleagues (282).

As indicated earlier, men who have prostate cancer but do not receive a radical prostatectomy are susceptible not only to metastatic disease, but to complications from local progression as well. To estimate the costs associated with transrectal resection (TURP) to treat local cancer progression or BPH, the analysis used the weighted average of the only two empirical estimates of the probability of this phenomenon currently available $(176,366) .{ }^{19}$

Also as explained in a previous section, the analysis excludes the cost of any additional cancer treatment (radiation therapy, hormonal therapy, or orchiectomy) unless patients have evidence of metastatic cancer. This assumption again favors early detection and treatment.

In estimating the costs of treating complications of radical prostatectomy (or radiation therapy), the analysis again makes assumptions favoring early detection and treatment. For patients with sexual dysfunction, we ignore all costs other than for penile implants, and assume that no additional patients require surgery for impotence more than four years after surgery. ${ }^{20}$ For men with incon-

[^35]TABLE 5-6: MEDICARE COSTESTIMATES FOR EARIY DEIECTION AND STAGING OF PROSTATE CANCER USING DIGITALRECTAL EXAMS AND PROSTATIC-SPECIRC ANTIGEN

	Low estimate	Mediumestimate	High estimate
Initial testing			
PSA	\$30	\$45 ${ }^{\text {a }}$	\$60 ${ }^{\text {a }}$
DRE	\$0	\$3	\$28 ${ }^{\text {b }}$
Total	\$30	\$48	\$88
Work-up forsuspic ious results			
Consult (urology)	\$47	\$47	\$47
TRUS (diagnostic)	\$0	\$85	\$85
TRUS-guided biopsy	\$189	\$189	\$189
Pathology (level IV)	\$208c	\$312 ${ }^{\text {d }}$	\$312 ${ }^{\text {d }}$
Total	\$444	\$633	\$633
Staging for men with cancer			
Pelvic CTscane	\$71 (25\%)	\$142 (50\%)	\$213 (75\%)
Bone scane	\$46 (25\%)	\$92 (50\%)	\$138 (75\%)
Lymphadenectomye	\$0 (0\%)	\$164f (25\%)	\$328f (50\%)
Visit to disc uss results	\$28	\$28	\$28
Total	\$145	\$426	\$707
a Assumes some repeat testing necessary.			
${ }^{\text {b }}$ Assumes brief office visit specific ally fora prostate evaluation.			
c Four cores examined.			
d Six cores examined.			
e Notall patientsget pelvic CTscan with contrast (cost $\$ 284$), bone scan ($\$ 184$), orlymphadenectomy ($\$ 656$); figuresin parenthesesindic ate percentage of men who get these studies.			
${ }^{\text {f }}$ Includes pathology fee (level IV, two sets of nodes).			
KEY: CT=computed tomography; DRE = digital rectal exam; PSA = prostate-specific antigen; TRUS = transrectal ultra sound.			

So URCE: Office ofTechnology Assessment, 1995. Based on information presented in M.J. Bary, C.M. Coley, C. Fleming, et. al, "The Sa fety, Effectiveness, and Costof Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the Congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
tinence, the analysis includes only the costs of an artificial sphincter implantation for the six percent of men who reported corrective surgery for incontinence, ignoring the costs of pads for the 31 percent of prostatectomy patients who report using them (124). While some of these men may have had less aggressive and expensive corrective surgery for incontinence (such as collagen injections), the other cost assumptions make the overall
approach to estimating costs of treatment complications conservative.

For men with urethral strictures following radical prostatectomy, the analysis assumes that 95 percent are treated with a simple stricture dilation in the office, while only 5 percent need in-hospital operative repair. We assume no additional treatments are required beyond

TABLE 5-7: MEDICARE COSTESTIMATES FOR PROSTATE CANCER TREATMENT

Treatment	Low estimate	Medium estimate	High estimate
Radical prostatectomy			
Hospital ${ }^{\text {a }}$	\$5,867	\$6,271	\$6,675
Surgeon	\$1,497	\$1,497	\$1,497
Anesthesia	\$194	\$194	\$194
Pathology ${ }^{\text {b }}$	\$125	\$125	\$125
Total	\$7,680	\$8,084	\$8,488
Extemal beam radiotherapy			
Course	\$3,604	\$3,604	\$3,604
Monitoring post-treatment (annual cost)			
Office visit and PSA	\$59	\$59	\$59
Bone scanc	\$0	\$46	\$92
Total	\$59	\$105	\$151
Diagnosis and treatment			
Metastatic disease			
Bone scan	\$184	\$184	\$184
Orchiectomy	\$4,406	\$4,406	\$4,406
Hormonal therapy ${ }^{\text {d }}$	\$4,224	\$5,748	\$6,953
a Low estimate: 0% diagnosis-related groups 334 (complic ations) at $\$ 7,483$ and 100% DRG 335 (no complic ations) at $\$ 5,867$; medium estimate: 25% DRG 334 and 75% DRG 335; high estimate 50\%DRG 334 and 50\%DRG 335.			
${ }^{\text {b Level VI. }}$			
${ }^{\text {d Annual cost; low estimate: } 100 \% \text { GnRH a gonist a nd } 0 \% \text { fluta mide; medium estimate: } 100 \% \text { G nRH a gonist and } 50 \% \text { fluta mide; high estimate: } 100 \% \text { GnRH agonist and }}$ 100% flutamide; includes monthly fees for an office visit (\$29) with chemotherapy injection (\$4).			
KEY: DRG = diagnosis-related groups; PSA = prostate-specific antigen.			

SoURCE: Office ofTechnology Assessment, 1995. Based on information presented in M.J. Barmy, C.M. Coley, C. Fleming, et. al, "The Safety, Effectiveness, and Costof Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the Congressional Office of Technology Assessment," OTA contractpaperno. K3-0546.0, Massa chusetts General Hospital, Boston, MA, J une 30, 1994.
four years after surgery, ${ }^{21}$ and ignore costs related to the diagnosis of strictures, such as for cystourethroscopy. ${ }^{22}$

Incorporation of Costs in the Screening Model

The analysis estimates cost-effectiveness by incorporating the costs for early detection, staging, treatment
of clinically localized cancer, diagnosis of metastatic disease, and treatment of metastatic disease by orchiectomy, into the Markov model of prognosis described earlier in the chapter. The model accumulates these costs (with appropriate discounting) as each intervention is

[^36]TABLE 5-8: MEDICARE COSTESTIMATES FOR THERAPY OF PROSTATE CANCER TREATMENTCOMPUCATIONS

	Low estimate	Medium estimate	High estimate
TURP for BPH or local progression of cancer			
Hospitala	\$2,778	\$3,069	\$3,361
Surgeon	\$898	\$898	\$898
Anesthesia	\$147	\$147	\$147
Pathology	\$92	\$92	\$92
Total	\$3,915	\$4,206	\$4,498
Treatment for cancer therapy complic ations			
Incontinence			
(Artific ial sphincter)	-	\$8,080	-
Impotence			
(Penile implant)	-	\$11,350	-
Stric ture			
(Dilation)	-	\$51	-
(Urethroplasty)	-	\$5,259	-

[^37]SOURCE: Office of Technology Assessment, 1995. Based on data from M.J. Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the congressional Office of Tec hnology Assessment," OTA contract paperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
encountered. The model accumulates ongoing costs, such as post-treatment surveillance and androgen deprivation therapy for metastatic disease, continuously with each Markov cycle patients spend in a particular state.

Cost-Effectiveness Results

Tables 5-9 through 5-11 present estimates of discounted costs (in dollars), discounted effectiveness (in life-years saved), and cost per life year saved for cohorts of 100,000 men ages 65,70 , and 75 receiving a hypothetical, one-time screening under the baseline assumptions described in this chapter. Using the medium set of assumptions about costs, the cost per year of life saved
(compared with doing no screening) would be $\$ 14,200$ at age $65, \$ 25,290$ at age 70 , and $\$ 51,290$ at age 75.

Sensitivity of the Results

These results are extremely sensitive to the assumption about the effectiveness of prostate cancer treatment and, to a somewhat lesser degree, the assumption about the rate at which cancers of different grades metastasize. As indicated earlier, the actual effectiveness of treatment is unknown because of the lack of randomized controlled trials. Similarly, the true rates of future metastasis and prostate cancer death from tumors currently discovered by early detection are also unknown. The assumptions about both treatment and metastasis used in the baseline

TABEF 5-9: MARG INALCOST-EPECTIVENESS OF ONE-TIME HYPOTHEIICALDRE/PSA SCREENING VERSUS NOTSCREENING (100,000 men, age 65) ${ }^{\text {a }}$

Marginal cost	Low Estimates	Medium Estimates	High Estimates
	Cost estimate (millions of dollars)		
Initial costs			
Initial testing	3.000	4.800	8.800
TRUS/biopsy	3.045	4.341	4.341
Staging	0.602	1.087	1.573
Treatment	22.578	23.751	24.924
Delayed costs			
Monitoring	2.509	4.457	6.383
Future treatment ${ }^{\text {b }}$	-5.929	-9.128	-14.808
Total	\$25.804	\$29.308	\$31.214

		Discounted life-years saved	
Marginal effectiveness	2064	2064	2064
		Dollars per life-year	
Marginal cost-effectiveness	$\$ 12,502$	$\$ 14,200$	$\$ 15,123$

[^38]So URCE: Office of Technology Assessment, 1995. Based on data from M.J . Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the Congressional Office of Technology Assessment," OTA contractpaperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
analysis are favorable to screening. What happens when these assumptions are relaxed?

- Reducing the grade-specific metastatic rates in this model ${ }^{23}$ to those used in the previously published analysis of prostate cancer treatment by Fleming and colleagues (124), the estimate of cost per year of life saved (discount rate 5 percent) ranges from $\$ 42,590$ at age 65 to $\$ 177,094$ at age 75.
- Alternatively, assuming only half (rather than all) in-
tracapsular cancers $>0.5 \mathrm{~mL}$ are cured by radical prostatectomy, the cost per year of life saved ranges from $\$ 30,524$ at age 65 to $\$ 109,721$ at age 75 (same discount rate).
- Assuming that both the lower metastatic rates from the Fleming analysis and the lower proportion of cures represent the true state of affairs, the cost per year of life saved would range from \$94,458 at age 65 to $\$ 506,909$ at age 75 .

[^39]TABLE 5-10: MARGINALCOST-EFECTIVENESS OF ONE-TIME HYPOTHEICALDRE/ PSA SCREENING VERSUS NOTSCREENING (100,000 men, age 70) ${ }^{\text {a }}$

Marginal cost	Low Estimates	Medium Estimates	High Estimates
	Cost estimate (millions of dollars)		
Initial costs			
Initial testing	3.000	4.800	8.800
TRUS/biopsy	4.462	6.362	6.362
Staging	0.826	1.492	2.158
Treatment	26.114	27.472	28.829
Delayed costs			
Monitoring	2.522	4.478	6.407
Future treatment ${ }^{\text {b }}$	-5.596	-6.165	-10.531
Total	\$31.765	\$36.467	\$39.042
Discounted life-years saved			
Marginal effectiveness	1,442	1,442	1,442
Dollars per life-year			
Marginal cost-effectiveness	\$22,059	\$25,290	\$27,076
${ }^{\text {a }}$ Both future costs and health benefits are discounted at 5\% a nnually.			
${ }^{\mathrm{b}}$ Future treatment forlocal progression of prostate cancer, benign prostatic hyperplasia, metastatic prostate cancer, and therapy complications.			

SoURCE: Office of Technology Assessment, 1995. Based on data from M.J . Bamy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the Congressional Offic e of Technology Assessment," OTA contractpaperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.

To emphasize the sensitivity of the results to these key assumptions, figures 5-1 through 5-3 display the estimated cost per year of life saved for men ages 65,70 , and 75 , using higher (83) and lower $(362,124)$ metastatic rates, and different assumptions about the proportion of intracapsular cancers (of all grades) cured by aggressive treatment. ${ }^{24}$

Another assumption in the baseline analysis is that the metastatic rate is the same for each grade of tumor
(except for well-differentiated cancers less than 0.5 mL in volume), regardless of whether the tumor is intracapsular or extracapsular. If, however, future metastatic events are preferentially generated from extracapsular cancers, a likely scenario, the estimated effectiveness of treatment and screening would diminish considerably. For example, if intracapsular cancers have the gradespecific prostate cancer mortality rates described by Fleming (124), while extracapsular cancers have the

[^40]TABLE 5-11: MARGINALCOST-EFFCTIVENESS OF ONE-TIME HYPOTHEIICALDRE/PSA SCREENING VERSUS NOTSCREENING (100,000 men, age 75) ${ }^{\text {a }}$

Marginal cost	Low Estimates	Medium Estimates	High Estimates
	Cost estimate (millions of dollars)		
Initial costs			
Initial testing	3.000	4.800	8.800
TRUS/biopsy	6.019	8.581	8.581
Staging	1.049	1.896	2.742
Treatment	26.991	28.394	29.797
Delayed costs			
Monitoring	2.208	3.919	5.601
Future treatment ${ }^{\text {b }}$	-5.596	-6.165	-10.531
Total	\$33.671	\$41.424	\$44.990
Discounted life-years saved			
Marginal effectiveness	808	808	808
Dollars per life-years saved			
Marginal cost-effectiveness	\$41.690	\$51.290	\$55.705
a Both future costs and health benefits are discounted at 5% annually.			
${ }^{\mathrm{b}}$ Future treatment for local progression of prostate cancer, benign prostatic hyperplasia, metastatic prostate cancer, and therapy complications. KEY: DRE = digital rectal exam; PSA = prostate-specific antigen; TRUS =transrectal ultra sound.			

SoURCE: Office of Technology Assessment, 1995. Based on data from M.J . Bary, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
mortality rates described by Chodak (83), the cost-effectiveness estimates for early detection (which are based on the curability of the intracapsular lesions) would follow the higher curves in figures 5-1 through 5-3. ${ }^{25}$

Finally, a substantial component of the estimated net benefits come from the early detection and treatment of well-differentiated prostate cancers greater than 0.5 mL in volume. This finding is due to well differentiated cancers having had the same cancer-specific death rates
as moderately differentiated cancers in the Chodak (83) meta-analysis. However, Kolon (194) has recently found that men with well-differentiated cancers treated expectantly among cases reported to the Connecticut tumor registry had the same life expectancy as age-matched men in the general state population. If, in fact, well-differentiated prostate cancers do not result in a higher-than-expected future mortality for men diagnosed at age 65 or above, the estimated number of deaths averted per

[^41]RGURE 5-1: COSF-EFECTIVENESS OF ONE-TIME DRE/PSA SCRENING OF 65-YEAR-OLD MEN FOR PROSTATE CANCER SENSIIVITY ANAIYSS

Fraction of patients with localized prostate cancer cured by radical prostatectomy (intracapsular, $>0.5 \mathrm{~mL}$)

SOURCE: Office of Tec hnology Assessment, 1995. Based on data from M.J. Bamy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the Congressional Office of Tec hnology Assessment," OTA ContractPaperNo. K3-0546.0, Massa chusetts General Hospital, Boston, MA, J une 30, 1994.

100,000 by screening and treatment (as presented in tables 5-2 through 5-4) would drop from 547 to 414 at age 65 , from 431 to 325 at age 70, and from 294 to 224 at age 75 . This would result in a parallel increase in the cost per life-year saved by screening.

Turning from effectiveness to cost, how would changes in the cost assumptions affect the cost-effectiveness ratios? Each increase of $\$ 10,000$ in the costs of caring for terminal prostate cancer above the baseline estimate reduces the present value per person cost of prostate cancer screening only by about $\$ 30$. This relatively small effect on the analysis is due in large part to the discounting of these future expenses.

RGURE 5-2: COSFSCREPIING OF 70-YEAR-OID MEN FOR PROSTATE CANCER SENSIIVITY ANALYSS

Fraction of patients with localized prostate cancer cured by radical prostatectomy (intracapsular, $>0.5 \mathrm{~mL}$)

Source: Office of Technology Assessment, 1995. Based on data from M.J. Bary, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the CongressionalOffice of Technology Assessment," OTA C ontractPaperNo. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.

Comparisons to Other Medicare Disease Screening

How do these estimates for the cost-effectiveness of one-time screening for prostate cancer compare with previously published estimates for other cancer screening maneuvers among Medicare patients? Such comparisons are problematic since most cost-effectiveness analyses of disease screening for Medicare beneficiaries examine periodic screening rather than only a one-time benefit. However, as part of a previous analysis by the Office of Technology Assessment (OTA), Muller and colleagues (347) found that a one-time screening with cervical Pap smears at age 65 would cost $\$ 1,666$ per life-

RGURE 5-3: COSF-■FECTIVENESS OF ONE-TIME DRE/PSA SCRETIING OF 75-YEAR-OID MEN FOR PROSTATE CANCER SENSIIVITY ANALYSS

SoURCE: Office of Technology Assessment, 1995. Based on data from M.J . Bamy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the CongressionalOffice of Tec hnology Assessment," OTA C ontractPa perNo K3-0546.0, Massa c husetts General Hospital, Boston, MA, J une 30, 1994.
year saved. ${ }^{26}$ Among previous OTA analyses of disease screening for Medicare beneficiaries that examined periodic screening (as opposed to one-time screening) are two that make estimates for colorectal and breast cancer screening. The breast cancer study concluded that annual mammography would cost Medicare \$13,200 per year of life saved (346), and the colorectal cancer study estimated that annual occult blood testing beginning at age 65 would cost $\$ 35,054$ per year of life (348). ${ }^{27}$ Medicare
currently covers both cervical and breast cancer screening as periodic benefits.

IMPUCATIONS FOR MEDICARE

What information does the analysis in this background paper yield for policymakers considering coverage of prostate cancer screening as a Medicare benefit?

Although the quantitative analysis in this chapter focused on a hypothetical one-time benefit instead of the periodic benefit more likely to be considered by the Medicare program, it does offer important information for policymakers. Most importantly, the cost-effectiveness of any Medicare prostate cancer benefit is extremely sensitive to whether or not treatment of tumors that have not yet spread extends life or not. The analysis suggests that prostate cancer screening could prove to be as cost effective as other disease screening services already covered by Medicare.

On the other hand, if treatment proves to be less than 100 percent effective (or if rates of metastasis turn out to be less than those assumed in our baseline analysis), prostate cancer screening could end up costing much more per life-year saved than other Medicare disease screenings. At the same time, however, screening carries significant risks of complications. These include the possibility of surgical death in at least six out of 1,000 cases, urinary stricture, heart and lung disease, and years of impotence and incontinence in substantial portions of treated patients.

[^42]
68 Costs and Effec tiveness Of Prostate C ancer Screening In Elderly Men

The evidence of effectiveness and cost-effectiveness of other preventive services already covered by Medicare (e.g.. breast and cervical cancer screening, influenza and pneumococcal vaccines) is substantially stronger than for prostate cancer screening. Although scientific knowledge is currently limited as we await the completion of well-controlled clinical trials, the consequences of prostate cancer and its treatment remain serious. Under such circumstances, an informed and reasonable patient could equally well decide to have screening or forgo it. Patient preferences are also a major component in deciding what to do when screening uncovers a localized cancer. Hence, each patient, in consultation with his physician, must use his own values to weigh the potential benefits of screening against the risks of incontinence, impotence, and other adverse reactions that may result from treating those localized cancers discovered through screening.

Given the state of current knowledge about prostate cancer, it may be reasonable for Medicare to consider reimbursement of the screening test. Reimbursement could be seen as ensuring that out-of-pocket screening
expenses (however small) not impede well-informed discussion and decisionmaking between physician and patient. Such a Medicare screening benefit could be unrestricted as are similar benefits for cervical and breast cancer screening. However, an unrestricted, permanent benefit might imply that science actually has established the benefit of early detection. An alternative would be to offer it on a temporary basis subject to reconsideration as evidence from clinical trials about the effectiveness of screening and treatment becomes available. Such a benefit could also be coupled with efforts by the federal government to involve as many patients as possible in effectiveness research and to ensure patients and physicians are well-informed about potential benefits and risks of treating cancers uncovered by screening. When data from well-controlled trials (including those described in appendix H) tell us if treating prostate cancer is effective, science will be able to provide more definitive guidance in facilitating clinical decisionmaking for patients and in establishing or continuing a screening benefit under Medicare.

APPENDIX

A

Derivation of Prostate Cancer Prevalence by Age and Tumor Volume

this appendix describes the derivation of agespecific prevalence rates of latent prostate cancer (overall and by tumor volume) presented in table 2-5. Overall prevalence data for each age strata were derived by Office of Technology Assessment contractors from eight available autopsy series that specifically excluded cases where prostate cancer had been clinically suspected, and that provided complete age-specific prevalence by decade $(24,113,128$, $134,159,222,293,305)$. All eight were consecutive unselected autopsy series; seven were U.S. hospital-based, one (Lundberg) was a community-based Swedish series. All eight used serial step-sectioning (usually 4 mm slices) of the entire gland.

The estimates for each prostate cancer volume and capsular status stratum were derived by applying volume data from McNeal (233) to the derived age-specific prevalences. McNeal and colleagues performed morphometric autopsy analyses on 100 consecutive unselected prostates with adenocarcinoma. For all ages, 60 percent of all cancers are assumed to be 0.5 mL or less even though cancers in men below age 70 years were somewhat more likely to be less than 0.5 mL in volume
than for men 70 years and older (68 percent vs. 56 percent).

The remaining 40 percent were assumed to be greater than 0.5 mL in volume. In deriving the distribution of intracapsular and extracapsular tumors for these larger cancers, extracapsular spread was required to be greater than 1 cm beyond capsule, although half of tumors with volume above 0.5 mL in the McNeal study showed some lesser degree of capsular penetration. ${ }^{1}$ Although McNeal's and other's $(180,244)$ data suggest the proportion of cancers above 0.5 mL that are extracapsular increases for men over 70 years, the wide confidence intervals around these estimates lead us to apply a uniform 27 percent probability for all ages. Hence, we assume that of all cancers more than $0.5 \mathrm{~mL}, 27$ percent are extracapsular and 73 percent are intracapsular.

Several studies of incidental prostate cancer among patients undergoing cystoprostatectomy for bladder cancer $(180,244,328)$ suggest that only 20 percent of unrecognized prostate cancers exceed 0.5 mL . However, a recent autopsy series of 105 patients without history of prostate cancer and with recent normal rectal exams

[^43](mean age 66, not stratified) found a 35 percent prevalence of prostate cancer with 41 percent $>0.5 \mathrm{~mL}$; twothirds of these larger cancers were intracapsular (49).

Looking only at men over age 50 as a single group from the eight autopsy studies yields an overall prevalence of prostate cancer of 30 percent. Breaking these
cancers down by volume for all men over age 50, the estimated weighted prevalence of cancers less than 0.5 mL is 18 percent, the prevalence of intracapsular cancers exceeding 0.5 mL is 8.8 percent, and the prevalence of extracapsular cancer exceeding 0.5 mL is 3.2 percent.

APPENDIX

B

Methods Used To Estimate Likelihoods of Cancer for Particular DRE And PSA Results

this appendix describes the derivation of likelihood ratios of different types of cancer for various digital rectal examination (DRE) and pros-tate-specific antigen (PSA) measurement results presented in tables 3-1 and 3-3 and discussed in the accompanying text. The likelihood ratios are estimates of how many times more likely a patient with a particular test result is to have a given type of cancer than if the patient did not have the test. The probabilities of cancer with no test are the prevalence estimates found in table 2-5. For each test, the likelihood ratios were estimated using the following method:

- Studies of screening tests that provided predictive values for a population of men with a specified age distribution were selected; these predictive values were converted into post-test odds of disease.
- Next, the true underlying prevalence of prostate cancer in the general population derived from autopsy studies, displayed in table 2-5, was assumed to be applicable to the populations in these studies of positive predictive values.
- Finally, the post-test odds were divided by the pretest odds of disease (and nondisease) to estimate likelihood ratios.

UKEUHOOD RATIOS FOR DRE RESULIS

The calculations for DRE results (table 3-1) use data from two studies $(79,279)$ that provided detailed age distributions of study patients and to which we could apply the estimates of prostate cancer prevalence by tumor volume as presented in table 2-5. Calculations are performed using data for all men ages 50 years and up. "Suspicious" DRE results are defined as palpable asymmetries, nodules, or induration (hardness).

In the Chodak study, although 125 of the 2,131 men ages 45 to 80 in the initial screen group had an abnormal DRE and received a DRE-directed biopsy, the number of men ages 45 to 50 with abnormal DRE is not provided since no cancers were found in this subgroup. Calculations were done using the 1,894 men over 50 years (31 cancers detected in the first year of screening). Systematic biopsies were not performed and volume data for detected cancers were not provided. All were clinically Stage B or higher by the Whitmore staging system (see table 2-3), and it appears safe to assume none were below 0.5 mL .

Subjects in the Richie study (279) with abnormal DRE received systematic and TRUS-guided biopsies in addition to DRE-directed biopsies. Specific volume dis-
tributions are not provided. The 8 percent of detected cancers that were "organ-confined, well-differentiated, and involved only one quadrant" is not necessarily tantamount to a volume below 0.5 mL . We assume 11 percent of detected cancers are below 0.5 mL using data from 208 Stage T1c cancers reported by Oesterling (263). The proportion of cancers in this volume category for T1c tumors (using the TNM staging system described in table $2-3$) has been as high as 26 percent (119). Although only 70 percent of patients with abnormal DRE in the Richie study (279) consented to biopsy, and only 63 percent of cancers were surgically staged, our derivations of the post-test odds and likelihood ratios assume perfect biopsy compliance and a comparable proportion of or-gan-confined cancers in those not receiving radical prostatectomy.

UKEUHOOD RATIOS FOR PSA RESULTS

Likelihood ratios for PSA results are based on data from four studies: pooled results from studies by Catalona (66) and Brawer (44), results from a study by Richie (279), and results from another study by Catalona (70).

The values derived from pooling data from Catalona (66) and Brawer (44) are probably overestimates for the likelihood ratios for PSA testing alone since only patients who had either abnormal DRE or TRUS in the presence of PSA $>4 \mathrm{ng} / \mathrm{mL}$ received biopsy. In addition to DRE- and TRUS-guided biopsies, when appropriate, systematic biopsies were performed in willing patients who met these criteria.

Specific volume distributions are not provided by any of the four studies. We again assume 11 percent of the detected cancers are below 0.5 mL based on the study by Oesterling (263). Eleven percent of all PSA 4 to $10 \mathrm{ng} / \mathrm{ml}$ detected cancers (presumed to be $<0.5 \mathrm{~mL}$) are subtracted from organ-confined cancers to derive the posttest odds for intracapsular cancers $>0.5 \mathrm{~mL}$. These likelihood ratios reflect "best case" values because we assume perfect compliance with biopsy (compared with the actual compliance rate of 70 percent in the Oesterling study (263) and a comparable proportion of intracapsular cancers above 0.5 mL in patients not receiving surgery. These "adjustments" were made for data from all four studies in table 3-3.

Patients in the Richie study (279) received both DRE and PSA independently, and the data are presented in a way that allows derivation of the likelihood ratio for PSA alone. However, separate pre- and post-test odds for PSA results of 4.1 to $9.9 \mathrm{ng} / \mathrm{mL}$ or PSA > $10 \mathrm{ng} / \mathrm{mL}$ cannot be derived from data reported in this study.

The later (and larger) study by Catalona (70) used a protocol similar to his earlier study (66). The derivations of the likelihood ratios used only the data reported for the initial screening of 9,629 volunteers. There is a major discrepancy between the likelihood of intracapsular cancer given a PSA result of greater than $10 \mathrm{ng} / \mathrm{ml}$ (3.0) in this study and the corresponding value (0.4) from the earlier pooled studies. This is explained by the observed difference in probability of pathologically localization for cancers ($>0.5 \mathrm{~mL}$) detected by PSA $>10 \mathrm{ng} / \mathrm{mL}$ (32 percent vs. 5 percent).

Studies of
Digital Rectal Examination for Prostate Cancer Screening

74 Costs and Effectiveness of Prostate Cancer Sc reening in Elderly Men
APPENDIX C: STUDIES OF DIGITAL REC TAL EXAMINATION FOR PROSTATE CANCER SCREENING

Author	Biases/ methodologic weaknesses ${ }^{\text {a }}$	Setting	$\underset{\text { (year) }}{\text { Time frame }}$	Number of patients	Age (Y) (mean)	Abnomal criterion No. patients (\%) No. patients biopsied (\%)	Overall detection yield ${ }^{\text {b }}$	Proportion detected cancers (\%) clinically loc alized oc alized	Positive predictive value (\%)	Proportion surgically (\%)	$\underset{\substack{\text { Long-term } \\ \text { followup }}}{ }$
Chadwicket al., 1991 ${ }^{\text {d }}$	3,4,6,7,8	British population- based	1 time	814 eligible 472 rec ruited (58\%) 407 DRE	55-69	Nodule or Induration 13/407(3.2\%) not spec ified if all 13 biopsied (only if TRUS lesion also)	1/472 (0.2\%)	1/1 (100\%)	1/13 (8\%)	1/1 (100\%) pathologic loc alized	NA
Chodaket al., 1984e	2,3,4,6,7,8	Urology screening (invitational)	1 time	811	45-80	Nodule or induration 43/811(5.3\%) but only 38 complied with biopsy (88\%)	11/811(1.4\%)	5/11(45\%)	$\begin{aligned} & 11 / 38(29 \%) \\ & {[5 / 38(13 \%)]} \end{aligned}$	2/11(18\%)	
Chodaket al., 1989f	2,3,4,6,7,8	Urology screening (invitational)	6 -year serial a verage 2 exams/man	2,131	45-86	Nodule Induration or a sym 144/2131 (6.8\%) 143/144 (99\%) biopsied.	$\begin{array}{\|l\|} \hline 36 / 2131 \\ \text { (1.7\%) } \\ \text { (1.5\%initial) } \end{array}$	25/36 (69\%)	$\begin{array}{\|l} 36 / 144(25 \%)^{9} \\ 25 / 144(17 \%) \end{array}$	18/25(72\%) 9/18(50\%) path loc.	See Gerber et al., 1993 ${ }^{f}$
Drago et al., 1992	1,2,3,5,6,7,8	Academic Urology C linic	U.S. year with a nnual followup. Exact no. men enrolled each year not provided.	1940 "asymptomatic" Recruitment process not well described	55-70 (64)	Not specified ("abnormal"). No blinding 147(7.6\%) Implied all were biopsied [260 others biopsied for TRUS abn].	39/1940 (2\%)	Not provided for DREdetected cancers.	$\begin{array}{\|l} \hline 39 / 147(27 \%) \\ \text { [not } \\ \text { provided] } \\ \hline \end{array}$	Not provided for DRE-detecte d cancers.	NA
Faul, 1982	2,3,4,6,7,8	German screening	$\begin{aligned} & 1 \text { time } \\ & 1978 \end{aligned}$	9,000,000 eligible 1,500,000 rec ruited 17\% participated	>45	Induration ornodule	0.1\%	NA	$\begin{aligned} & 1951 / 21,308(9 \\ & \%) \end{aligned}$	NA	NA
Frohmuller, 1991	2,3,4,6,7,8	German screening. Govermment insurance sponsored (same program as Faul et al. report, 1982).	$\begin{aligned} & 1987 \text { data } 1 \\ & \text { time } \end{aligned}$	1,341,833 partic ipants (approx 15\%of 60 yr elig ible, 8\% of 45 year old eligible)	>45	Nodule or Induration exact\%prostate abn not given 1.7\% suspic ious prostate or genita lia	$\begin{array}{\|l} \hline 0.12 \% \text { (1638 } \\ \text { cases) } \end{array}$	NA	$\begin{aligned} & 1638 / 22,590 \\ & (7 \%) \end{aligned}$	NA	NA
Gilbertson, 1971	2,3,4,6,7,8	University invitational (general)	Serial exams, 16-year study, a verage 5 exams/man	5,856	Over 45	Nodule \%abnormalnot given	75/5856 (1.3\%) cumulative $20 / 5856$ (0.34\%) initial	Unknown (22/75 detected received radic al surgery)	Unable to derive	NA	(5-year survival 91\% for surgery 72% for others) ${ }^{h}$

APPENDIX C: STUDIES OF DIGITAL REC TALEXAMINATION FOR PROSTATE CANCER SCREENING CONTNUED

Author	Biases/ methodologic weaknesses ${ }^{\text {a }}$	Setting	$\underset{\text { (year) }}{\text { Time frame }}$	Number of patients	Age (Y) range (mean)	Abnomal criterion No. patients (\%) No. patients biopsied (\%)	Overall detection yield ${ }^{\text {b }}$	Proportion detected cancers (\%) clinically loc alized	Positive predictive value (\%)	Proportion surgic ally staged ${ }^{\text {c }}$ (\%)	Long-term followup
Guinan et al., 1980	1,2,3.	Inpatient Academic Urology Service All symptomatic with varying levels of prostatism. Study described as multiple "screening" test evaluation, but population highly enriched with prostate cancer. Not generalizable to office-based DRE sc reening situation. Selection bias.	1 time	300 (consecutive admissions to urology service; not known to have prostate cancer previously)	50-90 (no data on mean ordistribution)	G ross Asymmetry, Induration or Nodule (blinded a ssessment). All patients received DRE, as well as prospective determination of acid phosphata se, urine cytology (pre- and postmassage), and several other antiquated tests. All patients biopsied.	$\begin{aligned} & 69 / 300 \\ & (23 \%) \end{aligned}$	Not provided.	48/72 (67\%) [Sensitivity - 69\% Specific ity - 89\%]	Not provided	NA
Guinan et al., 1987	1,2,3.	Inpatient Urology Service Comparative study of 5 studies, including TRUS, PSA. All symp tomatic selection bias Not generalizable to office-based population.	1 time convenience sample (inc omplete testing)	280 (imply consec utive admissions no known cancer)	(68)	G rossA symmetry, Induration or Nodule 96/258 (37\%)	$\begin{aligned} & \hline 78 / 280 \\ & (28 \%) \end{aligned}$	Not specified.	51/96 (53\%) [Sensitivity 51/70 (73\%) Specificity 143/188 (77\%)]	not specified	NA
Gustafsson et al., 1992	6,8	Swedish sc reening population-based	1 time	$\begin{aligned} & 2400 \text { e ligible } \\ & 1788 \text { rec ruited } \\ & \text { (} 74 \% \text {) } \end{aligned}$	55-70	Nodule or induration a symmetry 195/1782 (11\%) Implied all biopsied.	$\begin{aligned} & \hline 42 / 1782 \\ & (2.4 \%) \end{aligned}$	22/42 (52\%) 6 patients not biopsied.	$\begin{aligned} & 42 / 195(22 \%) \\ & {[22 / 195} \\ & (11 \%)] \end{aligned}$	NA	NA
$\begin{aligned} & \hline \text { Imai et a l., } \\ & 1988^{k} \end{aligned}$	2,3,4,5,6,7,8	Japanese mass screening	1 time	35,055 eligible 5302 screened (15\%)	>60	Not spec ified (minimal change) 551 Abn by first urologist, 202 biopsied.	54/5302(1\%)	28/54 (52\%) stage B	$\begin{aligned} & 54 / 202(27 \%) \\ & 28 / 202(14 \%) \end{aligned}$	NA	NA

76 Costs a nd Effec tiveness of Prostate Cancer Sc reening in Eld erly Men
APPENDIX C: STUDIES OF DIGITALREC TALEXAMINATION FOR PROSTATE CANCER SCREENING CONTINUED

Author	Biases/ methodologic weaknesses ${ }^{\text {a }}$	Setting	Time frame (year)	Number of patients	Age (Y) range (mean)	Abnormal citerion No. patients (\%) No. patients biopsied (\%)	Overall detection yield ${ }^{b}$	Proportion detected cancers (\%) clinic ally localized	Positive predictive value (\%)	Proportion surgically staged ${ }^{\text {c }}$ (\%)	Long-term followup
J enson, 1960	2,3,4,6,7,8	University Invitational (General) asymptomatic	Serial exams, 11-year study, a verage 7.6 exam/man	4,367	Over 45	Nodule or In duration	37/4367 (0.8\%) c umulative (0.32\% initial exam)	NA	NA	NA	Overall survival 57\% forcancers detected first exam, 86\% subsequent exams
$\begin{aligned} & \text { Lee et al., } \\ & 1988^{1} \end{aligned}$	1,2,3,5,6,8	Screening invitational/ referral	1 time	784	60-86 (65)	NA	10/784 (1.3\%)	Unknown for DRE itself	$\begin{aligned} & \text { 10/29 (34\%) } \\ & \text { [not } \\ & \text { provided] } \end{aligned}$	NA	NA
Mettlin et al., 1991 ACS-NPCDP	2,3,6,7,8	10 Centers in U.S./Canada Hospital/C linic Invitational	Initial Screen	2,425	55-70 (63)	Nodule, Induration or Asymmetry 153/2425 (6.3\%) 118/2425 (4.9\%)	$\begin{array}{\|l} 33 / 2425 \\ (1.4 \%) \end{array}$	27/32 (84\%) [missing data]	33/118 (28\%) Among patient biopsied [27/118 (23\%]	20/30 (66\%) Radical Surgery-20 (missing data in 9 of 57 total cancers detected but not specified which were DRE detected.)	NA
Mettlin et al., 1993 ACS NPCDP	2,3,6,7,8	10 Centers US/ Canada Hospital/Clinic Invitational	5-year a nnual followup. Report on 1972 men with 2 sequential exams with complete data.	2,999 enrolled overall Data provided for 1972 initial exam 1899 second exam.	$\begin{array}{\|l\|} \hline 55-70 \\ \text { entry (63) } \end{array}$	Nodule, Induration of Asymmetry Initial exam. 139/1972 (7\%) 117/1972 (6\%) Second Exam 82/1899 (4.3\%) 75/1899 (4\%)	$\begin{array}{\|l} \hline 38 / 1972 \\ \text { (1.9\%) } \\ \text { initial exam } \\ 16 / 1899 \\ (0.8 \%) \\ \text { Second } \\ \text { exam. } \end{array}$	32/37 (86\%) initial',/ missing 13/13 (100\%) sec ond, 3 missing.	$\begin{array}{\|l} 38 / 117(32 \%) \\ {[32 / 117} \\ (27 \%)] \\ \text { initial } \\ 16 / 75(21 \%) \\ {[13 / 75(17 \%)]} \\ \text { Second } \end{array}$	18/32 (56\%) resurg. 7/32 (22\%) XRT 6 missing data initial 12/13 (92\%) surgery 1 / 13 (8\%) XRT 3 missing data.	NA
Moon et al., 1991	2,3,4,5,6,7,8	University/ Veterans Administration Urology C linic Invitational	1 time	417 3 patients not biopsied.	40-59	Not specified	30/414 (7\%) overall abnomal gland (0/190 40-49 years) 29/ 30 (97\%) implied biopsied	$\begin{aligned} & 1 / 414(0.24 \%) \\ & \text { overall } 1 / 224 \\ & (0.45 \%) \\ & \text { for age } 50-59 \\ & \text { year. } \end{aligned}$	1/1 (100\%)	1/30 (3.3\%)	1/1 (100\%) Stage C pathologic.
Mueller et a l., 1988	1,2,3,4,5,6,7,	Milita ry Urology Clinic Retrospective of ongoing study; used years 1979-85.	7-year serial a verage 2-4 exams/year	4,843	40-79	Nodule 312/4843 (6.4\%) imply 100% biopsy late	122/4843 (2.5\%) (1.7\% initial exam 0.63\% persubsequentexam	$\begin{aligned} & 77 / 122 \text { (63\%) } \\ & 58 \% \text { initial } \\ & 74 \% \\ & \text { subsequent } \\ & \text { exam } \end{aligned}$	122/312 (39\%)	$73 \%(46 \%$ initial pathologic loc al, 58\% subsequent exam)	NA

APPENDIX C: STUDIES OF DIGITAL REC TALEXAMINATION FOR PROSTATE CANCER SCREENING CONTNUED

Author	Biases/ methodologic weaknesses ${ }^{\text {a }}$	Setting	Time frame (year)	Number of patients	Age (Y) range (mean)	Abnormal criterion No. patients (\%) No. patients biopsied (\%)	Overall detection yield ${ }^{\text {b }}$	Proportion detected cancers (\%) clinically localized	Positive predictive value (\%)	Proportion surgically staged ${ }^{\text {c }}$ (\%)	Long-term followup
Muschenheim et al., 1991	2,3,4,5,6,7,8	Invitational Free Screen. Prostate Cancer Awareness break Madison County New York 2 Sites 2 urologists.	1 time	565 inc omplete followup	not provided	Not spec ified 83/ 565 (19.6\%) Abnormal DRE 37/ 565 (6.5\%) biopsied. Patients not all biopsied at Central study sites.	```16/565 (2.8%) 5/16 (31%) grade "poorly diff" (Gleason grade not performed)```	13/16 (81\%) although insuffic ient detail provided	16/37 (43\%) of those biopsied.	Insufficient detail 11/16 surgic al treatment (3 RT) All 11 surgic ally staged had no lymph node disease.	Treatment: RP 11 RT 3 Orchiectomy 2 No. Tx 1.
Na ito, 1988	1,2,3,4,5,7	J apanese Urology Clinic Cooperative referrals for variety untreated prostate symptoms Highly selected all received DRE (unc lear if blinded a ssessment) and TRUS (blinded) 3.5 m H_{2}	1 time	109	35-89 (70)	Poorly specified 2 levels of Abnormal"malig. cancer not ruled out" 19/ 109 (17\%) "malig. cancer highly suggestive" 19/ 109 (17\%) All patients biopsied but technique not specified	22/109 (20\%)	NA No data provided on clinical/path stage or grade	22/38 (69\%) if lump both levels of abnormal DRE (not provided) 'sensitiv'ty' $=22 / 32$ (69\%) 'spec ific ity' $=61 / 77$ (79\%)	NA	NA
Pederson et al., 1990m	4,6,8	Swedish population screening random selection.	1 time	$\begin{aligned} & 1494 \text { (1163 } \\ & \text { partic ipate } \\ & (78 \%) \end{aligned}$	50-69	Nodule Induration	13/1163 (1.1\%)	12/13 (92\%)	$\begin{aligned} & 13 / 44 \text { (30\%) } \\ & 12 / 44 \text { (27\%)GP } \\ & 15 / 44 \text { (35\%) } \\ & \text { Urology } \end{aligned}$	10/13 (77\%) 10 surgeries (7 extracap. by pathology 1xRT	NA
$\begin{aligned} & \hline \text { Pemin et a l., } \\ & 1991^{n} \end{aligned}$	1,2,3,4,6,7,8	French urology c linic asymptomatic health check	1 time	863	50-60	Nodule or induration	$0.35 \%, 1.9 \%$ adjusted	NA	3/11 (27\%)	NA	NA
Richie	2,3,6,7,8	6 Urology clinics. Genera I public recruited.	Initial screen data	6630	50-96 (63)	DRE: Asymmetry, In duration or Nodule All patients had PSA; biopsy received if PSA >4 Abnormal DRE in 982/6630 (15\%) 683/982 (70\%) biopsied	$\begin{aligned} & \hline 146 / 6630 \\ & (2.2 \%) \end{aligned}$ Canceron basisDRE alone	143/146 (98\%)	146/683 (21\%)	92/146 (63\%) 64/92 (70\%) pathologic, confined	NA

APPENDIX C: STUDIES OF DIGITAL REC TALEXAMINATION FOR PROSTATE CANCER SCREENING CONTINUED

Author	Biases methodologic weaknesses ${ }^{\text {a }}$	Setting	Time frame (year)	Number of patients	Age (Y) range (mean) (mean)	Abnomal cniterion No. patients (\%) No. patients biopsied (\%)	Overall detection yield ${ }^{\text {b }}$	Proportion detected cancers (\%) clinically oc alized	Positive predictive value (\%)	Proportion surgically staged ${ }^{\text {c }}$ (\%)	Long-tem followup
Thompson, 1984	1,2,3,4,6,7	Military Urology Clinic retrospective random review of ongoing screening study, from 1979-83. Data likely part of Mueller 1988 study.	4 yearsenial 1.3 exam/ patient	2005 part of routine exam 43\% patients with negative biopsy had urologic symptoms.	40-92 (58)	Nodule both lobes biopsied routinely \#per patient not specified	$17 / 2005$ (0.8%) 0.55% initial 0.25% second	15/17 (88\%)	$\begin{array}{\|l} {[17 / 65(26 \%)]} \\ {[15 / 65(22 \%)]} \end{array}$		NA See Gerber et al $1993 .{ }^{\text {f }}$
Varenhorst et al., 1992°	4,6,8	Swedish population invitational screening random selection. 9,026 maleseligible from geographic area. Only general practitioners involved with second round.	Second follow up to Pederson et al study.	1994 invitational initially; 1,163 partic ipa ting first screen (78%) 1363 invited second screen 953 participating second (70\%).	50-69	Nodule or Induration (similar FNA biopsy tec hnique as in first screening).	7/953(0.7\%)	5/7(71\%) not specified whether 2 advanced cancers were the 2 not screened first cycle.	$\begin{aligned} & 7 / 42(17 \%) \\ & {[5 / 42(12 \%)]} \end{aligned}$	3/7 (43\%)	NA
Vihko	1,2,3,4,5,6,7,8	Veteran's Rehabilitation Urology clinic	$\begin{aligned} & 4 \text { year } \\ & \text { serial } \end{aligned}$	771 imply full compliance biopsy if tests abn.	54.76	Not specified 27/771 (3.5\%) DRE abnomal	6/771 (0.89\%)	4/6 (67\%)	$\begin{aligned} & \hline 6 / 27(22 \%) \\ & {[4 / 27(15 \%)]} \end{aligned}$	NA	NA
Waaler	1,2,3,4,5,6,7,8	German Occupational Health Program screening	1 time	480	45-67	Not spec ified; Abnormal did not include "adenomatous enlargement" 26/480 (5.4\%) refered to urology, 9/26 spec ific ally suspic ious for PC in first screen. Urologists suspected PC in 10/26 referred. 16 patients biopsied.	1/480 (0.2\%)	0/1 (0\%)	$\begin{array}{\|l\|} \hline 1 / 16 \text { (6\%) } \\ {[0 / 16(0 \%)]} \end{array}$	0	NA

logic deficiencies will be devoted with the particular number (1-8) in the propercell. We chose not to grade orweigh to degree to which a study bias was present. ${ }^{\text {b }}$ Detection yield = number of patients with prostate cancerdetected/number patients screened. Numbers in parenthesis referto yield of each individual exa mination c Refers to proportion of patients clinically loc alized who rec eive surgic al staging.
APPENDIX C: STUDIES OF DIGIAL REC TAL EXAMINATION FOR PROSTATE CANCER SCREENING CONTNUED
d No apparent selection bias. 407 of 472 recruited patients who agreed to at least part of the "health screen" received DRE by general physic ian. Total of 7 cancers detected but only 1 had an abnormal DRE; DRE.
${ }^{f}$ Detection rate for initial screen $1.5 \%(32 / 2131), 0.2 \%$ forsecond-yearexam (3/1321). Long-term disease-specific survival forpatients in this cohort a nd the similardesign of Thompson et al. (1984) are reported in Gerberetal. (1993). 56 men (mean age 65 years) were followed formedian of 75 months; $3 / 56$ men were not reported in the 2 orig inal reports. C linic ally localized cancerdiagnosed in 73% on initialscreen and for 83% of cancersdetected in subsequent examinations. Patientswere trea ted by variety of strategiesinitially but in generala ggressive treatment (surgery orradiation) used forthose clinic ally localized. However, 10 -yeardisea se-specific survival was 86% formen diagnosed duning first screen and only 57% for subsequent exams ($\mathrm{p}=.02$). This data suggest presence of length bias. Only 63% and 22% of patients in Chod

[^44]i This isthe single stud y a vaila ble that isnot fla wed by work-up bias. All pa tientsrec eived transrecta l biopsies, using a modific ation of the Vim-Silverman needle. However, the population studied isvery atypic al of men without suspected prostate cancersbeing followed in a routine offic e-based primary care setting. All men were symptomatic inpatientson urology service. The high prevalence ofdetected cancers, 10 to 20 fold higher than typic al screening studies of DRE, suggests signific ant selection biases. Although the comprehensive biopsy protocol explains some of thisdiscrepancy, the prevalence is still nearly twice as high as an earlier hospital-based study employing routine "wedge" biopsy in a population enric hed with prostatism but no suspected cancer (Hudson, 1954).
The study cohort wasderived from 2,400 patients in this ge group randomly selected from a defined catchment area of the study hospital. Allc asesingroup with prior history of prostate cancerwere exc luded. Patients were invited to participate in multiphasic 1 time screening program. All 1,788 rec ruited patients received DRE, TRUS, and PSA with proper blinding performed. A preliminary report of this data was published by Norming et al. (1991). Biopsy performed selectivity forDRE positive and/or TRUS positive patients (small unspecified numberforelevated PSA above 10ng/ml). Clinical staging performed by TNM system. 11/42 DRE positive cancers were T2A, 11 were T2B.
k "Masssc reening" study organized between 1981 and 1985 by the urology department at Gunma CancerCenter Hospital. Intervention involved questionna ire, acid phosphatic (PAP), and DRE in a "field" type (27%) forall cale was 54/202 (27%) for all cancer. The mean age of patients with detected cancer was 73 years ($63-87$ range). The average cost of detecting each case wascalc ulated to be equivalent to $\$ 5,358$. Authors
compared clinic al stage distribution in study group (52% stage B) with 93 patients diagnosed in outpatient clinic ("controls") over same time period (16% stage B). Crude survival curves of patients (by stage) in both groups indicate no differences at mean followup of 3 years. However, only $3 / 28(11 \%)$ of stage B patients in the study agreed to surgery
I Bias aga inst DRE (vs. transrectal ultra sound comparison); 50% of patients reported ly had normal DRE within 1 year of study.
m From a population of 9,026 men ages 50 through 69 in a defined catchment area in Sweden, 1,494 were randomly selected and invited to receive DRE by both a genera I prac titionerand a urologist, performed cytologic analysis. It is not specified whethera "geographic" approach to FNA of nonsuspected areas is used.
n This study has signific ant methodologic flaws. The 863 patients receiving a "sc reening" DRE represent one subgroup rec eiving different interventions. The men are reportedly asymptomatic. No desc ription of
how these men a re selected forstudy. 61 (7%) had suspiciousDRE but only 11 got biopsied revealing cancerin 3 . Assuming same PV +would apply if all 61 received biopsy, the estimated "adjusted" yield of DRE is 1.9% Because of potential uncharacterizable selection bias, the study population cannot be considered a screening cohort.

- This publication presentsthe second screening yield from the original study of Pederson et al. (1990). Thirteen cancers were detected in the initial round and 7 cancersduring the second round 3 yearslater. Six other cancers were diagnosed through routine care (4 incidentally at TURP) between screening cycles for this population. Of the combined 20 cases detected by screening, 14 (he

APPENDIX

Studies of

Prostate-Specific Antigen for Prostate Cancer Screening and Early Detection

APPENDIX D: STUDIES OF PROSTATE SPECIFIC ANTIGEN FOR PROSTATE CANCER SCREENING AND EARIY DEIEC TION: RESEARCH DESIGN AND RNDINGS

Author	Biases and methodologic weaknesses ${ }^{\text {a }}$	Setting	Age (year) (mean)	Number patients enrolled (\%)	Abnormal criterion (\%)	Biopsy criteria	No. patients (\%) with criteria No. patients (5) biopsied	No. (\%) PC detected	No. (\%) PC clinic ally localized	No. (\%) PC pathologically localized	$\begin{gathered} \text { PPV \%b } \\ \text { PSA } \\ \hline \end{gathered}$	Treatment
Babaian et al., 1992 ACS NPCDPC	2,3,6,7,8	10 sites in U.S./Canada, hospital/ clinic-based public invited	55-70 (63)	2425 over 3.5 years (PSA in 2,227)	$\begin{aligned} & >4 \mathrm{ng} / \mathrm{mL} \\ & \text { (not } \\ & \text { provided) } \end{aligned}$	Abnormal DRE and/orTRUS (11 additional biopsiesforabn PSA, most > 10 $\mathrm{ng} / \mathrm{mL}$) blind ing not specified	Not provided 520/2425 (21\%) year 1-395 year 2-102 year3-23	88/2,425 (3.6\%) no data on grade/volume	Not provided	Not provided	$\begin{array}{\|l} \hline 59 / 137 \\ (43 \%) \end{array}$	Not provided
Babaian et al., 1991	1,2,3,4,6,7,	Urology Clinic Cancer (most symptomatic) referal and selection biases	50-75 (63 median)		$>4 \mathrm{ng} / \mathrm{mL}$ 90/362 (25\%)	Abnormal DRE and/orTRUS, or PSA > 20 No blinding	$\begin{array}{\|l} \text { 120/362 (33\%) } \\ 109 / 362(30 \%) \end{array}$	37/362 (10\%) 27/75 (36\%) MD referred; 10/287 (3\%) self refered	23/37 (62\%)	Not provided	$\begin{array}{\|l} 30 / 90 \\ (33 \%) \end{array}$	Not provided
Braweret al., 1992	2,3,6,7,8	U.S. Urology Clinic Public recruited	$\begin{array}{\|l\|l} \hline>50 \\ (67) \end{array}$	1249	$\begin{aligned} & >4 \mathrm{ng} / \mathrm{mL} \\ & 187 / 1,249 \\ & (15 \%) \end{aligned}$	If PSA >4, then DRE/TRUS with systematic biopsy adjunct blinding not specified	$\begin{array}{\|l\|l} \hline 187 / 1249(15 \%) \\ 105 / 1249(8.4 \%) \end{array}$	32/1249 (2.6\%) no data on grade/ volume	30/32 (94\%)	9/32 (28\%) 4 of the 9 capsule penetration without perforation 16 surgical staging	$\begin{array}{\|l} \hline 32 / 105 \\ (30 \%) \end{array}$	RP - 15 PL-1 RT- 10 No TX-6
Catalona et al., 1991	2,3,6,7,8	U.S. Urology Clinic Public recruited	50-89	1653	$<4 \mathrm{ng} / \mathrm{mL}$ 137/1653 (8.3\%)	If PSA >4 on initial or 6 month re-test, then DRE and TRUS, biopsy if either abn blinding not specified	$\begin{array}{\|l\|l} 137 / 1653(8.3 \%) \\ 112 / 1653(6.8 \%) \end{array}$	37/1653 (2.2\%) ${ }^{\text {d }}$ no data on grade/volume	36/37 (97\%)	12/37 (32\%) 33 surgical staging	$\begin{aligned} & 37 / 112 \\ & \text { (33\%) } \\ & \text { if PSA 4-9.9 } \\ & 19 / 85(22 \%) \\ & \text { if PSA } \geq 10 \\ & 18 / 27(67 \%) \end{aligned}$	Not provided (at least 19 had RP)
Catalona et al., 1993	2,3,6,7,8	U.S. Urology Clinic Public recruited	$\begin{array}{\|l} 50-90 \\ (63) \end{array}$	10,251 (but 622 "protocol violations") 9,629 initial screen 9,333 serial screen (up to 37 month followup)	$>4 \mathrm{ng} / \mathrm{mL}$ 902/9629 (9.4\%) initial 873/9333 (9.4\%) serial	If PSA >4 twice initially, oron any 6 month serial check then DRE an TRUS. If either abn, biopsy. No systematic biopsy	902/9629 (9.4\%) 860/9629 (8.9\%) initial 873/9333 (9.4\%) 465/9333(5\%) senial	296/9629 (3.1\%) initial 195/9333 (2.0\%) serial 491/9629 (5.1\%) total	277/296 (94\%) initial 170/175 (97\%) serial, but missing data	153/262 (58\%) initiate, but 27 clinic ally localized did not get surg stage 92/129 (71\%) serial, but missing data in 46 patients	296/860 (34\%) overall initial 174/652 (27\%) PSA 4-9.9 initial 122/208 (59\%) PSA >10, initial	Of total 491: RP - 348 RT- 68 HT- 27 No TX- 16 Pending -
Chad- wicket al., 1991	3,4,6,7,8	British population- based gener- al practice recruitment	55-69	863 eligible 814 rec ruited 472 screened 437 got PSA 407 got DRE	$>4 \mathrm{ng} / \mathrm{mL}$ 63/472 (13\%)	If PSA >4 and/or DRE abnomal, TRUS recommended. If TRUS abn, biopsy recommend	75/472 (16\%) 12 of 75 for abn DRE alone 29/472 (6\%) biopsied	7/472 (1.5\%) (mean PSA 17) No data on size/volume	7/7 (100\%)	5/7 (71\%) 5 surgic al staging	7/63 (11\%)	$\begin{aligned} & \text { RP - } 5 \\ & \text { No TX-2 } \end{aligned}$

APPENDIX D: STUDIES OF PROSTATE SPECIRC ANIIGEN FOR PROSTATE CANCER SCREENING AND EARIY DETEC TION: RESEARCH DESIGN AND FNDINGS CONTNUED

	$\begin{aligned} & \hat{n} \\ & \dot{1} \end{aligned}$			
$\begin{aligned} & \text { 응 } \\ & \text { त्र } \\ & \frac{1}{2} \end{aligned}$				$\stackrel{\stackrel{0}{\mathrm{M}}}{\substack{\text { Nin } \\ \\ \hline}}$
				$\begin{aligned} & \dot{0} \\ & \stackrel{0}{7} \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$
	$\begin{aligned} & \hat{0} \\ & \underset{\sim}{1} \end{aligned}$		$\stackrel{\sim}{\sim}$	
	$\begin{aligned} & \text { O } \\ & \text { ì } \end{aligned}$			$\begin{aligned} & \text { O } \\ & \text { în } \end{aligned}$
옿				
			$\underset{\sim}{\sim}$	$\stackrel{\infty}{6}$

APPENDIX D: STUDIES OF PROSTATE SPECIRC ANTIGEN FOR PROSTATE CANCER SCREENING AND EARIY DEIEC TION: RESEARCH DESIGN AND RNDINGS CONTINUED

APPENDIX D：STUDIES OF PROSTATE SPECIRC ANTIGEN FOR PROSTATE CANCER SCREENING AND EARIY DEIEC TION：RESEARCH DESIGN AND RNDINGS CONTINUED

	$\begin{aligned} & \text { t } \\ & \dot{\alpha} \end{aligned}$			
	$\begin{aligned} & \text { òㅇ } \\ & \text { hen } \\ & 0 \\ & \text { in } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\circ}{e}} \\ & \stackrel{e}{m} \\ & \underset{\sim}{m} \end{aligned}$	
	$\underset{J}{J}$	通	$\stackrel{0}{\circ}$	
	$\begin{aligned} & \text { ờ } \\ & \dot{\sigma} \end{aligned}$		$$	$\begin{aligned} & \stackrel{\ddot{0}}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{i} \end{aligned}$
$\begin{gathered} \text { 曷 } \\ \text { 苟 } \end{gathered}$				
		$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \hat{n} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{N} \end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \frac{3}{4} \end{aligned}$				

APPENDIX D: STUDIES OF PROSTATE SPECIFC ANTIGEN FOR PROSTATE CANCER SCREENING AND EARIY DEIEC TION: RESEARCH DESIGN AND RNDINGSCONTINUED

Author	Biases and methodologic weaknesses ${ }^{\text {a }}$	Setting	Age (year) (mean)	Number patients enrolled (\%)	Abnormal PSA criterion (\%)	Biopsy criteria	No. patients (\%) with criteria No. patients (5) biopsied	No. (\%) PC detected	No. (\%) PC clinically loc alized	No. (\%) PC pathologic ally loc alized	$\begin{gathered} \text { PPV } \mathbf{\%}^{\mathbf{b}} \\ \text { PSA } \end{gathered}$	Treatment
Richie et al., 1993i	2,3,6,7,8	6 University sites Public invited	50-96 (63)	6630 [White - 6,098 Black - 194 (3\%) Other- 338 (5.1\%)] Symptoms of BPH: Yes- 3,500 (53\%) No - 3,130 (47\%)	$\begin{aligned} & >4 \mathrm{ng} / \mathrm{mL} \\ & 983 / 6630 \\ & (14.8 j \%) \end{aligned}$ PSA ABN stratified by age: 50-59: 150/2381 (6\%) 60-69: 487/2959 (17\%) 70-79: 311/1161 (27\%) 80+ 35/129 (27\%)	Abnomal DRE (a symmetry, induration or nodule) and/or PSA elevated. If eitherabnormal, TRUS performed with guided biopsy if abnormal and systemic quadrant biopsiesfor all patients with elevated PSA even if TRUS or DRE normal	Overall 1710/6630 (26\%) $1167 / 6630$ (17.6\%) Number of patients meeting criteria by age: 50-59: $364 / 2381$ (15\%) $60-69:$ $828 / 2959(28 \%)$ $70-79:$ $463 / 1161$ (40\%) $80+$ $55 / 129$ (43\%)	Overall 264/6630 (4\%) By age: 50-59: 48/2381 (2\%) 6-69: 123/2959 (4.2\%) 70-79: 84/1161 (7.2\%) 80+: 9/129 (7\%) Not stratified by presence of symptoms	$\begin{aligned} & \text { 261/264 } \\ & (99 \%) \end{aligned}$	114/ 160 (71\%) of those received surgical staging 101 of the 261 patients with c linic ally localized cancers elected not to have surgery. 17/160 (11\%) had poorly differentiated grade For PSA > $10 \mathrm{ng} /$ mL 40\%organconfined	Among patients biopsied: Overall 216/686 (31\%) By age: 50-59: 36/113 (32\%) 60-69: 99/336 (29\%) 70-79: 73/216 (34\%) Combined Abn PSA or DRE PPV: Overall 264/1167 (23\%)	$\text { RP - } 160$ No other data provided.

a Legend forstudy biasesa nd methodologic weaknesses: 1) notpopulation-ba sed orcommunity setting; 2) selection (including self) and/orreferral biases; 3) nonrandom study group acc rual; 4) explicitinclusion/exclusion criteria not provided; 5) abnormaltest criteria not described; 6) incomplete application of a ppropriate reference (gold) sta nd ard (work-up bias); 7) lackof properblinding intest interpretation; 8) failure to a cc ount completely forall enrolled subjects (includ ing biopsy of all abnormaltestsand reporting of clinic aland pathologic stage data). Foreach stud
a BPA = benign prostate hypertrophy; PC = prostate cancer; PL = pelvic lymph node dissection (metastasis); PPV = positive predictive value; RP=radicalprostatectomy; RT=radiation therapy; No TX=No treatment. b ACS-NPCDP =Americ an Cancer Soc iety National Prostate CancerDirection Project. The ACS-NPCDP used DRE abnormality (asymmetry, induration, ornodule) and/or TRUS abnormality (hypoechoic a rea greater (Stame) 14 of 16 canc "missed" by TRUShad "abnomalbutbenign" find ings (e.g., asymmetry) that would have been biopsied elsewhere. Routine systematic biopsy of PSA >4 not recommended.
d Thisstud yenrolled 1940 purported ly asymptomatic men overa $41 / 2$ yearperiod and followed them with a nnual DRE, TRUS, and PSA. No data on exactnumberof men followed peryearare provided, norisit clearhow many cancers were detected in each exa mination (apparent maximum of 3). It is also not clearwhether all men received each test with each iteration. The data are presented in a confusing mannerwith multiple e DRE detected 33 of 57 cancers found (detection rate $33 / 2425=1.4 \%$). TRUS detected 44 of 57 cancers found (detection rate $44 / 2425=1.8 \%$).
fThe ACS-NPCDP continued to rely on DRE and/orTRUSabnorma litiesasthe ma in determinantsforrecommend ing biopsy, although subsequentevaluationsincorporated PSA testing. For 144 of the 1972 men reported here PSA data are unavailable. Forclinical staging, this study uses a modification of Whitmore's classification: A1 defined here as TRUS-measured tumor volume $<0.2 \mathrm{~cm} 3$ (average diameter less than 0.7 cm). An unknown number of patients had biopsy within the study on the basis of PSA $>10 \mathrm{ng} / \mathrm{mL}$, although 11 of the 106 detected cancers resulted from this effort. Patients with PSA $>10 \mathrm{ng} / \mathrm{mL}$ who had a negative set of systematic biopsies were re-evaluated with repeated TRUS and DRE in 12 months. It is not specified how many patients were rebiopsied if these studies remained negative. Six other detec ted cancers were found
through non-protocolmeans(e.g.,TURP in men who were not previously recommended forbiopsy). Positive Pred ictive Value (PPV) of DREwas 22% initially and only 14% follow-up examination. The PPV forTRUSwere 14% and 8%, respectively (combined DRE/TRUS PPV 37% and 32%).
Overall study design and mode of data presentation is poor. Description of patient cohort and method of rec ruitment scant. Only patients with elevated PSA who then had abnormal DRE were eligible forbiopsy. Actual numberwho meet cntenia and then received biop lize lize whe to an office-based screening population.
Overall 68% compliance with biopsy performance for either/both DRE, PSA abnormal. The cancerdetection rates and positive predictive values reported in the paper ignore noncompliance and assume same
proportion of positive biopsies would occurif all men meeting biopsy criteria actually received systematic biopsies. Unfortunately, although 53% of study group reported symptomsofp prostatism, the data forpred ictive values of each test and detection are not stratified by symptoms or race. PPV for abnomal DRE among those patients biopsied is $146 / 683$ (21%).

APPENDIX
 E

Studies of
 Repeat/Serial Prostate-Specific Antigen Testing Yield for Prostate Cancer Screening and Early Detection

APPENDIX E: STUDIES OF REPEATT SERIALL PROSTATE-SPECIAC ANTIGEN TESTING YIED FOR PROSTATE CANCER SCREENING AND EARIY DETEC TION:

Author	Biases and methodologic weaknesses ${ }^{\text {b }}$	Setting	Age (year) (mean)	Number patients enrolled (\%)	$\begin{aligned} & \text { Abnormal } \\ & \text { PSA } \\ & \text { criterion (\%) } \\ & \hline \end{aligned}$	Biopsy criteria	No. patients (\%) with criteria No. patients (\%) biopsied	No. (\%) PC detected	```No. (%) PC clinically localized```	No. (\%) PC pathologic ally localized	Positive predictive value of criteria	Treatment
Braweret al., 1993'	2,3,6,7,8	U.S. Urology Clinic Public recruited Second year of screening study Inc ludes only patients whose year 1 PSA was < 4 $\mathrm{ng} / \mathrm{mL}$ Many men were evaluated at nonstudy sites but these data not included Blinding methods not specified	>50 (67) Similar age distribution to original cohort (Brawer 1992)	701 Reflects 66\% of original cohort with PSA < 4 None of these had DRE/TRUS in year 1 of study	20\% inc rease in PSA above year 1 level; Absolute PSA >1.5 also used as criterion forbiopsy recommendation 75/701 (11\%) had PSA >4 at year 2, but only 19/75 (25\%) received biopsy Presumably all of the 75 were recommended to get biopsy, but reasons for noncompliance not specified.	If 20% increase PSA, then DRE with biopsy if positive If absolute PSA $>1.5 \mathrm{ng} /$ mL systematic biopsy with TRUS guidance regardless of DRE Abnormal DRE included asymmetry, induration, nodule Abnormal TRUS included hypoechoic peripheral zone lesion	260/701 (37\%) had 20\%increase PSA 82/701 (12\%) biopsied overall 159/260 (61\%) had PSA > 1.5; and 71/159 (45\%) a greed to DRE biopsy; 50/71 (70\%) had abnormal DRE; 101/260 (39\%) had PSA < 1.5; 31/101 (31\%) a greed to DRE; 11/31 (36\%) had abnormal DRE and got biopsy	14/701 (2.0\%) overall Among 260 with 20\% increase in PSA over 1 year, 14/260 (5.4\%) yield 5/14 cancers had only a symmetry ora benign gland on DRE 2/14 cancers (14\%) had PSA > 4 17/68 benign biopsies (25\%) had PSA >4	$\begin{aligned} & 13 / 14 \\ & (93 \%) \end{aligned}$	Not known 7/8 who received surgical staging were organconfined or had negative margins No data on prostate cancervolumes at surgery provided	14/82 (17\%)	RP-8 No data for other 6
Catalona et al., 1993	2,3,6,7,8	U.S. Urology Clinic Public recruited Original cohort 10,251 men	$\begin{aligned} & 50-90 \\ & (63) \end{aligned}$	9,333 serial screenees (up to 37 months after initial screening PSA) Actual number of patients who received multiple serial biopsies (mean, range) not specified	Overall >4 ng/mL 873/9333 (9.4\%) if age ≤ 70 years 693/8320 (8.3\%) if age >70 years 180/1013 (17.8\%) PSA 4.1-9.9 ng/mL 743/9333 (8\%) PSA $\geq 10 \mathrm{ng} /$ mL 130/9333 (1.4\%)	PSA $>4 \mathrm{ng} /$ mL twice on any of 6 month serial checks, then DRE and TRUS. If either abnormal biopsy recommended No systemic biopsies on PSA alone If biopsy neg. repeat PSA at 6 month intervals and repeat DRE/ TRUS, with biopsy if indicated, if PSA >4 again	$\begin{aligned} & \text { 873/9,333 (9.4\%) } \\ & \text { 465/9,333 (5\%) } \end{aligned}$	195/9,333 (2.0\%) overall If age ≤ 70 years, 153/8320 (1.8\%) If age >70 years, 42/1013 (4.1\%) NumberCancers detected: First biopsy 90 Second biopsy 84 Third biopsy 17 Fourth biopsy 4 Denominators not provided	170/175 (97\%); mis- sing data in 20	92/129 (71\%); missing data in 46 If age ≤ 70 years, 84/111 (76\%) If age >70 years, 8/18 (44\%)	195/465 (42\%), over- all 165/392 (42\%) if PSA 4.1-9.9 ng/ mL 30/73 (41\%) if PSA ≥ 10 $\mathrm{ng} / \mathrm{mL}$ If age <70 years, 153/363 (42\%). if age >70 years, 42/102 (42\%)	Results not stratified by initial screening orserial screening. See Appendix D for aggregated treatment outcomes for the total 491 cancers detected in both cohorts. No long-tem outcome data.

APPENDIX E: STUDIES OF REPEATI SERIALa PROSTATE-SPECIRC ANIIGEN TESTING YIED FOR PROSATE CANCER SCREENING AND EARLY DEIECTION: RESEARCH DESIGN AND RNDINGS CONTNUED

Author	Biases and methodologic weaknesses ${ }^{\text {b }}$	Setting	Age (year) (mean)	Number patients enrolled (\%)	Abnomal PSA criterion (\%)	Biopsy criteria	No. patients (\%) with criteria No. patients (\%) biopsied	No. (\%) PC detected	No. (\%) PC clinically loc alized	No. (\%) PC pathologically loc alized	Positive predic tive value of criteria	Treatment
Mettlin et al ACS- NPCDP, 1993	2,3,6,7,8	10 sites in U.S./ Canada Hospital/ Clinic Public recruited Annual evaluation up to 5 years	$\begin{aligned} & 55-70 \text { on } \\ & \text { entry } \\ & \text { (63) } \\ & 2,999 \\ & \text { original } \\ & \text { enrollees } \end{aligned}$	1899 men reported with 2 sequential exams with complete data, no cancer on first exam. Only results of followup testing reported here.	$>4 \mathrm{ng} / \mathrm{mL}$ 248/1899 (22\%) follow-up PSA abnor- mal Patients not biopsied for PSA results a lone Only 1783/1899 (94\%) of patients in follow-up group received PSA test	Abnomal DRE and/or abnormal TRUS (unknown numberbiopsies recommended for PSA > $10 \mathrm{ng} /$ mL) 49/248 (20\%) biopsied with PSA >4 in followup	216/1899 (11\%) on follow-up testing 196/1899 (10\%) biopsied on basisfollow-up testing	33/1899 (1.7\%) on follow- up testing If initially 55-59 years, 1% detection rate, If 60-64 years, 1.1\% detection rate, If 65-70 years, 3.1\% detection rate	23/24 (96\%) missing data in 9 cases	Not provided for follow-up testing group	For PSA >4, 22/248 (9\%) with follow- up testing 11/33 cancers detected in follow-up testing group had PSA < 4	Not stratified by followup testing group, See Appendix D for treatment choices for overall cohort

a Refersto followup with PSA but in the case of Mettlin, (1993) PSA isnot used asa primary criterion forbiopsy. The criteria forbiopsy in all 3 of these papersare different. However, we specifica lly do not include papersthat evaluate PSA orvelocity a sprinc ipalissue (see Carter, 1992). Ra ther, seria IPSA refers to the detection rate and predictive value of repeated measures of PSA testing. However, use of PSA and protocol in the 3 studies
b Legend forstudy bia ses and methodologic weaknesses: 1) not population-based orcommunity setting;2) selection (including self) and/orreferral biases; 3) nonrandom study group acc rual, 4. Explic it inc lusion/exclusion criteria not provided; 5) abnomal test criteria not described; 6) incomplete application of appropriate reference (gold) standard (work-up bias); 7) lack of properblinding in test interpretation; 8) failure to a ccount completely forall enrolled subjects (including biopsy of all abnormal testsand reporting of clinical and pathologic stage data). Foreach study listed in this appendix, the presence of one or more of these deficiencies is denoted with the corresponding number (1-8). We chose not to qualify weight to the extent of each particularmethodologic weaknesses.
c In the Brawerstudy, the use of the a rbitrary PSA increa se of 20\%serially ac tually constitutesa form of PSA velocity. Unlike the Catalona (1993) study that followed all patientsin the originalcohortregardlessof initial PSA
and performed DRE/TRUS and biopsy on those with persistent or newly developed PSA, the Brawerfollowup study evaluates only those patients who had an original PSA $<4 \mathrm{ng} / \mathrm{mL}$.

ambex
 F

Studies of
Transrectal Ultrasound for Prostate Cancer Screening and Early Detection
APPENDIX F: STUDIES OF TRANSREC TAL ULTRASOUND FOR PROSIATE CANCER SCREENING AND EARLY DEIECTION: RESEARCH DESIGN AND RNDINGS

Author	Biases and methodologic weaknesses ${ }^{\text {a }}$	Setting	Time frame (years)	Number patients (N)	Age (Y) range (mean)	Criteria for positive TRUS	Biopsy method	Proportion BPH	TRUS lesion- Diameter (cm) Range (mean)	Overall detection yield (\%) ${ }^{\text {b }}$	Proportion detected cancers clinic ally localized (\%)	Positive predictive value ${ }^{\text {c }}$ (clinic ally localized)	Proportion detected cancer pathologic ally localized (\%)
Carter et al. (1989)	1,2,3,7	Retrospective All patients with abnomal DRE who got RUS before surg for known cancer 1 lobe.	-	59 highly selected	not provided	peripheral hypoechoic in contralateral lobe	en bloc surgical specimen	Not specified.	$0.5-4.5 \mathrm{~cm}$ (1.7 mean)		NA Sensitivity 13/25 (52\%) Spec ificity 23/34 (68\%)	$\begin{array}{\|l} 13 / 24 \\ (66 \%) \end{array}$	NA Sensitivity $10 / 20$ (50\%) if diameter $0.5-2.0 \mathrm{~cm}$
Coffield et al. (1992)	1,2,3,7	Consecutive autopsy no history prostate cancer; all nonsuspic ious DRE within 1 year	-	63 (7 others excluded, insuffic ient information)	$\begin{array}{\|l} \hline 37-87 \\ (64) \end{array}$	Broad, any echo suggesting space occupying lesion	en bloc autopsy	Not spec ified.	diameternot specified, volume range $.009-6.3 \mathrm{ml}$ (1.62 ml mean)	$\begin{aligned} & \text { 19/63 } \\ & \text { cancer } \end{aligned}$ (30\%)	Sensitivity 6/19 (32\%) for hypoechoic Spec ificity 7/44 (39\%) for hypoechoic	6/33 (18\%) overall Half TRUS isoechoic	Surgical state not specified Proportion extracapsular not given. Histolog ic grade distribution not given.
Cooner et al. (1990)	1,2,3,4,6,7,8	Urology continuity clinic (42\% new) work-up biasno patient with suspected PC referal bias	-	1807 varying levels of symptoms	50-89	Peripheral hypoechoic	TRUS, DRE no blind biopsy 46\% biopsied	Not spec ified.	Not provided volume range 0.5-41 ml (mean 2.2) if DRE neg. 0.5-5.5 (1.2)	263/1807 (14.6\%) all cancers; 136/1807 (7.5\%) clinic ally localized	$\begin{aligned} & \begin{array}{l} 136 / 242 \\ (56 \%) \end{array} \end{aligned}$	$\begin{aligned} & 263 / 835 \\ & (31 \%) \\ & \text { all cancer } \end{aligned}$	43/60 (72\%) only 23% de- tected cancer surgically staged
Cooner et al. (1988)	1,2,3,4,6,7,8	Urology Continuity Clinic referalbias	1 time	255 (all benign DRE)	50-89	Peripheral hypoechoic ($>5 \mathrm{~mm}$)	TRUS 43\% biopsied	Not specified.	$5-6 \mathrm{~mm}$ diameter lowest, no data (all lesions/Prostate Cancer in peripheral)	incomplete clinical staging 28/225 (12.4\%)	-	28/96 (29\%) overall cancer	8/28 got surgical staging (7/8 pathologic ally loc a lized)
Dahnert (1986)	1,2,3,7	Known cancer (presurgery)	-	52	$\begin{array}{\|l} \hline 47-73 \\ \text { (61) } \end{array}$	Hypoechoic 5.0 mHz	en bloc surgery specimens	85\% pathologi- cally evident	-	NA	100\% (preselected for surgery)	NA, Sensitivity 64\% (Unilateral) 81\% (Bilateral)	NA, 24/52 (46\%) upstaged to extracapsular at surgery
Devonac et al. (1990)	1,2,3,4,6,7,8	Urology Symptomatic (most BPH prospective)	1 time	666	Not provided	Peripheral hypoechoic (no size threshold) 7.0 or 7.5 mHz 226/666 (34\%) abnormal TRUS	TRUS or DRE Imply all abnormal TRUS biopsied	Not spec ified	-	45/666 (6.7\%) (34) 45 detec ted DREC)	24/45 (53\%)	$\begin{array}{\|l} 24 / 225 \\ (11 \%) \\ 45 / 246 \\ \text { (19\%) } \\ \text { all cancer } \end{array}$	unknown (no data on histologic grade)

APPENDIX F: STUDIES OF TRANSREC TAL ULTRASOUND FOR PROSTATE CANCER SCREENING AND EARIY DEIEC TION: RESEARCH DESGGN AND FINDINGSCONTINUED

	I	I	I	$\begin{aligned} & \dot{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\partial} \\ & \stackrel{2}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	
		I			
	$\begin{aligned} & \text { 율 } \stackrel{\circ}{\circ} \\ & \text { ien } \end{aligned}$				
	।	I	I	I	$\underset{\substack{\dot{\sim} \\ \dot{i} \\ \text { N }}}{ }$
				$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{L} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\mathrm{~S}} \end{aligned}$	
	$\stackrel{\circ}{\hat{H}}$	$\propto \stackrel{\widetilde{\widetilde{\sigma}}}{\stackrel{\text { ®. }}{E}}$	$\begin{aligned} & \text { O} \\ & \text { in } \\ & \text { n } \end{aligned}$	$\stackrel{\circ}{\dot{4}}$	\%
		\%		\ldots	
		$\underset{\sim}{\text { ¢ }}$	$\underset{\substack{\text { ¢ } \\ \sim \\ \sim \\ \hline}}{ }$	।	$\underset{\sim}{\text { ¢ }}$
曻					
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{n}{n} \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\substack{N\\}}$	$\underset{\substack{0 \\ \underset{\sim}{N} \\ \hline}}{ }$
-					

APPENDIX F: STUDIES OF TRANSREC ALULIRASOUND FOR PROSTATE CANCER SCREENING AND EARLY DEIEC TION: RESEARCH DESGN AND FINDINGSCONTINUED

Author	Biases and methodologic weaknesses ${ }^{\text {a }}$	Setting	Time frame (years)	Number patients (N)	Age (Y) range (mean)	Criteria for positive TRUS	Biopsy method	$\begin{array}{\|c} \hline \text { Proportion } \\ \text { BPH } \end{array}$	TRUS lesionDiameter (cm) Range (mean)	$\begin{array}{c}\text { Overall } \\ \text { detection } \\ \text { yield (\%) }\end{array}$	Proportion detected cancers clinic ally localized (\%)	Positive predictive value ${ }^{\text {c }}$ (clinic ally localized)	Proportion detected cancer pathologically localized (\%)
Mettlin et al. (1991)	2,3,6,7,8	Screening invitation	1st year of serial study	2425	$\begin{array}{\|l} \hline 55-70 \\ (63) \end{array}$	Penipheral hypoechoic $>0.5 \mathrm{~cm}$	TRUS, DRE few if PSA elevated 14% biopsied)	135/330 biopsied (41\%)	$\begin{aligned} & 10 / 50<1.0 \\ & \mathrm{~cm} \\ & 40 / 50>1.0 \\ & \mathrm{~cm} \end{aligned}$	44/2425 (1.8\%) forTRUS 44/57 detected ca. for TRUSb	unknown for clinic al loc. for TRUS only 39/51 (76\%) stage A,B for a vailable data	44/290 (15\%) all cancer. if $<1.0 \mathrm{~cm}$ $6 / 135$ (7\%); if $\geq 1.0 \mathrm{~cm}$ 30/136 (22\%)	Unknown for TRUS only 21/31 (68\%) overall study for available data
Naito, 1988	1,2,3,4,	see Appendix C	1 time	109	$\begin{array}{\|l\|l\|} \hline 35-89 \\ (70) \end{array}$	Proposed by Japanese Urological Association including disarranged forms, asym- metry, discontinuity in capsule, irregular echogenicity of paren- chyma (especially hypoecho- ic). Do not spec ificity if discrete hypoechoic included 46/109 (42\%) Abnormal	All patients biopsied but technique not detailed		Not provided.	$\begin{array}{\|l\|l} \hline 28 / 109 \\ (25.6 \%) \end{array}$	Not specified.	28/46 (61\%) 'sensitivity' = 28/32 (88\%) 'specificity' = 59/77 (77\%)	Not specified.
Nesbitt et al. (1989)	1,2,3,4,6,7,8	Urology Not pure screening	1 time	240 asymptomatic selfselected or referral for unrelated problem	55-70	Peripheral anechoic hypoechoic 5.5 or 7.0 mHz Sc an	TRUS, DRE (unclear if PSA influenced) 19% biopsed	Not specified.	$\begin{aligned} & 1.0-1.5 \\ & \text { approximate } \\ & \text { only } \end{aligned}$	$\begin{array}{\|l} \hline 19 / 240 \\ (7.9 \%) \end{array}$	17/19 (89\%) (11/19 DRE ${ }^{\text {b }}$	17/45 (38\%)	15/19 (79\%)
Norming et al. (1991)	6,8	Swedish Population Screening (75\% compliance)	1 time	1,788	50-70	Hypoechoic Asymmetry (no size) 246/1788 (14\%) TRUS a bnor- mal	TRUS, DRE or PSA > 10 365/1788 (20\%) biop- sied overall proportion of TRUSabn. biopsied not specified	Not specified.	-	$\begin{array}{\|l\|} \hline 62 / 1788 \\ (3.5 \%) \end{array}$	Not spec ified for TRUS alone overall 26/62 cancers 71 or T2A.	Not specified 56/246 (23\%) allcancers.	Unknown (no surgical staging).

APPENDIX F：STUDIES OF TRANSREC ALULIRASOUND FOR PROSTATE CANCER SCREENING AND EARLY DEIEC TION：RESEARCH DESGGN AND FINDINGS CONTINUED

	।	।	I	I	1	
						。্ల్ర
		1	$\frac{\cong}{\underset{\sim}{\sim}}$	I	।	$\frac{1}{2}$
		$\begin{aligned} & \circ \stackrel{\circ}{8} \mathrm{o} \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { g. } \\ & \stackrel{y}{\infty} \stackrel{\circ}{\mathrm{E}} \end{aligned}$			
	I	I	I	1	$\begin{aligned} & \text { n } \\ & \text { H. } \\ & \text { Hin } \end{aligned}$	
			1			
		$\begin{aligned} & \stackrel{n}{\tilde{F}} \end{aligned}$				
		$\begin{aligned} & \stackrel{U}{\circ} \\ & \stackrel{\rightharpoonup}{\breve{0}} \\ & \stackrel{0}{\mathrm{O}} \end{aligned}$				
	$\begin{aligned} & \text { ® } \\ & \text { ì } \end{aligned}$		¢	$\begin{aligned} & \text { On} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	守守	
	$\stackrel{n}{m}$		$\stackrel{\text { g }}{\text { g }}$	$\stackrel{\text { Hon }}{\substack{\text { n }}}$		？
	$\underset{\underset{\sim}{E}}{\underset{\sim}{E}}$	$\underset{\sim}{\underset{\sim}{E}}$	$\underset{\sim}{\underset{\sim}{\underset{~}{~}}}$	$\underset{\sim}{\underset{\sim}{E}}$		I
$\begin{gathered} \text { 曷 } \\ \stackrel{y}{8} \end{gathered}$						
		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \substack{n_{1}^{n}\\ } \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\dot{+}} \\ \underset{\sim}{+} \\ \underset{\sim}{N} \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{N} \\ \underset{\sim}{N} \end{gathered}\right.$

APPENDIX F: STUDIES OF TRANSREC ALULIRASOUND FOR PROSTATE CANCER SCREENING AND EARLY DEIEC TION: RESEARCH DESGN AND FINDINGSCONTINUED

Author	Biases and methodologic weaknesses ${ }^{\text {a }}$	Setting	Time frame (years)	Number patients (N)	Age (Y) range (mean)	Criteria for positive TRUS	Biopsy method	Proportion BPH	TRUS lesion Diameter (cm) Range (mean)	Overall detection yield (\%) ${ }^{\text {b }}$	Proportion detected cancers clinic ally localized (\%)	Positive predic tive value ${ }^{\mathrm{c}}$ (clinic ally loc alized)	Proportion detected cancer pathologic ally loc alized (\%)
Simak (1993)	1,2,3,7	Prospective Urology Clinic Consecutive patients with nonsuspicious DRE who received TRUS and PSA prior to TURP	1 time	288 All scheduled for TURP for BPH	$\begin{aligned} & 55-84 \\ & (68) \end{aligned}$	Hypoechoic (near capsule) 32/288 (11\%) TRUS Abnormal	TRUSguided (no apparent systematic)		Not provided Histologic grade: Moderate (6) Poor (8)	14/288 (4.9\%) by TRUS total of 46/288 (16\%) can- cers at TURP 1/231 pa- tients with PSA <7 had TRUS de- tected can- cer (0.4\% yield)	13/14 (93\%) total 45/46 cancers at TURP were clinic a lly localized	$\begin{aligned} & 14 / 32 \text { (44\%) } \\ & {[13 / 32} \\ & (41 \%) \text { for } \\ & 13 / 14 \text { TRUS } \\ & \text { detected } \\ & \text { c ancers, } \\ & \text { PSA >7 } \\ & 57 / 288 \text { (20\%) } \\ & \text { PSA >7 } \end{aligned}$	12/14 (86\%) Overall, post TURP 44/46 (96\%) were pathologically localized of 32 cancers missed by TRUS, 7 stage $A_{2} 25$ stage A_{1}
$\begin{array}{\|l} \text { Temiset al. } \\ \text { (1991) } \end{array}$	1,2,3,7	Preoperative Cystoprostatectomy for Bladder cancer	-	51 (no known prostate cancer)	$\begin{array}{\|l} \hline 31-79 \\ (64) \end{array}$	Hypoechoic	en bloc surgical spec imen	Not specified.	volume .001-5.3 ml (0.8 mL mean)	NA, 15/51 (29\%) preva- lence pros- tate cancer	8/17 (47\%) both clinical and pathologically localized	overall sensitivity 53\% specific ity 75\%	Peripheral zone sens. $=70 \%$ spec. $=81 \%$ PV+=64\% Tra nsition sens. $=20 \%$ spec. $=64 \%$ PV $+=17 \%$
Watanabe et al. (1991)	2,3,4,6,7,8	J apanese massscreening	1 time	7235 asymptomatic	>55	Hypoechoic	TRUS guided (small minority of patients got DRE)	-	-	$\begin{aligned} & 48 / 7235 \\ & (0.7 \%) \end{aligned}$	25/48 (52\%)	not provided	-

a Legend for study biases/methodologic weaknesses: 1) Not population-based/community setting, 2) Selection/referral bias, 3) Non-randomly sampled study group, 4) Explicitinclusion/exclusion criteria not provided, 5) Abnormal test criterion and type and TRUS equipment (e.g., 3.5,5.0, 7.5 mHz) not described, 6) Incomplete application of appropriate reference (gold) standard work-up bias, 7) Lack of proper blinding intest interpretation, 8 . Failure to account completely for all enrolled subjects (including biopsy of all abnormal tests and reporting of clinical and pathologic staging information). For each listed study the presence or absence of one or more of these methodologic deficiencies is denoted with the corresponding number (above). Further grading of the degree to which these biases/deficiencies are present was not performed.
b Detection yield = number of patients prostate cancer detected/number patients screened (for TRUS only).
c Positive predictive value = proportion of patients with abnormal test (TRUS) who have clinically localized prostate cancer.
d Potential bias against DRE comparison (with TRUS); solo men had "normal" DRE within 1 year prior.
e This study has significant weaknesses both in terms of potential selection and work-up bias as well as sloppy presentation of data and apparent contradictions. For example, patients are said to have received biopsy only if DRE or TRUS was abnormal (criterion for each not specified), but 16 of the 83 cancers detected were both DRE and TRUS negative. PSA testing was not used to also select patients for biopsy, nor was a systematic biopsy applied according to the brief selection. Nor was it clearly stated that all "test positive" patients actually received abiopsy. Only 8/135 (6\%) patients with a normal DRE but an abnormal TRUS had prostate cancer detected. Of the 24 Stage T1-T2 (A,B) cancers found among the 83 overall detected, 16 of these patients (66%) had both normal DRE and TRUS. KEY: NA = not applicable

APPENDIX

G

Methods for Estimating the Medicare Costs of Resources Used in Detection and Care of Prostate Cancer

this appendix presents microlevel Medicare cost information on the components of screening, diagnosis, and treatment for prostate cancer. ${ }^{1}$ As described in chapter 5, these data are incorporated into a mathematical Markov model to estimate the total costs and the cost-effectiveness of an illustrative hypothetical Medicare benefit for prostate cancer screening. All cost data are in 1992 dollars. ${ }^{2}$

The analysis collected and sorted Physicians' Current Procedural Terminology, Fourth Edition (CPT-4) codes for procedures (e.g., diagnostic tests, hospitalizations) by urological and radiation oncology billing departments at the Massachusetts General Hospital and the Mayo Clinic. A clinical advisory panel from these institutions and outside reviewers then reviewed these codes for completeness and accuracy.

Tables G-1, G-2, G-3, and G-5 present cost information for components of treatment for prostate cancer grouped by general treatment category: screening and staging, radical prostatectomy, transurethral resection of prostate, and hormone therapy. Table G-4 differs from the others in that it presents an episode of care for exter-
nal beam radiation therapy for localized prostate cancer. Table G-6 includes information on the cost of procedures/treatments related to complications associated with prostate cancer (impotence, incontinence, etc.). Table G-7 organizes the cost data by CPT-4 code or Diag-nosis-related Group (DRG), allowing easy development of cost estimates based on complete treatment protocols.

SPECIRC ISSUES

Cost Information

We present cost information in terms of both Medicare average allowable charge data for 1992 and the 1992 Medicare fee schedule (tables G-1 through G-7). Average allowable charges are percentages of regionally determined "usual, customary, and reasonable" (UCR) physician fees determined on a service-by-service basis. The physician fee schedule is based on a resource-based relative-value scale (RBRVS) point system to which a monetary conversion factor is applied.

Cost-effectiveness research has historically used allowable charges for physician services. However,

[^45]TABLE G-1: ESTIMATED COSTS OF SERVICES RELATED TO SCREENING AND STAGING OFPROSTATE CANCER

Description	CPT-4 code	Medic are average allowable charge, 1992 ${ }^{\text {a }}$ (\$)	Medicare fee schedule (\$)
PSA	86316	\$29.56	not included
DRE			
- Office visit with primary care physic ia $\mathrm{n} / \mathrm{urologist}{ }^{\text {b }}$	99213	3.79	4.12
TRUS	76872	76.14	84.94
- Office consult with urologist	99214	45.71	47.12
TRNB			
- TRUS guidance for biopsy	76942	67.95	84.07
- Prostatic needle biopsy (single/multiple)	55700	120.54	105.09
Osseus survey for metastases	76061	32.00	54.87
Radionuclide bone scan	78306	81.02	184.14
Pelvic CTscan	72170	15.67	25.11
- with contrast	72193	93.77	283.66
Pelvic MRI	72196	247.60	450.13
Limited lymphadenectomy for staging	38562	639.55	672.11
- a nesthesia	00860	203.63	194.04

a The majority of the surgic al allowable charges have two components: one for the surgeon and one for surgical assistance. Composite charges are reported.
b DRE is estimated to take 13.3% of a 99213 office visit. The entire office visit average allowable charge is $\$ 28.52$ and under the fee schedule is $\$ 31$.

Source: Office of Technology Assessment, 1995. Data are HCFA'sunpublished Medic are Average Allowable Charge data from NCH/Best system. Othercategories are unpublished data from the HCFA Office of Research provided by W.J. Sobaski, HCFA, Baltimore, MD, personal communication, 1993.

TABLE G-2: ESIIMATED COSTS FOR RADICAL PROSTATEC TOMY SERVICES

Description	CPF-4 code/DRG	Medicare average allowable charge, $\mathbf{1 9 9 2}^{\mathbf{a}} \mathbf{(\$)}$	Medicare fee Schedule
(\$)			

[^46] b For DRGs, the figures represent average expenditures per beneficiary, including Medic are reimbursement and beneficiary deductible.

KEY: NA = not applicable.

Source: Office of Technology Assessment, 1995. Data are HCFA'sunpublished Medic are Average Allowable Charge data from NCH/Best system. Othercategories are unpublished data from HCFA Office of Research provided by W.J. Sobaski, Health Ca re Fina nc ing Administration, Baltimore, MD, personalcommunic ation, 1993.
$\left.\begin{array}{lccc}\text { Description } & \text { CPT-4 code/DRG } & \begin{array}{c}\text { Medicare average } \\ \text { allowable charge, } \\ \text { 1992a }\end{array} & \begin{array}{c}\text { Medicare fee } \\ \text { schedule }\end{array} \\ \text { (\$) }\end{array}\right]$
a The majority of the surgic al allowable charges have two components: one for the surgeon and one for surgical assistance. Composite charges are reported.
b For DRGs, the figures represent average expenditures per beneficiary, including Medicare reimbursement and benefic iary deductible.

KEY: NA = not applicable.
SoURCE: Office of Technology Assessment, 1995. 1992 HC FA data from Part B Medic a re Annual Data System and Part A Medic are Annual Data System forshort-stay hospitals provided by W.J. Sobaski, Office of Research, HCFA, Baltimore, MD, personal communic ation, 1993.
starting in 1992, Medicare began paying physicians using a fee schedule based on RBRVS. The fee schedule attempts to measure the costs of providing services based on resources consumed. In this way, it may be a more accurate input for cost-effectiveness analysis if that analysis attempts to relate resource use (monetary and otherwise) to benefits.

However, there has been much debate over two components of the fee schedule: the monetary conversion factor that is applied to the RBRVS and the allocation of true practice costs. In a recent study, Hsiao and colleagues (170) concluded that the practice-expense component of the Medicare fee schedule was incorrectly legislated. It is based on historical charges instead of resource costs and, thus, the Medicare fee schedule "continues to provide an overly generous rate of payment for invasive services" (170). The authors also conclude that the conversion factor is too low to yield sufficient net income to most physicians and warn that in the short run this may cause access problems for Medicare beneficiaries and in the long run may discourage an adequate supply of qualified medical personnel.

One other caution on the fee schedule is in order. The fee schedule is in transition and will not be fully implemented until 1996. This means that fees actually paid to providers are a weighted blend of allowable charges and the fee schedule rate (in each of 230 payment localities) (e.g., 56 FR 59502). Despite these anomalies, the 1992 fee schedule is preferable to average allowable fees for cost-effectiveness research both because of its more explicit relationship to resource use and because it will be how providers are reimbursed for Medicare patients in 1996.

One must use caution in interpreting and applying any "cost" information for medical care (122). The "cost" of a procedure may bear little resemblance to the charge submitted, which will probably only be paid on a percentage basis anyway. In attempting to provide inputs for a cost-effectiveness analysis for the addition of a screening benefit for prostate cancer to the Medicare program, we present the reimbursement amounts that Medicare pays out, not the submitted charge or an estimated "cost" of the procedure.

TABLE G-4: ESTIMATED COSTS OF SERVICES FOR TREATING LOCALZEDa PROSTATE CANCER BY RADIATION THERAPY (based on Medicare fee schedule)

Description	Calculation of total cost (\$)
Radiation treatment	\$3,604.41
Hospital	
Simple (77406) 19 @ \$58.59=\$1,113.21 Complex (77416) 19 @ $\$ 76.88=\$ 1,460.72$	
Radiation oncologist	
Simple (77420) 4 @ $\$ 79.67=\$ 318.68$ Complex (77430) 4 @ \$177.95 = \$711.80	
Complex treatment planning (77263)	154.69
Complex treatment simulation (77263)	154.69
Dosimetry calculation (77300)	75.02
Weekly evaluation of dosage (77336) 7 evaluations @ \$123.09	861.63
Isodose plan forteletherapy (77315)	185.89
Radiation oncologist	
Consult (99244)	113.46

Source: Office of Tec hnology Assessment, 1995. Data are HCFA'sunpublished Medicare Average Allowable Charge data from NCH/Best system. Other categoriesare unpublished data from HC FA Office of Research provided by W.J. Soba ski, HCFA, Baltimore, MD, personal communic ation, 1993.

This caution in using "cost" information may be particularly relevant for services provided to elderly men, regardless of the source of the "cost" information. The disease processes, as well as the psychosocial, environmental and financial attributes of geriatric patients have been suggested to be out of sync with payment structures derived from acute care services for younger populations (120). In other words, payment structures may not adequately reflect the additional resources required by geriatric patients as compared with younger patients, including longer time spent dressing and undressing, or in communication with the physician on the risks and benefits of clinical choices.

Digital Rectal Examination

One of the standard screening procedures for prostate cancer examined in this analysis is the digital rectal examination (DRE). This procedure is considered to be part of a routine physical exam (349). It is estimated that this procedure requires two minutes to perform (265). This analysis assumes the cost of this procedure is 13.3 percent of a standard 15 -minute (CPT-4 code 99213) office visit. It is worth noting that if this DRE were found abnormal, it would likely be repeated by a urologist.

Treatment Costs

We present the cost of drugs for hormone therapy at specified dosages. The total will depend on the combination of drugs and the length of treatment/research that is ongoing (107, 319). Some drugs for hormone therapy require implantation. Cost data for this procedure are not available. An estimate for the cost of implantation can perhaps be imputed using implantation fees for related procedures. This estimate will be added to the drug costs, pending physician consultation.

Surgical Procedures

Costs for surgical procedures include both surgeon and surgical assistance fees.

Diagnostic Radiology

Diagnostic radiology is composed of two components: technical and professional. Oftentimes the two components are billed by the same provider, who receives a composite payment. Sometimes different providers are involved and each is paid according to the component provided. However, the composite payment for each CPT-4 code is not necessarily the sum of the components for a variety of reasons (i.e., different localities, different modifiers, etc.). We advise using the com-

| | Medicare average
 allowable charge,
 $\mathbf{1 9 9 2}^{\text {(} \mathbf{(\$)}}$ | Medicare fee
 Schedule |
| :--- | :---: | :---: | :---: |
| (\$) | | |

a The majority of the surgic al allowable charges have two components: one for the surgeon and one for surgical assistance. Composite charges are reported.
${ }^{\mathrm{b}}$ For DRGs, the figures represent average expendituresper beneficiary, including Medicare reimbursement and beneficiary deductible.

KEY: NA = not applicable.
SOURCE: Office of Technology Assessment, 1995. Data are HCFA'sunpublished Medic are Average Allowable Charge data from NCH/Best system. Othercategories are unpublished data from HCFA Office of Research provided by W.J. Sobaski, HCFA, Baltimore, MD, personal communic ation, 1993. Pharmaceutic al costs are wholesale prices as reported in the 1993 Red Book published by Medical Economics Data, Montvale, NJ.
posite payment, rather than adding the two components together for two reasons: predominantly, one provider performs both components and, thus, it is the composite rate that is most commonly paid; and because Medicare is moving toward a fee structure where the components add to the composite rate (320).

Anesthesia Services

Costs for anesthesia services are provided for the P1, P2, and P3 severity of illness categories as well as both with and without CPT-4 code 99100 (an adjustment for patients over age 70). However, there are many other modifiers that could be applied, and they may or may not affect reimbursement. For some time, the Health Care Financing Administration (HCFA) has not incorporated many of these modifiers into their reimbursement amounts (231). The cost figures presented are calculated based on the average time associated with each CPT-4 code. Time is the most significant component of the cost
of anesthesia, overshadowing the application of modifiers (320).

Courses of Treatment

The analysis uses the total costs for a six-week episode of external beam radiotherapy treatment for localized (T1/T2) cancer (26). The costs associated with complications (proctitis, incontinence, etc.) are presented separately $(313,363)$, as well as average allowable charges and Medicare fee schedule amounts for the entire range of related radiotherapy procedures (that are to be organized into treatment protocols relevant to T 3 cancer).

The course of medical treatment for advanced, hor-mone-sensitive prostate cancer is difficult to specify. There are numerous clinical trials incorporating a significant number of drugs both singly and in combination (107, 319). This analysis estimates costs for related drugs (271) using the Red Book of wholesale drug prices for 1993.

TABLE G-6: ESTIMATED COSTS OF LOCALSYMPIOMS/ TREATMENIS/ COMPUCATIONS FOR PROSTATE CANCER

Description	CPT-4 code/DRG	Medic are average allowable charge, 1992a ${ }^{\text {(\$) }}$	Medicare fee schedule ${ }^{\text {b }}$ (\$)
Dilation of urethral stric ture	53600	\$31.86	\$51.15
- under a nesthesia	53605	33.62	58.59
- anesthesia	00910	85.20	97.16
Hospitalization for urethral stricture dilation			
- with complic ations	312	NA	3,800.00
- without complic ations	323	NA	2,281.00
Urethroplasty (stric ture repair)	53415	1,084.57	1,077.76
- a nesthesia	00910	85.20	97.16
Hospita lization for major stric ture repair			
- with complications	312	NA	3,800.00
- without complic a tions	313	NA	2,281.00
Artificial sphincter placement	53445	1,780.34	1,352.14
- a nesthesia	00860	203.63	194.04
Hospitalization for a rtific ial urinary sphincter			
- with complic ations	308	NA	6,534.00
- without complic ations	309	NA	3,439.00
Penile prosthesis			
- non-inflatable	54400	1,173.30	868.81
- inflatable, self-conta ined	54401	1,494.56	1,107.60
- inflatable, multi-component	54405	1,812.29	1,375.52
- a nesthesia	00938	162.46	170.34
Hospitalization for penile prosthesis insertion	315	NA	10,072.00

[^47]
KEY: NA = not applicable.

Source: Office of Technology Assessment, 1995. Data are HCFA'sunpublished Medic are Average Allowable Charge data from NCH/Bestsystem. Othercategories are unpublished data from HCFA Office of Research provided by W.J. Sobaski, HCFA, Baltimore, MD, personal communication, 1993.

TABLE G-7: ESTIMATED COSTOF SERVICES RELATED TO PROSTATE CANCER

CPT-4 or DRG	Desc ription	Charge ${ }^{\text {a }}$ (\$)	Fee schedule or DRG ${ }^{\text {b }}$ (\$)
Medical			
99213	Office visit with primary care physic ian or urologist	28.52	31.00
Surgical			
38562	Limited lymphadenectomy forstaging (anesthesia code 00914)	639.55	672.11
52601	Transurethral resection of prostate (anesthesia code 00914)	948.10	897.96
53415	Urethroplasty (stricture repair) (anesthesia code 00910)	1084.57	1077.76
53445	Artific ial sphincter placement for incontinence (anesthesia 00860)	1780.34	1352.14
53600	Dilation of urethral stric ture	31.86	51.15
53605	Dilation of urethral stric ture under a nesthesia (a nesthesia code 00910)	33.62	58.59
$\begin{array}{\|l\|} 54400 \\ 54401 \\ 54405 \\ \hline \end{array}$	Insertion of penile prosthesis for impotence (anesthesia code 00938) non-inflatable inflatable, self-contained inflatable, multi-component	$\begin{aligned} & 1173.36 \\ & 1494.56 \\ & 1812.29 \\ & \hline \end{aligned}$	$\begin{array}{r} 868.81 \\ 1107.60 \\ 1375.52 \\ \hline \end{array}$
54520	Orchiectomy (anesthesia code 00920)	516.22	408.16
55700	Prostatic needle biopsy (single ormultiple)	120.54	105.09
$\begin{array}{\|l\|} \hline 55840 \\ 55845 \\ 55862 \\ \hline \end{array}$	Retropubic radical prostatectomy (anesthesia code 00860) with lymph node biopsies with bilateral pelvic lymphadenectomy	$\begin{aligned} & 1450.34 \\ & 1041.51 \\ & 2097.83 \\ & \hline \end{aligned}$	$\begin{aligned} & 1493.82 \\ & 1136.37 \\ & 2056.62 \\ & \hline \end{aligned}$
Consults			
99214	Office consultation with urologist	28.52	31.00
99244	Office consultation with radiation oncologist	106.42	113.46
Diagnostic radiology			
76061	Osseus survey for metastases	32.00	54.87
76872	Transrectal ultra sound	76.14	84.94
78306	Radionuclide bone scan	81.02	184.14
$\begin{aligned} & 72170 \\ & 72193 \end{aligned}$	Pelvic CTscan with contrast	$\begin{aligned} & 15.67 \\ & 93.77 \end{aligned}$	$\begin{array}{r} 25.11 \\ 283.66 \\ \hline \end{array}$
72196	Pelvic MRI	247.60	450.13
76942	Transrectal ultra sound guidance forprostatic biopsy	67.95	84.07
Diagnostic laboratory			
84060	Phosphatase, acid; total	10.61	NA
84075	Prostates, a lka line	7.64	NA
84403	Testosterone, total	37.86	NA
86316	Prostate-specific antigen	29.56	NA
Radiation therapy			
$\begin{array}{\|l\|} \hline 77261 \\ 77262 \\ 77263 \\ \hline \end{array}$	Extemal beam radiation clinic al treatment planning simple intermediate complex	$\begin{array}{r} 78.32 \\ 119.60 \\ 177.78 \end{array}$	$\begin{array}{r} 68.02 \\ 103.85 \\ 154.69 \end{array}$
77300	Dosimetry calc ulation	72.67	75.02
77315	Isodose plan forteletherapy	160.48	145.89

TABLE G-7: ESIIMATED COSTOF SERVICES RELATED TO PROSTATE CANCER CONTINUED

CPT-4 or DRG	Desc ription	Charge ${ }^{\text {a }}$ (\$)	Fee schedule or DRG ${ }^{\text {b }}$ (\$)
77336	Weekly evaluation of delivered dose	87.04	123.09
77401 88402 77403 77404 77406 77407 77408 77409 77411 77412 77413 77414 77416	```Extemal beam radiation treatment delivery treatment delivery single, \(\leq 5 \mathrm{MeV}\) single a rea, \(6-10 \mathrm{MeV}\) single a rea, \(11-19 \mathrm{MeV}\) single area, \(\geq 20 \mathrm{MeV}\) 2 areas, \(\leq 5 \mathrm{MeV}\) 2 areas, \(6-10 \mathrm{MeV}\) 2 areas, \(11-19 \mathrm{MeV}\) 2 areas, \(\geq 20 \mathrm{MeV}\) 3 or more areas, \(\leq 5 \mathrm{MeV}\) 3 ormore areas, \(6-10 \mathrm{MeV}\) 3 ormore areas, \(11-19 \mathrm{MeV}\) 3 or more areas, \(\geq 20 \mathrm{MeV}\)```	$\begin{aligned} & 49.13 \\ & 57.62 \\ & 58.08 \\ & 71.60 \\ & 55.44 \\ & 66.99 \\ & 70.10 \\ & 77.59 \\ & 65.67 \\ & 74.87 \\ & 78.22 \\ & 82.85 \\ & 75.64 \\ & \hline \end{aligned}$	$\begin{aligned} & 58.59 \\ & 58.59 \\ & 58.59 \\ & 58.59 \\ & 58.59 \\ & 69.13 \\ & 69.13 \\ & 69.13 \\ & 69.13 \\ & 76.88 \\ & 76.88 \\ & 76.88 \\ & 76.88 \\ & \hline \end{aligned}$
Diagnostic radiology			
76061	Osseus survey for metastases	32.00	54.87
76872	Transrectal ultra sound	76.14	84.94
78306	Radionuclide bone scan	81.02	184.14
$\begin{array}{\|l} 72170 \\ 72193 \\ \hline \end{array}$	Pelvic CTscan with contrast	$\begin{aligned} & 15.67 \\ & 93.77 \\ & \hline \end{aligned}$	$\begin{array}{r} 25.11 \\ 283.66 \\ \hline \end{array}$
72196	Pelvic MRI	247.60	450.13
76942	Transrectal ultrasound guidance for prostatic biopsy	67.95	84.07
Diagnostic laboratory			
84060	Phosphatase, acid; total	10.61	NA
84075	Phosphatase, alka line	7.64	NA
84403	Testosterone, total	37.86	NA
86316	Prostate specific antigen (PSA)	29.56	NA
Anesthesia ${ }^{\text {c }}$			
00914	$\begin{aligned} & \hline \text { P1 } \\ & \text { P2 } \\ & \text { P3 } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \hline 201.00 \\ & 222.50 \\ & 157.00 \\ & 139.69 \end{aligned}$	146.51
00860	$\begin{aligned} & \text { P1 } \\ & \text { P2 } \\ & \text { P3 } \\ & \text { All } \end{aligned}$	$\begin{array}{r} 271.00 \\ \text { NA } \\ 181.00 \\ 203.63 \end{array}$	194.04
00910	$\begin{array}{\|l\|} \hline \text { P1 } \\ \text { P2 } \\ \text { P3 } \\ \text { All } \end{array}$	$\begin{array}{r} 28.52 \\ 103.80 \\ \text { NA } \\ 85.20 \\ \hline \end{array}$	97.16

TABLE G-7: ESTIMATED COSTOF SERVICES RELATED TO PROSTATE CANCER CONTINUED

CPT-4 or DRG	Description	Charge ${ }^{\text {a }}$ (\$)	$\begin{gathered} \text { Fee } \\ \text { schedule or } \\ \text { DRG }^{\text {b }}(\$) \end{gathered}$
00938	$\begin{array}{\|l} \hline \text { P1 } \\ \text { P2 } \\ \text { P3 } \\ \text { All } \\ \hline \end{array}$	$\begin{array}{r} \text { NA } \\ \text { NA } \\ \text { NA } \\ 162.46 \end{array}$	170.34
00920	$\begin{array}{\|l} \hline \text { P1 } \\ \text { P2 } \\ \text { P3 } \\ \text { All } \end{array}$	$\begin{array}{r} \hline \text { NA } \\ 158.00 \\ 17.00 \\ 97.93 \end{array}$	105.25
Hospitalizations			
$\begin{array}{\|l} 308 \\ 309 \\ \hline \end{array}$	Implantation, artific ial unina ry sphincter (58.93) with complications without complications		$\begin{array}{r} 6,534 \\ 3,439 \\ \hline \end{array}$
$\begin{array}{\|l} 312 \\ 313 \\ \hline \end{array}$	Release, urethral stric ture (58.5) or Repair, urethra (58.4) with complications without complications		$\begin{aligned} & 3,800 \\ & 2,281 \\ & \hline \end{aligned}$
315	Penile prosthesis insertion non-inflatable (64.95) inflatable (64.97)		10,072
$\begin{aligned} & 334 \\ & 335 \\ & \hline \end{aligned}$	Pelvic lymph node excision (59.00) or Prostatec tomy, radical (60.5) with complications without complications		$\begin{aligned} & 7,483 \\ & 5,867 \end{aligned}$
$\begin{array}{\|l} 336 \\ 337 \\ \hline \end{array}$	Prostatectomy, transurethral (60.2) with complications without complications		$\begin{array}{r} 3,943 \\ 2,778 \\ \hline \end{array}$
338	Orchiectomy, bilateral (62.4)		3,893
Pharmaceuticals ${ }^{\text {d }}$			
	GnRH agonist - Goserelin acetate implant (Zoladex) @ 3.6 mg monthly - Leuprolide acetate depot (Lupron) @ 7.5 mg monthly	$\begin{aligned} & 318.75 \\ & 437.50 \\ & \hline \end{aligned}$	
	Flutamide (Eulexin) @ 250 mg	135.42/100	
	Diethylstilbesterol (DES) @ 1 mg	9.14/100	
	Macrodantin @ 50 mg (cystitis)	66.13/100	
	Prednisone @ 10 mg	3.30/100	
	Methylprednisolone acetate @ 10 ml	6.00	

NOTES:

a Medicare Average Allowable Charge, 1992.
b Medic are Fee Schedule, 1992 and Average Expenditure per Beneficiary (DRG), 1992.
c Medicare fee schedule anesthesia costs are not adjusted for supervision of more than one patient.
d Pharmaceutical prices are wholesale costs asfound in the 1993 Red Book, Montvale, NJ.

KEY: NA = not included in fee schedule.

Source: Office of Technology Assessment, 1995. Data are HCFA'sunpublished Medic are Average Allowable Charge data from NCH/Best system. Othercategories are unpublished data from HCFA Office of Research provided by W.J. Sobaski, HC FA, Baltimore, MD, personal communic ation, 1993.

Current Research Efforts To Resolve the Effectiveness of Prostate Cancer Screening and Treatment

most evidence-based criteria for evaluating screening maneuvers demand evidence from controlled studies on which to base recommendations. Randomized controlled trials (RCTs) are the best studies on which to base such recommendations. In the absence of RCTs, researchers and policymakers often examine less desirable cohort studies with concurrent nonrandomized controls and case-control studies. Unfortunately, in the area of early detection and treatment of prostate cancer, little controlled data are available, regardless of study design. A single case-control study has shown no evidence of benefit from digital rectal examination (DRE), in terms of lower exposure odds to DRE within the prior 10-year period among men with metastatic prostate cancer compared to controls (129). The point estimate of the DRE exposure odds ratio among men with metastatic cancer compared with controls in this study was 0.9 , with a 95 -percent confidence interval of 0.5 to 1.7. Similarly, a single small, underpowered randomized trial of radical prostatectomy versus expectant management showed no evidence of benefit from more aggressive treatment $(54,147)$, as discussed in detail earlier in this report.

TRIALS OF TREATMENT FOR CUNICAUY LOCAUZED PROSTATE CANCER

However, researchers are now planning or have already initiated clinical trials to address this lack of data. In terms of determining the optimal treatment for localized prostate cancer, the Scandinavian Prostate Cancer Group began a randomized trial of radical prostatectomy versus deferred treatment in 1989. Men less than age 75 with well or moderately differentiated (but not Stage T1a) cancer are eligible for the trial. Men randomized to surgery undergo a pelvic lymph node dissection, and proceed to radical prostatectomy if the nodes are uninvolved. However, an "intention to treat" analysis is planned to avoid biasing the results in favor of surgical treatment. The investigators plan to randomize 520 men and follow them for a minimum of 10 years to have adequate power to "rule out" a true improvement in 10-year cancer-specific survival from 85 to 95 percent, which represents a two-thirds reduction in cancer-specific mortality. This trial is more than halfway to its accrual target.

In the United Kingdom, the Medical Research Council has just opened a trial comparing the strategies of no immediate treatment, external beam radiotherapy, and radical prostatectomy for men with T1b/T1c/T2 N0 M0 prostate cancer (Trial PRO6). As part of the design, patients can be randomized among all three or any two of the treatment strategies, at the discretion of the physician and patient. Primary endpoints will be the development of documented metastases and survival time. The PRO6 protocol calls for the randomization of 400 men into each treatment arm over three years to achieve 90 percent power to detect a 10 percent difference in survival between any two arms.

Another large trial has been initiated in the United States. The Prostate Cancer Intervention Versus Observation Trial (PIVOT) is to be conducted as a collaboration between the Veterans Administration Cooperative Studies Program and the National Cancer Institute. The investigators plan to enroll about 2,000 men up to age 75 with clinically localized prostate cancer of all grades. Men who provide consent would be randomized to a strategy of immediate radical prostatectomy with additional aggressive treatment for evidence of residual or recurrent disease, or a strategy of expectant management with treatment for symptomatic local progression or metastases. PIVOT started late in 1994, and will accrue patients over three years with an additional 12 years of followup. PIVOT is powered to detect a 15 percent decrease in overall mortality with radical prostatectomy, or roughly a one-third reduction in cancer-specific mortality.

TRIALS OF EARIY DEIECTION OF PROSTATE CANCER

Randomized trials of early detection of prostate cancer are also being planned and initiated. The National Cancer Institute's Prostate, Lung, Colorectal, and Ovarian (PLCO) Screening Trial is a ten-center study designed to measure the net benefit of screening for a number of common malignancies. For the prostate cancer component, 74,000 men ages 60 to 74 will be randomized to four annual screens with PSA and DRE, versus "usual care." The study was initiated in 1993, and may need to continue as long as 16 years to have adequate power to detect a 20 percent reduction in prostate cancer mortality, allowing for some "dilution" in the intervention group (due to incomplete compliance with followup of suspicious screening studies) and "contamination" in the control group (due to DREs and prostate-specific antigen tests that may be done as part of usual care).

Finally, a European screening study is currently being planned, and a number of preparatory pilot studies have been conducted in Belgium and the Netherlands. The main study is currently envisioned as involving about 50,000 men in a number of European countries. Details of the design are still being finalized.

Despite many reasonable individual concerns about the designs of the PLCO and PIVOT studies, support for these trials was recently expressed by a group of U.S. prostate cancer experts at a meeting cosponsored by the American Urological Association and the American Cancer Society (253). As Kaufman (186) has recently reminded the medical community, well-designed clinical trials, even in the controversial area of cancer treatment, are "good medicine."

References

11 . Americ an Urological Association, "Early Detection of Prostate Cancer," policy statement, Baltimore, MD: 1995.
. Andriole, G.L, "The Case for Prostate Cancer Screening," Seminars in Urology Xi:50-53, 1993.
13 . Andriole, G.L, and Catalona, W.J ., "Using PSA to Screen for Prostate Cancer," Urologic Clinics of North America 20:647-651, 1993.
Andriole, G.L., Associate Professor, Wa shington University, St. Louis, MO, personal communication, March 1995.
14 . Anonymous, "Vasectomy and Prostate Cancer" (editorial), Lancet 337:1445-1446, 1991. Asbell, S.O., Krall, J.M., Pilepich, M.V., et al., "Elec tive Pelvic Irradiation in Stage A2, B Carcinoma of the Prostate: Analysis of RTOG 77-06," International Journal of Radiation Oncology Biology, Physics 15:1307-1316, 1988.
Ackerman, D.A., Barmy, J.M., Wic klund, R.A., et al., "Analysis of Risk Factors Associated with Prostate Cancer Extension to the Surgical Margin and Pelvic Node Metastasis at Radical Prostatectomy," Journal of Urology 150:1845-1850, 1993.
2 . Adami, H.O., Baron, J.A., and Rothman, K.J., "Ethics of a Prostate Cancer Screening Trial," Lancet 343:958-960, 1994.
Adolfsson, J., and Carstensen, J., "Natural Course of C linic ally Loc a lized Prostate Adenoc arcinoma in Men Less Than 70 Years Old," Journal of Urology 146:96-98, 1991.
. Adolfsson, J ., Carstensen, J ., and Lowhagen, T., "Deferred Treatment in Clinic ally Loc alized Prostatic Carc inoma," British Journal of Urology 69:183-187, 1992.
Adolfsson, J., "Deferred Treatment of Low Grade Stage T3 Prostate Cancer Without Distant Metastases," Journal of Urology 149:326-329, 1993.
. Adolfsson, J., Steineck, G., and Whitmore, W., "Recent Results of Management of Palpable C linic a lly Loc a lized Prostate Cancer," Cancer 72:310-322, 1993.
Aihara, M., Wheeler, T.M., Ohori, M., et al., "Heterogeneity of Prostate Cancer in Radical Prostatectomy Specimens," Urology 43:60-67, 1994.
Albertsen, P., The Connectic ut Prostate Study Group, "Transrectal Ultra sound and Prostate Biopsy in Community Practice: Who Gets Biopsied and What Is the Outcome?" Journal of Urology 151:403a, 1994.
Alexander, R.B., Maguire, M.G., Epstein, J I.., et al., "Pathological Stage Is Higher in Older Men with C linic al Stage B1 Adenoc a rc inoma of the Prostate," Journal of Urology 141:880-882, 1989.
Americ an Medic al Association, "AMA Policy Statement-A-1994, Number 165.925: AMA Standard Benefits Package," Chic ago, IL: 1994.

Aus, G., Hermansson, C.G., Hugosson, J., et al., "Transrectal Ultra sound Examination of the Prostate: Complic ations and Acceptance by Patients," British Journal of Urology 71:457-459, 1993.
. Bagshaw, M.A., Kaplan, I.D., and Cox, R.C., "Radiation Therapy for Localized Disease," Cancer 71:939-952, 1993.
21 . Baquet, C.R., Horm, J.W., Gibbs, T., et al., "Socioeconomic Factors and Cancer Incidence Among Blacks and Whites," Journal of the National Cancer Institute 83:551-557, 1991.
Bare, R., Hart, L, and McCullough, D.L, "Comelation of Prostate-Specific Antigen and Prostate-Specific Antigen Density with Outcome of Prostate Biopsy," Urology 43:191-196, 1994. . Bames, R.B., Hadley, H., Axford, P., et al., "Conservative Treatment of Early Carc inoma of the Prostate: Comparison of Patients Less Than Seventy with Those Over Seventy Years of Age," Urology 14:359-362, 1979.

- Baron, E., and Angrist, A., "Incidence of Occult Adenocarcinoma of the Prostate After 50 Years of Age," Archives of Pathology 32:787-793, 1941.
. Bamy, M.J., Medical Practices Evaluation Center, Harvard University, Boston, MA, personal communication, J une 15, 1993.
. Bary, M. J., Massa c husetts General Hospital, Boston, MA, personal communic ation, Apr. 4, 1995. . Barmy, M.J ., Coley, C.M., Fleming, C., et al., Massachusetts General Hospital, Boston, MA, "The Safety Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong . Older Men," unpublished contract paper prepared for the Office of Technology Assessment, . U.S. Congress, Wa shington, DC, J une 30, 1994.

Basler, J.W., Catalona, W.J., and Bullock, A., "Digital Rectal Examination (DRE) and Prostate Specific Antigen (PSA) in the Early Detection of Prostate Cancer. Clinic al and Pathological Staging of Tumors Detected by Screening" (abstract), Journal of Urology 149:395a, 1993.
Bazinet, M., Meshref, A.W., Trudel, C., et al., "Prospective Evaluation of Prostate-Specific Antigen Density and Systematic Biopsies for Early Detection of Prostatic Carcinoma," Urology 43:44-52, 1994.
. Beck, J.R., Kattan, M.W., and Miles, B.J ., "Critique of the Decision-Analysis for Clinic ally Loc a lized Prostate Cancer," Journal of Urology 152:1894-1899, 1994. . Bell, H., Americ an Association of Family Physic ians, Kansas City, KS, personal communic ation, Apr. 5, 1995.
. Benson, M.C., Whang, I.S., Olsson, C.A., et al., "The Use of Prostate Specific Antigen Density to Enhance the Predic tive Value of Intermediate Levels of Serum Prostate Specific Antigen," Journal of Urology 147:817-821, 1992.
Azna voorian, S., Murphy, A.N., Stetler-Stevenson, W.G., et al , "Molecular Aspects of Tumor Cell Invasion and Metastasis," Cancer 71:1368-1383, 1993.

- Babaian, R.J ., Dinney, C.P.N., Ramirez, E.I., et al., "Diagnostic Testing for Prostate Cancer: Less is Best," Urology 41:421-425, 1993.

Babaian, R.J ., Mettlin, C., Kane, R., et al., "The Relationship of Prostate-Specific Antigen to Digital Rectal Examination and Transrectal Ultrasonography," Cancer 69:1195-1200, 1992.

Benson, M.C., Whang, I.S., Pantuck, A., et al., "Prostate Specific Antigen Density: A Means of Distinguishing Benign Prostatic Hypertrophy and Prostate Cancer," Journal of Urology 147:815-816, 1992.

Bentvelsen, F.M., and Schroder, F.H., "Modalities Ava ilable for Screening for Prostate Cancer," European Journal of Cancer 29a:804-811, 1993.

35 • Bentvelsen, F.M., Van Den Ouden, D., and Schroder, F.H., "Prostate Specific Antigen in Screening for Recurrence Following Radical Prostatectomy for Localized Prostatic Cancer," British Journal of Urology 72:88-91, 1993.
Bjartell, A., Bjork, T., Matika inen, M.T., et al., "Production of Alpha-1-Antic hymotrypsin by PSA-Containing Cells of Human Prostate Epithelium," Urology 42:502-510, 1993.
Bjork, T., Bjartell, A., Abrahamsson, P.A., et al., "Alpha 1-Antic hymotrypsin Production in PSA-Producing Cells Is Common in Prostate Cancer But Rare in Benign Prostatic Hyperplasia," Urology 43:427-434, 1994.
Bluestein, D.L, Bostwick, D.G., Bergstralh, E.J ., et al., "Eliminating the Need for Bilateral Pelvic Lymphadenectomy in Select Patients with Prostate Cancer," Journal of Urology 151:1315-1320, 1994.

Boring, C.C., Squires, T.S., Tong, T., et al., "Cancer Statistics 1993; Staging of Early Prostate Cancer: A Proposed Tumor Volume Based Prognostic Index," Ca: A Cancer Journal for Clinicians 43:7-26, 1993.
Boring, C.C., Squires, T.S., Tong, T., et al., "Cancer Statistics, 1994," Ca: A Cancer Journal for Clinicians 44:7-26, 1994
Bostwick, D.G., "The Pathology of Early Prostate Cancer," Ca: A Cancer Journal for Clinicians 39:325-393, 1989.

Bostwick, D.G., Graham, S.D., Napalkov, P., "Staging of Early Prostate Cancer: A Proposed Tumor Volume Based Prognostic Index," Urology 41:403-411, 1993.

Bowser, J., Executive Director, Americ an Society of Preventive Oncology, personal communication, Apr. 6, 1995. Brawer, M.K., Chetner, M.P., Beatie, J., et al., "Screening for Prostatic Carc inoma with Prostate Specific Antigen," Journal of Urology 147:841- 845, 1992.
Brawer, M.K., Aramburu, E.A., Chen, G.L, et al., "The Inability of Prostate Specific Antigen Index To Enhance the Predictive Value of Prostate Specific Antigen in the Diagnosis of Prostatic Carcinoma," Journal of Urology 150:369-373, 1993.
Brawer, M.K., Beatie, J., Wener, M.H., "PSA as the Initial Test in Prostate Carcinoma Screening Results of the Third Year" (abstract), Journal of Urology 149:299a, 1993.

Brawer, M.K., Beatie, J ., Wener, M.H., et al., "Screening for Prostatic Carcinoma with Prostate Specific Antigen: Results of the Sec ond Year," Journal of Urology 150:106-109, 1993. Brawer, M.K., Wener, M.H., Daum, P.R., et al., "Method to Method Va riation in Assays for Prostate Specific Antigen," Journal of Urology 151:450a, 1994. Brawn, P.N., Speights, V.O., Kuhl, D., et al., "Prostate-Spec ific Antigen Levels from Completely Sectioned, Clinic ally Benign, Whole Prostates," Cancer 68:1592-1599, 1991. Brendler, C.B., and Walsh, P.C., "The Role of Radic al Prostatectomy in the Treatment of Prostate Cancer," Ca: A Cancer Journal for Clinicians 42:212-222, 1992. Brendler, C.B., "Editorial: Prostate Cancer," Journal of Urology 150:1865-1866, 1993. Brendler, C.B., Carmic hael, M., Walsh, P.C., et al., "Radic al Prostatectomy (RP) for Non-Palpable Prostate Cancer Diagnosed by Needle Biopsy: Pathologic and Clinical Findings," Journal of Urology 149:378, 1993.

Breslin, D.S., Muecke, E.C., Reckler, J.M., et al., "Changing Trends in the Management of Prostatic Disease in a Single Private Practice: A 5-Year Followup," Journal of Urology 150:347-350, 1993.

. 324:1156-1161, 1991.
. Catalona, W.J ., "Radic al Surgery for Advanced Prostate Cancer and for Radiation Failures" (editorial), Journal of Urology 147:916, 1992.
Catalona, W.J ., "Screening for Prostate Cancer: Enthusiasm," Urology 42:113-115, 1993.
. Catalona, W.J ., and Basler, J.W., "Retum of Erections and Uninary Continence Following Nerve Sparing Radical Retropubic Prostatectomy," Journal of Urology 150:905-907, 1993.
Catalona, W.J ., Smith, D.S., Ratliff, T.L., et al., "Detection of Organ-Confined Prostate Cancer Is Increased Through Prostate-Specific Antigen-Based Screening," Journal of the American Medical Association 270:948-954, 1993.
. Catalona, W.J., "Reply to Letter to the Editor Re: PSA and the Detection of Prostate Cancer," Journal of the American Medical Association 271:192, 1994.

72 . Catalona, W.J ., Richie, J.P., Ahmann, F.R., et al., "Comparison of Digital Rectal Examination and Serum Prostate Specific Antigen in the Early Detection of Prostate Cancer: Results of a Multic enter Clinic al Trial of 6,630 Men," Journal of Urology 151:1283-1290, 1994.
73 . Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, "Prostate Cancer Trends—United States 1980-1988," Journal of the American Medical Association 268:183, 1992.
Chancellor, M.B., and Van Appledom, C.A., "Value of Transrectal Prostate Ultra sonography Pre-Transurethral Prostatectomy in Screening for Occult Prostate Carcinoma," Urology 41:590-593, 1993.

Chang, S.J ., Goad, J., Kassabian, V.S., et al., "Disease Progression After Definitive Iradiation for Prostate Cancer Detected by Prostate Specific Antigen (abstract)," Journal of Urology 149:302a, 1993.

Chelsky, M.J ., Schnall, M.D., Seidmon, E.J ., et al., "Use of Endorectal Surface Coil Magnetic Resonance Imaging for Local Staging of Prostate Cancer," Journal of Urology 150:391-395, 1993.

Cheng, W.S., Frydenberg, M., Bergstralh, E.J ., et al., "Radic al Prostatec tomy for Pa thologic Stage C Prostate Cancer: Influence of Pathologic Variables and Adjuvant Treatment on Disease Outcome," Urology 42:283-291, 1993.
Chisholm, G.D., "Prostate Cancer Screening: Accepting the Consequences of PSA Testing" (editorial), British Journal of Urology 71:375-377, 1993. Using the Digital Rectal Exa mination," Journal of Urology 141:1136-1138, 1989. Men," Urology 42:116-118, 1993.
Chodak, G.W., "Screening for Prostate Cancer in 1993: Is It Appropriate Or Not?," Seminars in Urology Xi:47-49, 1993.
Chodak, G.W., Thisted, R., Gerber, G., et al., "Multi-Va riate Analysis of Outcome Following Observation/Dela yed Therapy of Clinic ally Loc a lized Prostate C ancer" (abstract), Journal of Urology 149:396a, 1993. Clinic a lly Loc a lized Prostate Cancer," New England Journal of Medicine 330:242-248, 1994. in Patients with Newly Diagnosed, Untreated Prostate Cancer: Prostate Specific Antigen Is Superior to All Other Clinic al Parameters," Journal of Urology 145:313-318, 1991. Coffey, D.S., "Prostate Cancer: An Overview of An Inc reasing Dilemma," Cancer 71(suppl.):880-886, 1993.
Cole, H.M., (ed.), Diagnostic and Therapeutic Technology Assessment (DATIA), "Transrectal Ultrasonography in Prostate Cancer," Journal of the American Medical Association 259:2757-2759, 1988.
Coleman, C.N., Beard, C.J ., Kantoff, P.W., et al., "Rate of Relapse Following Treatment for Localized Prostate Cancer: A Critic al Analysis of Retrospective Reports," International Journal of Radiation Oncology, Biology, Physics, in press.

88
.
. S

Medical Association 258:2727-2730, 1987.
91 . Cooner, W.H., Mosley, B.R., Rutherford, C.L. ., et al., "Prostate Cancer Detection in a Clinical Urologic al Practice by Ultrasonography, Digital Rectal Examination and Prostate Specific Antigen," Journal of Urology 143:1146-1152; Disc ussion 1152-114, 1990. Detected in the Eighth Decade of Life," Journal of Urology 151:1326-1329, 1994.
93 . Crawford, E.D., Eisenberger, M.A., Mac Leod B.G., et al., "A Control Trial Leuprolide with and Without Flutamide in Prostatic Carcinoma," New England Journal of Medicine 321:419-424, 1989.
. Crawford, E.D., Schutz, M.J., Clejan, S., et al, "The Effect of Digital Rectal Examination on Prostate-Specific Antigen Levels [comments]," Journal of the American Medical Association 267:2227-2228, 1992.
Crawford, E.D., and Deantoni, E.P., "PSA AsA Screening Test for Prostate Cancer," Urologic Clinics of North America 20:637-647, 1993.

97

 Prostate Cancer" (abstract), Journal of Urology 149:393a, 1993.Cupp, M.R., Bostwick, D.G., and Oesterling, J.E., "Tumor Volume in Prostate Cancer. Lack of Signific ant Correlation Between Transrectal Needle Biopsy and Radical Prostatectomy Specimens" (abstract), Journal of Urology 149:264a, 1993.
Cupp, M.R., and Oesterling, J.E., "Prostate-Specific Antigen, Digital Rectal Examination, and Transrectal Ultrasonography: Their Roles in Diagnosing Early Prostate Cancer," Mayo Clinic Proceedings 68:297-306, 1993.
Czaja, R., Mcfall, S.F., Wamecke, R.B., et al., "Preferences of Community Physicians for Cancer Screening Guidelines," Annals of Internal Medicine 120:602-608, 1994.
Dalkin, B.L, Ahmann, F.R., and Kopp, J.B., "Prostate Specific Antigen Levels in Men Older Than 50 Years Without C linic al Evidence of Prostatic Carcinoma," Journal of Urology 150:1837-1839, 1993.

Danella, J.F., Dekemion, J.B., Smith, R.B., et al., "The Contemporary Incidence of Lymph Node Metastases in Prostate Cancer. Implic ations for Laparoscopic Lymph Node Dissection," Journal of Urology 149:1488-1491, 1993.
Daneshgari, F., Taylor, G.D., Miller, G.J., et al., "Calculating the Probability of Detecting Low Volume Carcinoma of the Prostate with Six Random Systematic Core Biopsies" (abstract), Journal of Urology 149:289a, 1993.

Demark-Wahnefried, W., Catoe, K.E., Pa skett, E., et al., "Characteristic s of Men Reporting for Prostate Cancer Screening," Urology 42:269-275, 1993.
Demers, R.Y., Swanson, G.M., Weiss, L.K., et al. , "Increasing Incidence of Cancer of the Prostate: the Experience of Black and White Men in the Detroit Metropolitan Area," Archives of Internal Medicine 154:1211-1216, 1994.
Demura, T., Watari, Y., Toga shi, M., et al., "Measurement of Prostate Specific Antigen and Alpha-Seminoprotein Ratio: A New Means of Distinguishing Benign Prostatic Hyperplasia and Prostate Cancer," Journal of Urology 150:1740-1745, 1993. Denis, L (ed.), The Medical Management of Prostate Cancer, Eso Monograph (New York, NY: Springer-Verlag, 1988).
Denis, LJ ., Cameiro De Moura, J.L., Bono, A., et al., "Goserelin Acetate and Flutamide Versus Bilateral Orchiectomy: A Phase III EORTC Trial (30853)," Urology 42:119-130, 1993.
Desmond, P.M., Clark, J., Thompson, I.M., et al., "Morbidity with Contemporary Prostate Biopsy," Journal of Urology 150:1425-1426, 1993.
Dorr, V.J., Williamson, S.K., and Stephens, R.L., "An Evaluation of Prostate-Spec ific Antigen as a Screening Test for Prostate Cancer," Archives of Internal Medicine 153:2529-2537, 1993. Eddy, D.M., "Clinical Decision Making: from Theory to Practice; Three Battles to Watch in the 1990s," Journal of the American Medical Association 270:520-526, 1993.
Eddy, D.M., "C linic al Decision Making: From Theory to Practice; Princ iples for Making Diffic ult Decisions in Diffic ult Times," Journal of the American Medical Association 271:1792-1798, 1994.
Edwards, C., Steinthorsson, N., and Nic holson, D., "An Autopsy Study of Latent Prostatic Cancer," Cancer 6:531-554, 1953.
Egawa, S., Go, M., Kuwao, S., et al., "Long-Term Impact of Conservative Management on Localized Prostate Cancer, A Twenty-Year Experience in J apan," Urology 42:520-526, 1993. Ellis, W.J ., Amburu, E., Chen, G.L., et al., "The Inability of Prostate Specific Antigen Density to Enhance the Predictive Value of PSA in the Diagnosis of Prostatic Carcinoma" (abstract), Journal of Urology 149:415a, 1993.
Ellis, W.J ., and Bawer, M.K., "PSA in Benign Prostatic Hypemplasia and Prostatic Intraepithelial Neoplasia," Urologic Clinics of North America 20:621-625, 1993.
. Epstein, B.E., and Hanks, G.E., "Prostate Cancer: Evaluation and Radiotherapeutic Mana gement," Ca: A Cancer Journal for Clinicians 42:223-240, 1992.
. Epstein, J I., C armic hael, M.J ., Pizov, G., et al., "Influence of Capsular Penetration on Progression Following Radic al Prostatectomy: A Study of 196 Cases with Long-Term Followup," Journal of Urology 150:135-141, 1993.
. Epstein, J.I., Walsh, P., C Carmic hael, M., et al., "Pathologic and C linic al Findings to Predict Tumor Extent of Nonpalpable (Stage TIC) Prostate Cancer," Journa of the American Medical Association 271:368-374, 1994.
Fahs, M.C., Muller, C., and Schechter M., "Primary Medic al Care for Elderly Patients Part II: Results of A Survey of Offic e-Based Clinicians," Journal of Community Health 14:89-99, 1989. Fahs, M.C., Lippert, C.E., and Sanders, M., Mount Sinai Medic al Center, New York, NY, "Costs Associated with the Screening and Treatment of Prostate Cancer for Medic are-Eligible Men," unpublished contract paper prepared for the Office of Technology Assessment, U.S. Congress, Wa shington, DC, Feb. 15, 1995.

Finkler, S.A., "The Distinction Between Cost and Charges," Annals of Internal Medicine 96:102-109, 1982.
3 • Flanigan, R.C., Catalona, W.J ., Richie, J.P., et al., "Success Rate of Digital Rectal Examination (DRE) and Transrectal Ultra sonography (TRUS) in Loc alizing Prostate C ancer," Journal of Urology 149:288a, 1993.
Fleming, C., Wasson, J.H., Albertsen, P.C., et al., "A Decision Analysis of Altemative Treatment Strategies for Clinic ally Loc a lized Prostate Cancer," Journal of the American Medical Assocation 269:2650-2658, 1993.

Forman, J.D., Oppenheim, T., Liu, H., et al., "Frequency of Residual Neoplasm in the Prostate Following Three-Dimensional Conformal Radiotherapy," Prostate 23:235-243, 1993.
6 . Foumier, G.R., Na rayan, P., "Re-Evaluation of the Need for Pelvic Lymphadenectomy in Low Grade Prostate Cancer," British Journal of Urology 72:484-488, 1993.

7 . Fowler, F.J ., Bamy, M.J ., Roman, A., et al., "Patient-Reported Complications and Follow-Up Treatment Following Radical Prostatectomy: The National Medic are Experience (1988-1990)," Urology 42:622, 1993.
Franks, L.M., "Latent Carcinoma of the Prostate," Journal of Pathology and Bacteriology 68:603-616, 1954.
Friedman, G.D., and Hiatt, R.A., Quesenbery, C.P., et al., "Case-Control Study of Screening for Prostatic Cancer by Digital Rectal Examinations," Lancet 337:1526-1529, 1991.

Gann, P.H., Hennekens, C.H., and Stampfer, M.J ., "A Prospective Evaluation of Plasma Prostate Specific Antigen for the Detection of Prostate Cancer," Journal of the American Medical Association 273(4):289-294, 1995.

1 . Garnick, M.B., "Prostate Cancer: Screening, Diagnosis a nd Management," Annals of Internal Medicine 118:804-818, 1993.

Gamick, M.B., "The Dilemmas of Prostate Cancer," Scientific American 270(4):72-81, 1994. Garraway, W.M., Collins, G.N., and Lee, R.J ., "High Prevalence of Benign Prostatic Hypertrophy in the Community," Lancet 338:469-471, 1991.
Gaynor, E.P., "Zur Frage Des Prostata krebes Virc hows," Archives of Pathology and Anatomy 301:602-652, 1938.
George, N.J ., "Natural History of Localized Prostatic Cancer Managed by Conservative Therapy Alone," Lancet 494-497, 1988.

Gerber, G.S., and Chodak, G.W., "Routine Screening for Cancer of the Prostate," Journal of the National Cancer Institute 83:329-335, 1991.

Gerber, G.S., Goldberg, R., and Chodak, G.W., "Local Staging of Prostate Cancer by Tumor Volume, Prostate-Specific Antigen, and Transrectal Ultra sound," Urology 40:311-316, 1992.

Gerber, G.S., Rukstalis, D.B., and Chodak, G.W., "Correlation of Prostate Specific Antigen and Tumor Grade with Nodal Status in Men with Clinic a lly Loc a lized Prostate Cancer," Journal of Urology 149:448a, 1993.
Gerber, G.S., Thompson, I.M., Thisted, R., et al., "Disea se-Specific Survival Following Routine Prostate Cancer Screening by Digital Rectal Examination," Journal of the American Medical Association 269:61-64, 1993.

Giovannuc ci, E., Ascherio, A., Rimm, E.B., et al., "A Prospective Cohort Study of Va sec tomy and Prostate Cancer in U.S. Men," Journal of the American Medical Assocation 269:873-877, 1992.

1 . Giovannucci, E., Tosteson, T.D., Speizer, F.E., et al., "A Retro spective Cohort Study of Vasectomy and Prostate Cancer in U.S. Men," Journal of the American Medical Association 269:878-882, 1992.
. Giovannucci, E., Rimm, E.B., Colditz, G.A., et al., "A Prospective Study of Dietary Fat and Risk of Prostate Cancer," Journal of the National Cancer Institute 85:1571-1579, 1993.
. Gustafsson, O., Norming, U., Almgard, L.E., et al., "Diagnostic Methods in the Detection of Prostate Cancer: A Study of a Randomly Selected Population of 2,400 Men," Journal of Urology 148:827-831, 1992.

Guthman, D.A., Bergstralh, E.J ., Wilson, T.M., et al., "Biopsy-Proved Prostate Cancer in 100 Consecutive Men with Benign Digital Rectal Examination and Elevated Serum Prostate-Specific Antigen Level," Urology 42:150-154, 1993.
Hahn, D.L., and Roberts, R.G., "PSA Screening for Asymptomatic Prostate Cancer: Truth in Advertising," Journal of Family Practice 37:432-436, 1993.
159 . Halpert, B., and Schmalhorst, W.R., "Carcinoma of the Prostate in Patients 70 to 79 Years Old," Cancer 19:695-698, 1966.
160 . Hammerer, P., and Hula nd, H., "Systematic Sextant Biopsies in 651 Patients Referred for Prostate Evaluation," Journal of Urology 151:99-102, 1994.

161

Hanks, G.E., "Extemal-Beam Radiation Therapy for Clinic ally Localized Prostate Cancer: Pattems of Care Studies in the United States," NCI Monographs 7:75, 1988.
Hanks, G.E., Asbell, S., Krall, J.M., et al., "Outc ome for Lymph Node Dissection Negative T-1b, T-2 (A-2, B) Prostate Cancer Treated with Extemal Beam Radiation Therapy in Rtog 77-06," International of Journal of Radiation Oncology, Biology, Physics 21:1099-1103, 1991.
163 . Hanks, G.E., "Extemal Beam Radiation Treatment for Prostate Cancer: Still the Gold Standard," Oncology 6:79-86, 89-94, 1992.
164 . Hanks, G.E., Krall, J.M., Pilepich, M.V., et al., "Comparison of Pathologic and Clinical Evaluation of Lymph Nodes in Prostate Cancer: Implic ations of Rtog Data for Patient Management and Trial Design and Stratific ation," International of Journal of Radiation Oncology, Biology, Physics 23:293-298, 1992.

Howard, G.C., "The Management of Carcinoma of the Prostate After Fa iled Primary Therapy," British Journal of Urology 72:269-273, 1993.
169 . Howards, S.S., a nd Peterson, H.B., "Vasectomy and Prostate Cancer, Chance, Bias, Ora Causal Relationship?," Journal of the American Medical Association 269:913-914, 1993. Hsiao, W.C., Dunn, D.K., a nd Vemilli, D.K., "Assessing the Implementation of Physician-Payment Reform," New England Journal of Medicine 328:928-933, 1993.
Hanks, G.E., Krall, J.M., Hanlon, A.L., et al., "Pattems of Care and Rtog Studies in Prostate Cancer: Long-Term Survival, Haza rd Rate Observations, and Possibilities of Cure," International of Journal of Radiation Oncology, Biology, Physics 28:39-45, 1994.
Harlan, L., Brawley, O., Pommerenke, F., et al., "Geographic, Age, and Racial Va riation in the Treatment of Local/Regional Carcinoma of the Prostate," Journal of Clinical Oncology 13(1):93-100, 1995.
Hinman, F.J ., "Screening for Prostatic Carcinoma," Journal of Urology 145:126-129, Disc ussion: 129-130, 1991.

Huang, C.L., Brassil, D., Rozzell, M., et al., "Comparison of Prostate Sec retory Protein with Prostate Specific Antigen and Prostatic Acid Phosphatase as a Serum Biomarkerfor Diagnosis and Monitoring Patients with Prostate Carcinoma," Prostate 23:201-212, 1993.
Hudson, M.A., "Prostate-Specific Antigen and the Clinician," Advances in Urology 6:157-186, 1993.

Hudson, M.A., Bahnson, R.R., and Catalona, W.J ., "Clinic al Use of Prostate Specific Antigen in Patients with Prostate Cancer," Journal of Urology 142:1011-1017, 1989.

Humphrey, P.A., Frazier, H.A., Vollmer, R.T., et al., "Stratific ation of Pathologic Features in Radical Prostatectomy Specimens That Are Predictive of Elevated Initial Postoperative Serum Prostate-Specific Antigen Levels," Cancer 71:1821-1827, 1993.
5 . Johansson, J .E., Adami, H.O., Andersson, S.O., et al., "High 10-Year Survival Rate in Patients with Early, Untreated Prostatic Cancer," Journal of the American Medical Association 267:2191-2196, 1992.
J ohansson, J.E., "Natural History in Early Primary Untreated Prostate Cancer," (oral presentation), 85th Annual Meeting of the Americ an Urologic al Association, San Antonio, TX, 1993.

J ohansson, J.E., "Watchful Wa iting for Early Stage Prostate C ancer," Urology 43:138-142, 1994.
Jones, G.W., "Prospective, Conservative Management of Localized Prostate Cancer," Cancer 70(supple.):307-310, 1992.
Kabalin, J.N., "Stage a Prostate Cancer Today," Journal of Urology 150:1749-1750, 1993.
Kabalin, J.N., McNeal, J.E., Price, H.M., et al., "Unsuspected Adenocarcinoma of the Prostate in Patients Undergoing Cystoprostatec tomy for Other Causes: Inc idence, Histology, and Morphometric Observations," Journal of Urology 141:1091-1094, 1989.
Kalish, J., Cooner, W.H., and Graham, S.D., "Serum PSA Adjusted for Volume of Transition Zone (PSAT) is More Accurate Then PSA Adjusted for Total Gland Volume (PSAD) in Detecting Adenocarcinoma of the Prostate," Urology 43:601-606, 1994.
Kane, R.A., Littrup, P.J ., Babaian, R., et al., "Prostate-Specific Antigen Levels in 1695 Men Without Evidence of Prostate Cancer," Cancer 69:1201-1207, 1992. Kaplan, I.D., Cox, R.S., and Bagshaw, M.A., "Prostate Specific Antigen After Extemal Beam Radiotherapy for Prostatic Cancer: Followup," Journal of Urology 149:519-522, 1993. Kaplan, I.D., Cox, R.S., and Bagshaw, M.A., "Ra diotherapy for Prostate Cancer: Patient Selection and the Impact of Local C ontrol," Urology 43:634-639, 1994.
Katz, A.E., Olsson, C.A., Raffo, A.J ., et al., "Molecular Staging of Prostate Cancer with the Use of An Enhanced Reverse Transcriptase-PCR Assay," Urology 43:765-775, 1994.
Kaufman, D., "CancerTherapy and the Randomized Clinical Trial: Good Medicine?" Ca: A Cancer Journal for Clinicians 44:109-114, 1994.
Keetch, D.W., Catalona, W.J ., "Update on Serial Prostatic Biopsies in Patients with Persistently Elevated Serum Prostate Specific Antigen Levels" (abstract), Journal of Urology 149:303a, 1993.

Kerbl, K., Clayman, R.V., Petros, J.A., et al., "Staging Pelvic Lymphadenectomy for Prostate Cancer: A Comparison of Laparoscopic and Open Techniques," Journal of Urology 150:396-399, 1993.

Kerlikowkse, K., Rubin, S.M., Sullivan, LJ ., et al., "Do Men with Prostate Cancer Know About the Risks and Benefits of Treatment?" Journal of General Internal Medicine 9(suppl.) 2:58, 1994. Klee, G.G., Dodge, L.A., Zncke, H., et al., "Measurement of Serum Prostate Specific Antigen Using IMX Prostate Specific Antigen Assay," Journal of Urology 151:94-98, 1994.
Kleer, E., Larson-Keller, J.J., Zncke, H., et al., "Ability of Preoperative Serum Prostate-Spec ific Antigen Value to Predict Pathologic Stage and DNA Ploidy," Urology 41:207-216, 1993. Kleer, E., and Oesterling, J.E., "PSA and Staging of Loc alized Cancer," Urologic Clinics of North America 20:695-704, 1993.
. Labrie, F., Dupont, A., Gomez, J.L., et al., "Benefic ial Effect of Combination Therapy Administered Prior to Radical Prostatectomy," Journal of Urology 149:348a, 1993.
203 . Lange, P.H., "Controversies in Management of Apparently Localized Carcinoma of Prostate," Urology 34(suppl.):13-18, 1989.
Lange, P.H., "The Next Era for Prostate Cancer: Controlled Clinic al Trials," Journal of the American Medical Assocation 269:95-96, 1993.
Lawton, C.A., Won, M., Pilepich, M.V., et al., "Long-Term Treatment Sequelae Following Extemal Beam Irradiation for Adenocarcinoma of the Prostate: Analysis of Rtog Studies 7506 and 7706," International Journal of Radiation Oncology, Biology, Physics 21:935-939, 1991.

Lee, F., Littrup, P.J ., Loft-Christensen, L., et al., "Predicted Prostate Specific Antigen Results Using Transrectal Ultra sound Gland Volume: Differentiation of Benign Prostatic Hyperplasia and Prostate Cancer," Cancer 70:211-220, 1992.
Lee, J.M., "Screening and Informed Consent," New England Journal of Medicine 328:438-440, 1993.

Lee, R.J ., and Sa use, W.T., "Surgic ally Staged Patients with Prostatic Carcinoma Treated with Definitive Radiotherapy: Fifteen-Year Results," Urology 43:640-644, 1994.
Leibel, S.A., Heimann, R., Kutcher, G.J., et al., "Three-Dimensional Conformal Radiation Therapy in Locally Advanced Carcinoma of the Prostate: Preliminary Results of a Phase I Dose-Esc alation Study," International Journal of Radiation Oncology, Biology, Physics 28:55-65, 1994.

Lemer, S., Seale-Hawkins, C., Carlton, C., et al., "The Risk of Dying of Prostate Cancer in Patients with Clinic a lly Diagnosed Localized Disease.," Journal of Urology 146:1040-1045, 1991. Lilja, H., Christensson, A., Dahlen, U., et al., "Prostate Specific Antigen in Serum Occurs Predominantly in Complex with Alpha 1-Antic hymotrypsin," Clinical Chemistry 37:1618-1625, 1991.

Lilja, H., and Abrahamsson, P.A., "Prostate Specific Antigen Predominantly Forms a Complex with Alpha 1-Antic hymotrypsin in Blood. Implic ations for Procedures to Measure Prostate Specific Antigen in Serum," Cancer 70:230-234, 1992.
Lilja, H., "Signific ance of Different Molecular Forms of Serum PSA," Urologic Clinics of North America 20:681-686, 1993.
Lingardh, G., "The Natural History of Early Untreated Prostate Cancer," (letter), Urology 43:130, 1994.

Littrup, P.J ., Lee, F.L, and Mettlin, C., "Prostate Cancer Screening: Curent Trends and Future Implic ations," Ca: Cancer Journal for Clinicians 42:198-211, 1992.
Littrup, P.J., Kene, R.A., Williams, C.R., et al., "Determination of Prostate Volume with Transrectal U.S. for Cancer Screening. Part I. Comparison with Prostate-Specific Antigen Assays," Radiology 178(2):537-542, 1991.
Littrup, P.J ., Goodman, A.C., Mettlin, C.J., et al., "The Benefit and Cost of Prostate Cancer Early Detection," CA: A Cancer Journal for Clinicians. 43:134-149, 1993.

Lookner, D.H., Crawford, E.D., Donohue, R.E., et al., "Prostate Specific Antigen and Prostate Specific Antigen Density in Cases of Pathologic ally Proven Prostate Cancer" (abstract), Journal of Urology 149:414a, 1993.
Lu-Yao, G.L, Mclerran, D., Wasson, J., et al., "An Assessment of Radic al Prostatectomy: Time Trends, Geographic Variation, and Outcomes," Journal of the American Medical Association 269:2633-2636, 1993.
Lu-Yao, G.L, "An Assessment of Radic al Prostatectomy," Journal of the American Medical Association 269:2633-2636, 1993.
Lu-Yao, G.L., Greenberg, E.R., "Changes in Prostate Cancer Incidence and Treatment in USA," Lancet 343:251-254, 1994.
Lundberg, S., and Berge, T., "Prostatic Carcinoma: An Autopsy Study," Scandinavian Journal of Urology and Nephrology 4:93-97, 1970.
MacFarlane, M.T., Abi-Aad, A., Stein, A., et al., "Neoadjuvant Hormonal Deprivation in Patients wiith Locally Advanced Prostate Cancer," Journal of Urology 150:132-134, 1993.
Mandelblatt, J.S., Wheat, M.E., Monane, M., et al., "Breast Cancer Screening for Elderly Women with and Without Comorbid Conditions: A Decision Analysis Model," Annals of Internal Medicine 116: 722-730, 1992.
Manton, K.G., Corder, LS., and Stallard, E., "Estimates of Change in Chronic Disa bility and Institutional Incidence and Prevalence Rates in the U.S. Elderly Population from the 1982, 1984, and 1989 National Long Term C are Survey," Journal of Gerontology 48:S153-S166, 1993. Marcus, M.A., and Moore, J.J., "Comparison of Three Immunoassays for the Quantific ation of Prostate Specific Antigen in Human Serum," Clinical Chemistry 39:1193, 1993.
. Marshall, K.G., "Screening for Prostate Cancer: How Can Patients Give Informed Consent?" Canadian Family Physician 39:2385-2390, 1993.

Maxim, P., Center for Devices, Food and Drug Administration, Public Health Service, U.S. Department of Health and Human Services, Rockville, MD, personal communic ation, Feb. 14, 1995.

McDowell, G.C., J ohnson, J.W., Tenney, D.M., et al., "Pelvic Lymphadenectomy for Staging Clinic ally Localized Prostate Cancer: Indic ations, Complications, and Results in 217 Cases.," Urology 35:476-481, 1990.
McLaren, R.H., Barrett, D.M., and Zncke, H., "Rectal Injury Occuming at Radical Retropubic Prostatectomy for Prostate Cancer: etiology and Treatment," Urology 42:401-405, 1993.
. McMenamin, P., Private Consultant, Brookeville, MD, personal communic ation, 1993.
McNeal, J.E., "Origin and Development of Carcinoma in the Prostate," Cancer 23:24-34, 1969.
McNeal, J.E., Bostwick, D.G., Kindrachuk, R.A., et al., "Pattems of Progression in Prostate C ancer," Lancet 60-63, 1986.
McNeal, J.E., Redwine, E.A., Freiha, F.S., et al., "Zonal Distribution of Prostatic Adenocarcinoma: Correlation with Histologic Pattern and Direction of Spread," American Journal of Surgical Pathology 12:897-906, 1988.
Mettlin, C., Lee, F., Drago, J., et al., "The Americ an Cancer Society National Prostate Cancer Detection Project. Findings on the Detection of Early Prostate Cancer in 2425 Men," Cancer 67:2949-58, 1991.
Mettlin, C., Murphy, G.P., and Menck, H., "Trends in Treatment of Loc alized Prostate Cancer by Radic al Prostatectomy: Observations from the Commission on Cancer's National Cancer Database," Urology 43:488-492, 1994.
Mettlin, C., J ones, G., Averette, H., et al., "Defining and Updating the Americ an Cancer Society Guidelines for the Cancer-Related Checkup: Prostate and Endometrial C ancers," Ca: A Cancer Journal for Clinicans 43:42-47, 1993.
Mettlin, C., J ones, G.W., and Murphy, G.P., "Trends in Prostate CancerCare in the United States 1974-1990: Observations from the Patient Care Evaluation Studies of the American College of Surgeons Commission on C ancer," Ca: A Cancer Journal for Clinicians 43:83-91, 1993.

Mettlin, C., Murphy, G.P., and Menck, H., "Trends in Treatment of Localized Prostate Cancer by Radic al Prostatectomy: Observations from the Commission on Cancer National Cancer Database, 1985-1990," Urology 43:488-492, 1994.
Meyers, F.J ., and Gumerlock, P.H., "Prostate Cancer Screening: What We Know and What We Need to Know" (letter), Annals of Internal Medicine 120:1052-1053, 1994.
241 . Mold, J.W., Holtgrave, D.R., Bisonni, R.S., et al., "The Evaluation and Treatment of Men with Asymptomatic Prostate Nodules in Primary Care: A Decision Analysis," Journal of Family Practice 34:561-568, 1992.
. Monath, J.R., Pitta way, D.E., Burkart, J.M., et al., "Effec ts of Hemodia lysis on Prostate-Spec ific Antigen," Urology 42:398-400, 1993.
Monda, J.M., Bary, M.J., and Oesterling, J.E., "Prostate Specific Antigen Cannot Distinguish Sta ge TIA (A1) Prostate Cancer from Benign Prostatic Hyperpla sia," Journal of Urology 151:1291-1295, 1994.
Montie, J.E., Wood, D.P., Pontes, J.E., et al., "Adenoc arcinoma of the Prostate in Cystoprosta tec tomy Spec imens Removed for Bla d der Cancer," Cancer 63:381-385, 1989.

Montie, J.E., "1992 Sta ging System for Prostate Cancer," Seminars in Urology 11:10-13, 1993.
Montie, J.E., "Counseling the Patient with Localized Prostate Cancer," Urology 43(suppl.):36-40, 1994.

Moore, M.J., O’Sullivan, B., and Tannock, I.F., "How Expert Physic ians Would Wish to be Treated If They Had Genitourinary Cancer," Journal of Clinical Oncology 6:1736-1745, 1988. Morton, R.A., Steiner, M.S., and Walsh, P., "Cancer Control Following Anatomical Radical Prostatec tomy: An Interim Report," Journal of Urology 145:1197-1200, 1991.
Moskovitz, B., Nitecki, S., and Levin, D.R., "Cancer of the Prostate: Is There a Need for Aggressive Treatment?" Urology International 42:49-52, 1987.

Moyad, R., Song, J .T., a nd Belville, W.D., "The Impact of Eja culation on Serum Prostate Specific Antigen (PSA) Levels in Men Over the Age of 40," Journal of Urology 151:400a, 1994.

Muller, C., Fahs, M.C., and Schechter, M., "Primary Medic al Care for Elderly Patients: Part I. Service Mix As Seen by An Expert Panal," Journal of Community Health 14:79-88, 1989. Murphy, G.P., Natarajan, N., Pontes, J.E., et al., "The National Survey of Prostate Cancer in the United States by the Americ an College of Surgeons," Journal of Urology 127:928-934, 1982. Murphy, G.P., "Report on the Americ an Urologic Association/Americ an Cancer Society Scientific Seminar on the Detection and Treatment of Early-Stage Prostate Cancer," Ca: A Cancer Journal for Clinicians 44:91-95, 1994.
Myers, R.P., Larson-Keller, J.J., Bergstralh, E.J., et al., "Hormonal Treatment at Time of Radic al Retropubic Prostatectomy for Stage D1 Prostate Cancer: Results of Long-Term Follow-Up," Journal of Urology 147:910-915, 1992.
Nooter, R.I., Bangma, C.H., and Schroder, F.H., "Age-Specific Reference Ranges for Prostate-Specific Antigen" (letter), Journal of the American Medical Assocation 271:746-747, 1994.

Oesterling, J.E., Assoc iate Professor of Medic ine, Department of Urology, Mayo Clinic, Rochester, MN, personal communic ation, Feb. 18, 1994.
Oesterling, J.E., "Prostate Specific Antigen. A Critic al Assessment of the Most Useful Tumor Marker for Adenoc arcinoma of the Prostate," Journal of Urology 145:907-923, 1991.
Oesterling, J.E., "Prostate-Specific Antigen. Improving Its Ability to Diagnose Early Prostate Cancer" [editorial comment], Journal of the American Medical Association 267:2236-2238, 1992.

Oesterling, J .E., Andrews, P.E., Suman, V.J ., et al., "Preoperative Androgen Deprivation Therapy: Artificial Lowering of Serum Prostate Specific Antigen Without Downstaging the Tumor," Journal of Urology 149:779-782, 1993.
Oesterling, J.E., Cooner, W.H., J a cobsen, S.J I, et al., "Influence of Patient Age on the Serum PSA Concentration: An Important Clinic al Observation," Urologic Clinics of North America 20:671-680, 1993.
Oesterling, J.E., J a cobsen, S.J ., Chute, C.G., et al., "Serum Prostate-Specific Antigen in a Community-Based Population of Healthy Men: Establishment of Age-Specific Reference Ranges," Journal of the American Medical Association 270:860-864, 1993.
Oesterling, J .E., Rice, D.C., Glenski, W.J ., et al., "Effect of Cystoscopy, Prostate Biopsy, and Transurethral Resection of Prostate on Serum Prostate-Spec ific Antigen Concentration," Urology 42:276-282, 1993.

Oesterling, J .E., Suman, V.J ., Zncke, H., et al., "PSA-Detected (Clinic al Stage TIC Or BO) Prostate Cancer: Pathologic a lly Signific ant Tumors," Urologic Clinics of North America 20:687-693, 1993.
Optenberg, S.A., a nd Thompson, I.M., "Ec onomic s of Screening for Prostate Cancer," Urologic Clinics of North America 17:719-737, 1990.
Paris, B., Department of Geriatrics, Mount Sinai Medical Center, New York, NY, personal communic ation, May 1993.
Parish, D., Lewandowski, D., Vales, S., et al., "Evaluation of the Abbott Prostatic Specific Antigen (PSA) on the IMX," Clinical Chemistry 39:1189, 1993.
Partin, A.W., "The Use of Prostate Specific Antigen, Clinic al Stage and Gleason Sc ore to Predict Pathological Stage in Men with Localized Prostate Cancer," Journal of Urology 150:110-114, 1993.

268 . Partin, A.W., Borland, R.N., Epstein, J.I., et al., "Influence of Wide Exc ision of the Neurovascular Bundle(S) on Prognosis in Men with Clinic ally Localized Prostate Cancer with Esta blished C apsular Penetration," Journal of Urology 150:142-148, 1993.
Paulson, D.F., Lin, G.H., Hinshaw, W., et al., "Radic al Surgery Versus Ra diothera py for Adenoc arcinoma of the Prostate," Journal of Urology 128:502-504, 1982.
270 . Perez, C.A., Lee, H.K., Georgiou, A., et al., "Technical Factors Affecting Morbidity in Definitive Iradiation for Localized Carcinoma of the Prostate," International Journal of Radiation Oncology, Biology, Physics 28:811-819, 1994.

272 . Pienta, K.J ., and Esper, P.S., "Is Dietary Fat a Risk Factor for Prostate Cancer?," Journal of the National Cancer Institute 85:1538-1540, 1993.
273 . Pienta, K.J ., and Esper, P.S., "Risk Fa ctors for Prostate Cancer," Annals of Internal Medicine 118:793-803, 1993.
Potosky, A.L., Kessler, L., Gridley, G., et al., "Rise in Prostatic Cancer Incidence Associated with Increased Use of Transurethral Resection," Journal of National Cancer Institute 82:1624-1628, 1990.

Prestidge, B.R., Kaplan, I., Cox, R.S., et al., "Predictors of Survival After A Positive Post-Iradiation Prostate Biopsy," International Journal of Radiation Oncology, Biology, Physics 28:17-22, 1994.
Quinlan, D.M., Epstein, J.I., Carter, B.S., et al., "Sexual Function Following Radical Prostatectomy: Influence of Preservation of Neurovascular Bundles," Journal of Urology 145:998-1002, 1991. Washington, "The Epidemiology of Prostate Cancer: A Report to the Office of Technology Assessment, U.S. Congress," unpublished contract paper prepared for the Office of Technology Assessment, U.S. Congress, Wa shington, DC , Feb. 28, 1994.
Rana, A., Chisholm, G.D., Khan, M., et al., "Pattems of Bone Meta sta sis a nd Their Prognostic Signific ance in Patients with Carcinoma of the Prostate.," British Journal of Urology 72:933-936, 1993.

Richie, J.P., Ratliff, T.L., Catalona, W.J ., et al., "Effect of Patient Age on Early Detection of Prostate Cancer with Serum Prostate-Specific Antigen and Digital Rectal Examination," Urology 42:365-374, 1993.
Riehmann, M., Rhodes, P.R., Cook, T.D., et al., "Analysis of Va riation in Prostate-Specific Antigen Values," Urology 42:390-397, 1993.
Rifkin, M.D., Zerhouni, E.A., Gatsonis, C.A., et al., "Comparison of Magnetic Resonance Imaging and Ultrasonography in Staging Early Prostate Cancer. Results of a Multi-Institutional Cooperative Trial" (comments), New England Journal of Medicine 323:621-626, 1990. Riley, G., Lubitz, J ., Prihoda, R., et al., "The Use and Costs of Medicare Services by Cause of Death," Inquiry 24:233-244, 1987.

3 . Roach, M., "The Use of Prostate Specific Antigen, Clinical Stage and Gleason Sc ore to Predict Pathological Stage in Men with Localized Prostate Cancer," (letter) Journal of Urology 150:1923-1924, 1993.

Rommel, F.M., Agusta, V.E., Breslin, J.A., et al., "The Use of Prostate Specific Antigen and Prostate Specific Antigen Density in the Diagnosis of Prostate Cancer in a Community Based Urology Practice," Journal of Urology 151:88-93, 1994.
Rorvik, J., Halvorsen, O.J ., Servoll, E., et al., "Transrectal Ultra sonography to Assess Local Americ an Cancer Soc iety (Extent of Prostatic Cancer Before Radical Prostatectomy," British Journal of Urology 73:65-69, 1994.
Rose, D.P., and Connolly, J.M., "Dietary Fat, Fatty Acids and Prostate Cancer," Lipids 27:798-803, 1992.

Rosen, M.A., Goldstone, L., Lapin, S., et al., "Frequency and Location of Extracapsular Extension and Positive Surgical Margins in Radic al Prostatectomy Specimens," Journal of Urology 148:331-337, 1992.
Rosenberg, L., Palmer, J .R., Za uber, A.G., et al., "Va sectomy and the Risk of Prostate Cancer," American Journal of Epidemiology 132:1051-1061, 1990.
Ruckle, H.C., Klee, G.G., a nd Oesterling, J.E., "Prostate-Spec ific Antigen: Concepts for Sta ging Prostate Cancer and Monitoring Response to Therapy," Mayo Clinic Proceedings 69:69-79, 1994.

Rukstalis, D.B., Gerber, G.S., Vogelzang, N.J ., et al., "Laparoscopic Pelvic Lymph Node Dissection: A Review of 103 C onsec utive Cases.," Journal of Urology 151:670-674, 1994.
Sackett, D.L., and Holland, W.W., "Controversy in the Detection of Disease," Lancet 23:357-359, 1975.

Sackett, D.L., Haynes, R.B., Guyatt, G.H., et al., Clinical Epidemiology: A Basic Science for Clinical Medicine (Boston, MA: Little, Brown and Company, 1991).
Sakr, W.A., Ha as, G.P., C assin, B.F., et al., "The Frequency of Carcinoma a nd Intraepithelial Neoplasia of the Prostate in Young Male Patients," Journal of Urology 150:379-385, 1993. Scardino, P., and Wheeler, T.M., "Local Control of Prostate C ancer with Radiotherapy: Frequency and Prognostic Signific ance of Positive Results of Postirradiation Prostate Biopsy," NCI Monographs 7:95-103, 1988.
Scardino, P.T., Weaver, R., and Hudson, M.A., "Early Detection of Prostate Cancer," Human Pathology 23:211-222, 1992.
. Seer, (Surveillance, Epidemiology, and End Results), "Incidence and Mortality Data," NCI Monographs Section 22, 1992.
Seidman, H., Mushinski, M.H., Gerb, S.K., et al., "Probabilities of Eventually Developing or Dying of Cancer—United States, 1985," Ca: A Cancer Journal for Clinicians 35:36-56, 1985.
Sershon, P.D., Bary, M.J ., and Oesterling, J.E., "Serum Prostate-Specific Antigen Disc riminates Weakly Between Men with Benign Prostatic Hypemplasia and Patients with Organ-Confined Prostate Cancer," European Urology 25:281-287, 1994.
Schellhammer, P.F., "Natural History of Prostate Cancer: An Analysis of Expectant Therapy Protocols," presented at the NCI Prostate Cancer Workshop, Bethesda, MD, J une 15-16, 1993. Schellha mmer, P.F., Kuban, D.A., and El-Mahdi, A.M., "Treatment of Clinic al Local Failure After Radiation Therapy for Prostate C arcinoma," Journal of Urology 150:1851-1855, 1993.
Schellha mmer, P.F., and Wright, G.L., "Biomolecular and Clinic al Characteristic s of PSA and Other Candidate Prostate Tumor Markers," Urologic Clinics of North America 20:597-606, 1993. Schmid, H.P., McNeal, J.E., and Stamey, T.A., "Observations on the Doubling Time of Prostate Cancer: The Use of Serial Prostate-Specific Antigen in Patients with Untreated Disease as a Measure of Increasing Cancer Volume," Cancer 71:2031-2040, 1993.
Schmidt, J.D., Mettlin, C., Natajaran, N., et al., "Trends in Pattems of Care for Prostatic Cancer, 1974-1983: Results of Surveys by the Americ an College of Surgeons," Journal of Urology 136:416-421, 1986.
1 . Schroder, F.H., "Endocrine Therapy for Prostate Cancer: Recent Developments and Curent Status," British Journal of Urology 71:633-640, 1993. 306:407-408, 1993.
Schroder, F.H., and Boyle, P., "Screening for Prostate Cancer-Necessity Or Nonsense?" European Journal of Cancer 29a:656-661, 1993.
Schuessler, W.W., Pharand, D., and Vancaillie, T.G., "Laparoscopic Standard Pelvic Node Dissection for Carcinoma of the Prostate: IIIt Accurate?" Journal of Urology 150:898-901, 1993.
Scott, R., Mutchnik, T., Laskowsko T.Z, et al., "Carcinoma of the Prostate in Elderly Men: Incidence, Growth Characteristics, and Clinic al Signific ance," Journal of Urology 101(4):602-607, 1969.
Seaman, E., Whang, M., Olsson, C.A., et al., "PSA Density (PSAD): Role in Patient Evaluation and Management," Urologic Clinics of North America 20:653-663, 1993.

Severson, R.K., Nomura, A.M.Y., Grove, J.S., et al., "A Prospective Study of Demographics, Diet, and Prostate CancerAmong Men of J a panese Ancestry in Hawaii," Cancer Research 49:1857-1860, 1989.
Shaheen, J.A., Amin, M., and Harty, J.I., "Patient Compliance in Treatment of Prostate Cancer with Luteinizing Hormone-Releasing Hormone (LHRH) Agonist," Urology 42:533-535, 1993.
Shipley, W.U., Zeitman, A.L, Hanks, G.E., et al., "Treatment-Related Sequelae Following Extemal Beam Radiation for Prostate Cancer. A Review with An Update in Patients with Stage 71 and T2 Tumors," Journal of Urology 152:1799-1805, 1994.
Silver, A., Department of Geriatric s, Mount Sinai Medic al Center, New York, NY, personal communic ation, May 1993.

Silverberg, E., "Statistical and Epidemiologic Data on Urologic Cancer," Cancer 60(suppl.):692-717, 1987.
5 . Simak, R., Eisenmenger, M., Hainz, A., et al., "Is Transrectal Ultrasonography Needed to Rule Out Prostatic Cancer with Normal Findings at Digital Rectal Examination and Normal Serum Prostate-Spec ific Antigen?" European Urology 24:474-478, 1993.
Simpson, K.N., and Brown, R.E., "Cost Effectiveness of Adding a Prostate Specific Antigen Test to Digital Rectal Examination for Early Detection of Prostate Cancer," Journal of Urology 149:413a, 1993.
Singer, P.A., Tasch, E.S., Stocking, C., et al., "Sex Or Survival: Trade-Offs Between Quality and Quantity of Life," Journal of Clinical Oncology 9:328-334, 1991.
8 . Smith, J.A., "Management of Localized Prostate C ancer," Cancer 70(suppl.):302-306, 1992. Smith, P.A., and Pavone-Mac aluso, M. (eds.), Management of Advanced Cancer of Prostate and Bladder, EORTC Genitourinary Group Monograph 4, (New York, NY: Alan R. Liss Inc., 1988). Sobaski, W.J., Health Care Financing Administration, U.S. Department of Health and Human Servic es, Baltimore, MD, personal communic ation, May 1993.
Soloway, M.S., Ha chiya, T., Civantos, F., et al., "Androgen Deprivation Prior to Radical Prostatectomy for T2B and T3 Prostate Cancer.," Urology 43(suppl.):52-56, 1994. Sox, H.C., "Preventive Servic es in Adults," New England Journal of Medicine 330:1589-1595, 1994.

Spitz, M.R., Cumier, R.D., Fueger, J .J ., et al., "Fa milial Pattems of Prostate C ancer: A Case-C ontrol Analysis," Journal of Urology 146:1305-1307, 1991.

4 . Stamey, T.A., and Hodge, K.K., "Ultra sound Visualization of Prostate Anatomy and Pathology," Monographs in Urology 9:55-63, 1988.

Stamey, T.A., and Kabalin, J.N., "Prostate Specific Antigen in the Diagnosis and Treatment of Adenoc arcinoma of the Prostate. I. Untreated Patients," Journal of Urology 141:1070-1075, 1989.

Stamey, T.A., "Diagnosis of Prostate Cancer: A Personal View" (editorial), Journal of Urology 147:830-832, 1992.
Stamey, T.A., Ferrari, M.K., and Schmid, H.P., "The Value of Serial Prostate Specific Antigen Determinations 5 Years After Radiotherapy: Steeply Increasing Values Characterize 80% of Patients," Journal of Urology 150:1856-1859, 1993.
Stamey, T.A., Freiha, F.S., Mc Neal, J.E., et al., "Localized Prostate Cancer: Relationship of Tumor Volume to Clinical Signific ance for Treatment of Prostate Cancer," Cancer 71:933-938, 1993. Stamey, T.A., "Sec ond Stanford Conference on Intemational Sta ndardization of Prostate-Specific Antigen Immunoassays: September 1 and 2, 1994," Urology 45:173-184, 1995. Steele, G.D., Winc hester, D.P., Menck, H.R., et al., "Clinic al Highlights from the National Cancer Data Base, 1993," Ca: A Cancer Journal for Clinicians 43:71-82, 1993.
Stein, A., Dekemion, J.B., Smith, R.B., et al., "Prostate Spec ific Antigen Levels After Radical Prostatectomy in Patients with Organ Confined and Locally Extensive Prostate Cancer," Journal of Urology 147:942-946, 1992.
Steinberg, G.D., Carter, B.S., Beaty, T.H., et al., "Fa mily History and the Risk of Prostate Cancer," Prostate 17:337-347, 1990.

- U.S. Congress, Office of Technology Assessment, Breast Cancer Screening for Beneficiaries: Effectiveness, Costs to Medicare and Medical Resources Required, Staff Paper (Washington, DC: U.S. Govemment Printing Office, November 1987).
347 . U.S. Congress, Office of Technology Assessment, "The Costs and Effectiveness of Screening for Cervical Cancer in Elderly Women-Background Paper," OTA-BP-H-65 (Wa shington, DC: U.S. Govemment Printing Office, February 1990).
U.S. Congress, Office of Technology Assessment, "Costs and Effectiveness of Colorectal Cancer Screening in the Elderly-Background Paper," OTA-BP-H-74 (Wa shington, DC: U.S. Govemment Printing Office, September 1990).
U.S. Department of Health and Human Services, National Cancer Institute, Division of Cancer Prevention and Control, "Working Guidelines for Early Cancer Detection: Rationale and Supporting Evidence to Decrease Mortality," Bethesda, MD, December 1987.
U.S. Department of Health and Human Services, National Center for Health Statistics, Vital Statistics of the United States, 1986, Vol II: Morta lity Part A, Pub. No. PHS 86-1101 (Washington, DC: 1986).
351 . U.S. Preventive ServicesTask Force, Guide to Clinical Preventive Services: An Assessment of the Effectiveness of 169 Interventions. Report of the U.S. Preventive Services Task Force (Baltimore, MD: William and Wilkins, 1989).
U. S. Preventative Services Task Force, "Screening for Prostate Cancer: Commentary on the Recommendations of the Canadian Task Force on the Periodic Health Examination," American Journal of Preventive Medicine 10:187-193, 1994.
Van Den Ouden, D., Tribuka it, B., Blom, J.H.M., et al., "Deoxyribonucleic Acid Ploidy of Core Biopsies and Metastatic Lymph Nodes of Prostate Cancer Patients: Impact on Time to Progression," Journal of Urology 150:400-406, 1993.
. Varenhorst, E., Berglund, K., Lofman, O., et al., "Inter-Observer Va riation in Assessment of the Prostate by Digital Rectal Examination," British Journal of Urology 72:173-176, 1993.
Vessella, R.L, Noteboom, J ., Lange, P.H., et al., "Evaluation of the Abbott IMX Automated Immunoassay of Prostate-Specific Antigen," Clinical Chemistry 38:2044-2054, 1992. Vessella, R.L, and Lange, P.H., "Issues in the Assessment of PSA Immunoassays," Urologic Clinics of North America 20:607-619, 1993.
Viswanath, S., Palmer, M.A., Ojha, H.O., et al., "Routine Estimation of Prostate Specific Antigen Prior to Clinical Attendance in Patients with Symptoms of Bla dder Outlet Obstruction," British Journal of Urology 72:187-189, 1993.
Wa isman, J., Adolfsson, J., Lowhagen, T., et al., "Comparison of Transrectal Prostate Digital Aspiration and Ultra sound-Guided Core Biopsies in 99 Men," Urology 37:301-307, 1991. Walsh, P.C., and Lepor, H., "The Role of Radical Prostatectomy in the Management of Prostatic Cancer," Cancer 60:526-537, 1987.
Walsh, P.C., "A Dec ision Analysis of Altemative Treatment Strategies for Clinic ally Loc alized Prostate Cancer," (editorial comment) Journal of Urology 150:1330-1331, 1993. Walsh, P.C., "Using Prostate-Specific Antigen to Diagnose Prostate Cancer: Sailing in Uncharted Waters," Annals of Internal Medicine 119:948-949, 1993.
Wasson, J.H., Cushman, C.C., Bruskewitz, R.C., et al., "A Structured Literature Review of Treatment for Loc a lized Prostate C ancer," Archives of Family Medicine 2:487-493, 1993. Way, L.W., (ed.), Current Surgical Diagnosis and Treatment, 9th ed., (East Norwalk, CT: Appleton Lange, 1991).
Waymont, B., Lynch, T.H., Dunn, J., et al., "Treatment Preferences of Urologists in Great Brita in and Ireland in the Management of Prostate Cancer," British Journal of Urology 71:577-582, 1993.

Whitmore, W.F., "O verview: Historic al and Contemporary," NCI Monographs 7-11, 1988. Whitmore, W.F., Wamer, J.A., a nd Thompson, I.M., "Expectant Mana gement of Loc alized Prostatic Cancer," Cancer 67:1091-1096, 1991.
Whitmore, W.F., Adolfsson, J., and Steineck, G., "Conservative Management of Localized Prostatic Cancer," American Journal of Clinical Oncology 15:446-452, 1992. Wilson, J.M.G., and J ungner, G., Principles and Practice of Screening for Disease, Public Health Paper No. 34 (Geneva, Switzerland: World Health Organization, 1986).

Wolf, J .S., Shinohara, K., Carroll, P.R., et al., "Combined Role of Transrectal Ultra sonography, Gleason Score, and Prostate-Specific Antigen in Predicting Organ-Confined Prostate Cancer," Urology 42:131-137, 1993.
370 . Younes, E., Ha as, G.P., Montie, J.E., et al., "Value of Preoperative PSA in Predicting Pathologic Stage of Patients Undergoing Salvage Prostatectomy," Urology 43:22-25, 1994.
Yuan, J.J., Coplen, D.E., Petros, J.A., et al., "Effects of Rectal Examination, Prostatic Massage, Ultra sonography and Needle Biopsy on Serum Prostate Spec ific Antigen Levels," Journal of Urology 147:810-814, 1992.

Zeitman, A.L., Coen, J.J., Shipley, W.U., et al., "Adjuvant Iradiation After Radic al Prostatectomy for Adenoc arcinoma of the Prostate: Analysis of Freedom from PSA Failure," Urology 42:292-299, 1993.
Zncke, H., Utz, D.C., Thule, P.M., et al., "Treatment Options for Patients with Sta ge D1 (T0-3, N1-2, M0) Adenoc arc inoma of Prostate," Urology 30:307-315, 1987.
Zncke, H., "Is Tumor Volume An Independent Predictor of Progression Following Radic al Prostatectomy? A Multivariate Analysis of 185 Clinic al Stage B Adenocarcinomas of the Prostate with 5 Years of Followup" (letter), Journal of Urology 151:435-436, 1994.

[^0]: ${ }^{1}$ The literature review and quantitative analysesdiscussed in thisbackground paperare drawn from a paperprepared undercontract forOTA (27). OTA'sanalysis also benefited from a nothercontract paperthat reviewed the epidemiology of prostate cancerin the United States(277), and a third contract paperthat provided the estimatesof resourcesused and costsassociated with prostate cancerscreening and treatment forMedic are-age men in the United States(121). However, the conclusions and, in some cases, the analysis are solely those of OTA and do not represent those of the authors of these contract papers.

 Chapter 1 is a summary of the detailed literature reviews and quantitative a nalysesthat follow in the subsequent chapters. Referencesto support statements in this chapter are noted in the relevant sections of the chapters. The structure of this chapter closely parallels the organization of the remainder of the document.

[^1]: 2The National Cancer Institute (NCI) previously recommended that men overage 50 receive a digital rectal exa mination, but not a prostate-specific antigen test. Recently, however, NCI hasdecided not to make any recommendationsconceming cancerscreening, defeming instead to the evidence-based policy guideline development processesused by the U.S. Preventive Services Task Force and the U.S. Agency for Health Care Policy and Research (AHCPR). AHCPR has not issued a ny guidelinesconceming prostate cancersc reening. NCI doessummarize evidence on prostate screening effectiveness in itsPhysic iansData Query (PDQ) database, noting the existence of only one, negative case-control study of DRE and the lack of evidence from well-controlled research conceming the use of PSA for early detection (199). The College of Americ an Pathologistsrecommendsthat PSA not be used forscreening among the generalasymptomatic male population, reserving itsuse in caseswhere prostate cancer is suspected (200). The Americ an Association of Fa mily Physic iansand Americ an Society of Preventive Oncologists currently have no guidelinesorrecommendationsconceming prostate cancerscreening (31,43). The College of Americ an Physic iansiscurrently developing such guidelines (26).
 ${ }^{3}$ Many cancers felt to be confined to the prostate preoperatively will be found to have already spread through the prostate capsule once surgery is performed.
 ${ }^{4}$ However, a signific ant minority (about 15 percent) of men with advanced prostate cancer have long-term survival measured in years (199).

[^2]: ${ }^{5}$ The false-negative rate is the probability that someone with a negative screening test actually hasprostate cancer. See box $3-1$ forfullerdescription of concepts used to describe the accuracy of screening technologies.
 ${ }^{6}$ Given the inaccuracies of DRE (and PSA) a long with these results, screening may behave something like a lottery in determining who receivesthe more accurate detection technology, TRNB.
 ${ }^{7}$ Altematively, some experts recommend age-specific reference ranges, which take into account the rise in PSA levels seen with aging. For example, one study suggests a PSA should be considered abnormal if it is above $4.5 \mathrm{ng} / \mathrm{mL}$ for men in their 60 s or $6.5 \mathrm{ng} / \mathrm{mL}$ for men in their 70 s .

[^3]: ${ }^{8}$ For example, some patients with prostate cancers discovered by screening have a low enough risk of metastasis that they do not need bone scans or surgical removal of their pelvic lymph glands before proceeding with curative treatment.

[^4]: ${ }^{9}$ Obstructionsofthe bladderorurinarytractmay require surgery, and distantspread of the cancerisusually treated with hormonaltherapy ("androgen deprivation").
 ${ }^{10}$ The data did not stratify men by age, but the estimates do adjust for other potential causes of death that do vary by age. The mean age in the sample was 70 . Age was not predictive of cancer-specific survival in this study.
 ${ }^{11}$ Recent data suggest that this trend reversed in 1991 with radical prostatectomy become the more common treatment strategy.

[^5]: 12The "attributable" death rate isthe total death rate minusdeathsthat would have been expected to occurduring the 30 dayseven if patients had not received surgery.
 ${ }^{13}$ C linicians can accomplish androgen deprivation through drugs or by orchiectomy (surgical removal of the testes).
 ${ }^{14}$ Chapter 5 provides more detail about the model and Markov processes.

[^6]: ${ }^{15}$ This includesmaking the a ssumption that metastatic ratesfor intrac a psular (and possibly curable) cancerswere ashigh asmetastatic ratesforcancersthat have spread outside the prostate.
 16These results do not discount future health benefits or adjust for qual lity of life.

[^7]: ${ }^{1}$ By comparison, in 1985 the lifelong probability of dying of other cancers were: 3.37 percent for breast cancer (a mong women), 0.96 percent for uterine cancer (among women), 2.8 percent for colorectal cancer, and 5.42 percent for lung cancer $(308,345)$.

[^8]: ${ }^{2}$ Some expertshave suggested that, since many men overage 50 have at least some lowerurinary tract voiding symptoms, most office-based DREsa nd PSA testsare done fordiagnosis, ratherthan case finding (361). However, despite traditional wisdom to the contrary, recentscreening studieshave notsuggested that lowerurinary tractsymptomatology consistent with benign prostatic hyperplasia (prostatism) confersa higherrisk forprostate cancer(72,235). If symptomsof prostatism are indeed unrelated to the presence or absence of prostate cancer, looking for cancers in these men would be considered part of early detection as well.

[^9]: ${ }^{3}$ According to one estimate, BPH is found in 40 percent of men over age 60 (133).
 ${ }^{4}$ NCI doessumma rize evidence on prostate screening effectiveness in itsPhysic iansData Query (PDQ) database, noting the existence of only one, negative casecontrol study of DRE and the lack of evidence from well-controlled research conceming the use of PSA forearly detection (199). AHCPR hasnot issued any guidelines concerning prostate cancerscreening. The Americ an Association of Fa mily Physic iansand Americ an Society of Preventive Onc ologistscurrently have no guidelines or recommendations conceming prostate cancer screening (31,43). The College of Americ an Physic ians is currently developing such guidelines (26).

[^10]: ${ }^{5}$ The greater the differentiation, the less likely it is to spread and the better the prognosis for the patient.

[^11]: ${ }^{6}$ Other variants of these systems have been proposed ($41,42,146,336$).
 7 In these descriptions of cancerstage, the notations before the slash (T1b and T2) refer to the TNM system, and the notations afterthe slash (A2 and B1) referto the Whitmore system.

 8 Incidence refersto the numberof new casesof a condition found in a population during a period of time. It isdistinguished from prevalence, which refersto the total number of cases (discovered or undiscovered) of the condition in a population at a given point in time.
 ${ }^{9}$ Even though prostate cancer risk rises with age, recent research has found small areas of prostate cancer in about 30 percent of men in their 30s and 40 s (293).

[^12]: 1 This method is methodologic ally inferior to knowing the underlying disease state of all individuals in each study, but probably superiorto the altemative methods used in the screening literature, such asscreening a population with multiple modalities (often DRE, PSA, and TRUS) a nd assuming all clinic ally signific ant cancers have been detected, ortesting only patientswith documented clinicaldisease status(e.g., men scheduled forradic alprostatectomy forknown cancer). The former method overestimatessensitivity and spec ific ity since some clinic a lly signific a ntc a ncerswould likely be undetected by allmodalities; the lattermethod overestimates sensitivity if cancers in the tested population are more advanced than those that would be identified by screening, or if the screening test were actually used in the process of identifying them in the first place.

[^13]: 2 In a more recent study, with a policy of systematic biopsy for abnormal DRE results, 15 percent of 6,630 male volunteers over age 50 had an abnormal DRE, a nd 21 percent of the men with an abnomal DRE had cancer at biopsy; the overall detection rate of cancerfor DRE in this series was 3.2 percent, reflecting the more aggressive use of biopsies (72). A new followup study has suggested better outcomes formen diagnosed at initial rather than followup screening with DRE (139); this finding may represent the effect of length bias with one-time screening (discussed in chapter 2).

[^14]: ${ }^{3}$ The FDA approved the Ta ndem PSA assaysfordetection on August 25, 1994. The Ta ndem tests, the Abbott IMx, the Toschmedix, AIA pack, a nd the Ciba-C oming ACS assays are all approved for monitoring men with previous prostate problems (228).
 ${ }^{4}$ Some investigators prefer a lower threshold on the Abbott or Hybritech assays of $3.0 \mathrm{ng} / \mathrm{mL}$ to improve test sensitivity (201). For a given underlying prevalence of true cancer, lowering the threshold inc reasesthe proportion of alltrue cancersfound by screening, but at the cost of having to do more biopsies(which, asdesc ribed later in this paper cames cost and risk in itself) and an inc reased number of false-positive screening results. In other words, in setting the threshold for conducting a biopsy, there is a tradeoff between false-negative and false-positive test results.

[^15]: ${ }^{5}$ Dalkin and colleagues(101) selected two standard deviationsabove the mean of the distribution of log-transformed age-specific PSA valuesto define the upper limit of the reference range.
 6 If the referencesrangesin table 3-2 are interpreted asage-dependent thresholdsforconducting followup tests, they implic itly assume that the costsof a false-positive relative to a false-negative test increase with age. This assumption makesconceptual sense, asoldermen have a greater risk of treatment complic ations, and feweryears of life expectancy overwhich to reap the benefitsof screening (on the otherhand, youngermen also have more yearsof life to live with any complications engendered by treatment). However, some clinicians are unwilling to trade sensitivity for specificity, regardless of age (255).

 7 In addition, a single, recent case-control study published just priorto public ation of thisreport suggeststhat PSA may actua lly preferentia lly identify aggressive cancers early with relatively high sensitivity and specificity (130).
 8 In a recentstudy, a group of 72 men underwent systematic sextant biopsiesdespite a PSA lessthan $4 \mathrm{ng} / \mathrm{mL}$ and a normaldigital rectalexam; these men had lung masseson chest radiography and were being evaluated to rule out metastatic prostate cancerasa cause. Prostate cancerwasdiscovered in 3 out of 72 men (4 percent), compared to 9 out of 77 men (12 percent) with a normal digital rectal examination but an elevated PSA (160). This data yields a likelihood ratio of 0.51 for a normal PSA and 1.51 for an elevated PSA (assuming these cases were consec utive), not inconsistent with the likelihood ratios presented in table 3-3.
 ${ }^{9}$ Bec a use of normalfluctuationsin PSA valueswithin a given patient, a PSA velocity based on only two mea surementsprobably haslittle value in clinic aldec isionmaking (280). Most recently, the concept of adjusting serum PSA by transition zone volume, rather than whole prostate volume, has been introduced (181).

[^16]: ${ }^{10}$ Asmentioned in chapter2, the FDA hasa pproved the drug finasteride fortreatment of BPH. It reducesPSA levelsthrough its intended physiologic al effects. However, it is not clear, given the need to expect lowerPSA levelswhen screening men on finasteride forprostate cancer, that thisdrug reducesthe (already fa irly low) information value of PSA a mong men with $\operatorname{BPH}(145,154,155,289)$. Bec ause of a trend toward lessinvasive management of BPH, the issue of adequate pretreatment screening of men with a diagnosis of BPH for coexistent prostate cancer is becoming a hotly debated issue (179).
 ${ }^{11}$ When Oesterling (261) applied the same screening strategy to randomly selected men in the community, only 1 percent were found to have prostate cancer compared with 4 percent in the volunteerstudies.

[^17]: 12 The proportion of men with organ-confined cancers in thisstudy is much higherthan in previous studies, presumably bec ause of the performance of systematic biopsies in all patients, rather than only screenees with an abnormal DRE or TRUS. The high proportion of sc reenees with an abnormal DRE in this study also suggests a very low threshold for considering this exam suspicious.

[^18]: ${ }^{2}$ Thisexamination can be done asa traditional, open surgic al procedure orlessinva sively using a la prosc ope that requiresonly a small inc ision (188, 290, 304). It can be done as a separate procedure, or as the first stage of a combined pelvic lymph node examination and radical prostatectomy.

[^19]: ${ }^{3}$ TURP does not seem to have an unfavorable impact on the prognosis of prostate cancer (372).
 4The effect of early androgen deprivation on the natural history of clinically localized prostate cancer is not well defined; some nonexperimental studies demonstrated little effect $(23,114)$.
 ${ }^{5}$ Recently, clinic ianshave increasingly used combination therapy involving two agents, a GnRH a gonist a nd an a ndrogen blocker(fluta mide), with some evidence from clinic al trials that this a pproach inc reases median survival time to a degree $(94,108)$.

[^20]: ${ }^{6}$ Although thisstudy hasbeen critic ized forenrolling too many oldermen and too many with insignific ant cancersdiscovered during TURP a nd forhaving insuffic ient followup to detect a late upsurge in hazard of prostate cancerdeath, neitherage norstage (controlling forgrade) wasan independent predictorof the prostate cancerdeath rate in thisstudy. In addition, the study's"TOl" tumors (a unique stage different from Tla orA1) included tumorsencompassing up to 25 percent of the volume of the TURP specimen (asopposed to up to 5 percent forTla orA1 tumors in the United States), and there hasbeen no increase in hazard rate noted with followup to 12.5 years. Moreover, a subset a nalysisformen who would be considered candidatesforradic alprostatectomy yielded similarresults. Concemshave also been raised about identific ation of prostate cancerby means of a spiration cytology, as was generally the mode of diagnosis in this study (214, 296); however, this method had similar results to core biopsy in one Scandina vian study (358).

[^21]: 7The reason forthe discrepancy between the rate ofmetastatic disease and prostate cancermortality, partic ularly formen with moderately differentia ted cancer, is notwellunderstood; to some degree, early detection of a low burden of a symptomatic metastatic disea se with periodic bone sc ansin these seriesmayexplain some of the apparent delay between the development of metastases and cancer death implicit in these results (278).
 ${ }^{8}$ Wa iting for signs of clinic al progression will result in fewer cancers being pathologic ally loc a lized at the time clinicians attempt curative treatment.
 ${ }^{9}$ Thirty patients did undergo TURP for obstructive symptoms, only about half of whom had cancer in the removed tissue (176).

[^22]: ${ }^{10}$ Presumably, some patientswho underwenta surgic alexamination of the pelvic lymph nodespriorto radicalprostatectomy subsequently underwentradiotherapy instead because of nodal involvement.
 ${ }^{11}$ However, registry data indic ate that forthe U.S. population asa whole, thistrend reversed itself in 1991 with radical prostatectomy becoming the more commonly used treatment strategy (166).
 ${ }^{12}$ Cohortstudiesare often used to compare the outcomesoftwo groupsof patientssimilarin importantcharacteristic sotherthan the outc ome of interest-in thiscase, treatmentstrategy. Because of the inability to control retrospectively forallfactorsthatmight be related to treatmentchoice and outcome, the resultsofsuch a study are inferior to a prospectively randomized clinical trial.

[^23]: ${ }^{13}$ Cystitis is an inflammation of the bladder.
 ${ }^{14}$ Proctitis is inflammation of the rectum.
 ${ }^{15}$ Aswith radical prostatectomy, complic ations from radiotherapy may depend on the expertise of the radiotherapist and treatment center. While some radiation oncologistsat majorreferralcentersmay have betteroutc omesthan reflected in table 4-2, asreported recently by Shipley (312), a nationwide prostate cancerea rly detection program may outstrip the capacity of these centers.
 ${ }^{16}$ Margin positivity refers to the discovery of canceroustissue right up to the edge of the surgically removed tissue, raising the possibility that the operation may not have removed all of the cancer.
 ${ }^{17}$ This is the opposite of the pattem described earlier for men who are treated by expectant management.

[^24]: ${ }^{18}$ The attributable benefit is that portion of the total observed benefit in the treated population (i.e., extra years of life) actually due to radical prostatectomy as opposed to othercauses.
 ${ }^{19}$ After seven years, patients undergoing radical prostatectomy had a probability of death 0.01 higher than those receiving expectant management. However, calculation of a 95-percent confidence intervala round thisfigure indic atesthat the data are actually consistent with a probability of death with radic al prostatectomy as much as 0.07 lower than that for expectant management as well as a probability as much as 0.09 higher than that for expectant management.

 20The researchersanalyzed Medicare claimsdata and performed a survey based on a national probability sample of 1,070 men who had radic al prostatectomies underMedic are between 1988 and 1990; they oversa mpled Massa chusettsfora subexperiment to determine whethermode of interview (personal, mail, orphone) gave different results. The method of interview did not affect any of the data presented in this paper (127).

[^25]: ${ }^{1}$ Forexample, a recently published paper(30) used one of the dec ision a nalysescited here (124) togetherwith newer, life expectancy data that are more optimistic than those used in the original dec ision a nalysis. The authorsof the more recent paperconclude that theirrea nalysisleadsto conclusionsd ifferent from those dra wn by Fleming and colleagues. Beck and colleagues, the a uthors of the newerpaper, suggest that radic al prostatectomy forlocalized prostate cancermay actually increase quality-adjusted life-years. These authors also endorse the continuation of randomized clinical trialsto resolve issues of cancerprogression rates and the ultimate effectiveness of prostate cancer treatment, the two greatest unknowns in the decision about whether to screen forprostate cancer (30).

[^26]: 2However, the section on cost-effectiveness a nalysis below appropriately discounts both future years of life and future costs.
 ${ }^{3}$ A Markov model isa quantita tive tooluseful in understanding how people move through differentstatesofthe world (in thiscase, statesof health) overtime when: 1) there are a finite numberofstates, 2) a ny individualc an fallinto only one state in a ny given time period, 3) the probability of moving from one state to the next overa ny two periodsoftime isknown, and 4) the periodsof time are uniform in length (335). In thisa nalysis, the Markov modeldesc ribeshow many membersof each cohort of men expenience different typesof cancer, treatment complic ations, othersymptoms, a nd death, when they experience each event, and (asseen later) what costs they incurfor Medicare along the way.

[^27]: a Metastatic ratesforwell ($>0.5 \mathrm{~mL}$), moderately, and poorly differentiated cancersderived from G.W. Chodak, R.A. Thisted, G.S. Gerber, et al., "Resultsof Conservative Management of Clinic a lly Loc a lized Prostate C ancer," New England Journal of Medicine 330:242-248, 1994. Metastatic ratesforthese cancersare assumed not to vary by volume orcapsularstatus(i.e., only by grade), except forwell-differentiated cancers $<0.5 \mathrm{~mL}$, which are assumed not to metastasize. See text fordetails.

[^28]: 4It is interesting to note that the proportion of Medicare-age screenees who would have suspicious results on DRE and PSA testing (28 to 40 percent depending on age) is much higherthan forma mmography (up to 6 percent) (351), fecaloccult blood testing (2 to 5 percent) (348), orPap smears (1 to 13 percent) (347). Thus, the level of intrusiveness of a strategy of early detection of prostate cancer, with recommendationsforbiopsy being generated in overa quarterof screenees, ismuch greater than among other commonly used cancer screening strategies.
 ${ }^{5}$ These estimates of the age-spec ific yield of combined DRE and PSA sc reening, which come from the study by Richie (72,279), favorsc reening since the volunteers who partic ipated in the study may have had an enriched prevalence of cancer. Aspreviously noted in chapter3, a community-based study using the same screening strategy among men ages 40 to 79 found cancer in 5 out of 537 ($<1 \%$) screenees (261).
 ${ }^{6}$ Among prostate-confined cancers, the Richie study (279) doesnot distinguish between the volume categoriesused in thisa nalysis($<0.5 \mathrm{~mL}$ and $>0.5 \mathrm{~mL}$). Hence, this a nalysisusesOesterling's 11 percent probability that detected cancersare 40.5 mL (263) even though the Oesterling data are not age-specific. The resulting mix of cancersdiscovered by screening and coming to radic al prostatectomy predicted by the model at a ge 65 are asfollows: $40.5 \mathrm{~mL}, 11 \mathrm{percent} ;>0.5 \mathrm{~mL}$ a nd intracapsular, 65 percent; and .05 mL and extracapsular, 24 percent. This distribution is actually considerably more favorable than the distribution of Tlc cancerscoming to radical prostatectomy recently described by investigatorsatJ ohnsHopkinsUniversity (52,119): insignific antor "minimal" ($\measuredangle 0.5 \mathrm{~mL}$), 26 percent; " moderate " (includes some cancers with capsular penetration if well ormoderately differentiated), 40 percent; and "advanced," 34 percent. However, those investigators felt that only tumors less than 0.2 mL with a Gleason grade less than seven were truly "insignificant," and candidates for expectant management; this category comprised 16 percent of theirTlc tumors. Oesterling (263), on the otherhand, found that only 11 percent of hisseriesof Tlc cancerswere lessthan 0.5 mLin volume, and Ric hie (279) reported thatonly 24 percent of screen-detected cancers in men thisage were unconfined; asindicated, thismodelreflectsOesterling and Richie'smore favorable probabilities.

 7The model-estimated sensitivities of combined PSA/DRE/biopsy are lowerthan many clinic ianswould predict. Forexample, at age 65 , 3.5 percent of cancers less than $0.5 \mathrm{~mL}, 42$ percent of intrac apsularcancers $>0.5 \mathrm{~mL}$, and 43 percent of extracapsularcancers $>0.5 \mathrm{~mL}$ would be detected. However, if one assumes full compliance with biopsy for suspic ious screening results (instead of 69 percent), the estimated sensitivities of DRE/PSA/biopsy would increase to 5 , 60 , and 62 percent, respectively. These estimated sensitivitiesreflect the assumption thatcancersare distributed by volume according to the a utopsy study by McNeal(233) desc ribed in table 2-5 and appendixA. Assuming differentdistributionsof c ancersby volume would affect the estimated sensitivities, butwould not affect the estima ted benefitsof screening, which are based on the post-test distributionsof cancerreported in screening studies. Forexa mple, if only 20 percent, (ratherthan 40 percent) of prevalent cancersare greaterthan 0.5 mL in size, a sreported in some cystoprostatectomy series(328), the sensitivity of screening at age 65 forcancerslessthan 0.5 mL would drop to 4 percent, and the predicted sensitivitiesofDRE/PSA/biopsy (assuming perfectcompliance) forintracapsularand extracapsularcancers $>0.5 \mathrm{~mL}$ would both be over 100 percent. In otherwords, the yield of cancers $>0.5 \mathrm{mLdesc}$ ribed by Richie (279) would actually be greaterthan the predicted prevalence ofthese lesions.

[^29]: ${ }^{8}$ Although some men with established capsularpenetration and no evidence of the tumoron the outside of tissue removed during prostatectomy (negative surg ic al margins) may be cured aswell, these casesare balanced by Epstein'sobservation that roughly 25 percent of men with only partialcapsularpenetration had in fact demonstrated evidence of progression after eight years.
 ${ }^{9}$ Estimates of the treatment complic ationsthat would accrue if all patientswere treated with radiotherapy, ratherthan radical prostatectomy, are presented later.

[^30]: ${ }^{10}$ If wearing pads is used to define incontinence, the risk would be higher, see table 4-3.
 ${ }^{11}$ Exc luding consideration of all treatment-related complic ationsotherthan the two most common ones, impotence and incontinence, is anotherassumption that favors screening in this a nalysis.

 12The a nalysis incorporatesrelatively high ratesof grade-specific metastatic and cancer-specific death ratesin thismodel; these ratesare calibrated to the 10-year cancer-spec ific survivalsreported in Chodak's(83) individual-patient-level meta-analysis, which excluded studiesof Stage Al cancers, which may well be treated aggressively in some patients in the current environment. These metastatic and death ratesare favorable to screening. Asa result of these assumptions, the model predicts that a 65 -year-old man hasa cumulative probability of eventually dying of prostate cancer of 4.1 percent, while the empiricalepidemiologic evidence documentsthisriskis3percentorless $(308,314)$. Highermetastatic ratesorassignment ofmetastatic potentialto smallvolume, well-differentiated tumorswould cause even greater divergence between the predicted and observed cumulative incidences of prostate cancer mortality.
 13Median survival in this trial once the disease became hormonally refractory was 0.9 years.

[^31]: ${ }^{14}$ The fact that this part of the a nalysis does not "disc ount" future life-years relative to current life-years also favors screening as risks of treatment. Disc ounting accountsforthe factthat future costsand benefitsare valued lessthan the same outcomesencountered in the present. It ispartic ularly signific ant in the case of prostate cancersc reening and treatment since the benefitsof treatment (and risksof cancer) are faced in the future, while the risksof sc reening and treatment are faced in the present. Hence, discounting would diminish the estimated life-yearsgained through screening. The a nalysis doesdiscount future health benefits subsequently when examining the costs a nd cost-effectiveness of screening.

[^32]: SourCe: Office of Technology Assessment, 1995. Based on data from M.J. Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate Cancer Among Older Men: A Report to the Congressional Office of Technology Assessment," OTA contract paper no. K3-0546.0, Boston, MA, Massachusetts General Hospital, June $30,1994$.

[^33]: Source: Office of Technology Assessment, 1995. Based on data from M.J . Barry, C.M. Coley, C. Fleming, et al., "The Sa fety, Effec tiveness, and Cost of Early Detec tion and Treatment of Prostate Ca ncer Among Older Men: A Report to the congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Boston, MA, Massachusetts General Hospital, J une 30, 1994.

[^34]: ${ }^{15}$ Epidemiologic ally, cardiovasculardisease and othercancersare by farthe most likely causes(table 2-1). The costsof these altemative scenariosfordeath further blunt any savings from a verting terminal care costs for prostate cancer.

[^35]: ${ }^{16}$ Beyond the coststo the federal govemment through Medic are, patients also bearthe direct and indirect nonmedical costs associated with screening and any detected disease such astravel coststo receive medicalcare, lost wages, a nd the a nxiety associated with being told they may have canceron the basisof a suspicious screening test result. In addition, patients or third-party private insurers would bearmedic al care costs not covered by Medic are.
 ${ }^{17}$ C ontinuing changes in Medic are reimbursementsfor proceduresassociated with prostate cancerscreening and treatment may make these 1992 costs inaccurate predictors of costs in 1995 or in subsequent years (13a).
 ${ }^{18}$ Forexample, it isunknown exactly what percentage of men would get a pelvic CTscan orbone scan aspart of a staging evaluation, orwhat percentage of men undergoing radic al prostatectomy would be billed underDRG 335 (withoutcomorbidity/complic ations) versusDRG 334 (with comorbidity/complic ation). An October 1993 public a tion by the Americ an Urologic alAssociation entitled, "Coding Tipsforthe Urologist'sOffice," washelpful in preparing the a mbulatory component of these estimates.
 19J ohansson (176) recently updated the outcomes in his Scandina vian series of "watchful waiters" at an annual Americ an Urological Association meeting in San Antonio. At 12.5 yearsof a verage followup, 30 untreated cancerpatientshad required TURP overa pproximately 1,610 person-years(a rate of 0.019 TURPsperpersonyear); in 16 men the pathology report showed cancer, while in 14 the diagnosiswasBPH. Whitmore (366), on the otherhand, found that a mong men with 72 cancers treated expectantly, 23 patients required 37 TURPs in approximately 803 person-years of followup (a rate of 0.046 perperson year); 27 men had cancer in their resected spec imenswhile 10 had only BPH. We use an average of these two rates(a weighted average based on person-yearsof followup would be closerto that of the largerJ ohansson study) to calculate the costs of treatment for local progression of cancer and for BPH among men with cancer.
 ${ }^{20}$ Formen treated with radical prostatectomy, the survey of Medic are prostatectomy patientsby Fowlerand colleagues(127) found that actually 15-percentreport postoperative treatment forsexual dysfunction within two to fouryearsaftersurgery: eight percent with a vacuum device, 7 percent with pharmacologic erection therapy, and 3 percent with a penile implant.

[^36]: ${ }^{21}$ Since stric tures are often recurent, this assumption is partic ularly conservative.
 ${ }^{22}$ In Medic are survey (127), 20 percent of men reported at least one dilation orsurgic al procedure forwhat they believed to be stricturestwo to four yearsfollowing radical prostatectomy; 11 percent required treatment at least twice.

[^37]: a Low estimate: 0\% DRG 336 (complic ations) at \$3,943 and 100\% DRG 337 (no complic ations) at \$2,778; medium estimate: 25\% DRG 336 and 75\% DRG 337; high estimate 50\%DRG 336 and 50\%DRG 337.
 KEY: BPH = benign prostatic hypertrophy; DRG = diagnosis-related group; TURP = transurethral resection of the prostate.

[^38]: a Both future costs and health benefits are discounted at 5% a nnually.
 ${ }^{\mathrm{b}}$ Future treatment for local progression of prostate cancer, benign prostatic hyperplasia (BPH), metastatic prostate cancer, and therapy complic ations. KEY: TRUS = transrectal ultra sound.

[^39]: ${ }^{23}$ Asmentioned earlier, the ratesused in thisa nalysisresult in a lifetime cumulative risk of prostate cancerdeath more thana third higherthan the risk a ctually observed in the literature.

[^40]: ${ }^{24}$ The costs peryear of life saved are displayed on a log scale because of the steep escalation in costs as the favorable initial assumptions are rela

[^41]: ${ }^{25}$ Thisset of assumptionsactually resultsin a prediction of the cumulative probability of a prostate cancerdeath formen age 65 of 2.5 percent, within the empiric ally observed probability range of 2.5 to 3 percent.

[^42]: ${ }^{26}$ Thisstudy also found that the cost perlife-yearrose asthe screening frequency increased. It was $\$ 1,453$ forscreening every five yearscompared with no screening, was $\$ 5,956$ perlife-yearsaved when moving from a five-yearto a three-yearscreening cycle, and was $\$ 39,693$ forannual screening compared with screening for every 3 years.
 ${ }^{27}$ A more recentanalysisofbreastcancerscreening found thata one-time mammography forMedic are-age womencost $\$ 23,212$ peryearof life saved atages 65 to 69 and $\$ 27,983$ per year of life saved at age 70 to 74 (224).

[^43]: ${ }^{1}$ See figure 5 in the study by McNeal and colleagues (233).

[^44]: (1989) cohort returned for sec ond and third examina tions, respectively.
 g Overall PV + for entire period of study; PV + for initial exam abnormalities versus subsequent ones not provided. ${ }^{h}$ Unable to assess effect of lead-time and length bias.

[^45]: 1Information in this appendix is based on an OTA contract paper by Fahs and colleagues. (121).
 ${ }^{2}$ Continuing changesin Medic are reimbursementsforproceduresassociated with prostate cancerscreening and treatmentmay make these 1992 costsinaccurate predictors of costs in 1995 or in subsequent years (13a).

[^46]: a The majority of the surgic a l allowable chargeshave two components: one for the surgeon and one forthe surgic al assistance. Composite chargesare reported.

[^47]: a The majority of the surgic a l allowable chargeshave two components: one forthe surgeon and one forthe surgic al assistance. Composite chargesare reported.
 ${ }^{\mathrm{b}}$ For DRGs, the figures represent average expenditures per beneficiary, including Medic are reimbursement and beneficiary deductible.

